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Data demonstrates a continued regional-scale chemical response of acid sensitive lakes and streams
to emissions controls programs which is conducive to biological recovery.

Abstract

The main aim of the international UNECE monitoring program ICP Waters under the Convention of Long-range
Transboundary Air Pollution (CLRTAP) is to assess, on a regional basis, the degree and geographical extent of the impact of

atmospheric pollution, in particular acidification, on surface waters. Regional trends are calculated for 12 geographical regions in
Europe and North America, comprising 189 surface waters sites. From 1990e2001 sulphate concentrations decreased in all but one
of the investigated regions. Nitrate increased in only one region, and decreased in three North American regions. Improvements in

alkalinity and pH are widely observed. Results from the ICP Waters programme clearly show widespread improvement in surface
water acid-base chemistry, in response to emissions controls programs and decreasing acidic deposition. Limited site-specific
biological data suggest that continued improvement in the chemical status of acid-sensitive lakes and streams will lead to biological
recovery in the future.

� 2005 Published by Elsevier Ltd.

Keywords: Acidification; Deposition; Trends; ICP waters; Sulphate; Nitrate; Alkalinity; Dissolved organic carbon

1. Introduction

Surface water acidification has been recognized as
a major environmental problem in many parts of Europe
and North America for several decades, resulting in the
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creation of emissions control programs at both national
and international levels. These programs have produced
widespread decreases in acidic deposition, and the
expectation that surface waters in affected regions
should be experiencing recovery from acidification. In
this paper we examine data from the international
UNECEmonitoring program ICPWaters (International
Cooperative Programme on Assessment and Monitor-
ing of Rivers and Lakes) under the Convention of Long-
range Transboundary Air Pollution (UNECE, 1999;
Bull et al., 2001) to determine whether such widespread
recovery can be detected, and to put the more detailed
results presented in this special issue for the UK Acid
Waters Monitoring Network (AWMN) into a larger
context. The ICP Waters network described in this
paper covers most of the acid-sensitive terrain of the
Northern Hemisphere, where emissions controls to
control acidification have been focused. It is probably
worth noting, however, that it does not cover areas
(notably Asia) where acidic deposition is on the rise, and
is of growing concern (Streets et al., 2001).

Our focus is primarily on trends in the chemistry of
acid-sensitive surface waters. When these trends are
shown to be moving in the correct direction (e.g.,
decreases in sulphate, SO4

2�, or increases in pH), they
indicate improvement in the acid-base chemistry of lakes
and streams. It is important to note that these improve-
ments or recovery process do not necessarily equate to
recovery, for at least two important reasons:

1. Lakes and streams will have ‘‘recovered’’ only when
their chemistry has returned to its pre-acidified
status, such as pre-industrial levels of SO4

2� or
alkalinity, or to some status that no longer poses
a risk to biotic integrity; trends indicate only that
surface waters are moving toward this recovered
status, not that they have reached it;

2. While the ultimate goal of emissions control
programs is biological recovery, e.g., the return of
sensitive species that have been eliminated and
biological functioning that has been impaired during
the course of acidification; chemical recovery is
necessary before biological recovery can occur.
Chemical data are more widely available and
indicate weather the necessary chemical conditions
to facilitate biological recovery is present or will be
achieved.

3. This regional trend assessment is based on the
premise that a consistent pattern of improvement
(decreasing SO4

2� and increasing pH and alkalinity)
across a large number of sites represents the
strongest evidence that emissions control programs
are having their intended effect. For this reason, we
aggregate data from numerous ICP Waters sites into
regions, and conduct the trend tests on the region as
a whole for all data collected in the time period

1990e2001. This period is one in which all of the
regions covered by the ICP monitoring sites have
experienced substantial reductions in sulphur (S)
deposition (Barret et al., 2000; Stoddard et al., 2003;
see also Davies et al., this issue), and this can be
expected to be reflected in trends in surface water
SO4

2� concentrations and acidity (pH and alkalinity).

Our analysis of response to changing deposition
focuses on the key variables that play major roles in
surface water acidification and recovery:

1. SO4
2� and NO3

�, the acid anions of acidic deposition.
Trends in the concentrations of these anions reflect
recent trends in deposition (especially SO4

2�) and in
ecosystem response to long-term deposition (most
notably NO3

� and desorbed SO4
2�).

2. Base cations - as represented by S(Ca2CCMg2C)
are mobilized by weathering reactions and cation
exchange. Base cations will respond indirectly to
decreases in SO4

2� and NO3
� because reduced input

of acids will theoretically lead to reduction of
neutralizing processes in the soil, such as weathering
and ion-exchange, and thereby reduced release of
base cations to soil- and runoff water.

3. Acidity, including pH, measured (Gran) alkalinity
and calculated ANC, which reflects the outcome of
interactions between changing concentrations of
acid anions and base cations.

4. Concentrations of Dissolved Organic Carbon
(DOC) or alternatively Total Organic Carbon
(TOC), as a surrogate for organic acidity. Organic
acids are common natural sources of acidity in
surface waters.

The ICP Waters network consists of acid-sensitive
lakes and streams in 23 countries of Europe and North
America. Sites in the ICP Waters database exhibit
a wide range of sampling frequencies, completeness of
chemistry, and length of record. Although monitoring at
some sites extends further back than 1988, when
sampling on the AWMN was initiated, the ICP Waters
Network only reached its current size in the early
1990s. As the focus for the remainder of this special
issue is the 1988e2003 period in the UK it is therefore
not possible to make precise temporal comparisons
between the two datasets. In order to make a meaning-
ful comparison of trends among these sites, we imposed
a minimum set of requirements (e.g., for sampling
frequency, completeness of major ion chemistry, etc.)
for inclusion of data, which are described in detail in
Skjelkvåle et al. (2003b). A total of 189 sites had
sufficient data to be included in our analyses. Details of
the ICP Waters program, data quality control, and the
collection and measurement of the variables listed
above, can be found in numerous ICP Waters reports
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(International Cooperative Programme on Assessment
and Monitoring of Acidification of Rivers and Lakes,
1995; Skjelkvåle et al., 2003b). Both SO4

2� and base
cation concentrations were sea-salt corrected prior to
analysis, and the analyses of pH were made on values
transformed to HC concentrations.

2. Statistical methods

Numerous statistical techniques are available to
analyse trends in time series such as those presented
here. In the two previous ICP Waters reports we have
used the Seasonal Kendall test (SKT) (Hirsch and Slack,
1984; Hirsch et al., 1982). This method deals well with
censored data, and with data collected at irregular
intervals with marked seasonality (Loftis and Taylor,
1989). The SKT, however, is designed to estimate the
statistical significance of trends, and does not include
a direct estimate of the magnitude of the trends. The
regional analyses we present in this report depend on the
ability to calculate a robust estimator of slope for each
site. Rather than utilizing a Theil or Sen estimator of
slope, as is often done with the SKT, we have chosen to
employ simple linear regression (SLR) to calculate
a robust slope for trends at each monitoring site.

While the significance of individual tests conducted
with SLR are questionable (due to lack of normality in
the monitoring data, and the use of multiple compar-
isons when combining results from many sites in
a region), we can use the estimated SLR slopes to
indicate the range of behaviours (i.e., rates and
directions of change) observed in each region. For any
given variable in any given region, the collection of
slopes represents a distribution whose central tendency
is characterized by the median value (slope) for the
region. We test for the significance of trends in the
region by calculating confidence limits about the median
value in the slope distribution (Altman et al., 2000; SAS
Institute Inc., 1988), and testing whether these confi-
dence limits include zero. For a distribution in which all
of the slopes are negative, for example, the median value
would be significantly less than zero, indicating a signif-
icant regional downward trend.

3. Regional trend results

Regional trends were calculated for 12 regions (6 in
Europe and 6 in North America), comprising 189 ICP
Waters sites (73 in Europe and 116 in North America);
both regions and the locations of individual sites are
illustrated in Fig. 1. The sites are grouped into
geographic regions based on similar acid-sensitivity
(e.g., similar geology, soil characteristics) and rates of
deposition. In some cases, in order to reach sufficient

sample sizes (i.e., number of sites), we have grouped sites
into regions that are more heterogeneous than would be
ideal. For example, the ‘‘Upper Midwest’’ region of the
U.S. and Canada includes sites in central Ontario (the
Turkey Lakes area), western Ontario (Experimental
Lakes Area), northern Michigan and northern Wiscon-
sin. While there are certainly many similarities in the
geology of these areas, they comprise a very large
geographic area with different climate and rate of
change of atmospheric deposition. The list of regions
on which we report is therefore based on both scientific
and pragmatic decisions resulting from availability of
data. The UK/Ireland group consists of six lakes from
the AWMN and three from the Republic of Ireland.

Results of trend analyses in each region are shown in
Table 1.

3.1. Sulphate

The most significant finding in this regional trend
analysis, as in others conducted on earlier data
(Skjelkvåle et al., 2001b; Stoddard et al., 1999), is the
almost universal decrease in SO4

2� concentrations in
lakes and streams throughout Europe and North
America (Table 1, Fig. 2). Only one region in this
analysis failed to show a significant SO4

2� decrease, and
this is a region (the Virginia Blue Ridge) where strongly
sulphur-adsorbing soils make a SO4

2� decrease unlikely
(Church et al., 1990; Cosby et al., 1986). Many decades
of accumulated, atmospherically-deposited SO4

2� is now
slowly leaking out under reduced rates of SO4

2� de-
position. A small but significant increase in surface
water SO4

2� is most probably due to output of ‘‘old’’
stored SO4

2� in the soils.
In Europe, regional rates of SO4

2� decline ranged
from ca. �1 meq l�1 yr�1 in the U.K. and Ireland and the
Northern Nordic region, to more than �6 meq l�1 yr�1

in the Southern Nordic region. Rates in central Europe
were intermediate, with both East- and West-Central
Europe exhibiting regional SO4

2� declines of ca. �4 meq
l�1 yr�1. All of these changes are consistent with declines
in rates of S deposition in Europe (see below).

Previous regional trend analyses of ICP data did not
find decreases in SO4

2� in the UK and Ireland, but the
addition of data from the late 1990s and early 2000s leads
to a highly significant rates of SO4

2�decline (Table 1). This
is consistent with the trends reported for the larger
AWMN dataset over 1988e2003 (Davies et al., this
issue).

In North America, rates of SO4
2� decline ranged from

ca. �1 meq l�1 yr�1 in the region with the lowest rates of
S deposition (Maine and Atlantic Canada), to more
than �2 meq l�1 yr�1 in the Adirondack Mountains,
Appalachian Mountains, and the Upper Midwest (U.S.
and Canada). In an analysis of recent trends in both
surface waters and deposition, Stoddard et al. (2003)
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conclude that rates of SO4
2� decline in surface waters

follow the same geographic pattern, but are lower than,
trends in regional SO4

2� deposition.

3.2. Nitrate

Fewer than half of the ICP regions exhibited
significant regional trends in NO3

� (Table 1), and only
the Alps region showed a significant increase. Regional
declines in NO3

� since ca. 1990 have been noted
elsewhere (Skjelkvåle et al., 2001b; Stoddard et al.,
1999), and need to be interpreted cautiously. The time
period of data analysed in this analysis, and in previous
reports, is on the order of a decade. While decadal
trends in ions undergoing incremental and consistent
changes (i.e., SO4

2�) can be interpreted as an improve-
ment in acid-base chemistry, they may not represent true

long-term changes for ions actively affected by biotic
processes and thus as temporally variable as NO3

�. Both
mathematical (Aber et al., 1997) and conceptual
(Stoddard, 1994; Wright et al., 2001) models of nitrogen
suggest that long-term catchment responses to N
deposition may occur on the time scale of centuries,
rather than decades. Several large scale analyses of NO3

�

data suggest the strong spatial patterns observed, with
the highest NO3

� concentrations occurring in regions
of highest N deposition, can only be explained by long-
term accumulation and eventual leakage of atmos-
pherically-deposited NO3

� from catchment soils and
vegetation (Dise and Wright, 1995; Stoddard et al.,
2001). A recent comprehensive assessment of North
American data has shown that these spatial patterns are
evident in forest foliage, soils and surface waters (Aber
et al., 2003), and concludes that many of the trends

Fig. 1. Map showing location of ICP Waters sites used for trend analysis in this report and outline of geographical regions.
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reported for lake and stream NO3
� may represent only

the short-term variation in a large-scale and long-term
increase in NO3

� due to N saturation (see also Curtis
et al., 2005, in this issue).

Over the 12-year period 1990e2001, ICP sites show
decreasing NO3

� concentrations in the Adirondack
Mountains, Appalachian Mountains and the Virginia
Blue Ridge (all in North America), and increasing
concentrations in the Alps (Fig. 3). The area in
northwestern Italy where the ICP Waters sites are
located is subject to a high atmospheric input of N

compounds (25e30 kg ha�1 yr�1 as the sum of
ammonium and NO3

�) which has remained fairly
constant in the last two decades causing increasing N
saturation in forest ecosystems and increasing NO3

�

levels in rivers and lakes (Rogora et al., 2001). No other
regions exhibit clear patterns (Fig. 3) and once more, the
absence of trend in the UK/Ireland group is consistent
with the observations of Davies et al. (this issue) for the
wider UK.

Some sites in Central Europe show increasing trends
due to forest disturbance (harvesting or insects), while
other sites in sensitive areas show decreasing trends.
Vesely et al. (2002) have shown that NO3

� in stream
waters with pH less than or equal to 6 has decreased up
to 60% between 1984e1986 and 1996e2000 in the
Czech Republic. This rate of decline is greater than the
35% decrease of N emission observed in central Europe
in the same period.

Fig. 2. Distributions of slopes for SO4
2� trends in ICP regions in

Europe and North America. Each box shows the range (25th to 75th

percentiles, with line at median) of slopes; confidence intervals indicate

10th and 90th percentiles; dots indicate 5th and 95th percentiles.

Significance of regional trend is indicated by preponderance of slope

values (e.g., 95%) either above or below zero. Abbreviated region

names are: ECEZEast-Central Europe; NoNZNorthern Nordic;

SoNZSouthern Nordic; UK/IZUnited Kingdom and Republic of

Ireland; WCEZWest-Central Europe; AtlZMaine and Atlantic

Canada; VT/QueZVermont and Quebec; AdkZAdirondack Moun-

tains; AppsZAppalachian Plateau; MidWZUpper Midwestern U.S.

and Canada; BRZVirginia Blue Ridge.

Fig. 3. Distributions of slopes for NO3
� trends in ICP regions in

Europe and North America. Interpretation of box and whiskers, as

well as regional abbreviations, are as in Fig. 2.

Table 1

Regional trend results for ICP Waters sites for the period 1990e2001

Region Continent # sites Slope of regional trend in:

SO4
2� NO3

� Gran Alkalinity ANC HC CaCMg DOC

Alps Europe 6 �1.80 D0.52 D1.05 �0.02 C0.00 �1.35 *

East Central Europe Europe 20 �3.91 �0.87 C0.41 D2.55 �0.13 �2.26 C0.06

Northern Nordic Europe 7 �1.68 C0.00 D0.72 C0.26 �0.07 �1.23 D0.05

Southern Nordic Europe 19 �6.75 �0.05 D1.73 D3.30 �0.16 �2.58 D0.08

UK/Ireland Europe 9 �1.45 C0.02 C1.37 C0.33 �0.29 �1.46 D0.13

West Central Europe Europe 12 �3.95 �1.00 * D6.02 C0.02 �5.42 C0.03

Maine/Atlantic Canada N. America 18 �1.02 C0.00 �0.59 �0.32 C0.00 �1.39 C0.04

Vermont/Quebec N. America 15 �2.20 �0.20 C0.26 D0.94 �0.05 �1.40 D0.06

Adirondacks N. America 48 �2.26 �0.47 D1.03 D1.19 �0.19 �2.29 D0.06

Appalachian Plateau N. America 9 �2.27 �1.37 D0.79 C1.92 �0.08 �2.97 C0.03

Upper Midwest N. America 23 �2.47 C0.02 C0.32 C0.90 �0.01 �1.80 D0.06

Virginia Blue Ridge N. America 3 C0.35 �1.36 C0.06 * �0.00 �0.58 �0.04

Values are median slope for the region, with significant results (P!0.05) shown in bold and italics. Units for sulphate, nitrate, base cations

[Ca2CCMg2C], Gran alkalinity, ANC and hydrogen are meq l�1 year�1. Units for DOC are mg l�1 year�1. * insufficient data.
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3.3. Base cations

One of the expected responses of catchments to
decreasing SO4

2� is a decrease in base cation concen-
trations (Galloway et al., 1983). In this report, we use
the sum of calcium and magnesium (CaCMg) as
a surrogate for total base cations, because these cations
are the most quantitatively important at the majority of
acid sensitive monitoring sites, and because they exert
the most control over alkalinity (Stoddard et al., 2003).
As expected, all of the ICP regions show tendencies
toward decreasing CaCMg (Fig. 4). One of the key
findings of earlier regional assessments (Skjelkvåle et al.,
2001b; Stoddard et al., 1999) is the larger-than-expected
decreases in CaCMg in some regions, particularly in
North America. When rates of CaCMg decline are
equal, or nearly equal, to rates of SO4

2� and NO3
�

decline, then chemical improvement (increasing alkalin-
ity and pH) is negligible.

In the European regions, rates of CaCMg decrease
are mostly smaller than those for SO4

2� (Table 1, Fig. 4).
One important exception is the U.K. and Ireland, where
rates of rates of SO4

2� and CaCMg decline were nearly
equal for the time period 1990e2001dthis has impor-
tant implications for improvements in acidity in this
region (see discussion below). One North America
region (Maine and Atlantic Canada) exhibited stronger
decreasing trends in CaCMg than in SO4

2�.

3.4. Gran alkalinity and ANC

Because SO4
2� is declining regionally in almost all ICP

regions, and NO3
� is either declining or unchanged in all

but one region, we expect to see increases in the key
indicators of recovery from acidification:Gran alkalinity,
charge-balance ANC (acid neutralizing capacity) and
pH (decline in HC). Gran alkalinity is a measured
variable that indicates the water’s ability to buffer acidic

inputs. ANC is calculated as an approximation for
alkalinity. Charge-balance ANC is defined as the
equivalent sum of base cations minus the equivalent
sum of strong acid anions, and is particularly useful for
regions where Gran alkalinity is not measured, and to
compare to model outputs which are often made in
terms of ANC rather than alkalinity. Most critical loads
estimates depend on charge-balance ANC.

In the Alps, SO4
2� is declining at a median rate of

�1.8 meq l�1 yr�1. Combined with a median increase in
NO3

� of C0.5 meq l�1 yr�1, the Alps exhibit an overall
change in acid anion concentrations of �1.3 meq l�1

yr�1, and a significant increase in Gran alkalinity of
ca. C1 meq l�1 yr�1 (Table 1, Fig. 5).

In East-Central Europe, the decline in SO4
2� is �3.9

meq l�1 yr�1, considerably larger than the decline in base
cations for this region (�2.3 meq l�1 yr�1); NO3

� did not
change significantly. While no significant increase in
Gran alkalinity was observed for this region, calculated
ANC increased strongly (C2.6 meq l�1 yr�1), consistent
with the changes in SO4

2� and CaCMg (Table 1)dmore
than 75% of the ICP sites in East-Central Europe
showed increases in ANC for the period 1990e2001.
This represents significant improvement in acid-base
status for sites in Poland, the Czech Republic, and
eastern parts of Germany. A handful of sites in this
region do not report Gran alkalinity values, which may
explain the lack of significant results for alkalinity.

In the more remote Northern Nordic areas, rates of
deposition have historically been lower than in the rest
of Europe; as a result, acidification is much less severe,
and rates of chemical improvement are not expected to
be large. Nonetheless, this region exhibited significant
declines in SO4

2� (�1.7 meq l�1 yr�1), smaller declines in
CaCMg (�1.2 meq l�1 yr�1) and a significant, though

Fig. 4. Distributions of slopes for base cation (CaCMg) trends in ICP

regions in Europe and North America. Interpretation of boxes and

whiskers, as well as region abbreviations are as in Fig. 2.

Fig. 5. Distributions of slopes for Gran alkalinity trends in ICP regions

in Europe and North America. There were insufficient Gran alkalinity

data available for West Central Europe to allow calculation of

a regional trend. Interpretation of boxes and abbreviations as in

Fig. 2.
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modest, increase in Gran alkalinity (C0.7 meq l�1 yr�1)
(Table 1, Fig. 5).

By contrast, the Southern Nordic region has experi-
enced high rates of acidic deposition, especially in past
decades, and significant surface water acidification (e.g.,
Henriksen et al., 1998; Kamari et al., 1991; Skjelkvåle
et al., 2001a). Improving acid-base status has been
observed since ca. 1990 in the southern portions of
Norway, Sweden and Finland (Skjelkvåle et al., 2001a;
Stoddard et al., 1999), and continues into the 2000s
(Table 1). During the period 1990e2001, this region
experienced the largest observed decreases in surface
water SO4

2�, no change in NO3
�, and strongly increasing

Gran alkalinity (C1.7 meq l�1 yr�1; Table 1). More than
75% of ICP sites in the Southern Nordic region
exhibited upward trends in Gran alkalinity, and all sites
exhibited upward trends in ANC (Fig. 6).

The U.K./Ireland region experienced the most
modest decreases in surface water SO4

2� of any
European ICP region, and they were very closely
balanced stoichiometrically by decreasing CaCMg
(Table 1). As a result, we were unable to detect
significant increases in either Gran alkalinity (Fig. 5)
or calculated ANC (Fig. 6) in the UK and Ireland.
These observations are largely in agreement with those
of Davies et al. (this issue), although Davies et al. do
demonstrate an apparent response to declining SO4

2�

when an alternative method of determining ANC is
adopted based on DOC and labile Al. This latter
method cannot be applied across the ICP dataset due to
the absence of measured values of DOC and or labile Al
data from some localities.

In West-Central Europe, we did not have sufficient
Gran alkalinity data to perform reliable trend tests, and
our conclusions regarding recovery are therefore based
on calculated ANC (Table 1). This region exhibited
substantial decreases in SO4

2� (�4 meq l�1 yr�1), but

widely variable changes in CaCMg (Fig. 4). Calculated
ANC suggests a strong improvement in this region
(C6 meq l�1 yr�1; Table 1, Fig. 6).

In North America three regions show significant
improvement in either Gran alkalinity or ANC (Ver-
mont/Quebec, Adirondacks and Appalachians), two
exhibit no change (Upper Midwest and Virginia Blue
Ridge), and one region is experiencing significant further
acidification (Maine/Atlantic Canada). Movement
toward recovery in the Adirondack and Appalachian
mountains is an important finding, because neither of
these regions showed significant improvement in pre-
vious regional analyses (e.g., Skjelkvåle et al., 2001b;
Stoddard et al., 1999). All of these regions exhibit
upward alkalinity trends that began in the early- to mid-
1990s, and in all cases 75% or more of the individual
sites have positive trend slopes (Fig. 5). In the
Adirondacks, in particular, recent widespread improve-
ment has received much attention, and includes in-
creasing Gran alkalinity and pH, as well as significant
decreases in toxic aluminium (Driscoll et al., 2003;
Stoddard et al., 2003). Evaluation of the changing
pattern of chemical trends observed in Canadian lakes
over the past ten years shows that there has been
a gradual shift from ‘‘no response’’ to ‘‘recovery’’
although the degree of improvement is still clearly at
a very early stage (Jeffries et al., 2003).

The Virginia Blue Ridge region is not experiencing,
nor is it expected to experience, decreasing SO4

2�

concentrations. As a result, there is no expectation that
Gran alkalinity will increase in the immediate future; the
current analysis indicates there has been no significant
change in alkalinity during 1990e2001 (Table 1).

The region of Maine and Atlantic Canada is the only
ICP region where significant acidification has occurred
during the 1990s and early 2000s. Gran alkalinity
decreased at a rate of �0.6 meq l�1 yr�1 for the period
1990e2001 (Table 1, Fig. 5), and this acidification has
occurred at the same time as significant (but small)
decreases in surface water SO4

2�. Importantly, Maine/
Atlantic Canada is the only ICP region where CaCMg
declines (�1.4 meq l�1 yr�1) exceeded observed decreases
in acid anions (�1.0 meq l�1 yr�1). This somewhat
extreme base cation behaviour has been noted pre-
viously in other regions now undergoing significant
improvement (e.g., Couture, 1995; Jeffries et al., 2002;
Kirchner and Lydersen, 1995; Lawrence et al., 1999;
Wilander and Lundin, 2000), and still has no accepted
geochemical explanation. It appears currently to be
limiting the rate of recovery in Maine and Atlantic
Canada.

3.5. pH

Chemical improvement of surface water acid-base
chemistry involves a combination of changes toward

Fig. 6. Distributions of slopes for calculated ANC trends in ICP

regions in Europe and North America. Interpretation of boxes and

whiskers, as well as region names, are as in Fig. 2. (ANC values were

not calculated for the Blue Ridge sites.)
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a historically more natural chemical composition. In-
cluded in these changes are decreases in SO4

2� and
potentially NO3

� (in regions where NO3
� has been

a significant agent of acidification in the past), and
increases in alkalinity and pH. Of these changes,
increases in pH are perhaps the most biologically
relevant, due to the relation between low pH and high
concentrations of toxic aluminium. In the current
assessment we analyse trends in hydrogen ion (calculated
from pH measurements). A decrease in hydrogen ion
concentration implies an increase in pH. Only two of the
regions exhibit significant HC declines (the Southern
Nordic and Adirondack regions; Table 1, Fig. 7). Both
are among the regions showing the largest improvements
in Gran alkalinity. pH is among the most difficult
variables to measure well in the laboratory and
variability in measurements makes it more difficult to
detect trends. A longer data record might overcome
inherent variability in the data, and lead to a conclusion
of increasing pH in additional regions. The relatively
large decrease in HC observed in UK/Ireland, for
example, is not significant, possibly due to the small
sample size used this analysis (see also Davies et al., this
issue).

3.6. Dissolved organic carbon

Dissolved organic carbon (DOC) is of great interest
in any analysis of surface water recovery, because it is an
indicator of natural organic acidity (Driscoll et al.,
1989). The previous ICP trends report (Skjelkvåle et al.,
2001b) was one of the first to note the widespread
increases in DOC now being observed throughout
Europe and North America. All but one of the ICP
regions included in this analysis exhibited positive slopes
for DOC (Fig. 8), and six of these were considered

significant. Overall, the results suggest an almost
universal increase in the importance of organic acids.

Regional trends of increasing organic carbon through
the 1990s have been documented from the UK
(Freeman et al., 2001), the Nordic countries (Skjelkvåle
et al., 2001a), elsewhere in Europe (Skjelkvåle et al.,
2001b), and in the U.S. (Stoddard et al., 2003), while the
picture is less straightforward in Canada (Jeffries et al.,
2003). These increases may be coupled to warmer
climate, particularly to elevated summer temperatures
(Freeman et al., 2001), although the mechanism for
observed changes is uncertain (e.g., Evans et al., 2002;
Tranvik and Jansson, 2002) and may in part also be
related to declining acid deposition (see Evans et al., this
issue). If changes are temperature-driven, a warmer
future climate may lead to further, and historically
unprecedented, increases in DOC concentrations, with
complex consequences for surface waters; these include
increased organic acidity, increased buffering of changes
in pH, increased water coloration, and decreased visible
light and UV-B penetration within the water column.
Alternatively, if declining acid deposition is having
a major influence, the rise in DOC concentration may be
seen as part of the recovery process, with ‘‘weak’’
organic acidity increasingly replacing ‘‘strong’’ mineral
acidity.

3.7. Aluminium

Our interest in chemical recovery from acidification
generally stems not from a desire to measure chemical
change, but to observe and predict the process of
biological recovery. For this reason, many of the
chemical variables we choose to analyse are selected
because of their relevance to the biota. Of the variables
discussed thus far, both Gran alkalinity and pH have

Fig. 7. Distributions of slopes for hydrogen ion trends in ICP regions

in Europe and North America. Interpretation of boxes and whiskers,

as well as region names, are as in Fig. 2. Increasing pH (an indicator of

recovery) is the same as decreasing HC.

Fig. 8. Distributions of slopes for trends in dissolved organic carbon in

ICP regions in Europe and North America. Interpretation of boxes

and whiskers, as well as region names, are as in Fig. 2. Increasing DOC

is an indicator of the increased importance of organic acids in the acid/

base chemistry of ICP sites.
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important implications for biological recovery, both
because of the direct toxic effects of elevated HC, and
because of their controlling effects on toxic aluminium
concentrations. Unfortunately, most participants in the
ICP Waters program do not routinely measure labile or
inorganic monomeric aluminium (the form most toxic to
biota), and we cannot infer regional patterns in
aluminium behaviour from the ICP data. We can,
however, observe the patterns at individual sites; while
they do not give us the confidence that regional declines
in aluminium would give us, declining concentrations of
labile aluminium at single sites do suggest that our
expectations of improving aluminium concentrations,
based on declining alkalinity and HC, are justified. An
example of site-specific data for labile aluminium is
shown in Fig. 9, for the Vikedal ICP site in western
Norway. At Vikedal, pH began increasing ca. 1990, in

response to a strong decline in SO4
2�. Improvements in

labile aluminium appear to have been simultaneous with
increasing pH at this site. Regional declines in inorganic
monomeric aluminium have also been reported for the
Adirondack mountains (Driscoll et al., 2003).

4. Do trends in deposition translate into

trends in surface waters?

A major goal of the work of ICP Waters is to
evaluate the changes in surface water chemistry in
relation to reductions in emission and deposition of S
and N.

It is difficult to compare absolute changes in
SO4

2� concentrations in surface waters and deposition,
because of the effects of dry deposition and evapotrans-
piration. Both dry deposition and the evaporative
concentration of ions in surface waters cause
SO4

2� concentrations in lakes and streams to be higher
than those in precipitation. Higher concentrations lead
to larger rates of change for SO4

2� concentrations in
surface waters than in precipitation. The percent
change, however, should be relatively similar, assuming
that dry deposition declines at the same rate as wet
deposition, and that no changes in rates of evapotrans-
piration have occurred over time. There is a relatively
good correlation between percentage change and
concentration level, which means that sites with low
concentrations of SO4

2� show high percentage of change
and sites with high concentrations of SO4

2� show low
percentage change. This will influence the comparison
between regions, but the comparison between change in
deposition and surface waters in the same region is
unaffected.

We therefore present a comparison of percent change
in SO4

2� in precipitation and surface waters for each of
the regions. European precipitation data are calculated
for total deposition (wet plus dry) from EMEP Co-
ordination Centre for Chemistry (CCC). Because no
regional equivalent to EMEP exists in either the U.S. or
Canada, we used wet deposition for North America and
assume that percent changes in total deposition and wet
deposition should be similar. U.S. data are from the
U.S. National Atmospheric Deposition Program/
National Trends Network (NADP/NTN; National
Atmospheric Deposition Program/National Trends
Network, 2002) and Canadian data from the Canadian
Air and Deposition Monitoring Network (CAPMoN;
Ro and Vet, 2003).

In general, rates of SO4
2� decline are smaller in

surface waters than in deposition for all regions in
North America and most regions in Europe (Fig. 10)
indicating a lagged response. This may reflect the
desorption of S that has accumulated in catchment soils
over the past century due to atmospheric deposition.

Fig. 9. Time series of (a) sulphate, (b) pH, (c) labile aluminium, and (d)

Raddum invertebrate acidification index in Vikedal, an ICP Waters

site in western Norway. Both sulphate and pH show improvement

beginning in ca. 1990, a pattern common throughout the Nordic

countries. Vikedal is one of the few ICP Waters sites with data for

labile aluminium (c), which shows improvement beginning at the same

time as sulphate and pH. The acidification index begins to improve in

ca. 1992. An index score of zero indicates an acidophilic fauna

assemblage, while and index score of 1 indicates a normal, undamaged

assemblage (data from the ICP Waters database; see also Fjellheim

and Raddum, 2001).
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Desorption of stored S has the effect of damping the
trends in surface water SO4

2� and slowing the rate of
decline. One exception to the pattern in North America
is in the Upper Midwest region of the U.S. (Fig. 10),
where most lakes are seepage lakes. Here, the soils play
only a minor role in controlling SO4

2� concentrations,
and declines in lake SO4

2� concentrations are driven by
dilution, following the drought that affected this area in
the late 1980s and early 1990s (Stoddard et al., 2003). In
Europe, both the Alps and the UK/Ireland regions show
approximately the same percentage change in precipita-
tion and surface waters indicating a very direct response
on surface waters to changes in precipitation (see also
Cooper, this issue).

5. Does chemical improvement lead

to biological recovery?

As mentioned earlier, the ultimate goal of emissions
reductions programs aimed at reducing the effects
of acidic deposition is biological recoverydthe

re-establishment of sensitive taxa that were harmed or
lost during the process of acidification. While we have
the luxury of being able to assess chemical improvement
over large regions and many monitoring sites, the
existence of biological data relevant to biological
recovery is much more limited. We may try to infer
biological recovery from the stages of improvement in
biologically-relevant chemistry (e.g., especially HC and
aluminium), but those inferences will always be un-
certain in the absence of actual biological data.

Although regional biological data are not generally
available (but see Monteith et al., this issue), good
monitoring data for single sites do exist, and can help us
determine whether our expectations of biological re-
covery following chemical improvement are warranted
(Raddum, 2003). An example is shown in Fig. 9 for
Vikedal, one of the ICP Waters sites in western Norway.
Strong declines in SO4

2� have led to improvement in pH
beginning in ca. 1990. Results for Raddum’s acidifica-
tion index (Raddum and Fjellheim, 1984) suggest that
acid-sensitive invertebrates began to return in ca. 1992,
and their abundance has continued to increase through
the present. The Raddum index is a measure of
acidification status based on presence/absence of sensi-
tive invertebrate species. Similar results were found in
Swedish lakes where statistically significant increase in
another acidity biotic index was found for 11 out of
20 lakes (Wilander and Lundin, 2000).

6. Conclusions

The results from this work show that emission
controls are working. Overall, the extent of recovery
from acidification in Europe and North America varies
over time, between regions, and between sites within
regions, depending on a range of factors including the
magnitude of deposition change and catchment charac-
teristics. In general, however, there is clear evidence that
reduced S deposition has led to significant improvements
in the chemical status of acidified surface waters
throughout Europe and North America. However future
recovery can be changed by many factors, such as climate
change and increased leaching of N (Skjelkvåle et al.,
2003a). Specifically, for the key indicators of recovery:

� SO4
2� concentrations are declining in 11 of 12

regions examined. The Blue Ridge region of the
U.S., where decreases in SO4

2� are not expected, is
the only region not exhibiting significant regional
decreases in SO4

2�.
� In general, SO4

2� declines in surface waters are
smaller than the declines observed in precipitation,
suggesting some buffering of the SO4

2� decline by soil
processes.

Fig. 10. Comparison of trend slopes for SO4
2� in precipitation (left box

e shaded) and SO4
2� in surface waters (right box e clear) for the period

1990e2000 in acid sensitive regions of North America and Europe.

North American deposition data are for trends in wet deposition

concentrations. European deposition data are for trends in combined

wet and dry deposition. Each box shows the range (25th to 75th

percentiles, with line at median) of slopes; confidence intervals indicate

10th and 90th percentiles; dots indicate 5th and 95th percentiles.
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� NO3
� concentrations increased in one region (the

Alps), decreased in three North American regions,
and were unchanged in all other regions examined.

� Most regions (7 out of 12) showed improvement in
at least one indicator of chemical recovery: Gran
alkalinity (measured), acid neutralizing capacity
(calculated) and pH. The Maine and Atlantic
Canada region was unusual in showing increasing
acidification.

� DOC (an indicator of natural organic acidity)
increased significantly in 6 out of 12 regions. All
but one region had trends suggestive of increasing
DOC. The mechanisms responsible for widespread
increases in DOC are not currently known.

� While this paper focused on chemical trends,
because chemical data are much more available,
the observed trends in biologically-relevant chemis-
try should be facilitating biological recovery. Lim-
ited biological monitoring data from the ICP Waters
network indicate that biological improvement may
begin to occur after some lag time. Invertebrate data
from one Norwegian stream suggest biological
improvement lags chemical improvement by one or
two years.
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Skjelkvåle, B.L., Stoddard, J.L., Andersen, T., 2001b. Trends in

surface water acidification in Europe and North America (1989e

1998). Water Air and Soil Pollution 130, 787e792.

Skjelkvåle, B.L., Evans, C., Larssen, T., Hindar, A., Raddum, G.G.,

2003a. Recovery from acidification in European surface waters:

a view to the future. Ambio 32, 170e175.
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T., Bowman, J., Licsko, I., Lyulko, I., Mannio, J., Monteith, D.,

Mosello, R., Rogora, M., Rzychon, D., Srybny, A., Talkop, R.,

Vesely, J., Wieting, J., Wilander, A., Worstztynowicz, A., 2003b.

Trends in surface water chemistry 1990e2001. In: Skjelkvåle, B.L.
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