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Abstract

Microglial neuroinflammatory processes play a primary role in dopaminergic neurodegeneration for Parkinson’s disease 
(PD). This can occur, in part, by modulation of glial function following activation by soluble or insoluble modified alpha-
synuclein (α-syn), a chief component of Lewy bodies that is released from affected dopaminergic neurons. α-Syn is ni-
trated during oxidative stress responses and in its aggregated form, induces inflammatory microglial functions. Elu-
cidation of these microglial function changes in PD could lead to new insights into disease mechanisms. To this end, 
PD-associated inflammation was modeled by stimulation of microglia with aggregated and nitrated α-syn. These acti-
vated microglia were ameboid in morphology and elicited dopaminergic neurotoxicity. A profile of nitrated, aggregated 
α-syn-stimulated microglia was generated using combinations of genomic (microarrays) and proteomic (liquid chroma-
tography-tandem mass spectrometry, differential gel electrophoresis, and protein array) assays. Genomic studies re-
vealed a substantive role for nuclear factor-kappa B transcriptional activation. Qualitative changes in the microglial 
proteome showed robust increases in inflammatory, redox, enzyme, and cytoskeletal proteins supporting the genomic 
tests. Autopsy brain tissue acquired from substantia nigra and basal ganglia of PD patients demonstrated that parallel 
nuclear factor-kappa B-related inflammatory processes were, in part, active during human disease. Taken together, the 
transcriptome and proteome of nitrated α-syn activated microglia, shown herein, provide new potential insights into dis-
ease mechanisms.

Keywords: alpha-synuclein, microglia, neuroinflammation, Parkinson’s disease, proteomics

Abbreviations used: ACN, acetonitrile; AD, Alzheimer’s disease; AFM, atomic force microscopy; BG, basal ganglia; 
DIGE, differential gel electrophoresis; DMEM, Dulbecco’s modified Eagle’s medium; ex/em, excitation/emission; FBS, fe-
tal bovine serum; Gapdh, glyceraldehyde-3-phosphate dehydrogenase; IP, Immunoprecipitates; LB, Lewy bodies; LC-
MS/MS, liquid chromatography-tandem mass spectrometry; LPS, lipopolysaccharide; NF-κB, nuclear factor-kappa B; N-
α-syn, nitrated alpha synuclein; PBS, phosphate-buffered saline; PD, Parkinson’s disease; PVDF, polyvinylidene fluoride; 
RIPA, radioimmunoprecipitation; ROS, reactive oxygen species; SN, substantia nigra; SNpc, substantia nigra pars com-
pacta; TH, tyrosine hydroxylase; α-syn, alpha-synuclein.
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Parkinson’s disease (PD) is a progressive neurodegen-
erative disorder characterized by resting tremor, rigid-
ity, bradykinesia, and gait disturbances (Fahn et al. 1998; 
Mayeux 2003; Fahn and Sulzer 2004). Presently, 1.5 mil-
lion Americans are afflicted. Disease incidence rises with 
increasing age, with 120/100 000 contracting PD over the 
age of 70 (Dauer and Przedborski 2003). Pathologically, 
PD is characterized by the progressive loss of dopami-
nergic neuronal cell bodies in the substantia nigra pars 
compacta (SNpc) and their termini in the dorsal striatum 
(Hornykiewicz and Kish 1987). These pathological find-
ings commonly parallel microglial activation observed 
in association with deposits of aggregated alpha synu-
clein (α-syn) in intracellular inclusions, known as Lewy 
bodies (LB) (Spillantini et al. 1997; Croisier et al. 2005). 
Although host genetics and environmental factors affect 
the onset and progression of PD (Tanner 1992) significant 
clinical, epidemiologic, and experimental data also sup-
port a role for microglial inflammation in disease patho-
genesis (Forno et al. 1992; Banati and Blunt 1998;McGeer 
and McGeer 1998; Mirza et al. 2000;Cicchetti et al. 2002; 
Block and Hong 2005; Hong 2005; Wang et al. 2005).

The mechanisms underlying microglial activation in 
PD and how it affects neuronal survival is incompletely 
understood. One line of investigation is that neuronal 
death itself drives microglial immune responses (Gias-
son et al. 2000; Przedborski et al. 2001; Mandel et al. 2005). 
Alternatively, we, as well as others, have proposed that 
activation occurs as a consequence of release of aggre-
gated proteins from the cytosol or within LB to the ex-
tracellular space. In this way, the death of dopaminergic 
neurons leads to release of modified protein aggregates 
that activate microglia inciting a lethal cascade of neu-
roinflammation and neuronal demise (Zhang et al. 2005; 
Wersinger and Sidhu 2006). Several lines of experimental 
evidence support this contention (Spillantini et al. 1997; 
Goedert 1999; Giasson et al. 2000; Kakimura et al. 2001; 
Croisier et al. 2005; Lee et al. 2005). First, aberrant expres-
sion of α-syn and PD pathogenesis are linked. This is de-
rived from the discovery that mutations and multiple 
copies of the gene encoding α-syn (SNCA and PARK1) 
are linked to familial early onset PD (Kruger et al. 1998; 
Spira et al. 2001; Zarranz et al. 2004; (Singleton et al. 2003; 
Chartier-Harlin et al. 2004). Second, oxidation and nitra-
tion of α-syn leads to formation of aggregates and fila-
ments that comprise LB (Giasson et al. 2000; Souza et al. 
2000). Third, portions of α-syn are secreted rendering it 
more vulnerable to aggregation (Lee et al. 2005) and oxi-
dative modification (Kakimura et al. 2001). Fourth, α-syn 
itself can activate microglia, inducing reactive oxygen 
species (ROS) (Thomas et al. 2007) and subsequent neu-
rotoxicity (Zhang et al. 2005). Fifth, microglial products 
including cytokines, chemokines, excitotoxins, and pro-
teins of the classical complement cascade affect a broad 
range of neurological diseases (McGeer and McGeer 1998; 

Bal-Price and Brown 2001; Liu and Hong 2003; Block and 
Hong 2005). Sixth, endogenous activators of microglia 
show a neuroinflammatory fingerprint reflective of what 
can occur during PD (Zhou et al. 2005; McLaughlin et 
al. 2006). Lastly, attenuation of microglial activation can 
protect up to 90% of dopaminergic neurons in PD animal 
models (Du et al. 2001; Teismann and Ferger 2001; Wu et 
al. 2002; Teismann et al. 2003; Kurkowska-Jastrzebska et 
al. 2004; Choi et al. 2005; Vijitruth et al. 2006).

Based on these observations, we investigated changes 
in the microglial transcriptome and proteome as a con-
sequence of the cells’ engagement with nitrated and ag-
gregated α-syn (N-α-syn). N-α-syn stimulation of mi-
croglia induced morphological cell transformation and 
neurotoxic secretions. A N-α-syn-activated ‘microglial 
signature’ was determined by gene microarrays, 2D dif-
ferential in-gel electrophoresis (DIGE), and by cytokine 
profiling. N-α-syn induced a microglia inflammatory 
phenotype characterized by the expression of neurotoxic 
and neuroregulatory factors. Most importantly, the in-
flammatory signature seen in laboratory assays were, in 
part, mirrored in parallel tests performed on postmor-
tem brain tissues from PD patients. These observations, 
taken together, serve to support both a ‘putative’ role for 
N-α-syn-activated microglia in disease.

  
Materials and methods
  
Parkinson’s disease brain tissues

Autopsy materials from the substantia nigra (SN) and 
basal ganglia (BG; caudate nucleus and putamen) of 10 pa-
tients who died with signs and symptoms of PD, three with 
Alzheimer’s disease (AD), and 10 age-matched controls were 
secured from the National Research Brain Bank Tissue Con-
sortium. The 10 controls ranged in age from 62 to 91 and died 
of diseases unrelated to neurological impairments. This in-
cluded atherosclerotic and metabolic diseases, infections, and 
cancer (Table 1).

An antibody to N-α/β-syn (clone nSyn12, mouse ascites; 
Upstate, Charlottesville, VA, USA) that recognizes nitrated hu-
man N-α-syn (14.5 kDa) and N-β-syn (17 kDa) was used for im-
munoprecipitation. Samples of SN from control, AD, and PD 
autopsy brain tissues (Table 1) were homogenized in ice-cold 
radioimmunoprecipitation (RIPA) buffer, pH 7.4 and centri-
fuged at 10 000 g for 10 min at 4°C to remove cellular debris. 
Protein A/G PLUS-agarose beads (Santa Cruz Biotechnology 
Inc., Santa Cruz, CA, USA) were added to 1 mg total cellular 
protein and incubated for 30 min at 4°C. Beads were pelleted 
by centrifugation at 1000 g for 5 min at 4°C. The supernatants 
were incubated overnight at 4°C with 2 μg of primary antibody, 
then with Protein A/G PLUS-agarose beads for 6 h on a rotat-
ing device at 4°C. Immunoprecipitates (IP) were collected af-
ter centrifugation at 1000 g for 5 min at 4°C, washed with phos-
phate-buffered saline (PBS), and resuspended in 20 μL of 1× 
electrophoresis sample buffer.

Nitrated-α-Syn IP (20 μL) were fractionated by 16% Tri-
cine sodium dodecyl sulfate–polyacrylamide gel electropho-
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resis (PAGE) (Jule Inc., Milford, CT, USA and BIORAD Lab-
oratories Inc., Los Angeles, CA, USA) at constant voltage for 
1.5 h. The gels were fixed and stained with Coomasie Blue to 
visualize protein bands. Bands corresponding to the molecu-
lar weights encompassing 14.5 kDa (α-syn) were excised, di-
gested by trypsin, column purified, and sequenced by liquid 
chromatography-tandem mass spectrometry (LC-MS/MS) for 
protein validation. Sequenced peptides were distinguished by 
peptide matches to the human α-syn sequence (NCBI Acces-
sion: AAI08276).
  
Purification, nitration, and aggregation of re-
combinant mouse α-syn

Purification, nitration, and aggregation of recombinant 
mouse α-syn were performed as previously described (Thomas 
et al. 2007). Five individual lots of α-syn were tested for en-
dotoxin by Limulus amebocyte lysate tests and all were below 
the limit of detection for endotoxin (< 0.05 endotoxin units). 
Amino acid analysis to determine protein concentration using 
HPLC was performed by the University of Nebraska Medical 
Center Protein Structure Core Facility. Proteins were separated 
by PAGE using 4–12% NuPAGE gels (Invitrogen, Carlsbad, 
CA, USA). After electrophoresis, the gels were transferred onto 
polyvinylidene fluoride (PVDF) membranes (Millipore, Biller-
ica, MA, USA) and probed with primary mouse IgG1 anti-α-
syn (1 : 500; Transduction Laboratories/BD Biosciences, Frank-
lin Lakes, NJ, USA) or primary rabbit IgG anti-nitrotyrosine 
(1 : 2000; Upstate). Signal was detected with horseradish per-
oxidase-conjugated anti-mouse IgG or anti-rabbit IgG (both 
from Zymed Laboratories, South San Francisco, CA, USA) us-
ing chemiluminescence systems (SuperSignal® West Pico Che-
miluminescent Substrate; Pierce Biotechnology Inc., Rockford, 
IL, USA). For visualization of the protein by atomic force mi-
croscopy (AFM), samples were deposited on mica, glued to a 
glass slide, and dried under argon gas flow. The image was 
taken in air, height, amplitude, and phase modes using a Mo-

lecular Force Probe 3D controller (Asylum Research Inc., Santa 
Barbara, CA, USA).
  
Isolation, cultivation, and N-α-syn activation of 
murine microglia

Microglia from C57BL/6 mice neonates (1- to-2-days old) 
were prepared according to well described techniques (Dobre-
nis 1998). All animal procedures were in accordance with Na-
tional Institutes of Health guidelines and were approved by 
the Institutional Animal Care and Use Committee of the Uni-
versity of Nebraska Medical Center. Brains were removed and 
placed in Hanks’ Balanced Salt Solution at 4°C. The mixed glial 
cells were cultured for 7 days in Dulbecco’s Modified Eagle’s 
Medium (DMEM) containing 10% fetal bovine serum (FBS), 
10 μg/mL gentamicin, and 2 μg/mL macrophage colony stim-
ulating factor (a generous gift of Wyeth Inc., Cambridge, MA, 
USA). To obtain homogenous microglial cell populations, cul-
ture flasks were gently shaken and non-adherent microglia were 
transferred to new flasks. The flasks were incubated for 30 min 
to allow the microglia to adhere, and loose cells removed by 
washing with DMEM. Microglia were plated at 2 × 106 cells per 
well in six-well plates in DMEM containing 10% FBS, 10 μg/
mL gentamicin, and 2 μg/mL macrophage colony stimulating 
factor. One week later, cells were stimulated with 100 nmol/L 
of aggregated N-α-syn/well or no stimulation for 4 h. Media 
were replaced with serum-free DMEM without phenol red or 
other additives (Invitrogen) and incubated for 24 h in a 37°C, 
5% CO2 incubator.
  
Inflammatory genomic and PCR assays

RNA from N-α-syn stimulated primary murine microglial 
cells and unstimulated control was extracted with TRIzol (In-
vitrogen), column purified (Qiagen, Valencia, CA, USA), pre-
cipitated with ammonium acetate, amplified and labeled using 
the T7-based TrueLabeling-AMP 2.0 kit (Superarray, Frederick, 
MD, USA). The resultant cRNA was hybridized to an oligo-

Table 1.  Patient clinical profiles and neuropathological findingsa 

Patient	 Diagnosisb	 Gender	 Agec	 Durationd	 Neuropathologye

1	 PD	 Female	 78	 25	 Hypopigmentation and LB formation in SN and locus ceruleus
2	 PSP	 Male	 83	 N/A	 Cerebral atrophy of frontal and superior temporal
3	 PD	 Female	 75	 9	 Idiopathic
4	 PD	 Female	 89	 21	 Idiopathic
5	 PD	 Female	 82	 10	 Neocortical LB
6	 LBD	 Male	 82	 8	 Neocortical LB and hippocampal sclerosis
7	 PSP	 Male	 82	 24	 Degeneration of subcortical nuclei with neurofibrillary tangles 
8	 PD	 Male	 67	 17	 Hypopigmentation, neuronal loss, gliosis, LB in SN, and locus ceruleus
9	 PD	 Female	 85	 3	 Hypopigmentation, gliosis, and neuronal loss in SN, globus 			 
			      pallidus, and caudate-putamen
10	 PD	 Male	 86	 5	 Hypopigmentation, LB, neuronal loss in the SN and locus ceruleus
11	 AD	 Male	 73	 8	 Neuritic and diffuse plaques and neurofibrillary tangles in neocortex 		
			      and hippocampus. Neuronal loss in Locus ceruleus.
12	 AD	 Female	 84	 N/A	 Remote infarct in the occipital lobe and cerebellum
13	 AD	 Male	 76	 N/A	 Senile plaque-predominant AD

a Ten non-affected, age-matched controls were used for comparisons in this study; b Final diagnosis at autopsy; c Age at death; 
d Duration of disease (years) based on onset of initial symptoms and preliminary diagnosis; e Neuropathology at autopsy. 

PD, Parkinson’s disease; PSP, progressive subnuclear palsy; LBD, Lewy body disease; LB, Lewy bodies; SN, substantia nigra; 
N/A, data not available; AD, Alzheimer’s disease; N/A, data not available.
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based microarray for mouse general pathway (Superarray 
#OMM-014) and nuclear factor-kappa B (NF-κB)-related genes 
(Superarray #OMM-025). The arrays were washed, incubated 
sequentially with streptavidin-bound alkaline phosphatase 
and chemiluminescent substrate before exposure to X-ray film. 
Subsequent analysis of the microarrays was performed using 
the GEArray expression analysis suite (Superarray).

Total RNA obtained from analysis of the microglial tran-
scriptome was reverse transcribed with random hexam-
ers and SSII reverse transcriptase (Applied Biosystems, Fos-
ter City, CA, USA). Murine-specific primer pairs were: Ccl2: 
CCCCAAGAAGGAATGGGTCC and GGTTGTGGAAAAGG-
TAGTGG; Il1β: GTTCCTTTGTGGCACTTGGT and CTAT-
GCTGCCTGCTCTTACTGACT; Il10: CAGTTATTGTCTTCCC-
GGCTGTA and CTATGCTGCCTGCTCTTACTGACT; Ifng: 
TTTGAGGTCAACAACAACCCACA and CGCAATCA-
CAGTCTTGGCTA; and Nos2: 5’-GGCAGCCTGTGAGA-
CCTTTG-3’ and 5’-GAAGCGTTTCGGGATCTGAA-3’. Taq-
Man gene expression assays specific for murine Tnf, Tnfrsf1a, 
Stat1, Rela, Bdnf, and Gdnf were purchased from Applied Bio-
systems, and normalized to glyceraldehyde-3-phosphate dehy-
drogenase (Gapdh) expression. Tissue samples obtained from 
PD and control patients were snap frozen on dry ice and stored 
at −80°C. RNA was prepared from the samples using TRIzol 
reagent (Invitrogen) and purified with the RNeasy Mini Kit 
(Qiagen), prior to cDNA synthesis. Human specific primers 
for TNF, TNFRSF1A, STAT1, NFKB1, RELA, BDNF, and GDNF 
were analyzed using TaqMan gene expression assays. Gene 
expression was normalized to the housekeeping gene Gapdh. 
Real-time quantitative PCR was performed with cDNA using 
an ABI PRISM 7000 sequence detector (Applied Biosystems). 
Reverse SYBR Green I detection system was used, and the re-
actions generated a melting temperature dissociation curve en-
abling quantitation of the PCR products.
  
Cytokine arrays

Microglia were plated at a density of 2 × 106 cells/well in a 
six-well plate and stimulated with 100 nmol/L aggregated N-
α-syn, and 100 ng/mL lipopolysaccharide (LPS, Escherichia coli; 
Sigma-Aldrich, St. Louis, MO, USA) in serum-free media. Fifty 
microliter aliquots were collected at 8, 24, and 72 h of incuba-
tion in triplicate and frozen at −80°C. For assay, the samples 
were analyzed using the BD Cytometric Bead Array Mouse In-
flammation Kit (BD Biosciences, San Jose, CA, USA) according 
to the manufacturer’s protocol. Samples of culture supernatants 
from microglia were diluted 1 : 3 and 1 : 10 in assay diluent and 
analyzed for cytokine concentration with a FACSCalibur flow 
cytometer (BD Biosciences). Concentrations of cytokines were 
determined from a standard curve created with serial dilutions 
of the cytokine standards provided by the manufacturer.
  
Neurotoxicity assays

MES23.5 cells, kindly provided by Dr Stanley Appel, were 
cultured in 75-cm2 flasks in DMEM/F12 with 15 mmol/L 
HEPES (Invitrogen) containing N2 supplement (Invitrogen), 
100 U/mL of penicillin, 100 μg/mL streptomycin, and 5% FBS. 
Cells were grown to 80% confluence then co-cultured at 1 : 1 
ratio with previously plated microglial cells. To assess cell vi-
ability microglia cells were plated at a density of 5 × 104 cells 
on sterile glass coverslips, and co-cultures were prepared with 
a 1 : 1 ratio microglia: MES23.5 cells. After 24–48 h, cells were 
stimulated with aggregated 100 nmol/L N-α-syn or 100 nmol/

L α-syn for 4, 8, 24, and 72 h. CD11b+ microglial cells were 
distinguished from MES23.5 cells by APC-conjugated CD11b 
(1 : 200; Invitrogen) immunocytochemistry. For tyrosine hy-
droxylase (TH) cytostaining, cells were fixed in 4%p-formal-
deyde, permeablized, and blocked in 2% normal goat serum 
with 0.25% Triton X-100 in PBS for 30 min, and probed with 
rabbit polyclonal anti-TH (1 : 1000; EMD Biosciences Inc., San 
Diego, CA, USA), followed by FITC goat anti-rabbit IgG. For 
western blot analysis, 10 μg of protein sample from cell lysates 
of each treatment group was loaded onto a 12% NuPAGE Bis–
Tris gel (Invitrogen). Following transfer onto a PVDF mem-
brane, the membrane was blocked and then probed overnight 
with anti-TH (1 : 1000). Signal was detected with horseradish 
peroxidase-conjugated anti-rabbit IgG (1 : 10 000; Zymed Lab-
oratories) using chemiluminescence system (SuperSignal® 
West Pico Chemiluminescent substrate; Pierce Biotechnology 
Inc.). Densitometric analysis was performed using ImageJ soft-
ware and normalized to β-actin (1 : 1000; Abcam, Cambridge, 
MA, USA). Assays for viable and dead mammalian cells (Live/
Dead Viability/Cytotoxicity; Invitrogen) were performed ac-
cording to manufacturer’s protocol. The protocol was revised 
so that the concentration of each dye was 1 μmol/L to avoid 
high background. Live cells were distinguished by the uptake 
of calcein acetoxymethyl ester to acquire a green fluorescence 
[excitation/emission (ex/em) 495/515 nm], while dead cells 
acquired a red fluorescence (ex/em 495/635 nm) because of the 
uptake of ethidium homodimer-1. Cell enumerations were per-
formed using fluorescence microscopy (200× magnification) 
and a M5 microplate fluorometer (Molecular Devices, Sunny-
vale, CA, USA) (Limit 1 ex/em 490/522 nm and Limit 2 ex/
em 530/645 nm). The number of viable MES23.5 cells in each 
treatment group was normalized as the percentage of surviv-
ing cells in unstimulated culture controls.
  
Protein purification, 2D DIGE, and DeCyder 
analyses

Cell lysates of microglia were prepared with 5 mmol/L 
Tris–HCl, pH 8.0, 1% 3-[(3-cholamidopropyl)-dimethylammo-
nio]-1-propane sulfonate and a cocktail of protease inhibitors 
(Sigma-Aldrich). Protein content was quantitated using a DC 
Protein Assay (BioRad, Hercules, CA, USA). Factors known to 
interfere with isoelectric focusing (first dimension separation 
in 2D sodium dodecyl sulfate–PAGE) such as salts and deter-
gents were removed from cell lysates using the 2D Cleanup kit 
(GE Healthcare, Piscataway, NJ, USA) according to manufac-
turer’s protocol. Protein concentration was determined using 
2D Quant (GE Healthcare). Samples of control and stimulated 
cell lysates (25 μg of each lysate) were labeled with 400 pmol of 
CyDye 2. A 50 μg protein sample of control cell lysate was la-
beled with 400 pmol of CyDye 3; and a 50 μg protein sample 
of stimulated cell lysate was labeled with 400 pmol of CyDye 
5. Labeling was performed following the manufacturer’s pro-
tocols. The samples were pooled, resuspended in rehydration 
buffer to a total volume of 450 μL, then loaded onto an immo-
bilized pH gradient strip, and left for 18 h for rehydration. In 
the first dimension, samples were run in IPGphor and in Et-
tan DALTsix electrophoresis apparatus (GE Healthcare) for the 
second dimension. CyDye 3- and CyDye 5-derivatized proteins 
were detected in gels using a Typhoon 9400 Variable Mode Im-
ager with ex–em filters at 540/590 nm for CyDye 3 dyes and 
620/680 nm for CyDye 5 dyes (GE Healthcare). Analysis of Cy-
Dye 3-CyDye 5 image pairs, adjustment to CyDye 2 control im-
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ages, and detection of protein spots with relative spot volumes 
were performed using DeCyder software (GE Healthcare) to 
locate and analyze multiplexed samples within the gel. Se-
lected protein spots of interest were excised from the 2D gel us-
ing an Ettan Spot Picker. The proteins from gel pieces were di-
gested with trypsin, as described below, and resultant peptides 
were analyzed using LC-MS/MS system (ThermoElectron Inc., 
Waltham, MA, USA). Protein identification was completed us-
ing BioWorks 3.1 software.
  
In gel tryptic digestion and protein  
identification by LC-MS/MS

Specific protein spots were excised from the gels by an au-
tomated Ettan spot picker. Following column purification (Zip-
Tip CU-18; Millipore) with 50% acetonitrile (ACN), 50 mmol/L 
NH4HCO3/50% ACN, and 10 mmol/L NH4HCO3/50% ACN, 
gel pieces were dried and incubated with trypsin (100 ng/μL) 
(Promega, Sunnyvale, CA, USA) for 12–18 h. Samples were ex-
tracted by 0.1% trifluoroacetic acid/60% ACN, pooled, and 
dried.

Dried peptide samples were reconstituted in 0.1% formic 
acid/HPLC-grade water, detected on a ProteomeX LCQTM 
DECA XP Plus mass spectrometer (ThermoElectron Inc.), and 
identified using BioWorks 3.1SR software. Proteins identified by 
peptides having a Unified Score (BioWorks 3.1SR, ThermoElec-
tron Inc.) greater than 3000 were marked for further analysis.
  
Nuclear/cytosol fractionation

Cell lysates were prepared from SN of PD and control pa-
tients by homogenization in PBS. Cells were collected follow-
ing centrifugation at 500 g for 5 min. Cytosol and nuclear frac-
tions were prepared using the Nuclear/Cytosol Fractionation 
Kit (BioVision, Mountain View, CA, USA) according to manu-
facturer’s protocol.
  
Western blot assays

Protein was prepared from cell lysates in RIPA buffer sup-
plemented with protease inhibitors (Pierce Biotechnology Inc.). 
Protease inhibitor cocktail was added to each conditioned me-
dia sample fraction prior to processing. Following centrifuga-
tion at 10 000 g for 10 min, the supernatants were removed and 
allowed to dialyze against water overnight. Tissue samples ob-
tained from PD and control patients were snap frozen on dry ice 
and stored at −80°C. Protein lysates were prepared from indi-
vidual samples through homogenization in RIPA buffer supple-
mented with protease inhibitors (Pierce Biotechnology Inc.). Pro-
tein quantification was performed using the bicinchoninic acid 
kit (Pierce Biotechnology Inc.). Protein concentration of each 
sample was determined using a calibration curve generated 
from purified bovine serum albumin. A total of 20 μg of each 
sample was loaded onto 4–12% Bis–Tris NuPAGE gels (Invitro-
gen) and transferred onto PVDF membranes (BioRad). Primary 
antibodies to calmodulin (1 : 1000) and 14-3-3σ (1 : 200) (Milli-
pore), biliverdin reductase (1 : 5000), thioredoxin (1 : 2000), β-ac-
tin (1 : 5000), and α-tubulin (1 : 5000) purchased from Abcam, l-
plastin (1 : 1000), α-enolase (1 : 1000), glutathione-S-transferase 
(1 : 1000), and NF-κB p65 and p50 (1 : 200) purchased from Santa 
Cruz Biotechnology Inc. were used for analyses. Blots were 
probed with the respective horseradish peroxidase-conjugated 
secondary antibodies (1 : 5000; Invitrogen) and detected using 
SuperSignal West Pico Chemiluminescent substrate (Pierce Bio-
technology Inc.). The intensity of protein bands was quantified 

using ImageJ and normalized to Gapdh (1 : 5000; Santa Cruz Bio-
technology Inc.) level in the same sample.
  
Statistical analyses

All values are expressed as mean ± SEM. Differences 
among means were analyzed by Student’s t-test or by one-way 
anova followed by Bonferroni post hoc testing for pair-wise 
comparison.

  
Results
  
Aggregated N-α-syn and microglial activa-
tion: laboratory and pathological studies

To investigate the mechanisms by which N-α-syn-me-
diated microglial activation affects dopaminergic neu-
rodegeneration, we created a cellular model that would 
reflect the salient features of neuroinflammation as it 
could occur in PD. To this end, we first determined if 
N-α-syn was present in regions of brain where microg-
lial activation is known to be present in PD. Whole cell 
lysates consisted of several protein bands following gel 
electrophoresis (data not shown) and Coomassie stain-
ing (data not shown). IP assays performed from SN tis-
sues of PD patients using a primary antibody against 
nitrated α/β-synulcein showed a greater than twofold 
increase in intensity of the protein band corresponding 
to 14–14.5 kDa (p < 0.001) than that present in control pa-
tients (Figure 1a) or in patients diagnosed with AD (data 
not shown) along with higher molecular weight species 
greater than 17 kDa (data not shown). Peptide sequence 
analyses by LC-MS/MS revealed that the protein band 
encompassing the 14–14.5 kDa of the anti-N-α-syn IP 
contained peptides with sequence homology to human α-
syn in SN samples recovered from PD brains (Figure 1a, 
highlighted sequences). Interestingly, such sequence ho-
mologies to α-syn were not identified from 14 to 14.5 kDa 
proteins in either control or AD samples. Thus, we next 
sought to develop an in vitro model to reflect conditions 
present in an affected human host, but using the murine 
analog. Here, recombinant mouse α-syn was purified, 
nitrated, and aggregated for use as a microglial stimu-
lant. Western blot assays showed cross-linking of N-α-
syn monomers (Souza et al. 2000) and higher molecular 
weight aggregates, thus verifying the nitration and ag-
gregation of α-syn (Figure 1b). The aggregated N-α-syn 
contained a substantially reduced monomeric band (cor-
responding to a band at ~14 kDa) but higher molecular 
weight banding aggregates. Analysis of protein aggrega-
tion was also assessed by AFM. Samples of N-α-syn con-
tained low numbers of globular aggregates (2–6 nm in 
height) prior to aggregation. However, following aggre-
gation, N-α-syn was present predominately as oligomers 
(2–6 nm in height). In addition, there were few protofi-
brils (1.5–2.5 nm in height), filaments, and fibrils (~5–
8 nm in height) present (Figure 1c). Non-nitrated α-syn 
was present in similar configurations (data not shown).
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  We next evaluated the stimulatory effects of N-α-syn on 
microglia. The dose of 100 nmol/L (14.5 ng protein/mL) 
was selected based on previous extensive works per-
formed in our laboratories demonstrating that, follow-
ing a dose-response of N-α-syn, 100 nmol/L (50% over 
control) is required to induce substantive ROS from ac-
tivated microglial cells (Zhang et al. 2005; Thomas et al. 

2007) as well as cytotoxicity. ROS production was slightly 
decreased in comparison with either 50 or 500 nmol/L of 
N-α-syn. While native α-syn is ubiquitously expressed, 
the physiological concentration of N-α-syn in disease has 
not been elucidated. However, based on concentrations 
of modified α-syn in affected PD brain tissues, 100 nmol/
L concentration is at physiologically relevant levels (Hal-

Figure 1.  α-Syn nitration, aggregation, and microglial activation. (a) Coomassie stain of anti-N-α/β-synuclein immunoprecipi-
tation from SN from control and PD brains. Arrowhead reflects the area excised from gel and submitted for LC-MS/MS analysis. 
Equal concentrations of proteins from control and experimental brain tissues served as loading controls. Peptides obtained by 
LC-MS/MS that matched human α-syn are highlighted within the full-length sequence. (b) Western blot analyses of recombinant 
mouse α-syn and derivatives. Lane 1 is a nitrotyrosine modified protein provided by the manufacturer. Lanes 1–3 were blotted 
and probed with anti-nitrotyrosine, and lanes 4–6 were probed with anti-synuclein. (c) AFM images are shown for unaggregated 
(0.4 × 0.4 mm) and aggregated N-α-syn (1.6 × 1.6 mm). Arrow indicates location of inset photomicrograph. Scale bar corre-
sponds to height of aggregates on the interface. (d) Microglial morphology after exposure of microglia to media alone (control, 
left) or 100 nmol/L N-α-syn (center), and N-α-syn stimulated microglia in co-culture with MES23.5 cells (right; scale bar: 25 μm). 
Cells were stained with calcein AM to detect viable cells. (e) Cytokine bead arrays were used for flow cytometric analysis of su-
pernatants from unstimulated microglia (control, open box) and microglia stimulated with either 100 nmol/L N-α-syn (closed tri-
angle) or 100 ng LPS (closed circle) (n = 3, p < 0.01 vs. aControl and bLPS at each corresponding time point). 
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liday et al. 2005) and is below that detectable by immu-
nohistochemistry in neuronal inclusions within the SN 
of PD brains (≥ 100 ng). Phenotypic transformation into 
an ameboid morphology commonly follows microglial 
activation with different pro-inflammatory stimuli (Gi-
ulian et al. 1995; Vilhardt 2005). Thus, we examined if 
changes in microglial morphology would be elicited fol-
lowing N-α-syn activation. Resting microglia were both 
round and ellipsoid shaped with retracted processes that 
were characteristic of a relatively quiescent phenotype 
(Figure 1d). In contrast, N-α-syn activated microglia as-
sumed a more ameboid appearance with extensive pro-
cesses, characteristic, in part, of an activated phenotype. 
N-α-syn-stimulated microglia co-cultured with MES23.5 
cells acquired a rod-like appearance and further exten-
sion of processes.

We recently demonstrated that 100 nmol/L of aggre-
gated N-α-syn could activate microglia to produce co-
pious amounts of ROS (Thomas et al. 2007). In contrast, 
unaggregated N-α-syn or minced neuronal membrane 
fractions failed to induce significant amounts of ROS 
above control levels. This suggested that the microglial 
response to N-α-syn was specific and could not be elic-
ited in response to unaggregated protein or by phagocy-
tosis under the same conditions. Therefore, we assessed 
the extent of the neuroinflammatory phenotype induced 
by N-α-syn stimulation of microglia. Quantification of 
common cytokines and chemokines that are secreted in 
response to inflammatory stimuli was performed by cy-
tometric bead array. LPS-activated microglia served as a 
positive control. Stimulation with N-α-syn enhanced the 
secretion of TNF-α, IL-6, MCP-1 (Figure 1e), and IFN-γ 
(data not shown) compared with basal levels observed 
in unstimulated microglia. These results are consistent 
with the induction of an inflammatory microglial phe-
notype following N-α-syn stimulation. The parallels be-
tween N-α-syn and LPS-induced cellular effects support 
a commonality for innate immune responses in disease 
and suggest that these pro-inflammatory processes may 
be common among mononuclear phagocytes that recog-
nize disparate activators.
  
N-α-syn-stimulated microglia are neuro-
toxic to MES23.5 dopaminergic cells

To determine the effect of N-α-syn-activated microg-
lia on neuronal survival, the dopaminergic MES23.5 cell 
line was used as an indicator for cytotoxicity measure-
ments by co-culture with stimulated and unstimulated 
microglia. MES23.5 cell death was determined by mea-
suring immunoreactivity for the rate-limiting enzyme 
in dopamine synthesis, TH, expressed by MES23.5 cells, 
and the Live/Dead cell assay. During stimulation with 
100 nmol/L N-α-syn, the number of TH+ cells declined 
in the stimulated cultures, resulting in a significant dim-
inution in TH-immunoreactive cells (8 h: 74.6% of con-
trol; 24 h: 53.4% of control, p < 0.01; 72 h: 48.5% of con-

trol, n = 6, p < 0.01). Western blot analysis confirmed 
this observation, as TH expression decreased in a time-
dependent manner over the course of N-α-syn stimu-
lation (TH+/β-actin ratio at 8 h: 94.6% of control; 24 h: 
86.2% of control; 72 h: 64.9% of control, p < 0.01). Anal-
ysis of cell viability with the Live/Dead cell assay dem-
onstrated that stimulation of microglia with 100 nmol/
L of N-α-syn followed by MES23.5 co-culture resulted 
in remarkable reduction of viable cells with concomi-
tant increase in dead MES23.5 cells; whereas, fewer dead 
cells were observed in co-cultures with microglia stim-
ulated with α-syn (non-nitrated) after 24 h (Figure 2a). 
Percentage of MES23.5 cell survival was less in co-cul-
tures with microglia stimulated with α-syn (83%) and N-
α-syn (58%) compared with unstimulated controls (95%) 
at 72 h (Figure 2b). The more sensitive fluorometric anal-
ysis revealed as early as 24 h after stimulation a simi-
lar pattern of progressive decline in viable cells in the 
presence of α-syn and N-α-syn stimulated microglia to 
76% and 65% of controls at 24 h of stimulation, respec-
tively (Figure 2c). Moreover, N-α-syn-mediated cytotox-
icity was restricted to MES23.5 cells, as stimulation of mi-
croglia in the absence of MES23.5 cells neither affected 
microglial survival (Figure 2d) nor yielded a significant 
difference in the number of dead CD11b+ cells between 
control and stimulated cultures (data not shown). In ad-
dition, cytotoxicity of MES23.5 cells was not elicited with 
N-α-syn in the absence of microglia (Figure 2d). Further-
more aggregation of N-α-syn was necessary for induc-
ing microglia cytotoxicity (Figure 2d). Importantly, a de-
crease in the cell survival was observed when microglia 
were stimulated with either aggregated α-syn (93%) or 
N-α-syn (86%) for 24 h, and co-cultured with MES23.5 
cells in transwell inserts, but not unaggregated protein. 
MES23.5 cultures incubated with supernatants obtained 
from microglia stimulated with either α-syn or N-α-syn 
resulted in decreased cell survival (89% and 84%, respec-
tively) compared with supernatants from unstimulated 
microglia (Figure 2e).
  
NF-κB gene expression and nuclear translo-
cation in PD

NF-κB pathway activation is critical for the initiation 
of inflammatory events including the production of in-
flammatory cytokines and chemokines linked to inflam-
mation and microglial activation. We hypothesized that 
acquisition of such an inflammatory phenotype begins 
with induction of gene products that ultimately leads to 
neurotoxic factor production, cell migration, and apop-
tosis. To determine the extent to which this pathway was 
operative in PD, the SN and BG of PD brains (clinical and 
neuropathological profiles shown Table 1) and controls 
(those without neurological disease) were analyzed for 
NF-κB-related genes as well as neurotrophin expression 
(Figure 3). Increases, albeit modest, were seen in NFKB1 
expression from samples of SN from PD patients com-
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Figure 2.  N-α-syn-stimulated microglia decrease dopaminergic cell survival. (a) Representative photomicrographs of Live/Dead 
assays of unstimulated or N-α-syn stimulated microglia co-cultured with MES23.5 cells for 24 h. Viable cells appear green and 
dead cells are red. (scale bars: 25 μm). (b and c) N-α-syn-induced microglial inhibition of cell survival. A time-course for cell sur-
vival is shown for MES23.5 cells and microglia co-cultured in the presence of media alone (Con, box), 100 nmol/L unmodified α-
synuclein (α-syn, triangle), or 100 nmol/L N-α-synuclein (N-α-syn, circle). Cell viability was quantified using the Live/Dead as-
say by (b) cell count (n = 9 fields, p < 0.01 compared with a0 h and ball treatment groups at corresponding time point), and by 
(c) fluorometric analysis (n = 9 fields, p < 0.01 compared with a0 h and ball treatment groups at corresponding time point). (d) 
Cell survival of MES23.5 cells in co-culture with microglia after 72 h of stimulation with either α-syn or N-α-syn (n = 9, p < 0.01 
compared with aall treatment groups and bα-syn stimulated microglia). (e) Influence of secretory factors from microglia stim-
ulated with either α-syn or N-α-syn for 24 h on MES23.5 cells was determined. Cell survival was assessed following incubation 
with supernatants or in transwell format for 24 h (n = 3, p < 0.01 compared with aall treatment groups and bα-syn-stimulated 
microglia). 
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pared with controls; whereas, no significant difference 
was observed for RELA expression (data not shown). 
However, an eightfold increase in TNF expression was 
observed in the SN and BG together with a twofold in-
crease in expression of its receptor TNFRSF1A. STAT1 
was minimally decreased in PD brains. Similarly, anal-
ysis of AD brain tissues as a control for neuroinflamma-
tory pathology also revealed a moderate induction of 
NF-κB transcription factors NFKB1 and RELA, while TNF 
expression was increased 40- and 10-fold in the SN and 
BG along with modest elevations of STAT1 in AD brain 
tissues compared with controls (data not shown). Based 
on these findings, we reasoned that a compensatory tro-
phic mechanism could be operative in PD. Indeed, BDNF 
was shown to be increased greater than sixfold in the SN 
and twofold in the BG in PD. Consistent with recent ob-
servations by others (Backman et al. 2006), GDNF was in-
creased greater than 10-fold in the BG but no significant 
changes were observed in the SN.

A recent investigation by immunofluorescence anal-
ysis of midbrain sections revealed a marked increase in 
expression of NF-κB p65 in the SN of PD patients com-
pared with controls, which co-localized to CD11b+ mi-
croglia in addition to affected neurons (Ghosh et al. 2007). 
In the current study cytosolic and nuclear fractions were 
prepared from the lysates of SN of PD and control brain 
tissues, and lysates analyzed for NF-κB protein subunits 
p50 and p65. Increased expression of NF-κB subunits in 
both the cytosolic fractions and nuclear fractions were 
observed in PD brain tissues (Figure 4). Phosphorylation 
of serine 536 (pS536) critical for RelA/p65 transcriptional 
activity was also increased in PD brain tissues.

N-α-syn-activated microglia and the PD 
transcriptome are linked through NF-κB

The increased expression of NF-κB transcription iden-
tified in the SN of PD brains and the microglial response to 
N-α-syn stimulation that were consistent with inflamma-
tory responses suggested that one major signaling path-
way induced by N-α-syn involves NF-κB activation. Use 
of a general microarray confirmed that NF-κB expression 
was increased by stimulation with N-α-syn (Figure 5a). 
Using NF-κB-focused microarrays (Figure 5b, Table 2), 
we showed increased expression of genes encoding pro-
inflammatory cytokines, including Tnf, Ccl2, Il6, and Il1β. 
Also induced were those genes encoding the NF-κB tran-
scription factor subunits, Nfkb1, Nfkb2, and Rela. In addi-
tion, N-α-syn induced genes involved in other pathways, 
particularly those of the mitogen-activated pathway, as 
indicated by the induction of the immediate early genes, 
Fos and Raf1. At 4 h post-stimulation, expression of most 
NF-κB-related genes peaked. The majority of genes in-
duced at 1 h remained elevated, with the addition of the 
apoptosis-regulatory genes Card10 and Casp8. The NF-κB 
inhibitor, Nfkbia, was also induced (data not shown) but 
may become apparent only after removal or clearance 
of the stimulus, as Ikbkb expression was also induced at 
this time. Removal of N-α-syn from microglial cells af-
ter 4 h of stimulation reduced most NF-κB genes to pre-
stimulatory levels. At 8 and 16 h following removal of N-
α-syn from culture, several apoptosis-regulatory genes 
(Card10, Card11, and Cflar) were induced as well as genes 
for receptors of cell activation and NF-κB stimulation in-
cluding Tnfrsf1a and Cd40. These results were similar 
but lesser in magnitude than stimulation of microglia 

Figure 3.  Cellular activation and oxidative stress pathways in PD brain tissues. Tissue samples from the SN and BG of control 
(filled bars) and PD patients (open bars) (Table 1) were evaluated by qRT-PCR for expression of NF-κB pathway associated genes. 
The relative expression of a gene was normalized to GAPDH in the same sample and values are represented as mean ± SEM (a 

p < 0.05, b p < 0.01, and c p < 0.001 compared with samples from control patients, n = 8–10 patients per group). 
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with LPS (Figure 5b, Table 3). Consistent with microar-
ray analyses, quantitative RT-PCR analyses of Tnf, Il1β, 
and Ccl2 genes indicated very high levels of transcripts 
for these cytokines during stimulation by N-α-syn (10-, 
3097-, and 16-fold increases, respectively) over pre-stim-
ulatory levels (Figure 5c). Verification of gene expres-
sion during stimulation of other, less abundant, NF-κB-
related genes were achieved, including Tnfrsf1a (6.2-fold 
increase), Stat1 (2.3-fold increase), and Rela (3.6-fold in-
crease). N-α-syn stimulation also increased expression of 
Nos2 (inducible nitric oxide synthase) and Ifng (data not 
shown), both regulated by NF-κB activation. Expression 
of the neurotrophins Bdnf and Gdnf were also increased 
following N-α-syn stimulation.
    
N-α-syn-activated microglial proteome 
shows a reactive inflammatory phenotype

Analysis of the N-α-syn microglial transcriptome 
showed differential gene regulation and induction of the 
NF-κB pathway, indicative of an inflammatory microglial 
phenotype. Activation of this pathway influences down-

stream expression of proteins involved in processes in-
cluding inflammation, immune regulation, survival, and 
proliferation. Protein expression obtained from cell ly-
sates were analyzed following 2, 4, and 8 h of stimula-
tion with 100 nmol/L N-α-syn to assess the translation of 
differences in gene induction to intracellular protein ex-
pression. Two-dimensional DIGE was used to compare 
protein expression profiles of unstimulated microglia 
(control) and N-α-syn-stimulated microglia (Figure 6). A 
complete listing of all proteins identified by LC-MS/MS 
is contained within Table 3.

Stimulation with N-α-syn resulted in differential ex-
pression of several proteins that are likely a consequence 
of NF-κB-related signaling pathways (Table 3) as soon 
as 2 h after stimulation. Many proteins differentially ex-
pressed could be attributed to oxidative stress, including 
the down-regulation of aconitase as well as the up-reg-
ulation of peroxiredoxin-1, -4, -5, superoxide dismutase, 
and heat-shock protein 70.

After 4 h of N-α-syn-stimulation, proteins decreased 
included several cytoskeletal proteins including β-actin, 

Figure 4.  NF-κB translocation in PD. Expres-
sion of NF-κB subunits p50/NFKB1 and p65/RELA 
proteins were evaluated by western blot analysis 
from whole tissue lysates (top), cytosolic fractions 
(middle), and nuclear fractions (bottom) of SN 
from control and PD patients (Table 1). Expres-
sion of phosphorylated RELA/p65 [NF-κB pS536] 
within the nuclear fraction was also assessed. 
The mean densitometric values were determined 
with ImageJ software and normalized to GAPDH 
expression in the same sample (bottom). Values 
are represented as the mean density ± SEM for 
four patients/group and p-values of Student’s t-
test for pair-wise comparisons of densities from 
control (open bars) and PD (filled bars) patients 
are * p < 0.05 and ** p < 0.005. Blots are repre-
sentative of two independent experiments (n = 4 
patients per group). 
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cofilin-1, profilin-1, tropomysin-3, and vimentin. The pu-
tative functions of other proteins decreased in N-α-syn-
stimulated microglial lysates were found to be involved 
in cell adhesion and actin microfilament attachment to 

the plasma membrane (vinculin, coronin-1A, and adeny-
lyl cyclase-associated protein 1), glycolysis and growth 
control (α-enolase), and migration (galectin 3 and mac-
rophage migration inhibitory factor) (Walther et al. 2000; 

Figure 5.  Microarray analysis of N-α-syn-stimulated microglia. RNA was isolated from microglial cells stimulated with 100 nmol/
L N-α-syn or 100 ng/mL LPS from which cDNA was made and amplified. (a) General pathway-focused microarray revealed in-
volvement of NF-κB signaling pathways. (b) Focused arrays were utilized for regulation of NF-κB associated genes for microglia 
that were unstimulated (0 h Control) or stimulated with 100 nmol/L N-α-syn or 100 ng/mL LPS for 1 h and 4 h, respectively. Red 
and green boxes indicate genes that were induced by stimulation at 1 and 4 h, respectively. Identified genes and their expression 
levels are shown in Table 1. (c) qPCR of mRNA from samples confirmed representative inductions for genes (rank and file posi-
tion in microarry) Ccl2 (F2), Il1β (H5), Tnfrsf1a (D13), Stat1 (11E), Rela (10F), Tnf (Α13), and Nos2. Gene expression for the 
neurotrophins Bdnf and Gdnf were also assessed by qPCR from the same mRNA/cDNA samples [n = 3, p < 0.01 compared with 
a0 h control (C) and bLPS at corresponding time point]. 
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Table 2.  N-α-syn- and LPS-stimulated microglial transcriptomea 

                                                                                        N-α-syn (h)                                            LPS (h)

Gene                  Common name                NCBIb             4              8              16                 4              8             16

Transcription factors
  Crebbp	 Crebbp	 12914	 2.45			   2.6		
  Fos	 c-Fos	 14281	 > 20					   
  Jun	 c-Jun	 16476	 2.28					   
  Nfκb1	 NFκB p50	 18033	 2.08			   7.6		
  Rel	 Rel	 19696	 6.5			   15.4	 4.3	
  Rela	 NFκB p65	 19697	 4.59					   
  Smad3	 Smad3	 17127		  −2.5				  

Signal transduction
  Htr2b	 Serotonin receptor	 15559	 3.56	 −2.38				  
  Ikbkb	 Ikbkb	 16150	 5.19			   2.7		
  Ikbke	 Ikbke	 56489	 3.09					   
  Mapk3	 Mapk3	 26417	 2.67					   
  Map3k14	 Map3k14	 53859		  −2.34	 −2.4	 −2		
  Plk2	 Plk2	 20620		  2.39	 2.04	 3.1	 4.1	 2.5
  Raf1	 Raf-1	 110157	 5.63					   
  Stat1	 Stat1	 20846	 5.56	 3.5		  5.1	 5.2	 3.2
  Tbk1	 Tbk1	 56480	 4.24					     4.6
  Tgfbr2	 TGF-beta receptor 2	 21813		  −3.91		  −2.8	 −2.6	
  Tlr2	 Toll-like receptor 2	 24088	 7.38		  2.43			 
  Tlr3	 Toll-like receptor 3	 142980		  −2.2				  
  Tlr8	 Toll-like receptor 8	 170744	 2.38					   
  Tnfrsf1a	 TNFR1	 21937		  2.03	 4.06	 5.7	 8.6	 2.7

Inflammation
  Tnf 	 TNF-alpha	 21926	 2.25					   
  Ccl2 	 Chemokine ligand 2 	 20296	 36.43	 3.83	 2.68	 15.1	 14.7	 14.5 
	    (MCP-1)
  Il10 	 Interleukin 10	 16153	 2.31			   5.8	 4	 3.1
  Il1b 	 Interleukin 1-beta	 16176	 > 20	 3.02	 2.27	 10.7	 10.1	 9.9
  Il6 	 Interleukin 6	 16193	 13.09		  2.57	 78.1	 25.4	 2.3
  Tnfrsf5 	 CD40	 21939	 9.91	 25.6	 7.23	 145.1	 135.5	 45.7
  Tnfrsf7 	 Tnfrsf7	 21940		  −3.14				  
  Traf6 	 Traf6	 22034		  −2.71				  

Apoptosis
  Card10 	 Card10	 105844	 5.62	 8.34	 7.9	 10.7	 10.6	 11.1
  Card11 	 Card11	 108723			   2.63			 
  Card4 	 NOD1	 107607	 7.44			   8.6	 5.5	 5.4
  Casp1 	 Caspase 1	 12362	 4.3					   
  Casp8 	 Caspase 8	 12370	 2.49					   
  Cflar 	 Clarp	 12633	 19.65	 2.22	 2.08	 8.6	 7	 6.7
  Ripk1 	 Receptor (TNFRSF)-	 19766		  −2.6		  2.1 
	    interacting serine- 
	    threonine kinase 1			 
  Malt1 	 Malt1	 240354	 6.1			   6.2		
  Ripk2 	 Cardiak	 192656	 6.16			   9.5	 7.3	
  Tnfaip3 	 A20	 21929			   6.55	 8.9	 3.2	
  Tnfsf10 	 TRAIL	 22035		  10.06				  
  Tradd 	 Tradd	 71609			   2.43	 2.2		
  Traf3 	 CD40BP	 22031	 2.03					   

Other
  Csf2 	 GM-CSF	 12981	 3.76					   
  Dusp1 	 Dusp1	 19252	 3.15			   6	 6.2	 5.3
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Chandrasekar et al. 2005). Annexin A3 is an inhibitor of 
phospholipase A2 and a promoter of apoptosis of in-
flammatory cells (Parente and Solito 2004), and was also 
down-regulated. The antioxidant glutaredoxin-1 was also 
decreased in cell lysates compared with unstimulated 
controls (Table 3). Four of the proteins increased in stim-
ulated cell lysates affect intracellular calcium signaling, 
storage, and cell cycle regulation (swiprosin 1, calmod-
ulin, calreticulum, and nucleophosmin 1) (Parente and 
Solito 2004; Vuadens et al. 2004; Meini et al. 2006).

By 8 h, 73 proteins were differentially expressed. 
Thirty-three proteins were decreased including all cyto-
skeletal proteins down-regulated at 4 h, vimentin and β-
actin. Up-regulated proteins included the antioxidants 
superoxide dismutase, thioredoxin, and cytochrome c 
reductase. Oxidative stress can also lead to dysfunction 
of the proteasome and is implicated in PD pathogenesis 
(Gu et al. 2005). Indeed, as a result of N-α-syn stimulation 
the proteasome 26S subunit was decreased in these cell 
lysates, although ubiquitin and the ubiquitin conjugat-
ing enzyme E2N were increased, suggesting that the mi-
croglia may be compensating for decreased proteasomal 
activity (Table 3).
  
Neuroinflammatory Parkinson’s disease 
phenotype

Analysis of the proteome of N-α-syn-stimulated mi-
croglia revealed the induction of NF-κB-related signal-
ing pathways and initiation of several proteins involved 
in the cellular response to inflammation and oxidative 
stress. To investigate whether differential expression of 
proteins identified in our proteomic analyses of in vitro 
stimulated microglia was reflected in PD, protein expres-
sion of lysates prepared from the SN and BG (data not 
shown) of control and PD brains were assessed by west-
ern blot assays (Figure 7). Proteins increased in abun-
dance within the secretome as a result of N-α-syn stimu-
lation (A. D. Reynolds, I. Kadiu, S. G. Garg, J. G. Glanzer, 
T. Nordgen, R. Banerjee, P. Ciborowski, and H. E. Gen-
delman) were cross-validated in PD patients including 
calmodulin and the redox-associated secreted proteins 
biliverdin reductase and thioredoxin; whereas, secretion 

of the regulatory proteins glatectin-3 and 14-3-3σ, struc-
tural protein actin, and the redox protein glutathione-S-
transferase were decreased following N-α-syn stimula-
tion. These analyses verified the increased expression of 
calmodulin as well as the antioxidant biliverdin reduc-
tase in the SN of PD compared with age-matched con-
trols without neurological disease. Actin expression ap-
peared decreased in PD brains relative to controls, which 
coincided with our analysis of the N-α-syn-stimulated 
microglia secretome. In contrast to our in vitro results, 
expression of 14-3-3σ and galectin 3 were increased in 
PD brains. Glutathione-S-transferase expression was de-
creased in PD brains relative to control. Although expres-
sion of thioredoxin did not appear to be different within 
the SN, expression in the BG was significantly decreased 
in PD (data not shown). Proteins that were identified in 
the proteome of N-α-syn-stimulated microglia were, in 
part, also cross-validated in SN of PD and control brains. 
Akin to our laboratory model, expression of calmodulin 
was increased whereas expression of α-enolase (data not 
shown), l-plastin, α-tubulin, and actin were decreased 
in PD relative to control. The discrepancies between the 
cellular model and expression in the human tissue un-
derscore the complexity of human disease and the mul-
tiple cell components that are involved. Indeed, compar-
ing non-affected brains to PD brains may be misleading 
as already the proportion of cellular components are dif-
ferent, especially at end stage where greater than 80% of 
the dopaminergic neurons have died and substantial gli-
osis is present. However, overall these results support 
that the molecular and biochemical analyses of N-α-syn 
microglial activation appear, in part, applicable to hu-
man PD.
  

Discussion

Recent investigations (Biasini et al. 2004; Zhang et al. 
2005; Zhou et al. 2005; Thomas et al. 2007) demonstrated 
that aggregated N-α-syn induces a neurotoxic inflam-
matory microglial phenotype that accelerates the demise 
of dopaminergic neurons, and as such, may contribute, 

Table 2.  (continued)

                                                                                               N-α-syn (h)                                     LPS (h)

Gene                  Common name                NCBIb               4              8            16                4              8             16

  Hmgb1 	 Hmgb1	 15289	 2.96			   2.2		
  Icam1 	 Icam1	 15894	 12.79	 4.97	 3.46	 5.2	 4.8	 3.8
  C3 	 Complement component 3	12266	 2.02					   
  Irak1 	 Interleukin-1 	 16179	 2.19 
	    receptor-associated  
	    kinase 1						    
 Lta 	 Lymphotoxin A	 16992	 3.09			   22.8		

a Values represent fold-change versus unstimulated controls; b NCBI Entrez GeneID.
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Table 3.  N-α-syn-stimulated microglial proteome 

                                                                                                          Accession           Time     Number of      Volume 
Protein name                                                  Mw (Da)b         PIc            numberd            (h)e       peptidesf         ratiog

Proteins increased in N-α-syn-stimulated microglia cell lysates when compared with controls a 

Regulatory
  10 kDa Heat-shock protein, mitochondrial 	 10 825	 8.18	 Q64433 	 8	 6	 3.45
  S100 calcium-binding protein A13 	 11 151	 5.89	 P97352 	 8	 2	 5.57
  Apoptosis-associated speck-like protein  
      containing a CARD	 21 459	 5.26	 O88597 	 2	 6	 1.58
  Beclin-1	 51 534	 4.89	 O88597 	 2	 2	 1.48
  Calmodulin	 16 706	 4.09	 P62156 	 8	 3	 7.51
  Calreticulin	 47 995	 4.33	 P14211 	 8	 7	 1.67
  Cystatin B	 11 039	 6.82	 Q62426 	 8	 2	 3.06
  Dynein light chain 2A	 10 852	 6.86	 P62627 	 8	 3	 3.73
  Ef3-CaM 	 16 578	 4.04	 P99027 	 2	 8	 2.26
  Eukaryotic initiation factor 5A isoform I  
      variant D	 16 821	 5.08	 Q7L7L3 	 4	 2	 1.51
  Fatty acid-binding protein 	 14 996	 6.18	 Q05816 	 2	 3	 3.17
  Heat-shock 70 kDa protein 1A 	 70 052	 5.48	 Q9EPB4 	 4	 2	 1.43
  Heat-shock 70 kDa protein 1B 	 70 167	 5.53	 P17879 	 4	 2	 1.79
  Heat-shock 70 kDa protein 1L 	 70 637	 5.91	 P16627 	 8	 2	 1.79
  Histone H2B F	 13 805	 10.32	 P10853 	 2	 2	 4.07
  Kinesin light chain 4	 68 613	 5.76	 Q5JQI4 	 8	 2	 1.85
  Mitogen-activated protein-binding  
      protein-interacting protein 	 13 472	 5.3	 Q9JHS3 	 8	 2	 4.75
  Nucleophosmin 1	 32 558	 4.62	 Q5U438 	 8	 9	 1.68
  SH3 domain-binding glutamic  
      acid-rich-like protein 3	 10 470	 5.02	 Q91VW3 	 8	 4	 3.12
  SWIPROSIN 1/EF hand domain  
      containing protein 2 (Efhd2)	 26 800	 5.07	 Q8C845 	 8	 2	 2.06
  Ubiquitin 	 8560	 6.56	 P62990 	 8	 2	 4.88
Structural/cytoskeletal
  Capg protein	 39 240	 6.73	 P24452 	 8	 11	 1.71
  Capping protein 	 38 691	 6.73	 Q3TNN6 	 4	 2	 1.24
  Cofilin-1 	 18 401	 8.26	 P45592 	 2	 5	 3.28
  Destrin 	 18 378	 8.2	 Q9R0P3 	 8	 6	 3.04
  Myosin heavy 	 223 083	 5.64	 P02564 	 4	 2	 1.27
  Talin 	 110 842	 5.94	 Q3TBC3 	 2, 4	 4	 1.58
  Tubulin alpha-1 chain	 50 152	 4.94	 P68361 	 8	 7	 1.92
Redox
  Isovaleryl-CoA dehydrogenase	 46 325	 8.53	 Q9JHI5 	 8	 7	 1.71
  Cytochrome c oxidase, subunit Vb 	 13 838	 8.34	 Q9D881 	 8	 3	 3.98
  Peroxiredoxin-1	 22 176	 8.26	 P35700 	 2	 20	 1.42
  Peroxiredoxin-4	 31 053	 6.67	 O08807 	 2	 2	 1.42
  Peroxiredoxin-5	 21 897	 9.1	 P99029 	 2	 2	 1.48
  Superoxide dismutase	 24 603	 8.8	 P09671 	 2	 2	 1.42
Enzymes
  Cathepsin C 	 52 347	 6.41	 Q3TIF1 	 4	 2	 1.29
  Cathepsin Z 	 34 175	 6.13	 Q9ES94 	 8	 4	 1.69
  Ferritin heavy chain	 20 935	 5.53	 P09528 	 2	 4	 1.44
  Hexosaminidase B 	 61 115	 8.28	 P20060 	 2	 8	 2.67
  Peptidyl-prolyl cis-trans isomerase A 	 17 960	 7.74	 P17742 	 8	 14	 4.77
  Ubiquitin-conjugating enzyme E2N 	 17 127	 6.13	 P61089 	 8	 5	 3.26
  Ubiquitin-conjugating E2 Q2	 42 192	 4.9	 Q7YQJ9 	 4	 5	 1.3
  Vacuolar ATP synthase subunit G1	 13 362	 5.52	 Q9D1K2 	 8	 3	 4.23
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Table 3.  (continued) 

                                                                                                          Accession           Time     Number of      Volume 
Protein name                                                  Mw (Da)b         PIc            numberd            (h)e       peptidesf         ratiog

Other
  Annexin A5	 35 752	 4.83	 P48036 	 8	 4	 1.7
  39S ribosomal protein L12 	 21 695	 9.34	 Q9DB15 	 4	 3	 1.26
  Apolipoprotein A 	 35 853	 5.56	 Q6GTX3 	 8	 5	 1.73
  Fatty acid-binding protein (E-FABP)	 15 006	 6.18	 Q05816 	 8	 2	 3.52
  Fibulin 2 	 126 414	 4.55	 Q3TGL4 	 8	 2	 5.57
  Heterogenous nuclear ribonucleoprotein K	 50 976	 5.39	 P61979 	 8	 8	 1.69
  Prosaposin	 61 086	 5.11	 Q3TID4 	 8	 3	 10.1

Proteins decreased in N-α-syn-stimulated microglial cell lysates a 

Regulatory	 	 		 	 	      
  14-3-3 Protein epsilon 	 29 155	 4.63	 P62259 	 8	 8	 −3.33
  26S protease regulatory subunit 7 	 48 517	 5.72	 P46472 	 8	 2	 −2.4
  Acyl-CoA binding protein	 9863	 8.78	 P31786 	 4	 8	 −3
  Adenylyl cyclase-associated protein 1	 51 444	 7.3	 P40124 	 8	 9	 −1.9
  Centromere protein F 	 367 594	 5.03	 P49454 	 2	 3	 −1.68
  Chloride intracellular channel protein 1 	 26 865	 5.09	 Q9Z1Q5 	 8	 3	 −3.28
  Coronin1B 	 53 912	 5.54	 Q9WUM3 	 4	 3	 −1.26
  Eukaryotic translation initiation factor 3 	 35 586	 5.69	 Q3THA0 	 8	 2	 −3.32
  Galectin 3	 27 384	 8.5	 P16110 	 4	 13	 −2.34
  Heterogenous nuclear  
      ribonucleoproteins A2/B1 	 35 992	 8.67	 O88569 	 2	 5	 −1.61
  Macrophage Migration Inhibitory factor 	 12 373	 7.28	 P34883 	 8	 3	 −2.03
  Nuclear migration protein nudC 	 38 334	 5.17	 O35685 	 8	 7	 −4.13
  Programmed cell death 6-interacting protein 	 96 010	 6.15	 Q9WU78 	 4	 8	 −1.25
  SH3 domine-binding Glutamic  
      acid-rich-like protein	 10 477	 5.02	 Q91VW3 	 8	 12	 −1.81
  Synaptotagmin-like protein 2 	 106 806	 6.14	 Q99N50 	 2	 2	 −1.46
Structural/cytoskeletal	 	 		 	 	      
  Beta-actin	 41 737	 5.78	 P60710 	 4	 26	 −3.69
  Coronin-1A 	 50 989	 6.05	 O89053 	 8	 10	 −2.4
  Desmin 	 53 334	 5.21	 P31001 	 8	 13	 −3.25
  Gamma actin-like protein 	 43 572	 5.11	 Q9QZ83 	 8	 27	 −4.03
  Gelsolin 	 80 712	 5.47	 Q3U9Q8 	 8	 7	 −3.3
  L Plastin 	 70 018	 5.2	 Q61233 	 8	 15	 −2.58
  MFLJ00343 protein 	 205 326	 5.6	 Q6KAM8 	 8	 17	 −2.12
  Profilin-1 	 14 816	 8.5	 P62962 	 8	 7	 −1.35
  Tropomodulin 	 40 441	 5.02	 Q3KP84 	 8	 2	 −4.13
  Tropomysin-3 	 33 149	 4.73	 P21107 	 4	 10	 −1.25
  Tubulin alpha 4 	 49 761	 4.95	 Q3TY31 	 8	 7	 −3.23
  Tubulin alpha 6 	 49 907	 4.96	 QTIZ0 	 8	 9	 −3.25
  Vimentin 	 53 689	 5.03	 Q3TFD9 	 8	 88	 −3.38
Redox	 	 		 	 	      
  Glutaredoxin 1	 11 732	 8.69	 Q91V76 	 4	 2	 −1.7
  Thioredoxin domain containing 5 	 46 386	 5.51	 Q3TEE8 	 8	 38	 −4.24
Enzyme						    
  α-Enolase	 47 010	 6.36	 P17182 	 8	 8	 −2.4
  2’-5’ olygoadenylate synthetase 1F 	 42 270	 7.09	 Q8K465 	 2	 7	 −1.68
  3-ketoacyl-CoA thiolase A 	 43 935	 8.74	 Q921H8 	 8	 3	 −2.66
  Aconitase 	 98 152	 5.98	 Q42560 	 2	 3	 −1.59
  ATP synthase 	 59 751	 9.16	 Q53XX6 	 2	 2	 −1.55
  ATP synthase e chain	 8099	 9.34	 Q06185 	 4	 5	 −1.52
  Carbonyl reductase 	 30 394	 6.15	 Q8K354 	 4	 3	 −1.27
  Cathepsin B 	 37 256	 5.57	 P10605 	 8	 15	 −3.34
  Cathepsin D 	 44 925	 6.71	 P18242 	 8	 34	 −3.68
  Cathepsin S	 38 707	 6.51	 Q8BSZ5 	 4	 3	 −1.29
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in part, to PD progression. However, the mechanisms 
underlying N-α-syn-mediated microglial neurotoxic-
ity remain obscure. To investigate the means by which 
N-α-syn-mediated microglial activation affects dopami-
nergic neurodegeneration, the molecular and biochem-
ical signatures of N-α-syn-stimulated microglia were 
investigated. This report now demonstrates that microg-
lial stimulation with aggregated, nitrated α-syn leads 
to a neuroinflammatory phenotype capable of mediat-
ing neuronal toxicity. These observations are consistent 
with the notion that release of this protein from injured 
neurons can lead to microglial activation and nigrostri-
atal degeneration, reflective of PD pathobiology. A key 
component of this study was the integration of physio-
logic, genomic, and proteomic techniques to develop a 
fingerprint of microglial cell activation following its in-
teractions with N-α-syn. This microglia phenotype was 
characterized by morphological changes, as well as al-
terations in both the transcriptome and proteome that 
result in reactive microgliosis and secretion of bioactive 
factors, which were neurotoxic. Moreover, our examina-
tion shows human correlates of disease while permitting 

an integrated cross-disciplinary approach for describing 
a microglial “fingerprint” that may be reminiscent of in-
flammatory processes in PD. The inflammatory microg-
lial phenotype now shown follows its interaction with N-
α-syn and may affect dopaminergic neurodegeneration.

Microglia normally function as debris scavengers, kill-
ers of microbial pathogens, regulators of the immune re-
sponses, and supporters of neuronal functions (Vilhardt 
2005); all necessary for host defense. However, during 
neurodegenerative diseases, their phenotype is altered 
by uncontrolled activation. Substantial evidence for re-
active microglia in and around dead or dying dopami-
nergic neurons in the SN of PD patients suggests that 
microglial activation and concomitant secretion of neu-
rotoxic factors play a role in the nigrostriatal degener-
ation that occurs in PD. Stimulation by environmental 
cues that include aggregated proteins and inflammatory 
factors often results in the robust secretion of toxic fac-
tors that accelerate neuronal injury and death (McGeer 
and McGeer 1998; Liu and Hong 2003). Cytokines re-
leased from activated microglia bind their cognate re-
ceptor on dopaminergic neurons to activate signal trans-

Table 3.  (continued) 

                                                                                                          Accession           Time     Number of      Volume 
Protein name                                                  Mw (Da)b         PIc            numberd            (h)e       peptidesf         ratiog

  F1-ATPase alpha subunit 	 44 144	 7.07	 O78824 	 2	 9	 −1.55
  Fructose-bisphosphate aldolase A 	 39 225	 8.4	 P05064 	 8	 33	 −2.66
  Glutamate oxaloacetate transaminase 2 	 47 183	 9.05	 Q3TIP6 	 4	 3	 −1.23
  Phosphomannomutase 2 	 27 625	 6.01	 Q9D1M5 	 4	 3	 −1.3
  Succinyl-CoA ligase beta chain, mitochondrial 	50 082	 6.57	 Q9Z219 	 8	 3	 −4.12
  Transitional endoplasmic reticulum ATPase 	 53 524	 4.14	 Q01853 	 8	 19	 −3.31
Other						    
  Annexin A1	 38 603	 7.15	 P10107 	 8	 8	 −1.9
  Annexin A3	 36 240	 5.33	 O35639 	 8	 5	 −1.93
  28S ribosomal protein S12, mitochondrial 	 15 437	 10.72	 O35680 	 2	 2	 −1.63
  Arcn1 protein 	 47 964	 5.61	 Q8R1S6 	 8	 7	 −1.93
  Beta-galactoside-binding lectin 	 15 914	 9.01	 Q61357 	 4	 7	 −1.84
  Centrosomal protein of 27 kDa 	 26 839	 6.06	 Q9CQS9 	 2	 3	 −1.68
  Clathrin light chain B 	 25 171	 4.56	 Q6IRU5 	 2	 3	 −1.68
  Density regulated protein 	 22 152	 5.21	 Q9CQJ6 	 8	 2	 −3.48
  Fatty acid binding protein	 14 996	 6.18	 Q05816 	 4	 4	 −1.27
  Glycoprotein (transmembrane) nmb 	 63 577	 7.88	 Q3TAV1 	 8	 2	 −3.13
  Gsn protein 	 80 763	 5.52	 Q6PAC1 	 8	 13	 −1.66
  Histone H2A type 1 	 14 004	 11.05	 P22752 	 8	 2	 −5.46
  Protective protein for beta-galactosidase 	 53 795	 5.56	 Q9D2D1 	 4	 3	 −3.47
  Vinculin	 116 586	 5.77	 Q64727 	 8	 9	 −1.82

a The CID spectra were compared against those of the EMBL non-redundant protein database by using sequest (ThermoElectron, 
San Jose, CA, USA). After filtering the results based on cross-correlation Xcorr (cutoffs of 2.0 for [M + H]1+, 2.5 for [M + 2H]2+, 
and 3.0 for [M + 3H]3+), peptides with scores greater than 3000 and meeting delta cross-correlation scores (ΔCn) > 0.3, and 
fragment ion numbers > 60% were deemed valid by these sequest criteria thresholds, which have been determined to afford 
greater than 95% confidence level in peptide identification; b Theoretical molecular mass; c Isoelectric point; d Accession num-
bers for UniProt (accessible at http://www.ipr.uniprot.org/search/textSearch.shtml);e Hours following stimulation with N-α-syn; 
f Number of peptides identified for each protein selected based on the above mentioned criteria; g Volume ratio indicates fold-
change versus control.
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duction pathways resulting in apoptosis or necrosis. The 
persistent activation of microglia in response to dopami-
nergic neuron injury has been investigated extensively 
using the neurotoxin, MPTP. Work from several labora-
tories has documented that microglia activation accounts 
for ~90% of MPTP-induced neuronal death (Wu et al. 
2003; McGeer and McGeer 2004). Furthermore, studies 
show MPTP neurotoxicity may be attenuated in mice un-
able to mount pro-inflammatory responses (Feng et al. 
2002; Sriram et al. 2002; Teismann et al. 2003; Wu et al. 

2003), by treatment with anti-inflammatory drugs (Liu et 
al. 2006) and antioxidants (Zbarsky et al. 2005), blockage 
of the NF-κB pathway (Ghosh et al. 2007), or by induc-
tion of a regulatory T-cell response (Benner et al. 2004; 
Laurie et al. 2007; Reynolds et al. 2007); all converging on 
attenuating microglial activation. In contrast, exacerba-
tion of microglial activation by infiltrating effector lym-
phocytes to modified self-peptides may worsen MPTP-
induced neurodegeneration (E. J. Benner, R. Banerjee, A. 
D. Reynolds, S. Sherman, V. M. Pisarev, V. Tsiperson, C. 

Figure 6.  2DE and LC-MS/MS analysis of the N-α-syn-stimulated microglia proteome. Fluorescence 2D DIGE analysis of N-α-
syn-activated microglial cell lysates. Fluorescence 2D DIGE (2DE) analysis of activated microglial cell lysates at 2, 4, and 8 h af-
ter N-α-syn stimulation. Proteins from cell lysates of unstimulated microglia labeled with Cy3 appear green on the 2 dimensional 
gels, while proteins of N-α-syn stimulated microglia labeled with Cy5 appear red, and proteins common to both appear yellow. 
Three-dimensional DeCyder interpretation for six representative proteins per time-point are shown. The numbers correspond to 
the protein spot labeled on gels. Analysis of spot distribution to locate and define protein spots (right panel). Protein spots from 
samples of stimulated cell lysates were identified as decreased (blue), increased (red), or common (yellow) versus non-stimu-
lated cell lysates. Spots picked for sequencing analysis with LC-MS/MS are shown in purple. Abbreviations: HSP70, heat-shock 
protein 70; Cyt c oxidase, cytochrome c oxidase; SOD, superoxide dismutase. A complete listing of all proteins identified through 
2DE is contained within Table 3. 
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Nemacheck, P. Ciborowski, S. Przedborski, R. L. Mosley, 
and H. E. Gendelman, unpublished data).

Generation of reactive molecular species by microglia, 
as well as changes that occur during dopamine metabo-
lism and mitochondrial function can result in oxidation 
and nitration of proteins, DNA modifications, and lipid 
peroxidation. Oxidation and nitration of α-syn leads to 
formation of aggregates and the stabilization of assem-
bled filaments found to be a major component of LBs, 
the hallmark lesions of PD. The results of the present 
study, as well as research performed by others (Biasini 
et al. 2004; Zhang et al. 2005; Zhou et al. 2005; Thomas et 
al. 2007) support the hypothesis that microglia activated 
by N-α-syn is a component of an inflammatory cascade 
that perpetuates nigrostriatal degeneration in PD. First, 
nitrated α-syn was identified in extracts from the SN of 
PD patients in copious concentrations relative to control 
and AD brains. Second, α-syn aggregates released from 

LB during dopaminergic neuronal death can interact 
with adjacent microglial cells found in abundance within 
the SNpc of PD patients (Spillantini et al. 1997; McGeer 
and McGeer 1998; Croisier et al. 2005). Alternatively, α-
syn may also be released or secreted from the cytosol of 
dopaminergic cells into the extracellular environment 
where it is more prone to aggregation and oxidative 
damage (Kakimura et al. 2001; Lee et al. 2005; Sung et al. 
2005). Third, microglial activation is associated with de-
generating dopaminergic neurons and deposition of α-
syn in the SN of PD patients (Croisier et al. 2005). Fourth, 
native and nitrated α-syn activate microglia with release 
of ROS and induce neurotoxicity as shown herein and 
by others (Zhang et al. 2005; Thomas et al. 2007). Fifth, re-
cent evidence supports that N-α-syn drains to the cervi-
cal lymph nodes, availing it for processing and presenta-
tion by antigen-presenting cells to the adaptive immune 
system, which in turn can circumvent or break immu-

Figure 7.  N-α-syn-stimulated microglial proteins in PD brain tissue. Immunoblot identification of proteins in the SN and BG of 
PD brains that were previously observed in N-α-syn-stimulated microglia. This includes 14-3-3σ, calmodulin, galectin-3, l-plas-
tin, actin, tubulin, glutathione-S-transferase, thioredoxin, and biliverdin reductase. The proteins are divided into regulatory, cyto-
skeleton, or redox functions. The mean densitometric values were determined with ImageJ software and normalized to GAPDH ex-
pression in the same sample (bottom). Values are represented as the mean density ± SEM for four patients/group and p-values 
of Student’s t-test of pair-wise comparisons of densities from Control (open bars) and PD (closed bars) patients are * p < 0.05 
(** p < 0.05 and congruent results with the N-α-syn-microglial proteomic and western blot assays). 
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nological tolerance to direct immune responses that pos-
sibly contribute to prolonged microglial activation and 
neurodegeneration (E. J. Benner, R. Banerjee, A. D. Reyn-
olds, S. Sherman, V. M. Pisarev, V. Tsiperson, C. Nema-
check, P. Ciborowski, S. Przedborski, R. L. Mosley, and 
H. E. Gendelman, unpublished data). Moreover, α-syn 
and its modified forms are present in extracellular bio-
logical fluids including human plasma (El-Agnaf et al. 
2003) and are proposed as biomarkers for disease (Fjor-
back et al. 2007). Evidence of systemic complications as-
sociated with PD including abnormal gastrointestinal 
function (Bassotti et al. 2000), cardiac denervation, and 
orthostatic hypotension (Taki et al. 2000; Goldstein et al. 
2005) further suggest a peripheral component in disease. 
Taken together, this work extends those of others (Wang 
et al. 2005; Zhou et al. 2005; McLaughlin et al. 2006). By us-
ing proteomic analyses for examination of the activated 
microglial proteome it provides human disease corre-
lates while permitting an integrated cross-disciplinary 
proteomic approach towards elucidating a PD microg-
lial “fingerprint.” The work provides evidence that such 
a profile is inflammatory and may be linked to neurotox-
icity. However, one must exert caution in over interpret-
ing these experimental results. Nonetheless, whether or 
not these findings are directly linked to the pathogene-
sis of PD will certainly require further study. Although 
clear evidence is provided that microglial activation is 
part of PD whether this process is a secondary by-prod-
uct of ongoing neurodegeneration or a primary inducer 
of disease remains uncertain.

Parallels are demonstrated herein between N-α-syn 
and LPS for microglial activation and support a com-
monality for innate immune responses in disease. The 
findings suggest that pro-inflammatory processes may 
be common amongst mononuclear phagocytes that see 
disparate activators. LPS is a strong activator of microg-
lia both in vivo and in vitro. A single systemic exposure 
to LPS can lead to neuroinflammation associated with 
increased expression of pro-inflammatory cytokines, 
NADPH oxidase-mediated release of superoxide (Gao et 
al. 2002), and activation of the NF-κB pathway (Qin et al. 
2007) resulting in neurodegeneration. Microglial activa-
tion by LPS and N-α-syn were associated with induction 
of the ΝF-κB and mitogen activation pathways, charac-
teristic of an inflammatory phenotype. However, key dif-
ferences in the inflammatory responses induced by LPS 
or N-α-syn were identified, including genes involved in 
signal transduction and apoptosis, as well as induction 
of an inflammatory response that was greater in magni-
tude after stimulation with LPS compared with that of 
N-α-syn. It is possible that the differences in transcrip-
tion may be dose or pathway dependent as the stimula-
tory capacity and pathways activated by the two stimuli 
may differ significantly. Having demonstrated that N-α-
syn stimulation induces microglial activation, this model 
may be used to study PD and reflect the unique molecu-

lar changes that occur during disease progression.
Our finding suggests that modifications to α-syn may 

be a common denominator for microglial activation in 
sporadic and familial PD. These observations also iden-
tify prospective pathways that are associated with PD 
and as such uncover potential targets for therapeutic in-
tervention. For instance, identification of NF-κB activa-
tion by microglia in response to divergent stimuli sug-
gests that activation of NF-κB and its related signaling 
pathways may be a key component in the inflammatory 
response leading to neuronal death. The microglial re-
sponse to N-α-syn was linked to neurotoxicity. Nonethe-
less, we also showed proteomic fingerprints that were 
potentially protective. These include antioxidants and 
growth factors. Although considered to be a necessary 
component of CNS homeostasis, the potentially protec-
tive microglia mechanisms are lost as PD progresses un-
controlled. Furthermore, the similarities and differences 
found between the acute in vitro model of N-α-syn mi-
croglial stimulation and what is present in PD brains 
support that ongoing inflammatory responses present 
in disease may affect CNS protective responses. The ob-
servations of sustained NF-κB activation and differential 
expression of regulatory, structural, and redox proteins 
at end-stage disease support, in part, a persistent inflam-
matory process that could affect dopaminergic loss.

In summary, a mechanistic role for aggregated N-α-
syn in stimulating a neurotoxic microglial phenotype 
was observed. In this ‘potential’ scheme, a pathogenic 
paracrine loop of immune activation occurs consisting 
of dopaminergic neuronal injury or death, release of ag-
gregated N-α-syn from the cytosol or LB either through 
exocytosis or neuronal degeneration into the extracel-
lular milieu, microglial activation with release of toxic 
factors which, may ultimately lead to further neuronal 
injury and sustained α-syn release. Regardless of con-
current pathogenic events in PD, which initiate dopami-
nergic degeneration or the mechanisms associated with 
activation by N-α-syn, the resultant activation of res-
ident microglia could, in part, perpetuate neuronal in-
jury and subsequent disease progression. Thus, the per-
petual presence of activated microglia, left uncontrolled, 
may consistently confound PD therapies. Our investiga-
tions also provide a novel approach towards elucidat-
ing cellular immune responses for neurodegeneration 
and suggest potential molecular targets to slow disease 
processes.
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