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INTRODUCTION

Two lectins with different binding specificities have been isolated from extracts 
of seeds of Bandeiraea simplicifolia. The first, Bandeiraea lectin I [11] was specific for 
terminal non-reducing αDGalactosyl residues. It reacted with B substances from 
human ovarian cysts and with several galactomannans to form precipitin lines in 
agar gels. Polysaccharides with terminal αDGalactosyl residues, such as larch ga-
lactan, did not react. The lectin agglutinated B erythrocytes strongly but also re-
acted to a lower titre with A1 and very weakly with A2 erythrocytes [15, 28] indicat-
ing that terminal non-reducing αDGalNAc [24] can be accommodated in the-site 
to some extent. Recently, it was shown that B. simplicifolia lectin I (BS I) consists 
of five isolectins each of which is a tetrameric glycoprotein composed of A and B 
subunits; the A subunits are specific for αDGalNAc, the B subunits for αDGal [30].

The second lectin, Bandeiraea lectin II (BS II), isolated by affinity chromatogra-
phy on chitin [13], is a glycoprotein (molecular weight 113,000) of four subunits of 
molecular weight 30,000. It does not agglutinate A, 13 or () erythrocytes. Quantita-
tive precipitin assays showed it to react better with BSA conjugated to p-azophe-
nyl αDGalNAc than with the β compound. In inhibition studies, the unusual ob-
servation was made that N,N’-diacetylchitobiose (DGlcNAcβ1 → 4DGlcNAc) and 
pNO2 phenyl αDGalNAc were highly active; methyl αDGalNAc was only one half 
as active but was eight times more active than methyl βDGlcNAc.

The variety of blood group substances and oligosaccharides available made it 
possible to obtain more information about the combining site of BS II by quanti-
tative immunochemical methods [16, 17, 20]. The lectin precipitated with various 
blood group substances, polysaccharide and glycoproteins with terminal non-re-
ducing α and β-linked DGlcNAc but to different extents. Assays by inhibition of 
the precipitin reaction using various oligosaccharides and glycosides showed that 
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only the terminal DGlcNAc and part of the second sugar contribute significantly 
to the binding specificity. The lectin is most specific for terminal reducing α-linked 
DGlcNAc. It is unusual that certain disaccharides with β linkages react as well or 
better than others with α linkages ; pNO2 phenyl αDGlcNAc, phenyl αDGlcNAc 
and DGlcNAcαl → 5DGlcf were the best inhibitors. Molecular models account for 
these findings; overall shape and contour of the molecule and hydrophobic bonds 
are the decisive factors in binding.

EXPERIMENTAL

Materials.

BS II was purified from B. simplicifolia seeds [13]. The following blood group 
substances were used: hog gastric mucin A + H [4] with blood group A and H ac-
tivity ; B substances, Beach ØOH insoluble [2] and horse 4 25% [5]; A1 MSS  10% 
2X, A2 WG ØOH insoluble [19]; H, Tighe ØOH insoluble [6] and JS ØOH insolu-
ble [35]. JS 1st and 2nd IO4/BH4 were obtained after two sequential stages of pe-
riodate oxidation and Smith degradation [23]. Lea active cyst material (N-l ØOH 
insoluble) was described earlier [24]. The Tij fractions with B, I-MA and I-Step ac-
tivity were those studied by Maisonrouge-McAuliffe and Kabat [26]. Fractions of 
precursor blood group substance OG were described by Vicari and Kabat [37]. 
Carcinoembryonic antigen (CEA) was provided by Dr. P. Gold [9], agalactooroso-
mucoid by Dr. G. Ashwell [31] and a synthetic antigen (antigen A) DGlcNAcβ1 
→ 4 DGlcNAcβ1 → N-polyAsn by Dr. T. W. Shier [36]. The blood group oligo-
saccharides used were isolated and characterized previously [8, 22, 27], N,N′-
diacetylchitobiose and N,N′,N″-triacetylchitotriose were from Dr. N. Sharon [1], 
N,N′,N″,N″′-tetraacelylchitotetraose was described previously [10]; DGlcNAβ1 → 
3DGal, DGlcNAcβ1 → 6DGal and DGlcNAcβ1 → 3DGlcNAcβ1 → 6DGal  were 
from Dr. Z. Yosizawa [40]; DGlcNAcαl → 5DGlcƒ was from Dr. van Heeswijk. 
Monosaccharides were obtained commercially (Nutritional Biochemicals [12] 
Corp. and Schwartz/Mann Research Laboratories).

Immunochemical methods.

Quantitative precipitin and inhibition assays were by the quantitative mi-
croprecipitin technique [20] in a final volume of 200 μl; 5.6 μg of lectin ni-
trogen was used in each assay unless otherwise stated. The tubes were in-
cubated at 37°C for 1 h then kept at 4° for one week with mixing twice daily.

DGlc = DGlucopyranose.
DGlc/ = DGlucofuranose.  
DGal = DGalactopyranose.  
DGlcNH2 = 2-amino-2-deoxy-D-glucopyranose.
DGlcNAc = 2-aceamido-2-deoxy-D-glucopyranose.
DGalNAc = 2-acetamido-2-deoxy-D-galactopyranose.
DManNAc = 2-acetamido-2-deoxy-D-mannopyranose.
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The precipitates were centrifuged, washed, and total nitrogen determined by the 
ninhydrin method [35].

RESULTS

Quantitative precipitin assays.

The lectin varied substantially in its capacity to precipitate with various blood 
group substances. Reactions with H substances are shown in figure lA, hog mu-
cin A+ H precipitated 94% of the lectin N added with 4 μg giving 50% precipita-
tion; human ovarian cyst JS ØOH insoluble reacted less well, 13 μg heing needed 
for 50% precipitation. However, the first stage of periodate oxidation and Smith 
degradation, JS IO4/BH4 lst stage, was more active than JS ØOH insoluble and al-
most as active as hog mucin A + H precipitating 4.8 μg of lectin N with 4 μg giving 
50% precipitation. JS IO4/BH4 2nd stage was inactive, 21 μg precipitating only 0.3 
μg of N. Cyst Tighe ØOH insoluble, another H substance was more active than JS 
ØOH insoluble but not as potent as JS IO4/BH4 1st stage or hog mucin A + H with 
9 μg giving 50% precipitation.

The activities of two fractions from ovarian cyst fluid, Tij [26] are also given 
in figure 1A. Tij 10% 2X with high B3 and I Ma activity requiring 10% ethanol 
for precipitation from phenol was relatively inactive while Tij 20% 2X, precipi-
tating at 20% ethanol from phenol, with low B but reacting strongly with anti-I 
Step, anti-i Den and conA, was highly active, 50% precipitation of BS II requiring
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only 5μg. OG 10% 2X, a precursor blood group fraction with I and i activity, did 
not react while another, OG 20% 2X, showed weak activity. Only one point of OG 
20% 2X was used because of the limited amount available. The lectin did not re-
act with an A1 substance from human ovarian cyst MSS 10% 2X nor with an A2 
substance WG ØOH insoluble from human saliva (Figure 1B). It reacted with var-
ious B substances to different extents (Figure 1B); with horse 4 25%, almost all the 
added lectin was precipitated, 3 μg giving 50% inhibition, while a human ovarian 
cyst B substance, Beach ØOH insoluble, was almost completely inactive. N-l ØOH 
insoluble, a Lea active cyst substance, showed no activity.

Of two preparations of a synthetic antigen A, DGlcNAcβl → 4DGlcNAcβl → 
N-poly (Asn) (Figure 1B), one reacted well giving 4.3 μg of specific precipitate N 
while the other preparation was inactive. These two antigen A samples showed 
the same differences with Aaptos lectin II [7]. Agalactoorosomucoid [31], prepared 
from the asialoglycoprotein by removing the terminal DGal enzymatically to ex-
pose multiple terminal non-reducing DGlcNAcβ1 → 4 residues, was highly po-
tent, precipitating all 5 μg N of the added lectin and was about half as active as 
horse 4 25%. CEA which lacks terminal non-reducing DGlcNAc did not react with 
the lectin.

Quanitative precipitin inhibition assays.

Various sugars and blood group oligosaccharides were tested for their ability to 
inhibit the precipitin reaction between BS II and B substance horse 4 25%(Figure 
2). Of the monosaccharides tested 220 nmoles of DGlcNAc gave 50% inhibition 
while 450 nmoles of DGalNAc, 1,000 nmoles of DGal, 640 nmoles of DManNAc, 
770 nmoles of DGlc and 300 nmoles of DGlcNH2 gave 0, l8, 16, 11 and 10 percent 
inhibition respectively (Figure 2B).

Methyl αDGlcNAc was more active than DGlcNAc; 110 nmoles gave 50% in-
hibition while 880 nmoles of methyl βDGlcNAc only inhibited to 35%; pNO2 
phenyl αDGlcNAc and phenyl αDGlcNAc were the most potent inhibitors, 
both being 3, 6 and 20 times better than methyl αDGlcNAc, DGlcNAc and 
pNO2 phenyl βDGlcNAc respectively; pNO2 phenyl αDGlc showed no inhibi-
tion with 310 nmoles; N,N’-diacetylchitobiose, N,N’,N”-triacetylchitotriose and 
N,N’,N”,N”’-tetraacetylchitotetraose were of equal potency and as active as 
methyl αDGlcNAc.

Of the di- and trisaccharides tested, those with terminal non-reducing β-linked 
DGlcNAc were relatively inactive (Figure 2B); DGlcNAcβ1 → 3DGal, DGlcNAcβ1 
→ 6DGal, DGlcNAcβ1 → 3[DGlcNAcβ1 → 6]DGal [40] and the blood group oli-
gosaccharides, DGlcNAcβ1 → 6DGal (RL 0.95) [8] and DGlcNAcβ1 → 3DGalac-
titol [7] all were of similar activities with 600 nmoles inhibiting not more than 
25%; higher concentrations of these inhibitors were not used because of the limited 
amounts available. A disaccharide and a trisaccharide with terminal non-reduc-
ing α-linked DGlcNAc were also tested (Figure 2A); 140 nmoles of DGlcNAcα1 → 
4DGal (RL 1.53) [8] gave 50% inhibition, being 1.8 time as active as DGlcNAc but 
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only about 80% as active as methyl α-DGlcNAc or the chitin oligosaccharides. 
DGlcNAcαl → 5DGlc/ [12] was as active as pNO2 phenyl αDGlcNAc and phenyl 
αDGlcNAc, 47 nmoles giving 50% inhibition. DGlcNAcα1 → 4DGalβ1 → 4DGl-
cNAc (RL 0.97b) [8] was as active as the methyl αDGlcNAc and the β1 → 4 linked 
oligosaccharides of DGlcNAc. However, another trisaccharide, DGlcNAcαl → 
4DGalβ1 → 3DGalNAc (RL 0.97a) [8] was like pNO2 phenyl βDGlcNAc with 190 
nmoles inhibiting only 30%. The reduced oligosaccharide DGlcNAcα1 → 4DGa-
lactitol (RG 0.42) [25] Was only as active as oligosaccharides with terminal β-linked 
DGlcNAc, 430 nmoles inhibiting only 24%.

DISCUSSION

BS II, while specific for terminal non-reducing DGlcNAc [13], was unusual in 
that disaccharides with both α and β linkages were good inhibitors. Indeed, the 
most active compounds in inhibiting precipitation of BS II by βDGlcNAc-BSA
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[13] were DGlcNAcβ1 → 4DGlcNAc, pNO2 phenyl αDGlcNAc and methyl 
αDGlcNAc.

This study generally confirms these observations and provides a structural ba-
sis which accounts for the activity of both α and β compounds. Some quantita-
tive differences in inhibiting power were found using BS II and horse 4 25% as 
the precipitating system; pNO2 phenyl αDGlcNAc and phenyl αDGlcNAc (Fig-
ure 2A) were the best inhibitors, being equal and about 6 and 20 times better than 
DGlcNAc and their β anomers. Earlier studies with conA [33], Sophora japonica 
[34] and peanut agglutinin [35] have shown the pNO2 phenyl glycosidcs to be 
better inhibitors than the methyl glycosides of the same anomeric conformation, 
indicating hydrophobic interactions between the phenyl ring and the combin-
ing sites [18]; phenyl glycosides were not tested. Since with BS II, pNO2 phenyl 
αDGlcNAc and phenyl αDGlcNAc were of equal potency, the NO2 group does 
not contribute. Molecular models were constructed in an attempt to account for 
differences in reactivity of the phenyl α and β DGlcNAc (Figure 3A); when the 
models were placed in similar conformations the only apparent difference is the 
angle of the phenyl ring relative to the DGlcNAc. For phenyl βDGlcNAc the ring 
is at an angle to the plane of the sugar while in the α anomer it is in the same 
plane and the molecule is relatively flat. This could be of importance for inter-
action, and the angle of the β compound might sterically hinder reaction in the 
binding site. Methyl αDGlcNAc was much more active than methyl βDGlcNAc 
but only about 1/3 as active as phenyl αDGlcNAc, and models (Figure 3D) show 
the methyl group in the β anomer to be at a slight angle to the DGlcNAc while in 
the α. compound the molecule is flatter.

Of the free sugars tested only DGlcNAc showed considerable activity. DGlc, 
DGlcNH2, DGalNAc and DManNAc were almost completely inactive. Thus an 
equatorial N-acetamido group at C2 and the DGlc conformation are required 
as noted earlier [13]. Disaccharides of DGlcNAc linked β1 → 3 or β1 → 6 to 
DGal and DGlcNAβ1 → 3[DGlcNAcβ1 →  6]DGal were inactive. The disaccha-
ride DGlcNAcαl → 4DGal was highly active but only 80% as active as methyl 
αDGlcNAc. Reduction of DGlcNAcα1 → 4DGal to DGlcNAcα1 → 4DGalacti-
tol reduced its activity to about that of βDGlcNAc; thus opening the ring to 
give galactitol interferes with binding of the lectin to the terminal non-reduc-
ing αDGlcNAc.

N,N’-diacetylchitobiose, N,N’,N”-triacetylchitotriose and N,N’,N”N’’’-tet-
raacetylchitotetraose were all equal in potency to methyl αDGlcNAc and 1.25 
time better than DGlcNAcαl → 4DGal. Moleeular models of N,N’-diacetylchito-
biose (DGlcNAcβ1 → 4DGlcNAc) and DGlcNAcα1 → 4DGal were constructed 
(Figure 3C) and the similar regions outlined by a length of polyethylene tubing. 
For these two structures, portions below and to the left of the polyethylene tubing 
are quite similar (Figure 3C). These include the non-reducing DGlcNAc and the 
CH2OH of the subterminal residue. The side view shows the most striking differ-
ence; the molecule of N,N’-diacetylchitobiose is flat like phenyl αDGlcNAc while in 
DGlcNAcα1 → 4DGal the two are at an angle as in phenyl βDGlcNAc (Figure 3A). 
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Addition of a third sugar to DGlcNAcα1 → 4DGal to give DGlcNAcαl → 
4DGalβ1 → 4DGlcNAc increased its activity to that of DGlcNAcβ1 → 4DGl-
cNAc and methyl αDGlcNAc. Molecular models of DGlcNAcαl → 4DGalβ1 → 
4DGlcNAc (Figure 3E) showed striking similarities to DGlcNAcβ1 → 4DGl-
cNAc; the model of the trisaccharides can assume conformation, if the DGal res-
idue is rotated so that it is perpendicular to the two DGlcNAc residues, such 
that the molecule is shortened with CH2OH group of the reducing DGlcNAc 
coming into close contact with N-acetamido group of the terminal non-reduc-
ing DGlcNAc and aligning the two DGlcNAc residues in the same plane as in 
DGlcNAcβl → 4DGlcNAc (Figure 3C). The polyethylene tubing outlines the re-
gions of between these molecules.

DGlcNAcα1 → 5DGlc was as good as pNO2 phenyl αDGlcNAc and phenyl 
αDGlcNAc and better than the other oligosaccharides tested. Its activity may be 
accounted for by the reduced ring size of the second residue. Molecular mod-
els (Figure 3B) showed a general flatness, and the residue with its furanose ring 
is of comparable size to the phenyl of phenyl αDGlcNAc and permits increased 
adaptability in the site. Interactions may also be involved; there is an H at C5 be-
neath furanose ring of DGlcNAcαl → 5DGlc/ (not seen in models) which could 
contribute to the interaction; such an H can be found in similar positions in all 
active compounds, H at C4 in the reducing DGlcNAc of DGlcNAcβl → 4DGl-
cNAc and DGlcNAcαl → 4DGalβ1 → 4DGlcNAc in the conformations shown 
in Figure 3C and E. For DGlcNAcαl → 4DGal, the H underneath the pyranose 
ring of the DGal is not in the same position because of the angle of the DGal to 
the DGlcNAc and this might prevent it from contacting in the binding site (Fig-
ure 3C). Similarly, DGlcNAcαl → 4DGalβ1 → 3DGalNAc which showed greatly 
reduced activity (Figure  2B) as compared with DGlcNAcαl → 4DGalβl → 4D-
GlcNAc may assume a conformation similar to it (Figure 3F) but the CH2OH of 
the reducing DGalNAc at a slightly different angle to the terminal non-reducing 
DGlcNAc and is not in as close contact with N-acetamido group of DGlcNAc. 
An axial OH group is present at C4 of the reducing DGalNAc instead of the H 
in DGlcNAc, and this inhibits sterically and prevents the molecule from assum-
ing a flat conformation. This OH is indicated by an arrow in the bottom view of 
the compound in figure 3G. The absence of the H at this position may further re-
duce hydrophobic interaction in the site and account for the greatly reduced ac-
tivity of the DGalNAc containing trisaccharide. The axial H in the comparable 
position of DGlcNAcαl → 4DGalβ1 → 4DGlcNAc is shown by the arrow in fig-
ure 3H. In methyl αDGlcNAc an H of the CH2 is at the same position as the H 
at C5 of DGlcƒ in DGlcNAcα1 → 5DGlcƒ and the axial H on C4 of the reduc-
ing DGlcNAc in N,N’-diacetylchitobiose. This hydrophobic interaction could ex-
plain methyl αDGlcNAc is as active as DGlcNAcβ1 → 4DGlcNAc but inhibited 
less strongly than phenyl αDGlcNAc with which additional or stronger hydro-
phobic interactions could be involved.
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The findings by inhibition assays that the lectin can react with terminal α- and 
β-linked DGlcNAc account for the precipitin data in Figure 1. Thus the lectin is 
not blood group specific since A, B, H, Lea, Leb and I activities do not involve 
terminal non-reducing DGlcNAc, and it does not react with A1, A2 and Lea sub-
stances. The reactions with B and H substancesare due to the extensively docu-
mented [24, 37, 39] heterogeneity of these materials. The presence of terminal non-
reducing α-linked DGlcNAc in hog mucin A + H was established by isolation of 
DGlcNAcαl → 4DGalactitol [25] and subsequently of DGlcNAcαl → 4DGal [8]; 
individuals immunized with hog mucin A + H produced antibody specific for ter-
minal non-reducing α-linked DGlcNAc [29]; terminal non-reducing αDGlcNAc is 
also responsible for precipitation with conA [25] and in this study with BS II. Iso-
lation of penta- and hexasaccharides with terminal non-reducing DGlcNAc linked 
α and β1 → 4 from intact hog H substance linings by alkaline borohydride degra-
dation [21] could also explain the reaction of BS II with various H substances. The 
high activity of Tij 20% 2X is also accounted for by the isolation of oligosaccharides 
with terminal non-reducing DGlcNAc linked α1 → 4 [27]. Similarly, the activity of 
JS ØOH insoluble and Tighe ØOH insoluble may be due to the heterogeneity of 
these substances with exposed terminal non-reducing βDGlcNAc. A mouse IgA 
myeloma immunoglobulin with specificity for terminal β-linked DGlcNAc [38] re-
acted with JS IO4/BH4 1st stage which has terminal β-linked DGlcNAc while JS 
IO4/BH4 2nd stage, obtained by removing the terminal DGlcNAc, did not react, 
findings identical to those with BS II (Figure 1B). Since BS II has high inhibiting 
activity for oligosaccharides of DGlcNAc linked βl → 4 and not for those linked 
β1 → 4 or β1 → 6, this might suggest that some β1 → 4 linked DGlcNAc residues 
could be present in JS IO4/BH4 1st stage. Aston et al. [3] had isolated DGalβl → 
3 DGlcNAcβ1 → 4DGal from ovarian cyst H substance which would, on IO4/
BH4 degradation, yield a DGlcNAcβ1 → 4 terminal residue. However, despite the 
weak reactions of BS II with β1 → 3 or β1 → 6 linked oligosaccharides of DGl-
cNAc, the multivalence of the IO4/BH4 1st stage with respect to terminal non-re-
ducing DGlcNAc might also lead to precipitation without the linkage being β1 → 
4. Of the B substances tested, horse 4 25% is highly active as observed for Aaptos 
lectin I [7] which is very specific for terminal βDGlcNAc. However, another B sub-
stance, Beach ØOH insoluble which reacted with Aaptos lectin I, did not react with 
BS II, again demonstrating heterogeneity of individual blood group substances. 
Agalactoorosomucoid having multiple terminal non-reducing β-linked DGlcNAc 
[14] subsequently shown (G. Ashwell, personal communication) to be β1 → 4, and 
one sample of antigen A (DGlcNAcβ1 → 4DGlcNAcβ1 → N-poly Asn) reacted 
very strongly with BS II.

The findings with molecular models appear to account for the unusual behav-
ior of BS II in reacting with certain compounds containing DGlcNAc linked α1 → 
4 and β1 → 4. While it is essentially specific for terminal non-reducing α-linked 
DGlcNAc, it can also react with an oligosaccharide with terminal non-reducing
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DGlcNAc linked β1 → 4 if the oligosaccharide can assume a conformation simi-
lar to that of the α anomer (Figure 3D). The binding site requires a terminal DGl-
cNAc plus a second sugar ring; hydrophobic forces are probably involved in the 
subsite at which the second sugar reacts, and an axial H adjacent to the glyco-
sidic bond as in methyl αDGlcNAc, on C4 of DGlcNAcβl → 4DGlcNAc or C5 
of DGlcNAcα1 → 5DGlcƒ, is essential. The site is perhaps best pictured as a pla-
nar shallow groove into which the lower half of the terminal non-reducing DGl-
cNAc and the second sugar or aglycones giving the best inhibition fit (Figure 3).

The finding that a particular conformation of the trisaccharide DGlcNAcα1 → 
4DGalβl →4DGlcNAc could mimic that of the disaccharide DGlcNAcβl → 4DG-
lcNAc and could account for their similar activities provides an entirely new per-
spective to the problem of elucidating the structures of specific receptor sites. It 
has usually been accepted that carbohydrate determinants are sequential [17, 20] 
and that even though they could assume a variety of conformations the receptor 
sites would have amino acid side chains in contact with a portion of any sugar, 
the addition of which in a given linkage resulted in increased binding. This is no 
longer necessarily the case. These findings, while made with a lectin site, must be 
considered as potentially applicable to antibody combining sites. It is conceivable 
that, in certain instances, an antibody combining site might not have amino acid 
side chains contacting each successive sugar residue but may be smaller and in-
volve only a conformation in which non-sequential sugars constitute the contact-
ing elements with the connecting sugars playing a structural role.

SUMMARY

The binding specificity of a second lectin purified from seeds of Bandeiraea sim-
plicifolia (BS II) was studied by quantitative precipitin and inhibition assays. The 
lectin is not blood group specific and did not precipitate with A1, A2, Lea and a pre-
cursor blood group substance with I and i activity. Individual human B and H sub-
stances reacted to different extents due to their heterogeneity, those with terminal 
non-reducing αDGlcNAc reacting well; those lacking such residues did not precip-
itate. Glycoproteins with terminal βDGlcNAc such as agalactoorosomucoid also 
precipitated the lectin. Inhibition of precipitation showed phenyl αDGlcNAc and 
pNO2 phenyl αDGlcNAc to be the best inhibitors, while their β anomers were rel-
atively inactive. Of the free sugars tested only DGclNAc showed considerable ac-
tivity; methyl αDGlcNAc was twice as good as DGlcNAc but only 1/3 as active as 
phenyl αDGlcNAc, while methyl βDGlcNAc was relatively inactive. DGlcNAcβl  
→ 3 or β1 → 6 linked to DGal and DGlcNAcβl → 3[DGlcNAcβ1 → 6]DGal were 
not active. DGlcNAcα1 → 4DGal was 80% as active as methyl αDGlcNAc; reduc-
tion of the DGal to galactitol reduced its activity greatly. The presence of a third 
sugar giving DGlcNAcα1 → 4DGalβ1 → 4DGlcNAc made it as active as methyl
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αDGlcNAc. N,N′,N″-triacetylchitotriose and N,N′,N″,N′″-tetraacetylchitotetraose 
which were all equal and as active as methyl αDGlcNAc and DGlcNAcα1 → 4DG-
lcNAc. However, DGlcNAcα1 → 4DGalβ1 → 3DGalNAc had much lower activ-
ity. DGlcNAcα1 → 5DGlc/ had the same activity as phenyl αDGlcNAc.

To explain the unusual finding that αx and β linked oligosaccharides of DGlc-
NAc were of comparable activity, molecular models were constructed. The best 
inhibitors showed a basic similarity in three dimensional-structure, the overall 
planarity of the molecule and hydrophobic interactions are of importance.
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