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Mononuclear phagocytes (MP) and T lymphocytes play a pivotal role in the host immune response to human
immunodeficiency virus type 1 (HIV-1) infection. Regulation of such immune responses can be mediated, in
part, through the interaction of the T-lymphocyte-expressed molecule CD40 ligand (CD40L) with its receptor
on MP, CD40. Upregulation of CD40L on CD41 peripheral blood mononuclear cells during advanced HIV-1
disease has previously been reported. Based on this observation, we studied the influence of CD40L-CD40
interactions on MP effector function and viral regulation in vitro. We monitored productive viral infection,
cytokine and b-chemokine production, and b-chemokine receptor expression in monocyte-derived macro-
phages (MDM) after treatment with soluble CD40L. Beginning 1 day after infection and continuing at 3-day
intervals, treatment with CD40L inhibited productive HIV-1 infection in MDM in a dose-dependent manner.
A concomitant and marked upregulation of b-chemokines (macrophage inhibitory proteins 1a and 1b and
RANTES [regulated upon activation normal T-cell expressed and secreted]) and the proinflammatory cytokine
tumor necrosis factor alpha (TNF-a) was observed in HIV-1-infected and CD40L-treated MDM relative to
either infected or activated MDM alone. The addition of antibodies to RANTES or TNF-a led to a partial
reversal of the CD40L-mediated inhibition of HIV-1 infection. Surface expression of CD4 and the b-chemokine
receptor CCR5 was reduced on MDM in response to treatment with CD40L. In addition, treatment of CCR5-
and CD4-transfected 293T cells with secretory products from CD40L-stimulated MDM prior to infection with
a CCR5-tropic HIV-1 reporter virus led to inhibition of viral entry. In conclusion, we demonstrate that
CD40L-mediated inhibition of viral entry coincides with a broad range of MDM immune effector responses and
the down-modulation of CCR5 and CD4 expression.

Mononuclear phagocytes (MP), which include circulating
monocytes, tissue macrophages, and dendritic cells, are one of
the first cell types to encounter and be infected by human
immunodeficiency virus type 1 (HIV-1) (19, 24, 37, 47, 68, 76,
83). As innate immune cells, MP play an integral role in the
host immune response against the virus. This activity occurs
through a wide range of effector functions, including phagocy-
tosis, antigen presentation, and, upon activation, secretion of
proinflammatory and antiviral factors, such as interferons (13,
16, 18, 22). During the process of antigen presentation, inter-
actions between T lymphocytes and MP can lead to the acti-
vation of both types of cells (26, 39, 43, 55, 56, 65). The
interaction of the T-lymphocyte-expressed molecule CD40 li-
gand (CD40L) with its MP-expressed receptor, CD40, repre-
sents one mechanism through which such immune activation
can be induced (5, 15, 35, 39, 40, 50, 52, 70).

Expressed primarily by activated T lymphocytes, CD40L has

been shown to regulate both humoral and cellular immune
responses (5, 15, 35, 39, 40, 50, 52, 70). Such regulatory effects
are mediated, in part, by the ability of CD40L to stimulate the
production of proinflammatory cytokines, including interleu-
kin-1b (IL-1b), IL-6, IL-12, and tumor necrosis factor alpha
(TNF-a) (35, 39). CD40L-CD40 interactions have also been
shown to induce the production of chemoattractant cytokines,
such as macrophage inhibitory proteins 1a and 1b (MIP-1a
and MIP-1b, respectively) and RANTES (regulated upon ac-
tivation normal T-cell expressed and secreted), in MP (39, 40,
52). Importantly, many of these factors have been linked to the
inhibition of HIV-1 (2, 4, 8, 9, 32, 36, 39, 41, 45, 55, 59, 61, 64,
74).

Based on these observations, we hypothesized that immune
activation of MP by CD40L can affect the host immune re-
sponse to HIV-1 infection. Specifically, our experiments were
designed to determine whether CD40L-CD40 interactions in-
hibit HIV-1 infection in macrophages and whether such events
are directly related to the production of b-chemokines or other
proinflammatory factors. For this work, monocyte-derived mac-
rophages (MDM) were infected with HIV-1ADA and then
stimulated with soluble trimeric CD40L. Virus production was
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measured by determining reverse transcriptase (RT) activity, and
viral DNA synthesis was monitored by PCR. Cytokine and
b-chemokine production was measured by an enzyme-linked
immunosorbent assay (ELISA), and the expression of CD4
and the b-chemokine receptor CCR5 was determined by flu-
orescence-activated cell sorting (FACS).

In this report, we show that treatment with CD40L inhibited
viral infection in MDM. Moreover, we demonstrate that the
inhibitory effects of CD40L on HIV-1 infection were mediated,
at least in part, through the production of cytokines (TNF-a)
and b-chemokines (RANTES) and the downregulation of CD4
and CCR5 expression on MDM. Importantly, the treatment of
CCR5- and CD4-transfected 293T cells with CD40L-stimu-
lated MDM (CD40L MCM) inhibited the entry of an HIV-1
reporter virus pseudotyped with the CCR5 envelope protein,
YU2. In contrast, the treatment of CXCR4- and CD4-trans-
fected cells with CD40L MCM had no inhibitory effect on the
entry of a virus with the CXCR4 envelope protein, HXB2.
When taken together, the results of this work provide insights
into how immunocompetent MP may influence viral infection
and affect the tempo of disease progression in the infected
human host.

MATERIALS AND METHODS

Isolation and culturing of primary monocytes. Human monocytes were recov-
ered from peripheral blood mononuclear cells of HIV-1-, HIV-2-, and hepatitis
B virus-seronegative donors after leukapheresis and then purified by counter-
current centrifugal elutriation (25). Monocytes were cultured as adherent mono-
layers (3.3 3 106 cells/well in 6-well plates, 2.2 3 106 cells/well in 12-well plates,
and 1.1 3 106 cells/well in 24-well plates) and differentiated for 7 days in
Dulbecco modified Eagle medium (Sigma Chemical Co., St. Louis, Mo.) sup-
plemented with 10% heat-inactivated pooled human serum, 50 mg of gentamicin
(Sigma)/ml, 10 mg of ciprofloxacin (Sigma)/ml, and macrophage colony-stimu-
lating factor (M-CSF; 1,000 U/ml; highly purified recombinant; a generous gift
from Genetics Institute, Inc., Cambridge, Mass.). All tissue reagents were
screened and found negative for endotoxin (,10 pg/ml) (Pyrotell Limulus amoe-
bocyte lysate [LAL]; Associates of Cape Cod, Inc., Woods Hole, Mass.) and
mycoplasma contamination (Gen-Probe II; Gen-Probe Inc., San Diego, Calif.).

Infection of MDM. Seven days after plating, MDM were infected with HIV-
1ADA, HIV-1JR-FL, or HIV-189.6 at a multiplicity of infection of 0.1 virus/target
cell (25). Viral stocks were screened for mycoplasma and endotoxin using hy-
bridization and Limulus amebocyte lysate assays, respectively. Culture media
were half-exchanged every 2 to 3 days. RT activity was determined in triplicate
samples of culture fluids as described below. One to seven days after infection,
HIV-1ADA-infected and replicate uninfected MDM were treated with soluble
trimeric CD40L (a generous gift from Immunex Corporation, Seattle, Wash.).

Measurements of RT activity. RT activity was determined in triplicate samples
of cell culture fluids. For this assay, 10 ml of supernatant was incubated in a
reaction mixture of 0.05% Nonidet P-40, 10 mg of poly(A)/ml, 0.25 mg of oli-
go(dT)/ml, 5 mM dithiothreitol, 150 mM KCl, 15 mM MgCl2, and [3H]TTP in
Tris-HCl buffer (pH 7.9) for 24 h at 37°C. Radiolabeled nucleotides were pre-
cipitated with cold 10% trichloroacetic acid on paper filters in an automatic cell
harvester and washed with 95% ethanol. Radioactivity was estimated by liquid
scintillation spectroscopy (37).

Detection of RT by the Lenti-RT activity assay. Monocytes were cultured for
7 days prior to inoculation with the following HIV-1 strains: HIV-1ADA, HIV-
1JR-FL, and HIV-189.6. Five days after inoculation with HIV-1, MDM were
stimulated with CD40L (2 mg/ml) for 48 h. Culture fluids were collected, and the
level of RT enzyme was determined using a Lenti-RT activity assay kit (Cavidi
Tech, Uppsala, Sweden) in accordance with the manufacturer’s instructions.
Briefly, cell supernatants were incubated with bromo-dUTP, and incorporated
bromo-UTP was detected by bromodeoxyuridine binding antibody conjugated to
alkaline phosphatase. The level of RT in the sample was determined by colori-
metric analysis of the alkaline phosphatase activity.

PCR analysis of HIV-1 DNA synthesis. Monocytes (1.1 3 106/ml) were cul-
tured in 24-well plates (Costar Corp.) and infected with HIV-1 as described
above. Prior to infection, the HIV-1 cell-free stocks were treated with DNase I

for 30 min at 37°C (57). At 4, 8, 24, 48, and 96 h following viral exposure, samples
were collected for RT analysis, and the residual medium was washed off with
fresh phosphate-buffered saline (PBS; Sigma). The cells were then scraped into
0.5 ml of PBS. The resultant cell pellet was used for the extraction of cellular
DNA with an Iso-quick nucleic acid extraction kit (ORCA Research Inc., Both-
ell, Wash.). The DNA was resuspended at a concentration of 2 3 104 cell
equivalents/ml. PCR was performed to identify early (primers for long terminal
repeat [LTR] U3/R) and late (primers for LTR U3/gag) products of reverse
transcription (79). A ratio comparing the levels of early and late viral cDNAs to
the levels of mitochondrial DNA (an internal control) was then determined.
Standard HIV-1 cDNAs were prepared by simultaneous amplification of serial
twofold dilutions of DNA extracted from 8e5 cells harboring defective HIV-1
proviruses (14). Amplified products were run on a Southern blot, hybridized to
radiolabeled oligonucleotide probes, and quantified on a PhosphorImager (Mo-
lecular Dynamics, Sunnyvale, Calif.).

Detection of MIP-1a, MIP-1b, RANTES, and TNF-a by an ELISA. Monocytes
were cultured for 7 days prior to infection with HIV-1. One to seven days after
infection with HIV-1, MDM were stimulated with CD40L (2 mg/ml) for 6, 24, or
48 h. Culture fluids were collected for chemokine and cytokine determinations.
Chemokine production was assayed using Quantikine ELISA kits (R & D Sys-
tems, Minneapolis, Minn.) in accordance with the manufacturer’s instructions.
Chemokine and cytokine levels were normalized to cell numbers by measuring
cell viability (51).

MTT reduction assay. Cell cytotoxicity was assessed by 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction (51). Cells were incu-
bated with 100 ml of MTT solution for 20 min at 37°C. The extent of MTT
conversion to formazan by mitochondrial dehydrogenase, indicating cell viability,
was determined by measuring the optical density (OD) at 490 nm using a
microplate reader. The ratio of OD from treated cells to the OD from control
cells reflected the percentage of surviving cells and was used to standardize
cytokine and chemokine production determined by the ELISA.

FACS analysis. MDM were cultured for 7 days at a density of 2.2 3 106

cells/ml. After 48 h in the presence or absence of CD40L (2 mg/ml), alone or in
combination with CD40L antibody (M91; 20 mg/ml) or a cocktail of chemokine
antibodies (anti-RANTES [5 mg/ml], anti–MIP-1b [5 mg/ml], and anti–MIP-1a
[5 mg/ml]; R & D Systems), cells were washed with a 3% fetal bovine serum–PBS
solution and then incubated with the following fluorescence-labeled antibodies:
CCR5-PE, CD4-PE, and CD14-FITC (Pharmingen, Torrance, Calif.) (41). After
30 min of antibody incubation, cells were washed twice in a 3% fetal bovine
serum–PBS solution and then fixed with 1% paraformaldehyde. Expression of
cell surface antigens was assessed by immunofluorescence flow cytometry
(FACSCalibur; Becton Dickinson) and analyzed with CellQuest software.

Intracellular calcium measurements. MDM cultured on glass coverslips for
7 days were treated with human recombinant trimeric CD40L (2 mg/ml) for 24 h.
Control and CD40L-treated MDM were washed and incubated with 5 mM fura
II-AM (Molecular Probes, Inc., Eugene, Oreg.) for 30 min at 37°C in Ringer’s
solution of the following composition: 148 mM NaCl, 5 mM KCl, 1 mM MgSO4,
1.6 mM Na2HPO4, 1.5 mM CaCl2, and 5 mM D-glucose. The cells were washed
twice and then incubated again for 20 min in Ringer’s solution to allow for
intracellular dye cleavage. The coverslips were held by an Attofluor cell chamber
(Molecular Probes, Inc.), and 10 to 15 cells were chosen for imaging at room
temperature. Data were recorded as the fluorescence emitted at 510 nm follow-
ing excitation at 340 and 380 nm using a PTI Deltascan system as previously
described (81). The concentrations of Ca21 were calculated as follows: [Ca21] 5
Kd[(R 2 Rmin)/(Rmax 2 R)] 3 (380min/380max), where Rmin and Rmax are the
fluorescence values in the absence (with 3 mM EGTA) and presence of saturat-
ing Ca21 (3 mM), respectively; Kd was 224 nM using PTI calcium imaging
software.

Production of HIV-1 reporter viruses and the viral entry assay. HIV-1 re-
porter viruses were produced as previously described (29). Briefly, envelope
(Env)-defective recombinant HIV-1 luciferase reporter viruses were generated
by cotransfection of 293T cells with 20 mg of pNL4–3env-LUC and 4 mg of
plasmids encoding different HIV-1 Env proteins or pSVMLVenv using the cal-
cium phosphate method (30). Pseudotyped HIVs were collected 48 h after
transfection and assayed for RT enzyme activity. pNL4–3env-LUC, which en-
codes full-length Env-defective NL4–3 HIV-1 proviral DNA and expresses the
luciferase reporter gene, was constructed as described previously (30). Comple-
mentation of Env-defective HIV-1 with HIV-1 Env expression plasmids in trans
allows a single round of infection to occur and infected cells to be detected by the
expression of luciferase. The Env plasmids used were YU-2env (HIV-1; CCR5
strain), HXB2env (HIV-1; CXCR4 strain), and MLVenv (amphotropic murine
leukemia virus).

For the viral entry assay, 293T cells were transfected with plasmids expressing
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either CD4, CCR5, or CXCR4, alone or in combination. The transfected cells
were plated on 24-well plates (105 cells/well) 24 h after transfection. The cells
were incubated for 1 h at 37°C in macrophage-conditioned medium (MCM;
diluted 1:10) from control MDM (Con MCM) or CD40L MCM prior to the
addition of pseudotyped HIV-1 reporter viruses (50,000 cpm of viruses per well).
The cell lysates were prepared 48 h after infection and assayed for luciferase
activity (counts per second).

Statistical tests. Data were reported as means and standard deviations (SD) of
the mean. The data were normalized to cell numbers using the MTT assay for
cell viability. The normalized values were used to perform statistical analyses
using the analysis of variance, followed by the two-tailed Student t test for paired
observations. To account for any donor-specific differences, experiments were
performed with MDM derived from multiple donors. All assays were performed
a minimum of three times with MDM obtained from three independent donors.
Each assay was done in triplicate.

RESULTS

CD40L inhibits virus production in HIV-1-infected MDM.
To examine the effects of CD40L on ongoing HIV-1 infection
and virus production in MDM, freshly elutriated human mono-
cytes were plated and then allowed to differentiate for 7 days in
medium containing M-CSF. The resulting MDM were infected
with HIV-1ADA and then activated with soluble trimeric
CD40L (2 mg/ml). Using this experimental system, our initial
studies revealed that a single treatment with CD40L led to the
inhibition of productive HIV-1 infection in the infected MDM.
However, this effect was not sustainable over extended periods
of time (data not shown).

In an attempt to maintain constant levels of CD40L within
our cultures, the ligand was added at 3-day intervals, beginning
1 day following virus inoculation. Compared to untreated,
HIV-1-infected controls, HIV-1-infected MDM treated with
CD40L (2 mg/ml) showed decreased levels of virus production,
as measured by RT activity (Fig. 1A; from 20 3 105 to 2 3 105

cpm/ml). This CD40L-mediated inhibition was consistently ob-
served at days 3, 6, and 9 following virus inoculation (Fig. 1A).

To substantiate the inhibitory effects of CD40L on virus

production, increasing doses of CD40L (ranging from 0.02 to
3.0 mg/ml) were used. CD40L-mediated inhibition of HIV-1
was shown to be dose dependent, with doses of greater than or
equal to 1 mg/ml causing the most dramatic decreases in virus
production, as measured by RT activity (Fig. 1B). Similar re-
sults were obtained using MDM from different donors (n $ 3).
The specificity of the effect of CD40L on HIV-1 infection was
determined by use of neutralizing antibodies to CD40L, such
as M90 (Fig. 1C) and M91 (see Fig. 6A and 7A).

To further confirm the significance of the inhibitory effect of
CD40L on HIV-1, a panel of HIV-1 strains, including the
macrophage-tropic (M-tropic) strains HIV-1ADA and HIV-
1JR-FL and the dual-tropic strain HIV-189.6, were used to infect
MDM. Five days after inoculation, MDM were stimulated with
CD40L (2 mg/ml). Supernatants were collected 48 h after ac-
tivation and analyzed for RT activity using the Lenti-RT ac-
tivity assay kit as described in Materials and Methods. MDM
infected with HIV-1ADA and then treated with CD40L exhib-
ited a 64% decrease (from 224 6 4.52 to 81 6 32.68 pg/ml) in
RT levels compared to untreated HIV-1ADA-infected MDM
(Fig. 2). Similarly, activation of MDM infected with HIV-
1JR-FL or HIV-189.6 also led to decreased virus production,
with an 88% decrease (from 94 6 12.31 to 11 6 5.87 pg/ml) in
the JR-FL-infected cultures and an 87% decrease (from 199 6
28.85 to 26 6 2.22 pg/ml) in the 89.6-infected cultures (Fig. 2).
Similar results were confirmed by both radioactive labeling and
alkaline phosphatase RT activity assays using supernatants col-
lected from four different MDM donors.

Secretory products from CD40L-stimulated MDM inhibit
productive HIV-1 infection. Having demonstrated that the di-
rect addition of CD40L to cultures of infected MDM could
inhibit virus production and that antibodies to CD40L could
block this effect, we next examined the effects of secretory
products from CD40L-activated MDM on productive HIV-1

FIG. 1. CD40L inhibits productive HIV-1 infection in MDM. (A) Beginning 1 day following virus inoculation, HIV-1ADA-infected and replicate
uninfected MDM were treated at 3-day intervals (as indicated by the arrows) with CD40L at 2 mg/ml. Viral infection was monitored as RT activity
in cell culture supernatants collected on days 3, 6, and 9 postinoculation. (B) Dose-dependent effects of CD40L (from 0.02 to 3 mg/ml) on HIV-1
at day 7 postinfection. (C) Neutralizing antibodies (Ab) to CD40L (M90; 8 mg/ml) were used to confirm the specificity of the effect of CD40L on
virus production, as determined by measurement of RT activity. The asterisk denotes a P value of ,0.01 when compared with the HIV-1-infected
control. The results in panels A and C are shown as the mean and SD and are representative of three replicate assays performed with MDM from
five donors. The results in panel B are shown as a percentage of the RT activity in HIV-1-infected controls (mean and SD) and are representative
of three replicate assays performed with MDM from three donors.
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infection. For this work, MCM collected from uninfected (Con
MCM), CD40L-treated (CD40L MCM), HIV-1ADA-infected
(HIV-1 MCM), or HIV-1ADA-infected and CD40L-treated
(HIV-1/CD40L MCM) cells was placed on replicate cultures of

infected MDM, and virus production was measured as RT
activity. Figure 3 demonstrates that CD40L MCM caused an
80% reduction (from 30 3 105 to 6 3 105 cpm/ml) in RT
activity when added to replicate cultures of MDM infected
with HIV-1ADA. Interestingly, transfer of HIV-1/CD40L MCM
also caused a 73% reduction (from 30 3 105 to 8 3 105

cpm/ml) in RT activity. The addition of neutralizing antibodies
to CD40L (M90; 8 mg/ml) to MCM before addition to replicate
MDM cultures did not block the inhibitory effects of either
CD40L MCM (data not shown) or HIV-1/CD40L MCM (Fig.
3). However, in MDM directly treated with CD40L, neutraliz-
ing antibodies blocked the inhibitory effects of CD40L on
HIV-1 (Fig. 1C). These data suggest that secretory factors
produced in response to CD40L-mediated activation of MDM
inhibit HIV-1 replication.

CD40L and CD40L MCM inhibit viral DNA synthesis in
HIV-1-inoculated MDM. To determine at what stage CD40L
or secretory products from CD40L-activated MDM affect
HIV-1 infection in MDM, we examined the effects of these
factors on the earliest stages of the HIV-1 life cycle. For this
work, MDM were pretreated for 1 h with medium alone,
CD40L MCM, or antibody to CD4 (BL4; 10 mg/ml) or for 24 h
with zidovudine (AZT; 5 mM) and then inoculated with
DNase-treated HIV-1ADA stocks. Four hours after inoculation,
MDM were washed and then retreated with medium alone,
CD40L (2 mg/ml), CD40L MCM, CD4 antibody, or AZT. At 4,
8, 24, 48, and 96 h following inoculation with virus, cells were
fractured and DNA was isolated for measurement of viral
nucleic acid synthesis. DNA PCR was performed to identify
early (LTR U3/R) and late (LTR U3/gag) viral cDNA prod-
ucts of reverse transcription (79). A ratio comparing the levels
of early and late viral cDNAs to the levels of mitochondrial
DNA (an internal control) was then determined.

The Southern blot results from a representative experiment
are shown in Fig. 4A. In HIV-1ADA-infected cells, treatment
with CD40L (2 mg/ml) or with CD40L MCM led to decreased
synthesis of both early and late viral cDNAs. At 8 h postinfec-
tion (Fig. 4C), cells treated with CD40L showed a 72% reduc-
tion in viral DNA synthesis, while treatment with CD40L
MCM induced a 56% decrease in the synthesis of viral DNA.
At 48 h following virus inoculation (Fig. 4D), CD40L- and
CD40L MCM-treated cells demonstrated 44 and 48% reduc-
tions in early viral DNA synthesis, respectively. Inhibition of
both early and late viral gene products was also observed at
24 h postinoculation (data not shown). In MDM pretreated
with AZT or CD4 antibody (BL4), which was used as a positive
control, viral DNA synthesis was suppressed (Fig. 4A, C, and
D). Similar results were obtained using MDM from three dif-
ferent donors. The results suggest that CD40L and secretory
products from CD40L-stimulated MDM inhibit early events in
the HIV-1 life cycle.

CD40L induces b-chemokine and TNF-a production in
MDM. The experiments described above suggest that CD40L
inhibits HIV-1 infection in MDM through a macrophage-de-
rived soluble factor(s). In an attempt to identify the factor(s)
responsible for such an effect, we next examined the effects of
CD40L on MDM secretory function. Since a role for chemo-
kines in the regulation of HIV-1 infection has been proposed
by others (40, 74), we measured proinflammatory cytokine and
chemokine production in CD40L-stimulated MDM. For this

FIG. 2. CD40L inhibits infection by M-tropic and dual-tropic HIV-
1 strains. MDM were infected with the M-tropic strain HIV-1ADA or
HIV-1JR-FL or the dual-tropic strain HIV-189.6. Beginning 5 days fol-
lowing virus inoculation, HIV-1-infected and replicate uninfected
MDM were treated with CD40L (2 mg/ml). Viral infection was mon-
itored by measuring the levels of RT enzyme in cell culture superna-
tants collected 48 h postactivation. Results are shown as the mean and
SD and are representative of three replicate assays performed with
MDM from four donors. The asterisk denotes a P value of ,0.01 when
compared with the respective HIV-1-infected controls.

FIG. 3. Secretory factors from CD40L-stimulated MDM inhibit
virus production. Con MCM, CD40L MCM, HIV MCM, or HIV/
CD40L MCM was placed on replicate cultures of infected MDM 24 h
after inoculation. Viral infection was measured as RT activity. In order
to determine whether residual CD40L in MCM was responsible for the
effects seen, neutralizing antibodies (Ab) to CD40L (M90; 8 mg/ml)
were added to one batch of HIV/CD40L MCM before transfer to the
replicate cultures. Results are expressed as the mean and SD and are
representative of three separate experiments performed with MDM
from three donors. The asterisk denotes a P value of ,0.01 when
compared with the respective controls.
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work, we assayed culture supernatants from uninfected, HIV-
1-infected, CD40L-stimulated, and HIV-1-infected and CD40L-
stimulated MDM for the presence of b-chemokines (MIP-1a,
MIP-1b, and RANTES) and proinflammatory cytokines (TNF-
a) with an ELISA.

Treatment of uninfected MDM with CD40L (2 mg/ml) alone
induced a 16-fold increase in RANTES (from 13 6 3 pg/ml in
control cells to 219 6 5 pg/ml in CD40L-treated MDM) (Fig.
5A), a 4-fold increase in MIP-1a (from 134 6 2 pg/ml to 543 6
35 pg/ml) (Fig. 5B), a 5-fold increase in MIP-1b (from 79 6 2
pg/ml to 410 6 81 pg/ml) (Fig. 5C), and a 4-fold increase in
TNF-a (from 81 6 1 pg/ml to 333 6 65 pg/ml) (Fig. 5D). In our
experimental system, HIV-1 infection alone induced only a
modest increase in these factors, a finding that is consistent
with previously published results (63). In contrast, HIV-1-in-
fected and CD40L-activated cells consistently produced the
highest levels of these factors (Fig. 5). Indeed, CD40L treat-
ment of HIV-1-infected MDM led to enhanced b-chemokine
and TNF-a production, inducing a 13-fold increase in

RANTES (from 26 6 7 pg/ml to 340 6 18 pg/ml), a 4-fold
increase in MIP-1a (from 304 6 20 pg/ml to 1,300 6 384
pg/ml), a 22-fold increase in MIP-1b (from 111 6 2 pg/ml to
2,500 6 70 pg/ml), and a nearly 8-fold increase in TNF-a (from
116 6 4 pg/ml to 900 6 90 pg/ml), when compared to the levels
produced by HIV-1-infected MDM at day 4 postinfection. The
effects of CD40L on b-chemokine and TNF-a production were
demonstrated to be dose dependent (data not shown).

These data suggested that the reduction in productive viral
infection induced by CD40L (Fig. 1A) might be linked to the
enhanced production of b-chemokines and TNF-a. To test this
hypothesis, we examined the effects of blocking antibodies to
individual cytokines and chemokines on the CD40L-mediated
inhibition of HIV-1 infection. RANTES and TNF-a were se-
lected as the primary candidates for this work, as both have
been linked to the inhibition of HIV-1 infection in many cell
types (4, 7, 9, 32, 41, 72).

Antibodies to RANTES and TNF-a reverse CD40L-medi-
ated inhibition of HIV-1 infection. To determine whether the

FIG. 4. CD40L affects viral DNA synthesis in HIV-1-infected MDM. (A) MDM were pretreated with CD40L MCM, antibody (Ab) to CD4,
or AZT prior to infection with HIV-1ADA. Four hours postinfection, selected groups of infected MDM were treated with soluble trimeric CD40L
(2 mg/ml). At 4, 8, 48, and 96 h postinfection, DNA was isolated from the fractured cells for detection of viral nucleic acid synthesis. PCR was
performed to identify early (LTR U3/R) and late (LTR U3/gag) products of reverse transcription. Data from a representative experiment are
shown. (B) HIV-1 cDNA extracted from 8e5 cells harboring a defective HIV-1 provirus was used as a standard (cell numbers are shown above
lanes), and mitochondrial (Mito) DNA was used as an internal control. (C and D) Average ratios of early viral DNA products to mitochondrial
DNA at 8 h (C) and 48 h (D) postinfection. Results are expressed as the mean and SD and are representative of three independent experiments.
The asterisk denotes a P value of ,0.01 and the number sign denotes a P value of ,0.05 when compared with the infected controls.
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ability of CD40L to inhibit HIV-1 was linked to its ability to
enhance b-chemokine production, we examined the effect of
neutralizing antibodies to RANTES (Fig. 6A) on virus produc-
tion in CD40L-treated MDM. CD40L-induced inhibition of
HIV-1 infection was blocked by antibodies to both CD40L
(M91; 10 mg/ml) (Fig. 6A) and RANTES (5 mg/ml) (Fig. 6A).
Other antibodies to CD40L (M90; 8 mg/ml) also blocked the
production of RANTES in both uninfected (from 180 to 37
pg/ml) and infected (from 370 to 57 pg/ml) cells treated with
CD40L (Fig. 6B). Used as a positive control for this work,
RANTES (500 ng/ml) was administered to MDM 1 h prior to
virus inoculation and added again (200 ng/ml) every 3 days.
Treatment of MDM with RANTES caused an 80% decrease in
RT activity compared to that in untreated controls (from 15 3
105 to 3 3 105 cpm/ml). Importantly, this response was also
blocked by the addition of antibodies to RANTES (5 mg/ml).
Moreover, treatment with MIP-1b or monocyte chemotactic
protein 1 (MCP-1) (at doses ranging from 100 to 500 ng/ml)
also inhibited HIV-1 infection. MIP-1b caused a 60% decrease
in HIV-1 infection compared to results for untreated controls
(from 15 3 105 to 6 3 105 cpm/ml), and MCP-1 induced a 72%
decrease in RT activity (from 15 3 105 to 4 3 105 cpm/ml).

Although the inhibitory effects of both MIP-1b and MCP-1
were blocked by the addition of their respective neutralizing
antibodies (2 mg/ml), antibodies to these chemokines had no
significant effect on the CD40L-mediated inhibition of HIV-1
infection in MDM (data not shown).

To further investigate the role of MDM secretory products
in the CD40L-mediated inhibition of productive HIV-1 infec-
tion, we examined the relationship between decreased viral
infection and cytokine production. TNF-a was selected as a
representative cytokine, as it has been reported to diminish
HIV-1 infection in macrophages through the production of
b-chemokines (4, 32, 41). To determine whether the inhibitory
effects of CD40L on HIV-1 replication were mediated by
TNF-a, MDM were infected for 7 days with HIV-1ADA and
then treated with CD40L (2 mg/ml) or TNF-a (20 ng/ml).
Supernatants were collected 6, 24, 48, and 72 h after activation
and analyzed for RT activity (Fig. 7A) or TNF-a production
(Fig. 7B). As shown in Fig. 7A, the reduction in HIV-1 infec-
tion induced by CD40L was partially blocked by the addition of
antibodies to CD40L (from 6 3 105 to 10 3 105 cpm/ml).
Importantly, the addition of neutralizing antibodies to TNF-a
(2 mg/ml), when administered in conjunction with CD40L 7

FIG. 5. CD40L induces the production of b-chemokines and TNF-a. Beginning 1 day postinoculation, HIV-1ADA-infected and replicate
uninfected MDM were stimulated every 3 days with CD40L (2 mg/ml). Cell culture fluids were collected 24 h after activation and assayed for
RANTES, MIP-1a, MIP-1b, and TNF-a by an ELISA. Results are expressed as the mean and SD and are representative of three independent
experiments. The asterisk denotes a P value of ,0.01 and the number sign denotes a P value of ,0.05 when compared with cells treated with
CD40L alone.
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days after infection, blocked the inhibitory effects of CD40L on
HIV-1 (from 6 3 105 to 17 3 105 cpm/ml) (Fig. 7A). Used as
a positive control for this work, TNF-a alone caused a 45%
decrease in RT activity compared to that in untreated controls
(from 15 3 105 to 8 3 105 cpm/ml) (P , 0.01). This response
was also blocked by the addition of neutralizing antibodies to
TNF-a (2 mg/ml) (from 8 3 105 to 16 3 105 cpm/ml) (Fig. 7A).

As shown in Fig. 7B, the ability of CD40L to induce TNF-a
production was blocked by preincubation with neutralizing an-
tibodies to CD40L (from 1.2 to 0.07 ng/ml). Importantly, an-
tibodies to both CD40L and TNF-a blocked the CD40L-in-
duced production of RANTES in both uninfected (Fig. 7C)
and infected (data not shown) MDM. Interestingly, TNF-a (20
ng/ml) induced the production of RANTES (Fig. 7C) and
MIP-1a and MIP-1b (data not shown). This effect was blocked
by the addition of neutralizing antibodies to TNF-a (Fig. 7C).
Moreover, stimulation of MDM with CD40L led to an early (1
to 4 h postactivation) increase in TNF-a production, followed
by a later (4 to 8 h poststimulation) increase in b-chemokine
levels (data not shown). Together, these data suggest that
increased levels of TNF-a may contribute to the inhibitory
effects of CD40L through further induction of b-chemokines.

CD40L-mediated activation alters CCR5 expression on
MDM. To further investigate the link between CD40L-medi-
ated inhibition of HIV-1 infection and enhanced b-chemokine
production, we examined the effects of CD40L activation on

the expression of the b-chemokine receptor CCR5. MDM were
treated with CD40L (2 mg/ml) for 48 h. The expression of
CD14 (a monocyte marker), CCR5 (a b-chemokine receptor),
and CD4 on both untreated and treated MDM was determined
by FACS analysis. Macrophage populations were identified by
forward- and side-scatter analysis and by CD14 immunoreac-
tivity. The mean fluorescence intensity of CCR5 and CD4
expression on cells positive for both parameters was then de-
termined.

Our experiments demonstrated that treatment with CD40L
diminished CCR5 surface expression on MDM compared to
untreated MDM. While on average CCR5 expression was de-
creased by 30% following CD40L treatment (Fig. 8A), the
reduction in CCR5 expression ranged from 20 to 60%, de-
pending on the donor (n 5 5). This downregulation in CCR5
expression was shown to be specific, as antibodies to CD40L
(M91; 20 mg/ml) were able to reverse the effect (Fig. 8C).
Importantly, similar results were also observed with HIV-1-
infected macrophages, where treatment with CD40L caused a
33 to 60% decrease in CCR5 expression (data not shown). In
addition, MDM treated with the positive control RANTES
(500 ng/ml), MIP-1b (500 ng/ml), MIP-1a (500 ng/ml), or
TNF-a (100 ng/ml) also showed downregulation in CCR5 ex-
pression compared to control cells. RANTES induced a 30%
reduction in CCR5 cell surface expression, MIP-1b and MIP-
1a led to a 50% decrease, and TNF-a caused a 30% reduction

FIG. 6. CD40L-mediated inhibition of HIV-1 infection is reversed by antibodies (Ab) to RANTES. (A) MDM cultures were treated with
CD40L (2 mg/ml) 24 h after inoculation with HIV-1ADA and then retreated with CD40L every 3 days for the duration of the experiment. In
replicate cultures, cells were pretreated with the positive control RANTES (0.5 mg/ml) 1 h before inoculation with HIV-1ADA and then retreated
with RANTES (0.2 mg/ml) every 3 days. Virus production was measured as RT activity. (B) CD40L-induced production of RANTES in both
uninfected and infected MDM. Neutralizing antibodies to CD40L (M91; 10 mg/ml) and RANTES (5 mg/ml) were used to determine the specificity
of the effects mediated by CD40L (A and B) and RANTES (A), respectively. Results are expressed as the mean and SD and are representative
of three independent experiments. In panel A, the asterisk denotes a P value of ,0.01 and the “at” symbol denotes a P value of ,0.02 when
compared with HIV-1-infected, CD40L-activated MDM, and the number sign denotes a P value of ,0.05 when compared with HIV-1-infected,
RANTES-treated MDM. In panel B, the asterisk denotes a P value of ,0.01 for comparisons with respective CD40L-treated controls.
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(data not shown). Interestingly, a cocktail of chemokine anti-
bodies (anti-RANTES [5 mg/ml], anti–MIP-1b [5 mg/ml], and
anti–MIP-1a [5 mg/ml]) was also able to reverse the downregu-
lation in CCR5 expression induced by treatment with CD40L
(Fig. 8C). These results are consistent with published reports
(4, 6, 41) showing that b-chemokines and TNF-a downregulate
CCR5 expression. Importantly, these data provide further sup-
port for the hypothesis that soluble factors induced by CD40L-
mediated activation of MDM lead to downregulation of the
HIV-1 coreceptor, CCR5.

Importantly, the addition of CD40L (2 mg/ml) to cultures of
MDM led to a 40% reduction in CD4 cell surface expression.
This downregulation in CD4 was specific, as antibodies to
CD40L (M91; 20 mg/ml) were able to reverse the effect (Fig.
8D). In contrast, a cocktail of chemokine antibodies (anti-
RANTES [5 mg/ml], anti–MIP-1b [5 mg/ml], and anti–MIP-1a
[5 mg/ml]) had no significant effect on the CD40L-induced
downregulation of CD4 expression (Fig. 8D). The profiles
shown in Fig. 8 are representative of the trends observed using
MDM from five donors. These data suggest that the inhibitory
effects of CD40L on productive HIV-1 infection in MDM may
be mediated, at least in part, through the production of soluble
factors, which in turn decrease CCR5 cell surface expression.

To further confirm the role of CD40L in regulation of
CCR5, we determined the level of CCR5 activity on both
untreated and CD40L-treated MDM using calcium imaging
analysis. MIP-1a (1 mg/ml), a natural ligand for CCR5, was
used to assay for chemokine receptor-mediated increases in
intracellular calcium levels (Fig. 9). ATP (100 mM) was used as
a control, as it affects intracellular calcium levels through
CCR5-independent pathways (Fig. 9). In MDM pretreated
with CD40L (2 mg/ml for 24 h), the calcium response induced
by application of the CCR5 ligand MIP-1a was reduced (Fig.
9B) in comparison to the response evoked in untreated MDM
(Fig. 9A). In contrast, ATP-induced calcium responses re-
mained unchanged (Fig. 9A and B). This observation was con-

firmed in three separate experiments performed with three sets
of MDM donors. The average of these data is shown in Fig. 9C,
where the intracellular calcium response induced by MIP-1a
was significantly higher (P , 0.01) in untreated MDM (0.965 6
0.037; n 5 3) than in CD40L-treated MDM (0.834 6 0.043).
These data are expressed as ratios of the absorbances at 340 and
380 nm. This finding, in conjunction with the results of the FACS
analysis, demonstrates that the levels and activity of CCR5 on
MDM are decreased after treatment with CD40L.

Secretory factors from CD40L-stimulated MDM inhibit M-
tropic HIV-1 entry. To determine whether factors produced by
CD40L-treated MDM could block the entry of HIV-1, Con
MCM or CD40L MCM (CD40L was used at 2 mg/ml) was
placed on CCR5- and CD4-, CXCR4- and CD4-, CCR5-,
CXCR4-, or CD4-transfected 293T cells. Viral entry was de-
tected by measuring HIV-1 luciferase reporter virus activity.
For this work, transfected 293T cells were incubated for 1 h at
37°C with either Con MCM or CD40L MCM and then infected
with Env-defective recombinant HIV-1 luciferase reporter vi-
ruses pseudotyped with either YU2, a representative M-tropic
CCR5 Env protein, or HXB2, a T-lymphocyte-tropic CXCR4
Env protein (29). The amphotropic murine leukemia virus
(A-MLV) envelope was used as a control for specificity. The
efficiency of viral entry was determined by measuring luciferase
activity (counts per second) 48 h after infection. Results were
obtained from triplicate determinations using MCM collected
from four MDM donors.

As shown in Fig. 10A, CD40L MCM inhibited infection with
HIV-1 luciferase reporter viruses containing YU2 Env by 40%,
compared to the results for cells treated with Con MCM. In
contrast, entry of a reporter virus containing HXB2 Env was
not inhibited by the addition of CD40L MCM (Fig. 10C).
Neither Con MCM nor CD40L MCM inhibited infection by
virus pseudotyped with nonspecific A-MLV Env (Fig. 10B and
10D) or Env-defective HIV-1 reporter virus (data not shown).
In addition, the direct addition of fresh medium or soluble

FIG. 7. CD40L-mediated inhibition of virus production is reversed by TNF-a antibodies (Ab). (A) Seven days after infection, HIV-1ADA-
infected MDM were treated with CD40L (2 mg/ml) or the positive control, TNF-a (0.02 mg/ml). Cell supernatants were collected 48 h after
stimulation, and viral infection was determined as RT activity. (B and C) Levels of TNF-a (B) and RANTES (C) in supernatants collected at 6
and 24 h postactivation, respectively, were determined by an ELISA. Antibodies to CD40L (M91; 10 mg/ml) and TNF-a (2 mg/ml) were used to
determine the specificity of the effects mediated by CD40L and whether such effects were mediated through the production of TNF-a (A, B, and
C). Results are expressed as the mean and SD and are representative of three independent experiments. In panel A, the “at” symbol denotes a
P value of ,0.02 and the number sign denotes a P value of ,0.05 when compared with HIV-1-infected, CD40L-treated MDM, and the asterisk
denotes a P value of ,0.01 when compared with HIV-1-infected, TNF-a-treated MDM. In panel B, the asterisk denotes a P value of ,0.01 when
compared with HIV-1-infected, CD40L-activated controls. In panel C, the asterisk denotes a P value of ,0.01 when compared with CD40L- or
TNF-a-treated MDM.
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CD40L alone had no inhibitory effects in any of the cell sys-
tems described above. These data suggest that the observed
inhibition of viral entry is due to soluble factors produced by
CD40L-activated MDM.

DISCUSSION

In this report, we demonstrated that CD40L-mediated acti-
vation of HIV-1-infected MDM led to inhibition of HIV-1
infection, enhanced TNF-a and b-chemokine secretion, and
decreased expression of CD4 and the b-chemokine receptor
CCR5. Interestingly, secretory products from CD40L-activated

MDM, when used to treat replicate cultures of infected MDM,
were also shown to inhibit virus production. We propose that
the mechanism for these effects could be linked to the in-
creased levels of b-chemokines and cytokines produced in
response to stimulation with CD40L. While it is generally
accepted that b-chemokines play an important role in the
regulation of HIV-1 infection (6), the role of cytokines, such as
TNF-a, in such events is still widely debated. Nonetheless,
previous reports (4, 41), as well as our own work, have shown
that TNF-a can induce the secretion of b-chemokines and
retard HIV-1 infection. Moreover, cytokines such as alpha

FIG. 8. CD40L downregulates CD4 and CCR5 cell surface expression on MDM. (A and B) After 7 days in culture, elutriated and M-CSF-
differentiated MDM were stimulated in the presence or absence of CD40L (2 mg/ml) for 48 h. Cells were dually immunostained for the monocyte
antigen CD14 (CD14-FITC), the b-chemokine receptor CCR5 (CCR5-PE), or CD4 (CD4-PE). MDM populations, identified by forward- and
side-scatter analyses and CD14 immunoreactivity, were examined for changes in the cell surface expression of CCR5 and CD4. The mean
fluorescence intensity of CCR5 (A) and CD4 (B) expression is shown. Effects of treatment with CD40L are shown in red, and the expression of
CCR5 and CD4 on untreated controls is shown in black. Profiles are representative of triplicate determinations with five donors. (C and D)
Antibodies (Ab) to CD40L (M91; 20 mg/ml) or a cocktail of b-chemokine antibodies (anti-RANTES [5 mg/ml], anti–MIP-1b [5 mg/ml], and
anti–MIP-1a [5 mg/ml]) was used to determine the specificity of the effects of CD40L on CCR5 (C) and CD4 (D) expression. In panel C, the
asterisk denotes a P value of ,0.01 when compared with the untreated control and the number sign indicates a P value of ,0.01 when compared
with CD40L-treated MDM. In panel D, the asterisk denotes a P value of ,0.01 when compared with the untreated control.
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interferon have been shown to inhibit HIV-1 infection in
MDM (22, 26). While the inhibitory effects of CD40L on
HIV-1 infection may be regulated by both chemokines and
cytokines acting in tandem, the individual contributions of
these factors to the CD40L-mediated inhibition of HIV-1 in-
fection require further investigation.

Providing further support for the hypothesis that CD40L
inhibits HIV-1 infection through the production of soluble
factors, neutralizing antibodies to both RANTES and TNF-a
were shown to block the inhibitory effects of CD40L on pro-
ductive HIV-1 infection in MDM. Interestingly, antibodies to
MIP-1b and MCP-1 had no effect on the CD40L-mediated
inhibition of HIV-1 infection. Importantly, secretory products
from CD40L-stimulated MDM inhibited the entry of an HIV-1
luciferase reporter virus pseudotyped with the M-tropic CCR5
envelope protein, YU2, into CCR5- and CD4-transfected 293T
cells. In contrast, CD40L MCM had no inhibitory effect on the
entry of virus with the CXCR4 envelope protein, HXB2, into
CXCR4- and CD4-transfected cells. Together, these data sug-
gest that multiple factors induced by CD40L stimulation of
MDM may operate in tandem to regulate HIV-1 infection. Such
inhibition appears to be mediated, at least in part, through the
regulation of viral entry.

One potential mechanism through which CD40L may inhibit
productive HIV-1 infection in MDM is the regulation of CD4
and the HIV-1 coreceptor, CCR5. In support of this notion, we
observed decreased levels of CD4 and CCR5 on MDM in
response to treatment with CD40L. Based on reports demon-
strating that chemokines can induce chemokine receptor en-
docytosis (3, 46, 54, 77), we hypothesize that CD40L or the
secretory products induced by it may decrease the cell surface
expression of CCR5 through mechanisms of internalization.
Support for this hypothesis was provided by data (Fig. 8C)
demonstrating that a cocktail of chemokine antibodies (anti-
RANTES, anti–MIP-1b, and anti–MIP-1a) could reverse the
CD40L-mediated downregulation of CCR5. Moreover, unpub-
lished data from our group has shown that CCR5 mRNA
expression in MDM is not altered after treatment with CD40L.
Although these data suggest that receptor internalization, as
opposed to altered transcription, is responsible for the reduc-
tion in CCR5 cell surface expression, this hypothesis requires
further investigation. Moreover, the mechanism by which CD40L
activation causes a downregulation in CD4 expression remains
to be determined.

The ability of HIV-1-infected and CD40L-activated MDM
to produce substantially higher levels of b-chemokines and
TNF-a than MDM stimulated with CD40L alone suggests that
HIV-1 infection “primes” macrophages for subsequent im-
mune stimulation. Such priming events may enhance the ability
of MP to produce factors that regulate HIV-1 infection. This
may explain why virus is so tightly regulated in tissue, such as
the brain and lungs, during the early stages of infection, when
CD40L-expressing T lymphocytes are still plentiful (23, 37, 53,
76). While sustained increases in cytokines and chemokines
can regulate the spread of HIV-1 infection among MP, such
factors can also alter the protective functions of the MP and
cause adverse effects, depending upon the environment in which
they are expressed (21, 48, 69, 82). Indeed, the pathogenic
potential of such events is clearly seen in the brain during
HIV-1-associated dementia (HAD), where the number of im-
mune-activated MP correlates with the severity of cognitive
impairment (10, 17, 20, 34, 57, 58, 60, 80). While the mecha-
nism by which MP become immune activated during HAD is
still not completely understood, increasing evidence suggests
that factors, such as CD40L, may contribute to this process.
Indeed, several lines of evidence suggest a role for CD40L-

FIG. 9. CD40L alters levels of functional CCR5 on MDM. MDM
were cultured for 7 days and then treated overnight with CD40L (2
mg/ml). Replicate controls were left untreated. MIP-1a (1 mg/ml), a
natural ligand for CCR5, was used to assay for chemokine receptor-
mediated increases in intracellular calcium levels. ATP (100 mM) was
used as a control for this assay, as it affects intracellular calcium levels
through CCR5-independent pathways. The expression of functional
CCR5, as determined by changes in intracellular calcium, was then
measured with fura II. In panels A and B, arrows pointing down
denote the addition of buffer, a single arrow pointing up denotes the
addition of MIP-1a (1 mg/ml), and double arrows pointing up denote
the addition of ATP (100 mM). In MDM pretreated for 24 h with
CD40L (2 mg/ml), the MIP-1a-mediated calcium response was re-
duced (B) in comparison to the response evoked in untreated MDM
(A), while ATP-induced calcium responses remained unchanged (A
and B). The data shown in panels A and B are representative of three
replicate experiments performed with MDM from three donors. The
average of these data is shown in panel C and is expressed as the mean
and SD. In panel C, the asterisk denotes a P value of ,0.01 when
compared with MDM treated with medium alone.
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mediated activation in HAD. First, the expression of CD40L
on peripheral blood mononuclear cells has been reported to be
increased in HAD patients (62). Second, findings from our
laboratory and findings of others suggest that CD40L-CD40
interactions can stimulate the production of factors, such as
chemokines, cytokines, and proteinases (1, 11, 27, 28, 35, 38–
40, 42, 49, 67, 71, 75, 78), which compromise the integrity of the
blood-brain barrier and promote infiltration of monocytes into
the brain. Third, factors that are capable of inducing neuronal
injury (12, 17, 31, 33, 44, 66, 73, 81) are substantially upregu-
lated when MDM are infected with HIV-1 and then activated
with CD40L. While we assume that the principal biological
function of CD40L is to regulate host immune responses, the
evidence presented above suggests that CD40L-mediated ac-
tivation of MP could adversely affect the outcome of HIV-1
infection in many tissues, including the brain. However, this
hypothesis certainly requires further investigation.

When taken together, the data presented in this paper im-
plicate a role for CD40L-mediated activation in the regulation
of viral infection in MP and a possible mechanism for such
events. The finding that CD40L stimulation inhibits viral entry
and retards the HIV-1 life cycle in MP implicates a role for
CD40L-mediated activation in host antiviral defenses. More-
over, these findings reinforce the importance of innate immune

responses in regulating the tempo of disease onset and pro-
gression in the HIV-1-infected human host.
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