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In Noetherian rings there is a hierarchy among regular, Gorenstein and Cohen-

Macaulay rings. Regular non-Noetherian rings were originally defined by Bertin in

1971. In 2007, Hamilton and Marley used C̆ech cohomology to introduce a theory

of Cohen-Macaulay for non-Noetherian rings, answering a question posed by Glaz.

This dissertation provides a theory of non-Noetherian Gorenstein rings agreeing with

the Noetherian definition, and for which regular rings are Gorenstein, and coherent

Gorenstein rings are Cohen-Macaulay. The relationship between Gorenstein rings

and FP -injective dimension as defined by Stenström is also explored. Finally, an

additional characterization of Gorenstein rings involving homological dimensions is

examined in the non-Noetherian case.
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Michael and Terry, and my fiancé Ned Hummel who have been there for me through

thick and thin. Thank you to my friends from afar: Beverly Toperzer, Laura Leslie,

and Beth Blumit. For their friendship and support thank you to the “Ladies of 306”:

Jennifer (Everson) Davis, Heidi (Feller) Berger, Erica (Cameron) Sanford, and Sarah

Tupa. Thank you also to the countless other colleagues who offered support and

friendship: Jenny Langdon, Suanne Au, Christina Eubanks-Turner, Raegan Higgins,

Joan Lubben, Amy Parrott, and Pari Ford, among many others. Thank you also

to Wendy Hines and Judy Walker for providing much needed support along the way.

Special thanks to Marilyn Johnson and Cheryl Kane for all their help and perspective

throughout my graduate career.

And from a different aspect, thank you to Theophilus (Kristin, Bert, Laura, Kris-

tian, Dawn, Rachel, Eric, Rose, LaVerna, Nancy, and Ron), Fr. Matya, and Fr.

Kilcawley for their support and perpective over the last few years.



iv

Contents

Contents iv

1 Introduction 1

2 Background 6

2.1 Coherent Rings and Modules . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Polynomial Grade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Non-Noetherian Regular and Cohen-Macaulay Rings . . . . . . . . . 12

2.4 FP -Injective Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 [FP ]R∞- and BE(R)-Modules . . . . . . . . . . . . . . . . . . . . . . . 20

3 Gorenstein Dimension 23

3.1 G̃(R) and G̃-dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Gorenstein Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Equality of G̃-dimension and Gorenstein Dimension . . . . . . . . . . 40

4 The Auslander-Bridger Formula 42

4.1 Additional Properties of G̃-dimension . . . . . . . . . . . . . . . . . . 43

4.2 Generalized Auslander-Bridger Formulas . . . . . . . . . . . . . . . . 58

5 Gorenstein Rings 61



v

5.1 Gorenstein Rings Defined . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Relation to Regular and Cohen-Macaulay Rings . . . . . . . . . . . . 63

5.3 Gorenstein Rings and FP -Injectivity . . . . . . . . . . . . . . . . . . 64

5.4 Additional Properties of Gorenstein Rings . . . . . . . . . . . . . . . 68

6 Other Characterizations of Gorenstein Rings 78

6.1 (FP )∞-Injective Dimension and Gorenstein Rings . . . . . . . . . . . 78

Bibliography 84



1

Chapter 1

Introduction

The theories of regular, Gorenstein, and Cohen-Macaulay Noetherian rings form a rich

theory within commutative algebra. These three rings enjoy the following cascading

relationship in the context of local rings:

Regular ⇒ Gorenstein ⇒ Cohen-Macaulay.

All three rings have origins and applications in homological algebra, algebraic geome-

try, and combinatorics. The goal of this work is to extend the meaning of Gorenstein

to the non-Noetherian case while maintaining the relationships shown above.

The definitions of non-Noetherian regular and Cohen-Macaulay rings have been

previously explored, primarily in the context of coherent rings. Coherence, like the

Noetherian property, is a finiteness condition. Given a ringR, anR-module is coherent

if it is finitely generated and every finitely generated submodule is finitely presented.

A ring is coherent if it is coherent as a module over itself. Noetherian rings are clearly

coherent; however there are many examples of non-Noetherian coherent rings. For

instance, given a field k, k[x1, x2, . . . ] is a coherent ring, but obviously not Noetherian.

In 1971, Bertin [4] defined regular rings in the non-Noetherian case. While ex-

ploring invariant subrings of polynomial rings over a coherent ring, Glaz raised the
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question in [13] and [14] of the existence of a definition of non-Noetherian Cohen-

Macaulay rings compatible with (coherent) regular rings. Hamilton and Marley [15]

provided a positive answer, using C̆ech cohomology to introduce a theory of non-

Noetherian Cohen-Macaulay rings. In addition, several of the usual properties of

Noetherian Cohen-Macaulay rings carry over to the non-Noetherian theory. Given

the cascading relationship above, a natural question arose as to whether there is

a theory of non-Noetherian Gorenstein rings for which coherent regular rings are

Gorenstein, and Gorenstein rings are Cohen-Macaulay. Chapter 5 develops a theory

of Gorenstein rings which is compatible with the Noetherian definition and provides

an affirmative answer to this question.

Gorenstein dimension, or G-dimension, is among the major protagonists in the

theory of non-Noetherian Gorenstein rings. In a local Noetherian regular ring every

module has finite projective dimension. Auslander and Bridger [2] introduced G-

dimension in 1969 to create a similar characterization for Gorenstein rings. A Noethe-

rian ring is Gorenstein if every finitely generated module has finite G-dimension [2].

However the theory of G-dimension was restricted to finitely generated modules over

a Noetherian ring. In response to this restriction, Enochs and Jenda [10] introduced

Gorenstein projective dimension for arbitrary modules over an arbitrary commutative

ring. Avramov, Buchweitz, Martsinkovsky, and Reiten (see the remark following The-

orem 4.2.6 in [9]) showed that for finitely generated modules over a Noetherian ring,

Gorenstein projective dimension and G-dimension are the same. In the meantime, a

theory of Gorenstein projective dimension for Noetherian rings has been developed

by Avramov, Christensen, Enochs, Foxby, Holm, Jenda, and Martsinkovsky, among

others. More recently some of these results have been extended to the non-Noetherian

case by Holm [18] and White [28].
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Amongst the results of G-dimension is an extension of the Auslander-Buchsbaum

Formula, referred to as the Auslander-Bridger formula. If G-dimRM denotes the

Gorenstein dimension of an R-module M we have:

IfR is a local Noetherian ring andM is anR-module of finiteG-dimension,

then depthRM + G-dimRM = depthRR.

The generalization of the Auslander-Bridger Formula to the non-Noetherian con-

text is a cornerstone in the theory of non-Noetherian Gorenstein rings. However,

the path to the non-Noetherian case is fraught with many hurdles. The first stems

from the behavior of grade in the non-Noetherian context. For a Noetherian ring R,

gradeR(I,M) > 0 for any finitely generated R-module M if and only if (0 :M I) = 0,

yet there are examples of non-Noetherian rings where this is not the case (see [15]

or [27]). Hochster, Northcott [24], and Alfonsi [1] played roles in the development

of polynomial grade to overcome this inconsistency in the behavior of grade. The

definition of polynomial grade is based upon grade over polynomial rings (see Section

2.2):

Let R be a ring; the polynomial grade of an ideal I on an R-module M is

p-gradeR(I,M) := lim
m→∞

gradeR[t1,...,tm](IR[t1, . . . , tm], R[t1, . . . , tm]⊗RM).

If (R,m) is quasi-local (that is, R has a unique maximal ideal m), define the poly-

nomial depth, or p-depth of a module M to be gradeR(m,M). Some properties of

polynomial grade are explored in Section 2.2.

With polynomial grade in hand we can generalize the Auslander-Bridger Formula

to the non-Noetherian case, replacing polynomial depth for depth; this is the content

of Corollary 4.2.2 (Chapter 4). However, after removing the Noetherian assumption,

what assumptions are needed for the Auslander-Bridger Formula to hold for non-

Noetherian rings? This is where the theory of non-Noetherian Gorenstein rings comes



4

full circle. The obvious choice is to assume the ring is coherent. While the Auslander-

Bridger does hold for coherent rings, our proof of the Auslander-Bridger Formula holds

in a more general setting. If R is a coherent ring, R[x] is not coherent in general. In

order for the Auslander-Bridger Theorem to hold under the coherence assumption,

one must pass to a polynomial ring and maintain coherence. One way this hurdle can

be overcome is to assume that R is stably coherent, that is, to assume R[x1, . . . , xn] is

coherent for every n ≥ 0. However, this is an unsatisfactory solution; in fact we are

able to do much better than coherence.

This is where modules of type (FP )R∞ and BE(R)-modules enter the scene. The

module class BE(R) extends Bieri’s notion of modules of type (FP )R∞, a class of

modules admitting degreewise finite projective resolutions. The class BE(R) consists

of modules M of type (FP )R∞ such that ExtiR(M,R) are of type (FP )R∞ for all i ≥ 0.

Using modules of type (FP )R∞ we consider a restricted form of G-dimension, denoted

G̃-dimension, which agrees with G-dimension for modules in BE(R). We then can

prove a form of the Auslander-Bridger Formula for modules of finite G̃-dimension

(Theorem 4.2.1), with no conditions on the ring.

In Chapter 5, we define non-Noetherian Gorenstein rings; using the Generalized

Auslander-Bridger Formula (Corollary 4.2.2) we are able to show the following rela-

tionships for quasi-local rings:

Coherent Regular ⇒ Coherent Gorenstein ⇒ Cohen-Macaulay.

A local Noetherian Gorenstein ring is characterized by having finite injective di-

mension. In an attempt to generalize this behavior to non-Noetherian rings, we

introduce Stenström’s [26] FP -injective dimension in Section 2.4; in Section 5.3 we

find a relationship between coherent Gorenstein rings and FP -injective dimension.
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This connection lends more credence to our definition of Gorenstein rings.

In the Noetherian case there are numerous other characterizations of Gorenstein

rings; Chapter 6 contains preliminary results for an additional characterization. This

characterization combines the approaches of FP -injective dimension with BE(R)-

modules. While this approach yields some results, it does not form as strong a theory

as the one given in Chapter 5.
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Chapter 2

Background

Throughout this work, rings are commutative and contain a multiplicative unit. The

presence of Noetherian rings will always be explicitly stated. If a Noetherian ring

has a unique maximal ideal the ring is called local ; if the ring is not necessarily

Noetherian, the terminology quasi-local will be used.

2.1 Coherent Rings and Modules

The notion of coherence plays an important part in the theory of non-Noetherian

Cohen-Macaulay and Gorenstein rings. This section will give an overview of coherence

and introduce the properties that help link Gorenstein and Cohen-Macaulay rings.

The definition of coherent modules relies on the notion of finitely presented mod-

ules. Given a ring R, an R-module M is finitely presented if there is an exact sequence

Rn → Rm →M → 0 for positive integers n and m.

Definition 2.1.1. Let R be a ring. An R-module M is coherent if M is finitely

generated and every finitely generated submodule is finitely presented.
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Subsequently a ring R is coherent if it is coherent as an R-module; thus every

finitely generated ideal of a coherent ring is finitely presented. Noetherian rings

themselves are coherent.

This definition of coherence can be, at times, unwieldy to work with. The following

result of Chase [8] provides alternate characterizations of coherent rings that will

become useful in Chapter 5.

Before we begin, recall the annihilator of an ideal I of a ring R is defined by

(0 :R I) = {r ∈ R|rI = 0}.

Theorem 2.1.2. The following conditions are equivalent for a ring R.

(i) R is a coherent ring.

(ii) Every finitely presented R-module is a coherent module.

(iii) (0 :R r) is a finitely generated ideal for every element r ∈ R. In addition, the

intersection of any two finitely generated ideals of R is finitely generated.

Proof. See the proof of Theorem 2.3.2 of [12].

With these characterizations of coherence in hand, we next consider change of

ring results for coherent rings and modules.

Theorem 2.1.3. [16], [17] If R is a coherent ring and S is an R-algebra that is

finitely presented as an R-module, then S is a coherent ring.

Proof. Similar to the proof of Theorem 2.4.1 in [12].

Theorem 2.1.4. [16], [17] Given a ring R and an ideal I of R,

(i) If M is a finitely presented R-module, then M/IM is a finitely presented R/I-

module.
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(ii) If I is finitely generated and M is an R/I-module, then M is a finitely presented

R-module if and only if M is a finitely presented R/I-module.

Proof. See the proof of Theorem 2.1.8 in [12].

Theorem 2.1.5. [12, Theorem 2.2.6] Let R be a ring and U a multiplicatively closed

subset of R. If M is a coherent R-module, then MU is a coherent RU -module.

From Theorem 2.1.5 it follows immediately that if R is a coherent ring, then RU

is a coherent ring.

Starting in Chapter 3 we will consider homological dimensions over coherent rings.

The following results are very useful in this context.

Theorem 2.1.6. [12, Theorem 2.5.1] Let R be a coherent ring and

0 → L→M → N → 0 be an exact sequence of R-modules. If any two of the modules

are finitely presented, then so is the third.

This leads to a characterization of finitely presented modules in a coherent ring

closely related to the BE(R)-modules introduced later in this chapter.

Corollary 2.1.7. [12, Corollary 2.5.2] If R is a coherent ring and M a finitely

presented R-module, then M admits a resolution of finitely generated free modules

· · · → F1 → F0 →M → 0.

Corollary 2.1.8. [12, Corollaries 2.2.5 and 2.5.3] If R is coherent ring, and M and

N are coherent R-modules, then the following modules are coherent:

(i) TorRn (M,N) for n ≥ 0, and

(ii) ExtnR(M,N) for n ≥ 0.
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The final result of this section does not require R to be coherent, but will be used

frequently while working with finitely presented modules over coherent rings.

Theorem 2.1.9. [7] Let R be a ring and S a flat R-algebra. Given R-modules M

and N where M admits a resolution of finitely generated free modules,

ExtnR(M,N)⊗R S ∼= ExtnS(M ⊗R S,N ⊗R S)

for all n ≥ 0. In particular, this implies that localization commutes with Ext .

2.2 Polynomial Grade

The classical notion of grade has been extended to the non-Noetherian setting through

the work of Hochster, Northcott [24] and Alfonsi [1]. This extension relies upon the

addition of indeterminates to a ring to force the existence of non-zero-divisors in

situations where they must exist if the ring were Noetherian. In the Noetherian case

gradeR(I,M) > 0 for any finitely generated module M if and only if (0 :M I) = 0.

However, there are examples of non-Noetherian rings where this is not the case (see

[15] or [27]). Extending to polynomial rings fixes this incongruity; the following result

forms the basis of polynomial grade.

Theorem 2.2.1. [24, Chapter 5, Theorem 7] Let R be a ring,

f = anx
n + . . . a1x + a0 ∈ R[x] and set I = (a0, . . . , an)R. Then (0 :R I) = 0 if and

only if f is a non-zero-divisor on R[x].

The polynomial grade of an ideal I on an R-module M is defined by

p-gradeR(I,M) := lim
m→∞

gradeR[t1,...,tm](IR[t1, . . . , tm], R[t1, . . . , tm]⊗RM).
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If (R,m) is a quasi-local ring, the polynomial depth of M is

p-depthRM := p-gradeR(m,M).

Remark 2.2.2. Given a finitely generated ideal I = (x1, . . . , xn) and an R-module

M , gradeR(I,M) ≤ n. Hence p-gradeR(I,M) ≤ n < ∞ via the definition given

above.

The following proposition summarizes some results about polynomial grade that

will be used throughout this work.

Proposition 2.2.3. Let R be a ring, I an ideal, and M an R-module.

(i) If there exists an exact sequence Fn → Fn−1 → · · · → F0 → R/I → 0 with

the Fi finitely generated free modules, then p-gradeR(I,M) ≥ n if and only if

ExtiR(R/I,M) = 0 for 0 ≤ i < n.

(ii) p-gradeR(I,M) = p-gradeR(p,M) for some prime ideal p containing I. In

particular, p-gradeR(I,M) = p-gradeR(
√
I,M).

(iii) p-gradeR(I,M) = sup{p-gradeR(J,M)|J ⊆ I, J a finitely generated ideal}.

(iv) If M =
n⊕
i=1

Mn, where the Mj are R-modules, then

p-gradeR(I,M) = min
1≤i≤n

{p-gradeR(I,Mi)}.

(v) If I is finitely presented and S is a faithfully flat extension of R, then

p-gradeR(I,M) = p-gradeS(IS,M ⊗R S).

(vi) Given an indeterminate x over R, p-gradeR(I,M) > 0 if and only if

gradeR[x](IR[x],M [x]) > 0.
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(vii) If x = x1, . . . , xn ∈ I form an M-regular sequence, then

p-gradeR(I,M) = p-gradeR(I,M/(x1, . . . , xn)M) + n

= p-gradeR/(x)((I + (x))/(x),M/(x)M) + n.

Proof. The proof of (i) can be found in [12], Theorem 7.1.2 and is related to the

results in [1]. The proofs of parts (iii) and (iv) can be found in Chapter 5 of [24];

(v) follows from the remark following Theorem 7.18 in [12]. Part (vi) is a partial

restatement of Chapter 5, Theorem 7 in [24]. The proof of the first equality in (vii)

can be found in Chapter 5, Theorem 15 of [24]. The second equality holds since for

J = (x1, . . . , xn) an ideal of R, in terms of classical grade the following holds for all

n since J [y1, . . . , yn] ⊂ AnnR[y1,...,yn]R[y1, . . . , yn]⊗RM/JM .

gradeR[y1,...,yn](IR[y1, . . . , yn], R[y1, . . . , yn]⊗RM/JM)

= gradeR[y1,...,yn]/J [y1,...,yn]

(
(I + J)R[y1, . . . , yn]

J [y1, . . . , yn]
, R[y1, . . . , yn]⊗RM/JM

)
= grade(R/J)[y1,...,yn]

((
I + J

J

)
(R/J)[y1, . . . , yn], (R/J)[y1, . . . , yn]⊗R/J M/JM

)
.

Taking limits over n the second equality on p-grade holds.

There is also a relationship between the p-depth of modules in a short exact

sequence.

Lemma 2.2.4. [24, Chapter 5, Lemma 13] Let R be a quasi-local ring and let

0 → M1 → M2 → M3 → 0 be a short exact sequence of R-modules contained in

[FP ]R∞. If p-depthRM2 > p-depthRM3, then p-depthRM1 = p-depthRM3 + 1.

Proof. Set p-depthRM2 = m and p-depthRM3 = n. For a finitely generated ideal I,
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apply HomR(R/I,−) to the short exact sequence to obtain the long exact sequence

· · · → ExtiR(R/I,M2) → ExtiR(R/I,M3) → Exti+1
R (R/I,M1)

→ Exti+1
R (R/I,M2) → · · · .

Since Exti+1
R (R/I,M2) = 0 and ExtiR(M3, R) = 0 for all i < n by Proposition

2.2.3(i), we have 0 = ExtiR(R/I,M3) ∼= Exti+1
R (R/I,M1) for all i < n. Further-

more, 0 → ExtnR(R/I,M3) → Extn+1
R (R/I,M1) is exact, so Extn+1

R (R/I,M1) 6= 0.

Hence p-depthRM1 = n+ 1.

2.3 Non-Noetherian Regular and

Cohen-Macaulay Rings

A Noetherian local ring is regular if every ideal of R has finite projective dimension.

A Noetherian ring is regular if each of its localizations at a prime ideal is regular.

This characterization was extended by Bertin [4] to the non-Noetherian case.

Definition 2.3.1. A quasi-local ring R is regular if every finitely generated ideal of

R has finite projective dimension. In general, a ring R is regular if Rp is regular for

all p ∈ Spec R.

Hamilton and Marley based their definition of non-Noetherian Cohen-Macaulay

rings on the following characterization of Cohen-Macaulay:

Theorem 2.3.2. A Noetherian ring R is Cohen-Macaulay if every sequence

x = x1, . . . , xn such that ht(x)R = n is regular.

Hamilton and Marley looked to a generalization of (partial) system of parameters,

called parameter sequences, as a substitute for the role of height in Theorem 2.3.2.
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The definition of parameter sequences incorporates the notion of weakly proregular

sequences, as defined by Schenzel [25]. Let x = x1, . . . , xt be a sequence of elements

of R and define xn = xn1 , . . . , x
n
t . The Koszul complex K(x) is defined to be the

chain complex K(x1) ⊗R · · · ⊗R K(xt) where for each i, K(xi) is the Koszul chain

complex 0 → R
xi→ R→ 0 (where the first R sits in degree one). Denote H(x) to be

the homology of K(x). Given m ≥ n there exist chain maps φmn : K(xm) → K(xn)

given by φmn (x) = φmn (x1)⊗R · · · ⊗R φ
m
n (xt) where for each i, φmn (xi) is the chain map

between Koszul complexes

0 // R
xm

i //

xm−n
i

��

R // 0

0 // R
xn

i // R // 0.

A sequence x = x1, . . . , xt is weakly proregular if for each n there is an m ≥ n such

that the canonical map φ : Hi(x
m) → Hi(x

n) is zero for all i ≥ 1. An element x is

weakly proregular if and only if there exists k > 0 for which (0 :R x
k) = (0 :R x

k+1).

In a Noetherian ring, every sequence is a weakly proregular sequence.

If I = (x1, . . . , xn)R, the ith local cohomology of a module M is defined to be:

H i
I(M) := lim−→ ExtiR(R/In,M).

For a sequence of elements x = x1, . . . , xn, let C(x) denote the C̆ech complex with

respect to x, and set C(x;M) := C(x)⊗RM. The ith C̆ech cohomology H i
x(M) of M

with respect to x is the ith cohomology of C(x;M). By [25], x is a weakly proregular

sequence if and only if H i
I(M) ∼= H i

x(M) for all i and R-modules M, where I = (x).

Definition 2.3.3. [15] A sequence x = x1, . . . , xn is a parameter sequence if the

following hold:
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(i) x is weakly proregular.

(ii) (x)R 6= R.

(iii) Hn
x (R)p 6= 0 for all prime ideals p containing (x)R.

Furthermore, x is a strong parameter sequence if x1, . . . , xi is a parameter sequence

for each i = 1, . . . , n.

This construction leads to a definition of Cohen-Macaulay rings.

Definition 2.3.4. [15] A ring R is Cohen-Macaulay if every strong parameter se-

quence is regular. We say R is locally Cohen-Macaulay if Rp is Cohen-Macaulay for

all p ∈ Spec R.

This definition is equivalent to Theorem 2.3.2 if R is a Noetherian ring. Using

coherence, Hamilton and Marley obtained the following result.

Theorem 2.3.5. Coherent regular rings are locally Cohen-Macaulay.

In [15] it is shown that under this definition of Cohen-Macaulay some, but not all,

of the standard properties of Noetherian Cohen-Macaulay rings hold in the coherent

case. For instance, given a faithfully flat ring homomorphism f : R → S, if S is

Cohen-Macaulay, then so is R. Also if all localizations of a ring at its maximal ideals

are Cohen-Macaulay, then the ring itself is Cohen-Macaulay. However it is unknown

whether the converse holds. In addition, there are examples of Cohen-Macaulay rings

R such that R/(x) is not Cohen-Macaulay for some regular element x (see [15]).

2.4 FP -Injective Dimension

FP -injective modules were introduced by Stenström [26] and comprise a class of

which the class of injective modules is a subclass. While in the Noetherian case
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FP -injective and injective modules coincide, this does not hold in general for non-

Noetherian rings. To define FP -injective modules, consider a diagram similar to that

of injective modules. An R-module M is FP -injective if for any free R-module F

and a finitely generated F -submodule I, and given the inclusion φ : I → F and a

homomorphism α : I →M ,

M

0 // I

α

OO

φ
// F

f
``AAAAAAAA

there is a homomorphism f such that α = fφ. In some works FP -injective modules

are also referred to as absolutely pure modules.

Bass [3] proved that a ring R is Noetherian if and only if an arbitrary direct sum

of injective modules is injective. It turns out that over any ring an arbitrary direct

sum of FP -injective modules is FP -injective:

Proposition 2.4.1. [22] Let R be a ring, and {Mi} be a finite or infinite family of

FP -injective R-modules. Then the following are equivalent.

(i) Mi is FP -injective for all i.

(ii) ⊕
i
Mi is FP -injective for all i.

(iii)
∏
i

Mi is FP -injective for all i.

Using Bass’ result and Proposition 2.4.1 one sees that in any non-Noetherian ring

the classes of injective and FP -injective modules are not the same.

The definition of FP -injective modules given above can naturally be rephrased

in terms of the vanishing of Ext modules. This characterization leads to a natural

definition of FP -injective dimension.

Remark 2.4.2. Stenström [26] defines FP -injective modules in the following manner:
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An R-module M is FP -injective if Ext1
R(F,M) = 0 for every finitely presented

R-module F.

This definition is equivalent to the one presented at the beginning of this section.

Throughout this work we will use Stenström’s definition when talking about FP -

injective modules.

Definition 2.4.3. [26] An R-module M has FP -injective dimension at most n, de-

noted FP-idRM ≤ n, if Extn+1
R (F,M) = 0 for all finitely presented R-modules F.

We have the following characterizations of FP -injective dimension in the coherent

case.

Lemma 2.4.4. [26, Lemma 1.3] Let R be a coherent ring. For an R-module M , the

following are equivalent:

(i) FP-idRM ≤ n.

(ii) Extn+1
R (F,M) = 0 for all finitely presented modules F.

(iii) Extn+1
R (R/I,M) = 0 for all finitely generated ideals I.

(iv) If the sequence 0 → M → E0 → · · · → En → 0 is exact with E0, . . . , En−1

FP -injective, then En is also FP -injective.

A ring is FP -injective if it is FP -injective as a module over itself. Given an

R-module M , let M∗ := HomR(M,R). The next result shows that in a coherent

FP -injective ring every finitely presented module is reflexive.

Proposition 2.4.5. [26, Theorem 4.8] If R is a FP -injective coherent ring, for every

finitely presented R-module M , M ∼= M∗∗ via the canonical map.

In the following we explore some additional properties of FP -injective rings. The

next lemma, found in [19], holds for any ring.
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Lemma 2.4.6. [19, Theorem 1] Let R be a ring. The following conditions are equiv-

alent:

(i) Every homomorphism from a principal ideal of R into R is given by multiplica-

tion by an element in R.

(ii) If (a) is a principal ideal of R, then (0 :R (0 :R (a))) = (a).

Lemma 2.4.7 and Proposition 2.4.8 are both attributed to [19] by [26]. The proofs

are provided as they are not explicitly found in [19].

Lemma 2.4.7. Let R be a ring. R is FP -injective if and only if for every finitely

generated ideal I, every R-homomorphism I → R is multiplication by an element

r ∈ R.

Proof. Let I be a finitely generated ideal, and consider the short exact sequence

0 → I
φ→ R→ R/I → 0.

Applying HomR(−, R) we have the exact sequence

0 → HomR(R/I,R) → HomR(R,R)
φ∗→ HomR(I, R) → Ext1

R(R/I,R) → 0.

If R is FP -injective, then Ext1
R(R/I,R) = 0 and φ∗ is onto. As every map in

HomR(R,R) ∼= R is given by multiplication by an element in R, and φ∗ is a re-

striction map, every map φ : I → R is given by multiplication by an element in

R.

Conversely, assume every map in HomR(I, R) is given by multiplication in R.

Then φ∗ is onto, so by exactness Ext1
R(R/I,R) = 0 and R is FP -injective.

Proposition 2.4.8. [19] A ring R is FP -injective if and only if
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(i) (0 :R (0 :R (a))) = (a) for every a ∈ R, and

(ii) (0 :R I) + (0 :R J) = (0 :R I ∩ J) for all finitely generated ideals I and J .

Proof. If R is FP -injective, (i) holds by Lemmas 2.4.6 and 2.4.7. Consider the short

exact sequence

0 → R/(I ∩ J)
φ→ R/I ⊕R/J → R/(I + J) → 0

where φ(r + (I ∩ J)) = (r + I,−r + J), r ∈ R. Then we have the exact sequence

HomR(R/I,R)⊕ HomR(R/J,R)
φ∗→ HomR(R/(I ∩ J), R) → Ext1

R(R/(I + J), R)

(2.4.1)

where given the projections π1 : R/I ⊕ R/J → R/I and π2 : R/I ⊕ R/J → R/J , we

have φ∗(f, g) = fπ1φ + gπ2φ. Note Ext1
R(R/(I + J), R) = 0 since R is FP -injective

and I + J is finitely generated. However (2.4.1) is chain isomorphic to

(0 :R I)⊕ (0 :R J)
α→ (0 :R I ∩ J) → 0

where α(r, s) = r + s. Note (0 :R I) + (0 :R J) ⊆ (0 :R I ∩ J); since α is a surjection,

(0 :R I) + (0 :R J) = (0 :R I ∩ J). Hence (ii) holds.

Conversely, assume (i) and (ii) hold. Let I be a finitely generated ideal of R; we

proceed by induction on the number of generators of I to show R is FP -injective.

Consider the short exact sequence 0 → I → R→ R/I → 0. Assume first that I = (a)

is a principal ideal. Applying HomR(−, R) we get the exact sequence

R
φ→ HomR(I, R) → Ext1

R(R/I,R) → 0.
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By Lemma 2.4.6, every element of HomR(I, R) is given by multiplication by an ele-

ment in R. Hence φ is surjective and by exactness Ext1
R(R/I,R) = 0 for I principal.

Assume that I = (x1, . . . xn) = (x1, . . . , xn−1) + (xn). Consider the exact sequence

0 → R/((x1, . . . , xn−1) ∩ (xn)) → R/(x1, . . . , xn−1)⊕R/(xn) → R/I → 0. (2.4.2)

By induction Ext1
R(R/(x1, . . . , xn−1), R) = Ext1

R(R/(xn), R) = 0; thus applying

HomR(−, R) to (2.4.2) yields the exact sequence

HomR(R/(x1, . . . , xn−1), R)⊕ HomR(R/(xn), R)

θ→ Hom(R/((x1, . . . , xn) ∩ (xn)), R) → Ext1
R(R/I,R) → 0.

(2.4.3)

However (2.4.3) is chain isomorphic to

0 → (0 :R (x1, . . . , xn−1))⊕ (0 :R xn)
θ→ (0 :R (x1, . . . , xn−1) ∩ (xn))

→ Ext1
R(R/I,R) → 0,

so by (ii), θ is surjective. By exactness Ext1
R(R/I,R) = 0 for all finitely generated I.

Thus by definition R is FP -injective.

Given an ideal I of a ring R, we say I is irreducible if it cannot be written as

I = J ∩K with J 6= I and K 6= I. The previous results reveal the following property

of quasi-local FP -injective rings.

Proposition 2.4.9. If (R,m) is a quasi-local FP -injective ring, then (0) is irre-

ducible.

Proof. By Proposition 2.4.8, if R is FP -injective, then (0 :R I)+(0 :R J) = (0 :R I∩J)

for all finitely generated ideals I and J.
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Let I and J be non-zero finitely generated ideals of R, and assume that I∩J = (0).

But then

(0 :R I) + (0 :R J) = (0 :R I ∩ J) = R. (2.4.4)

Note that (0 :R I) and (0 :R J) 6= R as I, J 6= 0. Hence (0 :R I) and (0 :R J) ⊂ m.

From (2.4.4), there exist x ∈ (0 :R I) and y ∈ (0 :R J) such that x + y = 1. But this

implies x = 1− y is a unit, contradicting x ∈ m and I 6= 0. Hence I ∩ J 6= (0).

In general, let I and J be arbitrary non-zero ideals of R. Since I ∩ J = (0), then

there exist elements x ∈ I \J and y ∈ J \I. By the previous argument, (x)∩(y) 6= (0)

implying I ∩ J 6= (0). Hence (0) is irreducible in R.

2.5 [FP ]R∞- and BE(R)-Modules

Using the notation of Bieri [5], for possibly infinite n, an R-module M is of type

(FP )Rn if there is a projective resolution P of M of length n such that each Pi is

finitely generated. Equivalently, M has a free resolution F of length n such that each

Fi is finitely generated. Define [FP ]Rn to be the class of modules of type (FP )Rn .

The focus of this section lies primarily with the properties of [FP ]R∞-modules,

however a few results will appear in terms of [FP ]Rn -modules. Since modules of

type (FP )R0 are the finitely generated modules, modules of type (FP )R∞ are clearly

both finitely generated and finitely presented; in addition, we have the following

characteristics of [FP ]R∞-modules.

Theorem 2.5.1. [5, Corollary 1.6] The following are equivalent for an R-module M :

(i) M is of type (FP )R∞.

(ii) ExtiR(M,−) commutes with direct limits for all i ≥ 0.
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(iii) lim−→ExtiR(M,Nt) = 0 for all i ≥ 0 and all directed systems {Nt} of R-modules

with lim−→Nt = 0.

The following corollary extends a result of Bieri [5].

Corollary 2.5.2. Suppose M ∈ [FP ]R∞. For i ≥ 0, the following are equivalent.

(i) ExtiR(M,R) = 0.

(ii) ExtiR(M,Q) = 0 for all projective modules Q.

(iii) ExtiR(M,T ) = 0 for all flat modules T.

Proof. The implications (iii) ⇒ (ii) ⇒ (i) are clear; it remains to show (i) ⇒ (iii).

Note that if F ∼= Rn, then ExtiR(M,F ) ∼=
n
⊕
i=1

ExtiR(M,R) = 0. By [21], T = lim−→Fi for

Fi finitely generated free. Thus by Theorem 2.5.1(iii),

ExtiR(M,T ) = lim−→ExtiR(M,Fi) = 0.

Proposition 2.5.3. [5, Proposition 1.4] Let 0 → M ′ → M → M ′′ → 0 be a short

exact sequence of R-modules. Then the following hold:

(i) If M ′ ∈ [FP ]Rn−1 and M ∈ [FP ]Rn , then M ′′ ∈ [FP ]Rn .

(ii) If M and M ′′ ∈ [FP ]Rn , then M ′ ∈ [FP ]Rn−1.

(iii) If M ′ and M ′′ ∈ [FP ]Rn , then M ∈ [FP ]Rn .

Corollary 2.5.4. [5] Given an exact sequence 0 → M → M ′ → M ′′ → 0 of R-

modules, if any two modules are [FP ]R∞-modules, then so is the third.
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Corollary 2.5.5. Let R be a ring. If M ∈ [FP ]Rn for some possibly infinite n ≥ 1,

then given a presentation

Fn−1 → · · · → F0 →M → 0,

where Fi is a finitely generated free R-module for each i, K = ker(Fn−1 → Fn−2) is

finitely generated.

Proof. Proposition 2.5.3 provides the proof in the case where M ∈ [FP ]R1 . If

M ∈ [FP ]Rn for n > 1, let

Fn−1 → · · · → F0 →M → 0

be a presentation of M by finitely generated free modules Fi. Setting

Ki = ker(Fi → Fi−1), consider the short exact sequences

0 → Kn−1 → Fn−1 → Kn−2 → 0

...

0 → K0 → F0 →M → 0.

By Proposition 2.5.3, Ki ∈ [FP ]Rn−1−i for all 0 ≤ i ≤ n − 1; hence Kn−1 is finitely

generated.

Definition 2.5.6. Given a ring R, define BE(R) to be the class of R-modules M

such that M and ExtiR(M,R) ∈ [FP ]R∞ for all i ≥ 0.

All finitely presented modules M in a coherent ring are contained in BE(R) by

Corollaries 2.1.7 and 2.1.8. This fact will play an important role in the development

of the theory of non-Noetherian Gorenstein rings.



23

Chapter 3

Gorenstein Dimension

3.1 G̃(R) and G̃-dimension

The following class of modules plays an important role in the proof of the generalized

Auslander-Bridger Formula in Chapter 4. In the following, given a ring R and an

R-module M , define M∗ := HomR(M,R).

Definition 3.1.1. Given a ring R, G̃(R) denotes the class of R-modules M such that

(i) M and M∗ ∈ [FP ]R∞.

(ii) ExtiR(M,R) = 0 for all i > 0.

(iii) ExtiR(M∗, R) = 0 for all i > 0.

(iv) The canonical map M →M∗∗ is an isomorphism.

Remark 3.1.2. From the definition, we have the following results concerning G̃(R)-

modules.

(i) Finitely generated free R-modules are contained in G̃(R).
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(ii) A⊕B ∈ G̃(R) if and only if A,B ∈ G̃(R).

(iii) Finitely generated projective modules are contained in G̃(R).

(iv) If M ∈ G̃(R), then M∗ ∈ G̃(R).

Proof. (i) follows directly from Definition 3.1.1. Notice that (ii) holds via the isomor-

phism

ExtiR(A⊕B,R) ∼= ExtiR(A,R)⊕ ExtiR(B,R)

for all i ≥ 0. Since any finitely generated projective module P can be written as the

direct summand of a finitely generated free module, (i) and (ii) imply (iii). Finally,

if M ∈ G̃(R), then M ∼= M∗∗ and (iv) follows immediately.

Proposition 3.1.3. Let R be a ring and 0 → L→M → N → 0 be an exact sequence

of R-modules with N ∈ G̃(R). Then M ∈ G̃(R) if and only if L ∈ G̃(R).

Proof. This is similar to the proof of [9] Lemma 1.1.10(a).

Applying HomR(−, R) we obtain the long exact sequence

0 → N∗ →M∗ → L∗ → Ext1
R(N,R) → · · ·

· · · → ExtiR(N,R) → ExtiR(M,R) → ExtiR(L,R) → · · · .

Since N ∈ G̃(R), ExtiR(N,R) = 0 for all i > 0, yielding the short exact sequence

0 → N∗ →M∗ → L∗ → 0 (3.1.1)

and ExtiR(M,R) ∼= ExtiR(L,R) for all i ≥ 1. Applying HomR(−, R) to (3.1.1) yields
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the diagram with exact rows

0 // L //

δL
��

M //

δM
��

N //

δN ∼=
��

0

0 // L∗∗ // M∗∗ // N∗∗.

If either L or M ∈ G̃(R), then Ext1
R(M,R) ∼= Ext1

R(L,R) = 0, and thus

0 → L∗∗ →M∗∗ → N∗∗ → 0 (3.1.2)

is exact. By the Snake Lemma, δL is an isomorphism if and only if δM is an isomor-

phism. Applying HomR(−, R) to (3.1.1), along with the exactness of (3.1.2), yields a

long exact sequence that also shows that ExtiR(L∗, R) ∼= ExtiR(M∗, R) for all i > 0.

Finally, Corollary 2.5.4 combined with (3.1.1) and our original sequence shows that

L ∈ [FP ]R∞ if and only ifM ∈ [FP ]R∞, and L∗ ∈ [FP ]R∞ if and only ifM∗ ∈ [FP ]R∞.

Remark 3.1.4. Let R be a ring and M be an R-module. Then M ∈ [FP ]R∞ if and

only if there is an exact sequence

· · · → Gi → Gi−1 → · · · → G0 →M → 0

where Gi ∈ G̃(R) for all i.

Proof. If M ∈ [FP ]R∞, then F has an infinite resolution by finitely generated free

modules, which themselves are also in G̃(R). Conversely, assume M has an infinite

resolution

· · · → Gi → Gi−1 → · · · → G0 →M → 0

by modules Gi ∈ G̃(R). Then M is clearly finitely generated, that is, M ∈ [FP ]R0 .

Assume that any such M is contained in [FP ]Rn−1 for some n. Set K = ker(G0 →M).
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Then the sequences

0 → K → G0 →M → 0

and

· · · → G2 → G1 → K → 0

are exact.

By induction, K ∈ [FP ]Rn−1. Since G0 ∈ [FP ]R∞, then M ∈ [FP ]Rn by Proposition

2.5.3.

Definition 3.1.5. A G̃-resolution of an R-module M is a complex G̃

· · · → Gi → Gi−1 → · · · → G1 → G0 → 0

such that each Gi ∈ G̃(R), Hi(G̃) = 0 for i > 0 and H0(G̃) = M.

Definition 3.1.6. Let M ∈ [FP ]R∞ be a nonzero R-module. Define the G̃-dimension

of M , denoted G̃-dimRM , to be

G̃-dimRM = inf{n|0 → Gn → · · · → G0 →M → 0 is a G̃-resolution of M}.

If M has no finite G̃-resolution, G̃-dimRM = ∞.

Lemma 3.1.7. Let R be a ring and M be an R-module with G̃-dimRM <∞. If

ExtiR(M,R) = 0 for all i > 0, then M ∈ G̃(R).

Proof. The proof of this result is analogous to Lemma 1.2.6 in [9].

Assume G̃-dimRM ≤ 1; then there is an exact sequence

0 → G1 → G0 →M → 0,



27

where G0, G1 ∈ G̃(R). Applying HomR(−, R) we obtain the exact sequence

0 →M∗ → G∗0 → G∗1 → 0

since Ext1
R(M,R) = 0. Note that M∗ ∈ [FP ]R∞ by Corollary 2.5.4. Since G∗1 and

G∗0 ∈ G̃(R), the sequence

0 → G∗∗1 → G∗∗0 →M∗∗ → 0

is exact, and shows ExtmR (M∗, R) = 0 for all m > 0. Hence we have the diagram

0 // G1

∼=
��

// G0
//

∼=
��

M //

��

0

0 // G∗∗1 // G∗∗0 // M∗∗ // 0,

and thus M ∼= M∗∗ via the Five Lemma. Hence M ∈ G̃(R).

For n > 1 assume G̃-dimRM ≤ n, and consider the G̃-resolution

0 → Gn → Gn−1 → · · · → G1 → G0 →M → 0.

Setting Kn−1 = ker(Gn−2 → Gn−3) we see that Kn−1 ∈ [FP ]R∞ and G̃-dimRKn−1 ≤ 1

as we have the short exact sequence

0 → Gn → Gn−1 → Kn−1 → 0

Using the fact that ExtmR (Kn−1, R) ∼= ExtmR (Kn−2, R) and iterating along the Ki, we

see that ExtmR (Kn−1, R) ∼= Extn+m−1
R (M,R) = 0 for all m > 0, so Kn−1 ∈ G̃(R). Thus
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the exact sequence

0 → Kn−1 → Gn−2 → · · · → G1 → G0 →M → 0

yields G̃-dimRM ≤ n− 1, and thus by induction M ∈ G̃(R).

The following result provides additional characterizations of G̃-dimension, and is

an adaptation of Theorem 1.2.7 in [9].

Theorem 3.1.8. Let R be a ring and M ∈ [FP ]R∞. The following are equivalent

(i) G̃-dimRM ≤ n.

(ii) G̃-dimRM <∞ and ExtiR(M,R) = 0 for all i > n.

(iii) G̃-dimRM <∞ and ExtiR(M,Q) = 0 for m > n and any flat module Q.

(iv) In any G̃-resolution of M

· · · → Gn → Gn−1 → · · · → G0 → 0,

the kernel K = ker(Gn−1 → Gn−2) is in G̃(R).

Thus if G̃-dimRM <∞, then

G̃-dimRM = sup{n ∈ N|ExtnR(M,R) 6= 0}.

Proof. The following is an adaptation of Theorem 1.2.7 in [9].

Notice that once (i) ⇔ (ii) is established the final equality holds. Also notice that

(iii) is equivalent to (ii) via an application of Corollary 2.5.2.

If n = 0, the four conditions are equivalent by definition and Lemma 3.1.7.
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Assume n > 0.

(i) ⇒ (ii): If G̃-dimRM ≤ n then M has a G̃-resolution

0 → Gn → · · · → G1 → G0 →M → 0.

By applying HomR(−, R) to the short exact sequences formed by the kernels, we have

Extm+n
R (M,R) ∼= ExtmR (Gn, R) = 0 for m > 0, that is, ExtnR(M,R) = 0 for all n > m.

(ii) ⇒ (i): M has a finite length G̃-resolution:

0 → G` → · · · → G1 → G0 →M → 0.

If ` ≤ n, we are done; assume ` > n. Set K = ker(Gn−1 → Gn−2) and consider the

exact sequence

0 → K → Gn−1 → · · · → G1 → G0 →M → 0

where K ∈ [FP ]R∞ and G̃-dimRK ≤ `− n. As above, we also have

ExtmR (K,R) ∼= Extm+n
R (M,R) = 0 for m > 0. Hence by Lemma 3.1.7, K ∈ G̃(R) and

M has a G̃-resolution of length n.

(i) ⇔ (iv): As (iv) ⇒ (i) is obvious, assume G̃-dimRM ≤ n, so there is a G̃-

resolution of length n:

0 → Gn → · · ·G1 → G0 → 0.

It is sufficient to show that if

0 → Hn → Pn−1 → · · · → P0 →M → 0

0 → Kn → Gn−1 → · · · → G0 →M → 0

are exact sequences with the Pi finitely generated projective and the Gi ∈ G̃(R), then
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Hn ∈ G̃(R) if and only if Kn ∈ G̃(R) is as well. As the Pi are projective there exist

fn, . . . , f0

P : 0 // Hn
//

fn

��

Pn−1
//

fn−1

��

· · · // P0
//

f0
��

0

G : 0 // Kn
// Gn−1

// · · · // G0
// 0

such that f is a chain map between the complexes P and G lifting the identity map

H0(P ) → H0(G). Let C be the mapping cone of f . From the short exact sequence

of complexes

0 → G → C → P[−1] → 0

we get the exact sequence

· · · → Hi(G) → Hi(C) → Hi−1(P) → Hi−1(G) → · · · .

The map from Hi(P) to Hi(G) is the map on homology induced by f . In particular,

the map H0(P) = M → H0(G) = M is the identity map, as f0 is a lifting of the

identity map on M . Placing this in the long exact sequence above and using that

Hi(P) = Hi(G) = 0 for all i > 0, one gets that Hi(C) = 0 for all i. Hence the

mapping cone is exact.

Recall the mapping cone is as follows:

0 → Hn → Kn ⊕ Pn−1 → Gn−1 ⊕ Pn−2 → · · · → G1 ⊕ P0 → G0 → 0.

By Remark 3.1.2 each Gi ⊕ Pi−1 ∈ G̃(R). Repeated applications of Proposition 3.1.3

yields that Hn ∈ G̃(R) if and only if Kn ⊕ Pn−1 ∈ G̃(R). So again by Remark 3.1.2,

Hn ∈ G̃(R) if and only if Kn ∈ G̃(R).

Corollary 3.1.9. Let R be a ring and 0 → M → G → N → 0 be a short exact
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sequence of R-modules such that G ∈ G̃(R) and N,M ∈ [FP ]R∞.

(i) If N ∈ G̃(R), then so is M .

(ii) If N 6∈ G̃(R), then G̃-dimRM = G̃-dimRN − 1.

Proof. (i) follows immediately from Proposition 3.1.3.

To prove (ii), notice first that any G̃-resolution of M of length n results in a G̃-

resolution of N of length n+ 1. Hence if G̃-dimRM <∞, then G̃-dimRN <∞. On

the other hand, if G̃-dimRN = n <∞, consider the resolution

· · · → Gn−1 → Gn−2 → · · · → G0 →M → 0

of M , where Gi ∈ G̃(R) for all i. Then

· · · → Gn−1 → Gn−2 → · · · → G0 → G→ N → 0

is a G̃-resolution of N . By Theorem 3.1.8(iv), K = ker(Gn−2 → Gn−3) is contained

in G̃(R). Thus the sequence

0 → K → Gn−2 → · · · → G0 →M → 0

is exact and G̃-dimRM < ∞. Hence G̃-dimRM and G̃-dimRN must be simultane-

ously finite; in particular if one is infinite, the equality holds.

Assume G̃-dimRN <∞ (and hence G̃-dimRM <∞). Apply HomR(−, R) to the

short exact sequence to get

0 → N∗ → G∗ →M∗ → Ext1
R(N,R) → 0 → Ext1

R(M,R) → Ext2
R(N,R) → 0 → · · · .
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Thus ExtiR(M,R) ∼= Exti+1
R (N,R) for all i > 0, and by Theorem 3.1.8

G̃-dimRM = G̃-dimRN − 1.

Proposition 3.1.10. Let R be a ring and 0 → L → M → N → 0 be an exact

sequence of R-modules contained in [FP ]R∞.

(i) If G̃-dimR L ≤ n and G̃-dimRN ≤ n, then G̃-dimRM ≤ n.

(ii) If G̃-dimRM ≤ n and G̃-dimRN ≤ n, then G̃-dimRM ≤ n.

(iii) If G̃-dimR L ≤ n and G̃-dimRM ≤ n, then G̃-dimRN ≤ n+ 1.

In particular, if any two of the modules has finite G̃-dimension, then so does the third.

Proof. To prove (i), let (F, φ) and (F′, φ′) be free-resolutions of L and N , respectively,

consisting of finitely generated free R-modules. By the Horseshoe Lemma, there exists

a free resolution (F′′, φ′′) of M consisting of finitely generated free R-modules such

that the sequence

0 → F → F′′ → F′ → 0

is exact.

Let Kn, K
′
n, and K ′′

n denote the kernels of φn−1, φ
′
n−1, and φ′′n−1, respectively. Then

the sequence

0 → Kn → K ′′
n → K ′

n → 0

is exact. Since G̃-dimR L ≤ n and G̃-dimRN ≤ n, Kn and K ′
n are contained in G̃(R)

by Theorem 3.1.8. Hence K ′′
n ∈ G̃(R) by Proposition 3.1.3, and G̃-dimRM ≤ n.

The proof of (ii) proceeds in a similar way. While the proof of (iii) also begins in

the same manner, once arriving at the short exact sequence

0 → Kn → K ′′
n → K ′

n → 0 (3.1.3)
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we see instead that G̃-dimRK
′
n ≤ 1 as Kn, K

′′
n ∈ G̃(R). Pasting together F′ and

(3.1.3) yields the exact sequence

0 → Kn → K ′′
n → F ′n−1 → · · · → F ′0 → N → 0

Hence G̃-dimRN ≤ n+ 1.

3.2 Gorenstein Dimension

Removing the restrictions placed on G̃(R)-modules M that M and M∗ be in [FP ]R∞

results in a resolving class that forms the basis of Gorenstein dimension. Gorenstein

dimension was originally defined by Auslander and Bridger [2] to characterize Goren-

stein rings in a manner similar to the characterization of regular rings. Instead of

using projective modules to resolve a given module, one uses totally reflexive modules,

which are defined below.

Definition 3.2.1. A finitely generated module M is totally reflexive if and only if

the following conditions hold:

• ExtiR(M,R) = 0 for all i > 0.

• ExtiR(M∗, R) = 0 for all i > 0.

• The canonical map M →M∗∗ is an isomorphism.

Note any finitely generated projective module, as well as any module in G̃(R), is

totally reflexive.

Remark 3.2.2. Note that a totally reflexive R-module M is contained in G̃(R) if

and only if M and M∗ ∈ [FP ]R∞.
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Using totally reflexive modules, one can build a theory of Gorenstein dimension

where totally reflexive modules are the modules of Gorenstein dimension zero.

Definition 3.2.3. A G-resolution of an R-module M is a complex G

· · · → Gt → Gt−1 → · · · → G1 → G0 → 0

such that each Gi is totally reflexive, Hi(G) = 0 for i > 0, and H0(G) ∼= M .

Definition 3.2.4. Given a ring R, suppose the R-module M has a G-resolution. The

Gorenstein dimension, or G-dimension, of an R-module M is defined as follows:

G-dimRM = inf{n|0 → Gn → · · · → G0 →M → 0 is a G-resolution of M}.

If M has no finite G-resolution, G-dimRM = ∞.

Gorenstein projective dimension, an extension of G-dimension developed by

Enochs and Jenda, appears more widely in the literature. Let’s take a look at its

construction.

Definition 3.2.5. An exact resolution of projective modules

P : · · · → P1 → P0 → P 0 → P 1 → · · ·

is a complete projective resolution if HomR(P, Q) is exact for every projective R-

module Q.

Definition 3.2.6. An R-module M is Gorenstein projective if there exists a complete

projective resolution P with M ∼= Im(P0 → P 0).
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It is clear from the definition of Gorenstein projective modules that projective

modules are also Gorenstein projective. Notice that Gorenstein projective modules,

unlike totally reflexive modules, need not be finitely generated.

A chain complex G

0 → Gn → Gn−1 → · · · → G1 → G0 → 0

is a Gorenstein projective resolution of M of length n if each Gi is a Gorenstein

projective R-module, Gn 6= 0, Hi(G) = 0 for all i 6= 0, and H0(G) ∼= M.

Definition 3.2.7. The Gorenstein projective dimension of an R module M is given

by

GpdRM = inf{n|0 → Gn → · · · → G0 →M → 0

is a Gorenstein projective resolution of M}.

If M has no finite Gorenstein projective resolution, GpdRM = ∞.

For finitely generated modules over a Noetherian ring, G-dimension and Goren-

stein projective dimension are equal (Avramov, Buchweitz, Martsinkovsky, and Re-

iten; see remark following Theorem 4.2.6 in [9]). It was shown in [28] that in the case

of BE(R)-modules there is no distinction between these two classes of modules.

Proposition 3.2.8. Let M ∈ BE(R). Then the following are equivalent:

(i) M is Gorenstein projective.

(ii) M is totally reflexive.

(iii) M has a complete projective resolution consisting of finitely generated free mod-

ules.
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Proof. See [28] Lemma 5.3 and Theorem 5.4

Corollary 3.2.9. [28, Corollary 5.5] Let R be a ring. If M ∈ BE(R), then

G-dimRM = GpdRM.

For the remainder of this work, we prefer to use the notation of G-dimension since

we primarily use the properties of Definition 3.2.1 in our proofs.

We now explore the properties of G-dimension that will be used in subsequent

chapters. Some of these results have already appeared in the context of G̃-dimension.

We will frequently use [9] as a reference for the the basic properties of totally reflexive

modules and G-dimension. Throughout [9] the underlying assumption is that R is

Noetherian; however many of these results hold over arbitrary rings. The proof of

these results will appear only if substantial changes are needed for them to hold in

the present context, otherwise the corresponding result in [9] will be cited.

Analogous to Proposition 3.1.3, we have:

Proposition 3.2.10. Let R be a ring and 0 → L → M → N → 0 be an exact

sequence of finitely generated R-modules with N totally reflexive. Then M is totally

reflexive if and only if L is totally reflexive.

Proof. The proof of this result is similar to the proofs of [9] Lemma 1.1.10(a) and

Proposition 3.1.3.

Corollary 3.2.11. Let R be a ring and assume M is a totally reflexive R-module

with G̃-dimRM <∞. Then M ∈ G̃(R).

Proof. Assume G̃-dimRM = n. Then M has a G̃-resolution

0 → Gn → · · · → G0 →M → 0. (3.2.1)
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We may break up (3.2.1) into the short exact sequences

0 → Gn → Gn−1 → Kn−1 → 0

0 → Ki → Gi−1 → Ki−1 → 0, 1 ≤ i ≤ n− 1

0 → K0 → G0 →M → 0.

Iterated applications of Corollary 2.5.4 shows M ∈ [FP ]R∞. Also by repeated ap-

plications of Corollary 3.1.9, Ki is totally reflexive for each 0 ≤ i ≤ n. Applying

HomR(−, R) to the sequences above yields the exact sequences

0 → K∗
n−1 → G∗n−1 → G∗n → 0

0 → K∗
i−1 → G∗i−1 → K∗

i → 0, 1 ≤ i ≤ n− 1

0 →M∗ → G∗0 → K∗
0 → 0,

and applying Corollary 2.5.4 gives M∗ ∈ [FP ]R∞.

A means of measuring G-dimension that will become particularly useful is the

vanishing of Ext-modules.

Lemma 3.2.12. Let R be a ring and M an R-module of finite G-dimension. If

ExtmR (M,R) = 0 for all m > 0, then M is totally reflexive.

Proof. The proof of this result is analogous to Lemma 1.2.6 in [9], as well as Lemma

3.1.7.

Theorem 3.2.13. Let R be a ring and M ∈ [FP ]R∞ be an R-module The following

are equivalent:

(i) G-dimRM ≤ n.
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(ii) G-dimRM <∞ and ExtiR(M,R) = 0 for i > n.

(iii) G-dimRM <∞ and ExtiR(M,Q) = 0 for m > n and any flat module Q.

(iv) In any G-resolution of M

· · · → Gn → Gn−1 → · · · → G0 → 0,

the kernel K = ker(Gn−1 → Gn−2) is totally reflexive.

In addition, if G-dimRM <∞ then

G-dimRM = sup{i ∈ N0|ExtiR(M,R) 6= 0}.

Proof. The proof of the equivalence of (i), (ii), and (iv), as well as the last statement,

is similar to that of Theorem 1.2.7 in [9]. The proof is also similar to that of Theorem

3.1.8.

Condition (iii) is equivalent to (ii) via an application of Corollary 2.5.2.

Lemma 3.2.14. Let R be a ring and 0 → K → G → M → 0 be a short exact

sequence of R-modules where G ∈ G̃(R). If M ∈ BE(R), then K ∈ BE(R).

Proof. By Corollary 2.5.4, K ∈ [FP ]R∞. Applying HomR(−, R) to the given sequence

we obtain:

0 →M∗ → G∗
φ→ K∗ → Ext1

R(M,R) → 0 → Ext1
R(K,R) → Ext2

R(M,R) → 0 → · · · .

Then ExtiR(K,R) ∼= Exti+1
R (M,R) ∈ [FP ]R∞ for all i > 0. Hence it remains to show
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that K∗ ∈ [FP ]R∞. Let L = imφ; consider the short exact sequences

0 →M∗ → G∗ → L→ 0 (3.2.2)

0 → L→ K∗ → Ext1
R(M,R) → 0. (3.2.3)

Sequence (3.2.2) implies L ∈ [FP ]R∞, which then implies K∗ ∈ [FP ]R∞ by sequence

(3.2.3).

We next show that if M ∈ BE(R) has finite G-dimension, then M has finite

G̃-dimension.

Proposition 3.2.15. Let R be a ring and M ∈ BE(R) such that G-dimRM = n <∞.

Then M has a G-resolution 0 → Gn → Gn−1 → · · · → G0 → 0 such that Gi ∈ G̃(R)

for i = 0, . . . , n.

Proof. Let

· · · → Fk → Fk−1 → · · · → F1 → F0 →M → 0

be a degreewise finite free resolution of M . For i ≥ 0 set Ki = ker(Fi → Fi−1). By

Theorem 3.2.13,

0 → Kn−1 → Fn−1 → · · · → F1 →M → 0 (3.2.4)

is a resolution such that Kn−1 and each Fi are totally reflexive. Since each Fi is

finitely generated and free, Fi ∈ G̃(R). Set K0 = ker(F0 → M). We now have the

exact sequence

0 → K0 → F0 →M → 0,

and for 1 ≤ i ≤ n, exact sequences

0 → Ki → Fi → Ki−1 → 0.
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Repeated applications of Lemma 3.2.14 yields Ki ∈ BE(R) for all 1 ≤ i ≤ n. In

particular Kn ∈ G̃(R) by Theorem 3.2.13, and (3.2.4) is the desired resolution.

3.3 Equality of G̃-dimension and Gorenstein

Dimension

In the previous two sections we have seen close parallels between the results for G̃-

dimension and G-dimension. In this section we see that for R-modules in BE(R),

G-dimension and G̃-dimension are equivalent notions.

Proposition 3.3.1. Let R be a ring and M ∈ [FP ]R∞. Then G-dimRM ≤ G̃-dimRM .

Moreover, if G̃-dimRM <∞, then G̃-dimRM = G-dimRM .

Proof. If G̃-dimRM = ∞, there is nothing to prove for the inequality. So assume

G̃-dimRM = n <∞. Then there is a G̃-resolution

0 → Gn → · · · → G1 → G0 →M → 0.

Since each Gi is also totally reflexive, G-dimRM = m ≤ n.

Consider a G̃-resolution of M

0 → Gn → · · · → G0 →M → 0.

Set Km−1 = ker(Gm−1 → Gm−2); Km−1 is totally reflexive by Theorem 3.2.13. Since

0 → Gn → Gn−1 → · · · → Gm → Km−1 → 0 (3.3.1)
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is exact, the Gi ∈ G̃(R) implies Km−1 ∈ G̃(R) by Corollary 3.2.11. Therefore

0 → Km−1 → Gm−1 → · · · → G0 →M → 0

is a G̃-resolution of length m. Thus the equality holds.

Proposition 3.3.2. Let R be a ring and M ∈ BE(R). Then G-dimRM = G̃-dimRM .

Proof. By Proposition 3.3.1, it suffices to show G̃-dimRM ≤ G-dimRM.

Assume G-dimRM = n <∞, by Proposition 3.2.15 M has a G-resolution

0 → Gn → · · · → G0 →M → 0

where each Gi ∈ BE(R). But then Gi ∈ G̃(R) for all i. Hence

G̃-dimRM ≤ G-dimRM .
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Chapter 4

The Auslander-Bridger Formula

The Auslander-Buchsbaum Formula relates the depth of a ring and a module to the

projective dimension of the module.

Theorem 4.0.3. If R is a local Noetherian ring, and M is a finitely generated R-

module of finite projective dimension, then depthRM + pdRM = depthRR.

In the Noetherian case, the Auslander-Bridger Formula [2] is an extension of the

Auslander-Buchsbaum Formula relating depth and G-dimension:

Theorem 4.0.4. If R is a local Noetherian ring and M is an R-module of finite

G-dimension, then depthRM + G-dimRM = depthRR.

The Auslander-Buchsbaum Formula itself has been generalized to the

non-Noetherian case:

Theorem 4.0.5. [24, Ch 6, Theorem 2] If R is a quasi-local ring, and M an R-

module with a degreewise finite free resolution of finite length, then

pdRM + p-depthRM = p-depthRR.

In this section we will prove a version of the Auslander-Bridger Formula for co-

herent rings and finitely presented modules with finite G-dimension, replacing depth
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with p-depth. However our main tools will not be G-dimension and the class BE(R),

but rather results from G̃-dimension. Thus given the equivalence in Proposition 3.3.2,

the Auslander-Bridger Formula will appear in several different forms, first in the G̃-

dimension case, and then for G-dimension.

4.1 Additional Properties of G̃-dimension

Before proving the Auslander-Bridger Formula for modules of finite G̃-dimension,

several results are needed. The first results investigate the behavior of G̃-dimension

under flat liftings. The proof of the Auslander-Bridger Formula (Theorem 4.2.1)

requires the existence of regular elements, necessitating the passage from the ring

R to a polynomial ring over R. However in general, if R is coherent, R[x] is not

necessarily coherent. Unlike coherence, G̃-dimension remains stable across faithfully

flat liftings as shown by Lemma 4.1.1 and Proposition 4.1.2. This fact plays a crucial

role in the proof of a generalized Auslander-Bridger Formula.

Lemma 4.1.1. Let R be a ring and R→ S be a flat ring homomorphism. Let M be

an R-module.

(i) If M ∈ [FP ]R∞, then M ⊗R S ∈ [FP ]S∞.

(ii) If M ∈ BE(R), then M ⊗R S ∈ BE(S).

(iii) If M ∈ G̃(R), then M ⊗R S ∈ G̃(S).

If S is faithfully flat, then the converses to (i), (ii), and (iii) hold.

Proof. If M ∈ [FP ]R∞ there is an exact sequence

· · · → F2 → F1 → F0 →M → 0
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where each Fi is a finitely generated free R-module. The resolution

· · · → F2 ⊗R S → F1 ⊗R S → F0 ⊗R S →M ⊗R S → 0

is a degreewise finite free S-resolution of M ⊗R S, and hence M ⊗R S ∈ [FP ]S∞.

Conversely, assume S is faithfully flat and M ⊗R S ∈ [FP ]S∞. First, we show by

induction that if M⊗RS ∈ [FP ]Sn, then M ∈ [FP ]Rn . If n = 0, then M⊗RS is finitely

generated. Let x1, . . . , xt ∈M be such that x1⊗ 1, . . . , xt⊗ 1 generate M ⊗R S as an

S-module, and set N = x1R + · · ·+ xtR. Consider the exact sequence

0 → N →M →M/N → 0. (4.1.1)

Applying −⊗R S, S flat yields

0 → N ⊗R S →M ⊗R S → (M/N)⊗R S → 0.

Notice that the map N ⊗R S → M ⊗R S is an isomorphism, thus (M/N)⊗R S = 0.

By faithfulness of S, M/N = 0, and hence M = N and M is a finitely generated

R-module.

Assume n > 0. Since M is finitely generated, there is an exact sequence

0 → K → F →M → 0

where F is a finitely generated free R-module. By Proposition 2.5.3, it suffices to

show that K ∈ [FP ]Rn−1. Applying −⊗R S, we have the exact sequence

0 → K ⊗R S → F ⊗R S →M ⊗R S → 0.
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Since F ⊗R S ∈ [FP ]S∞,and M ⊗R S ∈ [FP ]Sn, K ⊗R S ∈ [FP ]Sn−1 by Proposition

2.5.3. By induction, this implies that K ∈ [FP ]Rn−1.

Since M⊗RS ∈ [FP ]S∞ if and only if M ∈ [FP ]Rn for all n ≥ 0, then this argument

implies M ∈ [FP ]R∞.

Assume that M ∈ BE(R); by (i), M ⊗R S and ExtmR (M,R)⊗R S ∈ [FP ]S∞ for all

m ≥ 0. Since S is flat and M ∈ [FP ]R∞, for all m ≥ 0, by Theorem 2.1.9 we have the

isomorphism

ExtmS (M ⊗R S, S) ∼= ExtmR (M,R)⊗R S ∈ [FP ]S∞. (4.1.2)

Hence M ⊗R S ∈ BE(S).

Conversely, assume that M ⊗R S ∈ BE(S) and that S is faithful; the converse to

(i) shows M ∈ [FP ]R∞. By Theorem 2.1.9 ExtiS(M ⊗R S, S) ∼= ExtiR(M,R) ⊗R S for

all i ≥ 0, thus the argument from the [FP ]R∞ case can be used to show

ExtiR(M,R) ∈ [FP ]R∞ for each i ≥ 0. Thus M ∈ BE(R).

Assume that M ∈ G̃(R). As S is flat and M,M∗ ∈ [FP ]R∞, we have the natural

isomorphisms:

ExtiR(M,R)⊗R S ∼= ExtiS(M ⊗R S, S),

and

ExtiR(HomR(M,R), R)⊗R S ∼= ExtiS(HomS(M ⊗R S, S), S)

for all i ≥ 0. In particular, M∗∗ ⊗R S ∼= (M ⊗R S)∗∗ where the latter double dual is

with respect to S-modules. Let φ : M →M∗∗ and ψ : M ⊗R S → (M ⊗R S)∗∗ be the

canonical maps. Let K = kerφ, K ′ = kerψ, C = cokerφ, and C ′ = cokerψ. Then we
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have the following commutative diagram with exact rows.

0 // K ⊗R S //

��

M ⊗R S
φ⊗1S // M∗∗ ⊗R S //

∼=
��

C ⊗R S //

��

0

0 // K ′ // M ⊗R S
ψ⊗1S// (M ⊗R S)∗∗ // C ′ // 0

By the Five Lemma, K⊗RS ∼= K ′ and C⊗RS ∼= C ′. Hence if M ∈ G̃(R), then φ is an

isomorphism and K = C = 0. Thus ψ ⊗ 1S is an isomorphism, and M ⊗R S ∈ G̃(S).

Similarly, if S is faithfully flat, the converse holds.

Proposition 4.1.2. Let R be a ring and R → S be a flat ring extension. If

M ∈ [FP ]R∞, then G̃-dimR(M⊗RS) ≤ G̃-dimRM . If S is faithfully flat, then equality

holds.

Proof. If G̃-dimRM = 0 the result holds by Lemma 4.1.1.

Assume G̃-dimRM = n > 0. Consider the exact sequence

0 → K → G→M → 0

where G ∈ G̃(R). Then G̃-dimRK = n − 1 by Corollary 2.5.4 and Corollary 3.1.9.

By induction, G̃-dimS(K ⊗R S) ≤ n− 1. Since G⊗R S ∈ G̃(S) by Lemma 4.1.1, the

sequence

0 → K ⊗R S → G⊗R S →M ⊗R S → 0

shows G̃-dimS(M ⊗R S) ≤ n.

If in addition S is faithful, then by induction

G̃-dimS(K ⊗R S) = G̃-dimRK = n − 1. Notice M ⊗R S 6∈ G̃(S), for otherwise
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M ∈ G̃(R). Therefore, by Corollary 3.1.9,

G̃-dimS(M ⊗R S) = G̃-dimS(K ⊗R S) + 1 = n = G̃-dimRM.

Corollary 4.1.3. Let R be a ring and and M ∈ [FP ]R∞.

(i) If p ∈ SpecR, then G̃-dimRp Mp ≤ G̃-dimRM .

(ii) If (R,m) is quasi-local, then G̃-dimR[x]mR[x]
M ⊗R R[x]mR[x] = G̃-dimRM.

Remark 4.1.4. Let R be a ring and M an R-module. Assume

f ∈ M∗ = HomR(M,R) and that x is a non-zero-divisor on R. If xf = 0, then

xf(M) = 0. However, since f(M) ⊂ R and x is a non-zero-divisor on R then

f(M) = 0. Hence x is M∗-regular and M∗ is torsion-free. If M ∼= M∗∗, then M is

torsion-free. In particular, if M is reflexive, then M is torsion-free. It follows that if

M is totally reflexive or M ∈ G̃(R), any R-regular element is also M -regular. The

existence of such an R- and M -regular element is necessary in many of the results to

come.

The following result is stated in terms of Noetherian rings in Lemma 1.3.4 of [9],

however its proof requires no modification to hold for non-Noetherian rings.

Lemma 4.1.5. Let R be a ring and M be an R-module. If x ∈ R is M- and R-regular,

then the following hold

(i) TorRm(M,R/(x)) = 0 for m > 0.

(ii) If Ext1
R(M,R) = 0, then HomR/(x)(M/xM,R/(x)) ∼= M∗/xM∗.
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(iii) If Ext1
R(M,R) = 0 = Ext1

R(M∗, R), then

HomR/(x)(HomR/(x)(M/xM,R/(x)), R/(x)) ∼= M∗∗/xM∗∗.

The next lemma is a result attributed to Rees.

Lemma 4.1.6. [23, p. 140, Lemma 2] Let R be a ring, M and N be R-modules, and

x ∈ R be an R- and M-regular element. If xN = 0 then

(i) HomR(N,M) = 0 and Exti+1
R (N,M) ∼= ExtiR/(x)(N,M/xM) for all i ≥ 0,

(ii) ExtiR(M,N) ∼= ExtiR/(x)(M/xM,N) for all i ≥ 0, and

(iii) TorRi (M,N) ∼= Tor
R/(x)
i (M/xM,N) for all i ≥ 0.

Using these results we explore the relationship between G̃-dimRM and

G̃-dimR/(x)M/xM for an R-module M and an M - and R-regular element x.

Lemma 4.1.7. Let R be a ring, M ∈ [FP ]R∞, and x be an M- and R-regular element.

Then M/xM ∈ [FP ]
R/(x)
∞ .

Proof. By Lemma 4.1.5, TorRi (M,R/(x)) = 0 for all i ≥ 1. Therefore, if F is a

free resolution of M consisting of finitely generated free R-modules, F⊗R R/(x) is a

free resolution of M/xM consisting of finitely generated free R/(x)-modules. Hence

M/xM ∈ [FP ]
R/(x)
∞ .

Proposition 4.1.8. Let R be a ring, M ∈ G̃(R), and x be an M- and R-regular

element. Then M/xM ∈ G̃(R/(x)).

Proof. By Remark 4.1.4 x is M -regular, and by Lemma 4.1.7 M/xM ∈ [FP ]
R/(x)
∞ .

Applying HomR(M,−) to the short exact sequence

0 → R
x→ R→ R/(x) → 0
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we get

0 →M∗ x→M∗ → HomR(M,R/(x)) → 0. (4.1.3)

Notice by Lemmas 4.1.6 and 4.1.5

HomR/(x)(M/xM,R/(x)) ∼= HomR(M,R/(x)) ∼= M∗/xM∗.

Since x is M∗-regular and M∗ ∈ [FP ]R∞, by Lemma 4.1.7,

HomR/(x)(M/xM,R/(x)) ∼= M∗/xM∗ ∈ [FP ]
R/(x)
∞ .

Since M ∈ G̃(R), (4.1.3) shows ExtiR(M,R/(x)) = 0 for all i > 0, and Lemma

4.1.6 gives ExtiR/(x)(M/xM,R/(x)) ∼= ExtiR(M,R/(x)) = 0 for all i > 0.

As x is also M∗-regular, and M∗ ∈ G̃(R), the same argument shows

ExtiR/(x)((M/xM)∗, R/(x)) = 0 for all i > 0.

As the biduality map δM : M → M∗∗ is an isomorphism, so is δM ⊗R R/(x). By

Lemma 4.1.5(iii) we have the commutative diagram:

M ⊗R R/(x)
δM⊗RR/(x)

∼=
//

∼=
��

M∗∗ ⊗R R/(x)

∼=
��

M/xM
δM/xM

// HomR/(x)(HomR/(x)(M/xM,R/(x)), R/(x))

showing δM/xM : M/xM → HomR/(x)(HomR/(x)(M/xM,R/(x)), R/(x)) is an isomor-

phism. Hence M/xM ∈ G̃(R/(x)).

Lemma 4.1.9. Let R be a ring and M an R-module with G̃-dimRM = n <∞. Then

ExtnR(M,R) is a finitely generated R-module.

Proof. We proceed by induction on G̃-dimRM = n. If n = 0, M ∈ G̃(R) and

M∗ ∈ [FP ]R∞ is finitely generated.
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If n > 0, consider the exact sequence

0 → K → G→M → 0

where G ∈ G̃(R). Since K ∈ [FP ]R∞, by Corollary 3.1.9 G̃-dimRK = n − 1. By

induction Extn−1
R (K,R) is finitely generated. Applying HomR(−, R) yields the long

exact sequence

· · · → Extn−1
R (G,R) → Extn−1

R (K,R) → ExtnR(M,R) → ExtnR(G,R) → · · · .

However ExtiR(G,R) = 0 for all i > 0 and thus if n > 1, Extn−1
R (K,R) ∼= ExtnR(M,R).

Hence ExtnR(M,R) is finitely generated if n > 1. If n = 1, then there is a surjection

HomR(K,R) → Ext1
R(M,R) → 0. By induction HomR(K,R) is finitely generated,

and hence Ext1
R(M,R) is finitely generated.

Proposition 4.1.10. Let (R,m) be a quasi-local ring and M an R-module with

G̃-dimRM <∞. Let x ∈ m be an M- and R-regular element. If M/xM ∈ G̃(R/(x)),

then M ∈ G̃(R).

Proof. By Lemma 4.1.6 ExtiR(M,R/(x)) ∼= ExtiR/(x)(M/xM,R/(x)) = 0 for all i ≥ 0.

Suppose G̃-dimRM = n > 0. By Theorem 3.1.8 ExtnR(M,R) 6= 0 and is finitely

generated by Lemma 4.1.9. Apply HomR(M,−) to the exact sequence

0 → R
x→ R→ R/(x) → 0

to obtain the exact sequence

ExtnR(M,R)
x→ ExtnR(M,R) → 0.
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By Nakayama’s Lemma ExtnR(M,R) = 0 a contradiction to G̃-dimRM = n. Thus

G̃-dimRM = 0.

Combining Propositions 4.1.8 and 4.1.10, we have

Corollary 4.1.11. Let (R,m) be a quasi-local ring and M an R-module with

G̃-dimRM < ∞. If x ∈ m is an R- and M-regular element, then M ∈ G̃(R) if and

only if M/xM ∈ G̃(R/(x)).

Lemma 4.1.12. Let (R,m) be a quasi-local ring, M an R-module, and x ∈ m be an R-

and M-regular element. If G̃-dimRM <∞, then G̃-dimR/(x)M/xM ≤ G̃-dimRM .

Proof. Proposition 4.1.8 proves the result when G̃-dimRM = 0. Assume

G̃-dimRM = n > 0 and consider the G̃-resolution

0 → Gn → Gn−1 → · · · → G0 →M → 0.

Set Ki = ker(Gi → Gi−1) for 0 ≤ i ≤ n− 1. Then we have the exact sequences

0 → Gn → Gn−1 → Kn−2 → 0

0 → Ki → Gi → Ki−1 → 0, for 1 ≤ i ≤ n− 2

0 → K0 → G0 →M → 0.

Since x is R-regular, and Gi ∈ G̃(R) for all i, x is Gi regular for all i. Thus x is

Ki-regular for all i. Hence by Lemma 4.1.5(i) the sequences

0 → Gn/xGn → Gn−1/xGn−1 → Kn−2/xKn−2 → 0

0 → Ki/xKi → Gi/xGi → Ki−1/xKi−1 → 0, for 1 ≤ i ≤ n− 2

0 → K0/xK0 → G0/xG0 →M/xM → 0
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are exact, and thus

0 → Gn/xGn → · · · → G0/xG0 →M/xM → 0

is exact where Gi/xGi ∈ G̃(R/(x)) for each i by Proposition 4.1.8. Therefore

G̃-dimR/(x)M/xM ≤ G̃-dimRM = n.

Proposition 4.1.13. Let (R,m) be a quasi-local ring, M be an R-module, and x ∈ m

be an M and R-regular element. If G̃-dimRM <∞, then

G̃-dimR/(x)M/xM = G̃-dimRM.

Proof. In light of Lemma 4.1.12, it suffices to prove

G̃-dimR/(x)M/xM ≥ G̃-dimRM . Proposition 4.1.10 proves the result when

G̃-dimR/(x)M/xM = 0.

Suppose G̃-dimR/(x)M/xM = t > 0 and consider the short exact sequence

0 → K → G→M → 0

with G ∈ G̃(R). Then by Corollary 3.1.9 G̃-dimRK = G̃-dimRM − 1. As x is M -

and R-regular we have the short exact sequence

0 → K/xK → G/xG→M/xM → 0,

with G/xG ∈ G̃(R/(x)). Since G̃-dimR/(x)M/xM > 0,

G̃-dimR/(x)K/xK = G̃-dimR/(x)M/xM − 1.
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By induction, G̃-dimR/(x)K/xK = G̃-dimRK. Hence by Corollary 3.1.9,

G̃-dimRM = G̃-dimR/(x)M/xM .

Lemma 4.1.14. [9, Lemma 1.4.4] Let (R,m) be a coherent ring, M a finitely pre-

sented R-module, and x ∈ m an R- and M-regular element. Then M ∈ G̃(R) if and

only if M/xM ∈ G̃(R/(x)).

Proof. The proof is similar to that of Lemma 1.4.4 [9]; coherence allows us to apply

Nakayama’s Lemma within this proof.

Proposition 4.1.15. Let (R,m) be a coherent ring, M a finitely presented R-module,

and x ∈ m be a M- and R-regular element. Then G̃-dimRM = G̃-dimR/(x)M/xM if

either G̃-dimRM <∞ or G̃-dimR/(x)M/xM <∞.

Proof. If G̃-dimRM <∞, the result follows by Proposition 4.1.13

Suppose G̃-dimRM/xM = t <∞. If t = 0, this is Lemma 4.1.14.

Suppose t > 0. Let

0 → K → F →M → 0

be an exact sequence where F is a finitely generated free R-module. As x is R- and

M -regular, by Lemma 4.1.5 TorR1 (M,R/(x)) = 0. Thus the sequence

0 → K/xK → F/xF →M/xM → 0

is exact. Since F/xF ∈ G̃(R/(x)), G̃-dimR/(x)K/xK = t − 1 by Corollary 3.1.9. As

x is K-regular, by induction G̃-dimRK = t− 1; hence G̃-dimRM = t.

The following result provides an important tool for finding R- and M -regular

elements in a ring.
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Lemma 4.1.16. Let (R,m) be a quasi-local ring with p-depthRR > 0 and M an

R-module such that p-depthRM > 0. Then there exists y ∈ mR[t]mR[t] such that y is

R[t]mR[t]- and M ⊗R R[t]mR[t]-regular.

Proof. By Proposition 2.2.3(iv), p-depthR(M⊕R) > 0. Then by Proposition 2.2.3(vi)

depthR[t]mR[t]
(M ⊗R R[t]mR[t] ⊕R R[t]mR[t]) > 0, so there exists y ∈ mR[t]mR[t] that is

M ⊗R R[t]mR[t] ⊕R[t]mR[t]-regular.

Remark 4.1.17. In light of Lemma 4.1.1 and Corollary 4.1.3, given a quasi-local

ring (R,m) we may pass to the ring R[t]mR[t] while retaining assumptions involving

G̃-dimension as well as the class [FP ]R∞. In addition, by the definition of polynomial

grade, p-depthRR = p-depthR[t]mR[t]
R[t]mR[t]. By Proposition 2.2.3(v),

p-depthRM = p-depthR[t]mR[t]
(M ⊗R R[t]mR[t]). Given these properties, passing to

R[t]mR[t] will prove to be a highly useful tool in future results.

For the proof of Lemma 4.1.19 we need the following result

Proposition 4.1.18. Let R be a ring and 0 → L
f→ M

g→ N → 0 be a short exact

sequence of R-modules. If L is finitely generated and M is finitely presented, then N

is finitely presented.

Proof. Since M is finitely presented, there is an exact sequence

0 → K → Rm h→M → 0

with K finitely generated. Consider the commutative diagram

0 // K //

α

��

Rm h // M //

g

��

0

0 // A // Rm
gh // N // 0
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where A = ker gh. It suffices to show A is finitely generated. By the Snake Lemma,

coker α ∼= ker g ∼= L is finitely generated, and kerα = 0. Since K is finitely generated

and A/α(K) is finitely generated, A is finitely generated.

The following results provide a relationship between G̃-dimension and p-depth.

Lemma 4.1.19. Let (R,m) be a quasi-local ring with p-depthRR = 0. If M is a

finitely presented R-module, then M∗ = 0 if and only if M = 0.

Proof. Clearly, if M = 0, then M∗ = 0.

Conversely, assume M∗ = 0. If M 6= 0, we proceed by induction on the number of

generators, µR(M), of M . If µR(M) = 1, then M ∼= R/I for some finitely generated

ideal I of R. Since p-depthRR = 0, HomR(R/I,R) 6= 0 for every finitely generated

ideal I ⊂ R, a contradiction.

Assume µR(M) = n, and the claim holds for all finitely presented modules N

such that µR(N) < n. Let M = x1R + · · · + xnR and set M ′ = x1R + · · · + xn−1R.

Consider the short exact sequence 0 → M ′ → M → M/M ′ → 0. Since M is

finitely presented and M ′ is finitely generated, M/M ′ is finitely presented by Propo-

sition 4.1.18. Thus M/M ′ is finitely presented and HomR(M/M ′, R) 6= 0. But

0 → HomR(M/M ′, R) → HomR(M,R) is exact; thus HomR(M,R) 6= 0, a contra-

diction.

Proposition 4.1.20. Let (R,m) be a quasi-local ring with p-depthRR = 0. If M is

an R-module with G̃-dimRM <∞, then M ∈ G̃(R).

Proof. Notice that by induction it is sufficient to consider the case for G̃-dimRM ≤ 1.

For, if G̃-dimRM ≤ n there is an exact sequence

0 → K → G→M → 0
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with G ∈ G̃(R) and G̃-dimRK = G̃-dimRM − 1. The inductive step will show

K ∈ G̃(R), and hence G̃-dimRM ≤ 1.

Thus assume G̃-dimRM ≤ 1 and consider the short exact sequence

0 → G1 → G0 →M → 0

with G0, G1 ∈ G̃(R). Applying HomR(−, R) we have ExtiR(M,R) = 0 for all i ≥ 2

and the exact sequence

0 →M∗ → G∗0 → G∗1 → Ext1
R(M,R) → 0. (4.1.4)

Again applying HomR(−, R) we obtain the diagram

0 // Ext1
R(M,R)∗ //

��

G∗∗1 //

∼=
��

G∗∗0

∼=
��

0 // G1
// G0,

and Ext1
R(M,R)∗ = 0. Since Ext1

R(M,R) is finitely presented by (4.1.4) and Propo-

sition 4.1.18, by Lemma 4.1.19 Ext1
R(M,R) = 0. Thus by Theorem 3.1.8,

G̃-dimRM = 0.

Proposition 4.1.21. Let (R,m) be a quasi-local ring with p-depthRR = 0 and

M ∈ G̃(R) a non-zero R-module. Then p-depthRM = 0.

Proof. Assume p-depthRM > 0. By Remark 4.1.17 and Lemma 4.1.16 we pass to

R[t]mR[t] and may assume there exists x ∈ m that is M -regular. Applying HomR(−, R)

to the short exact sequence

0 →M
x→M →M/xM → 0
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yields the exact sequence

0 → HomR(M/xM,R) →M∗ x→M∗ → Ext1
R(M/xM,R) → 0. (4.1.5)

Applying HomR(−, R) again, consider the diagram

0 // Ext1
R(M/xM,R)∗ //

��

M∗∗ x //

∼=
��

M∗∗

∼=
��

0 // M
x // M.

Hence Ext1
R(M/xM,R)∗ = 0. Since Ext1

R(M/xM,R) is finitely presented from

(4.1.5), Ext1
R(M/xM,R) = 0 by Lemma 4.1.19. From (4.1.5) M∗ = xM∗. Since

M∗ is finitely generated (and finitely presented), M∗ = 0 by Nakayama’s Lemma,

and M = 0 by Lemma 4.1.19, a contradiction.

Proposition 4.1.22. Let (R,m) be a quasi-local ring and M ∈ G̃(R) a non-zero

R-module. Then p-depthRM = p-depthRR.

Proof. Suppose first that p-depthRR = n < ∞. If n = 0, then p-depthRM = 0

by Proposition 4.1.21. If p-depthRR > 0, then by Remark 4.1.17 we may pass

to R[t]mR[t] to find an x ∈ m that is R-regular. Since M ∈ G̃(R), x is also M -

regular. Thus M/xM ∈ G̃(R/(x)) by Proposition 4.1.8. By induction on p-depthRR,

p-depthR/(x)M/xM = p-depthR/(x)R/(x), and thus by Proposition 2.2.3(vii),

p-depthRR = p-depthRM .

Suppose now that p-depthRR = ∞ and p-depthRM = m <∞. Suppose m = 0.

Passing to R[t]mR[t] we have x ∈ m such that x is R-regular. As M is torsion-free, x

is M -regular as well, contradicting that p-depthRM = 0. If m > 0, then passing to

R[t]mR[t] there is an x ∈ m such that x is R- andM -regular. ThenM/xM ∈ G̃(R/(x)),
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p-depthR/(x)M/xM = m−1, and p-depthR/(x)R/(x) = ∞, a contradiction by induc-

tion.

Given the equality in Proposition 3.3.2 between G-dimension and G̃-dimension in

the case of modules in BE(R), all the results in this section can be restated in terms

of G-dimension. Hence from this point, any references involving G-dimension will

often be made back to these G̃-dimension results whenever the assumptions are such

that the equality holds.

4.2 Generalized Auslander-Bridger Formulas

We now have the tools to prove generalized versions of the Auslander-Bridger Formula.

The first version is stated in terms of G̃-dimension.

Theorem 4.2.1. Let (R,m) be a quasi-local ring and G̃-dimRM <∞. Then

p-depthRM + G̃-dimRM = p-depthRR.

Proof. We first consider the case when p-depthRR = ∞.

If G̃-dimRM = 0, Proposition 4.1.22 shows p-depthRM = ∞. Suppose

G̃-dimRM > 0 and p-depthRM <∞ and consider the exact sequence

0 → K → G→M → 0

where G ∈ G̃(R). By Proposition 4.1.22, p-depthRG = ∞ > p-depthRM . Therefore,

by Lemma 2.2.4, p-depthRK = p-depthRM + 1 <∞ and

G̃-dimRK = G̃-dimRM − 1 < ∞. By induction on G̃-dimRK, p-depthRK = ∞

which implies p-depthRM = ∞, a contradiction.



59

Now assume p-depthRR < ∞. If p-depthRR = 0 the theorem holds by Proposi-

tions 4.1.21 and 4.1.20. Assume p-depthRR > 0 and assume first that

p-depthRM > 0. Passing to R[t]mR[t] there is an x ∈ m that is M - and R-regular by

Lemma 4.1.16. Then G̃-dimR/(x)M/xM = G̃-dimRM by Proposition 4.1.13 and

p-depthR/(x)R/(x) = p-depthRR− 1. By induction on p-depthRR,

p-depthR/(x)M/xM + G̃-dimR/(x)M/xM = p-depthR/(x)R/(x).

Since by Proposition 2.2.3(vii) p-depthR/(x)M/xM = p-depthRM − 1, the formula

holds.

Now assume that p-depthRM = 0 and consider the short exact sequence

0 → K → G→M → 0

where G ∈ G̃(R). Since p-depthRG = p-depthRR > p-depthRM , by Lemma 2.2.4

p-depthRK = 1 and G̃-dimRK = G̃-dimRM − 1. By the p-depthRM > 0 case,

p-depthRR = p-depthRK + G̃-dimRK

= 1 + (G̃-dimRM − 1)

= G̃-dimRM.

Proposition 3.3.2 allows Theorem 4.2.1 to be rewritten in terms of BE(R)-modules

instead.

Corollary 4.2.2. Let (R,m) be a quasi-local ring and M ∈ BE(R). If
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G-dimRM <∞, then

p-depthRM + G-dimRM = p-depthRR.

The statement of the Auslander-Bridger Formula for coherent rings follows easily.

Corollary 4.2.3. Let (R,m) be a quasi-local coherent ring and M a finitely presented

R-module. If G-dimRM <∞, then

p-depthRM + G-dimRM = p-depthRR.
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Chapter 5

Gorenstein Rings

5.1 Gorenstein Rings Defined

G-dimension characterizes Noetherian Gorenstein rings in the following manner:

Theorem 5.1.1. [2] Let (R,m, k) be a local Noetherian ring. The following are

equivalent

(i) R is Gorenstein.

(ii) G-dimRM <∞ for all finitely generated R-modules M .

(iii) G-dimR k <∞.

This characterization motivates the definition of (non-Noetherian) quasi-local

Gorenstein rings.

Definition 5.1.2. A quasi-local ring R is Gorenstein if G-dimRR/I < ∞ for every

finitely generated ideal I. An arbitrary ring R is Gorenstein if Rm is Gorenstein for

every maximal ideal m.
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If (R,m, k) is a local Noetherian ring such that G-dimRR/I < ∞ for all ideals

I, G-dimRR/m = G-dimR k < ∞. Thus when R is Noetherian, Theorem 5.1.1 and

Definition 5.1.2 agree.

As in the Noetherian case, when R is a coherent ring the Gorenstein property

localizes.

Proposition 5.1.3. Let R be a coherent quasi-local Gorenstein ring and S a multi-

plicatively closed set. Then RS is Gorenstein.

Proof. Consider a finitely generated ideal J of RS. Then J = IS for some finitely

generated ideal I of R. Since R is coherent Gorenstein, G-dimRR/I = n < ∞

and Proposition 4.1.2 implies G-dimRS
(R/I)S = G-dimRS

RS/J ≤ n. Thus RS is

Gorenstein.

In the context of quasi-local coherent rings, we may characterize the Gorenstein

property via finitely presented modules.

Proposition 5.1.4. Suppose (R,m) is a quasi-local coherent ring. Then

G-dimRR/I <∞ for all finitely generated ideals I if and only if G-dimRM <∞ for

all finitely presented modules M .

Proof. Assume G-dimRM <∞ for all finitely presented modules M . Let

I = (x1, . . . , xn) be a finitely generated ideal of R. Then Rn → R → R/I → 0 is

exact, and R/I is finitely presented. Thus the conclusion follows.

Assume G-dimRR/I < ∞ for all finitely generated ideals I. Let M be a finitely

presented R-module; we proceed by induction on the number of generators of M ,

µR(M).

If µR(M) = 1, let M = xR for some x ∈ M . The map R
x→ M → 0, shows

M ∼= R/(0 :R x). By Theorem 2.1.2, (0 :R x) is finitely generated so

G-dimRM = G-dimRR/(0 :R x) <∞.
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If µR(M) > 1, let M = x1R + · · ·+ xnR for x1, . . . , xn ∈M, and set

N = x1R + · · · + xn−1R. Consider the exact sequence 0 → N → M → M/N → 0.

As M is a finitely presented R-module and R is coherent, M is coherent. Therefore

N is finitely presented. Via Proposition 4.1.18 M/N is finitely presented, and by

induction G-dimRN < ∞. Hence G-dimRM/N < ∞, and G-dimRM < ∞ by

Proposition 3.1.10.

5.2 Relation to Regular and Cohen-Macaulay

Rings

This definition of Gorenstein is very closely related to regular rings.

Proposition 5.2.1. Coherent regular rings are Gorenstein.

Proof. Since regular rings remain regular under localization, it suffices to assume R

is quasi-local. As R is regular, pdRR/I < ∞ for every finitely generated ideal I.

Since R is coherent, R/I has a finite resolution consisting of finitely generated free

modules. As finitely generated free modules are contained in G̃(R),

G-dimRR/I ≤ pdRR/I <∞ for every finitely generated ideal I. Hence R is Goren-

stein.

Thus regular rings such as k[x1, x2, . . . ] for any field k, valuation domains, and

Prüfer domains are Gorenstein.

A prime ideal p is a weak Bourbaki prime (or weak associated prime) of an R-

module M if p is minimal over (0 :R x) for some x ∈ M . Denote the set of weak

Bourbaki primes by wAssRM. The following result was shown in [15].

Lemma 5.2.2. [15] Let R be a ring, M be an R-module, and p ∈ wAssRM. Then

p-depthRp
Mp = 0.
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This result plays a role in the connection between Gorenstein and Cohen-Macaulay

rings.

Theorem 5.2.3. Let R be a coherent Gorenstein ring. Then R is locally Cohen-

Macaulay.

Proof. Let q ∈ SpecR. Then Rq is a coherent Gorenstein ring, so we may assume R is

quasi-local. Let x = x1, . . . , xn be a strong parameter sequence of R of length n, and

x′ = x1, . . . , xn−1. By induction, we may assume x′ is a regular sequence. It must be

shown that xn is regular on R/(x′). Assume not; then xn ∈ p ∈ wAss R/(x′). Localiz-

ing at p, p-depthRp
(R/(x′))p = 0. Since x′ remains regular on Rp, p-depthRp

Rp = n−1

by Proposition 2.2.3(vii). Replacing Rp with R, we may assume p-depthRR = n− 1.

Since (x) is finitely generated, R/(x) is clearly finitely presented. Corollary 4.2.2 gives

G-dimRR/(x) ≤ p-depthR = n − 1. Thus, ExtnR(R/(x), R) = 0 by Theorem 3.2.13.

Similarly, as x′k = xk1, . . . , x
k
n−1 is regular it follows that ExtnR(R/(xk), R) = 0 for all

k > 0. Thus lim
k→∞

ExtnR(R/(xk), R) = Hn
x (R) = 0, contradicting that x is a strong

parameter sequence. Hence xn is regular on R/(x), and x is regular on R. Thus R is

Cohen-Macaulay, and hence the original ring is locally Cohen-Macaulay.

5.3 Gorenstein Rings and FP -Injectivity

In the Noetherian context, a local ring is Gorenstein if and only if it has finite injective

dimension. One might ask if a similar relationship exists in the non-Noetherian con-

text. There are several indications that FP -injective rings may be Gorenstein. The

first is the compatibility of FP -injective dimension with the following characterization

of Artinian Gorenstein rings.
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Proposition 5.3.1. [6, Exercise 3.2.15] Let (R,m) be an Artinian local ring. The

following are equivalent:

(i) R is Gorenstein.

(ii) All finitely generated R-modules M are reflexive, that is M ∼= M∗∗.

(iii) I = (0 :R (0 :R I)) for all ideals I of R.

(iv) For all non-zero ideals I and J , I ∩ J 6= 0.

In light of Propositions 2.4.5 and 2.4.8, as well as the properties of coherence seen

in Theorem 2.1.2, this suggests that quasi-local coherent FP -injective rings may be

Gorenstein.

In addition, quasi-local FP -injective rings are Cohen-Macaulay, as seen in Propo-

sition 5.3.3. First consider the following lemma from [15].

Lemma 5.3.2. [15] Let R be a ring and x be an element in the Jacobson radical of

R. Then H i
x(R) = 0 if and only if x is nilpotent.

Proposition 5.3.3. Let (R,m) be a quasi-local FP -injective ring. Then the only

weakly proregular elements in R are units or nilpotents. In particular, R is Cohen-

Macaulay.

Proof. Let x ∈ R be a weakly proregular element. Then for every n there is an m ≥ n

such that (0 :R x
m) = (0 :R x

m−n). As R is FP -injective, we have

(xm) = (0 :R (0 :R xm)) = (0 :R (0 :R xm−n)) = (xm−n). Hence xm−nα = 0 for some

α ∈ R, and either:

• x 6∈ m, and x is a unit, or,

• x ∈ m. In this case α is a unit and xm−n = 0. Thus x is nilpotent.
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Note that units cannot be parameter sequences by definition. Also, by Lemma

5.3.2, nilpotents cannot be parameter sequences. Hence the empty sequence is the

only parameter sequence in R, and thus R is Cohen-Macaulay.

With our definition of Gorenstein in hand, we can make a connection between

coherent Gorenstein rings and FP -injective dimension. This connection requires a

restriction on p-depth .

Lemma 5.3.4. Assume R is a coherent ring. Let M be a finitely presented R-module

and I be a finitely generated ideal.

(i) If R is FP -injective, M = 0 if and only if HomR(M,R) = 0.

(ii) If R is FP -injective, or G-dimRR/I = 0, then I = R if and only if

HomR(R/I,R) = 0.

Proof. For (i), if M = 0, clearly HomR(M,R) = 0.

Assume HomR(M,R) = 0. By Proposition 2.4.5 M is reflexive, so

M ∼= M∗∗ = HomR(HomR(M,R), R) = HomR(0, R) = 0.

For (ii), set M = R/I, and apply (i).

Restricting to p-depthRR = 0, we obtain an equivalence between quasi-local

coherent Gorenstein and FP -injective rings.

Theorem 5.3.5. Let (R,m) be a quasi-local coherent ring. R is Gorenstein with

p-depthRR = 0 if and only if R is FP -injective.

Proof. Assume R is Gorenstein. Then G-dimRR/I < ∞ for every finitely gener-

ated ideal I. By Proposition 4.1.20, G-dimRR/I = 0. Thus by Theorem 3.2.13

ExtiR(R/I,R) = 0 for all finitely generated ideals I and i > 0, so R is FP -injective.
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Conversely, assume R is FP -injective; then given a finitely generated ideal I,

ExtiR(R/I,R) = 0 for all i > 0. By Proposition 2.4.5, R/I ∼= (R/I)∗∗ for every

finitely generated ideal I. Since HomR(R/I,R) is finitely presented by Corollary

2.1.8, for all i > 0

ExtiR((R/I)∗, R) = ExtiR(HomR(R/I,R), R) = 0.

Hence G-dimRR/I = 0 for all finitely generated ideals I.

To show p-depthRR = 0, recall by Proposition 2.2.3(iii) that

p-depthRR = sup{p-gradeR(I, R)|I ⊂ m, I a finitely generated ideal}.

By Lemma 5.3.4(ii), for each finitely generated ideal I 6= R, HomR(R/I,R) 6= 0. So

p-depthRR = 0 by Proposition 2.2.3(i).

Corollary 5.3.6. If R is a Gorenstein ring with p-depthRR = 0, (0) is irreducible.

Proof. The proof follows from Theorem 5.3.5 and Proposition 2.4.9.

The following inequality holds without the Gorenstein assumption.

Lemma 5.3.7. Let (R,m) be a quasi-local coherent ring. Then

FP-idRR ≥ p-depthRR.

Proof. By Proposition 2.2.3(iii)

p-depthRR = sup{p-gradeR(I, R)|I ⊆ m, I a finitely generated ideal}.
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For each finitely generated ideal I ⊆ m, denote

tI = p-gradeR(I, R) = min{i|ExtiR(R/I,R) 6= 0}.

By Remark 2.2.2, FP-idRR ≥ tI for each I; hence FP-idRR ≥ p-depthRR.

With the additional assumption of Gorenstein, equality holds.

Theorem 5.3.8. If (R,m) is a quasi-local coherent Gorenstein ring, then

FP-idRR = p-depthRR.

Proof. If p-depthRR = ∞, equality holds by Lemma 5.3.7.

Assume p-depthRR < ∞. For each finitely generated ideal I, G-dimRR/I < ∞,

and in particular, G-dimR(R/I) ≤ p-depthRR by Corollary 4.2.2. Theorem 3.2.13

says Ext
p-depthR R+1
R (R/I,R) = 0 for all finitely generated ideals I. Thus

FP-idRR ≤ p-depthRR by Lemma 2.4.4; Lemma 5.3.7 gives equality.

5.4 Additional Properties of Gorenstein Rings

Using this connection between FP -injective and Gorenstein rings, the next example

provides an example of a Gorenstein ring that remains Gorenstein when reducing by

a regular element.

Example 5.4.1. Let V be a d-dimensional valuation domain (and thus Gorenstein).

Given a non-zero, non-unit x ∈ V , the ring V/xV is an FP -injective ring, and hence

Gorenstein.

Proof. Set R = V/xV. As V is a valuation domain, every finitely generated ideal

is principal and the ideals of R are totally ordered. Thus every finitely gener-
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ated ideal of R is principal as well. Let y ∈ V such that y 6∈ (x). We claim

that ((x) :V ((x) :V y)) = (y). As y 6∈ (x), then (x) ⊆ (y) since V is a val-

uation domain. Then x = ry for some r ∈ V . As V is a domain and y 6= 0,

((x) :V y) = ((ry) :V y) = (r). As r 6= 0 (since x 6= 0),

((x) :V ((x) :V y)) = ((ry) :V r) = (y).

Now let I be a non-zero finitely generated ideal of R = V/xV . Then I = yR

for some y ∈ V \ xV . Since V is a valuation domain and ((x) :V y) is finitely

generated (since V is coherent), ((x) :V y) = (z) for some z ∈ V . By the claim,

((x) :V (z)) = (y). Hence ((0) :R y) = zR and ((0) :R z) = yR. Thus the sequence

· · · z→ R
y→ R

z→ R
y→ R→ R/(y) → 0

is exact. Truncating the sequence and applying HomR(−, R), yields the complex

0 → R
y→ R

z→ R
y→ R

z→ R
y→ · · · .

This complex is exact except at the 0th spot, hence HomR(R/(y), R) 6= 0, and

ExtiR(R/(y), R) = 0 for all i > 0. Thus R is FP -injective, and by Theorem 5.3.5

R is Gorenstein with p-depthRR = 0.

In fact, given a coherent Gorenstein ring R, R/(x) is also a Gorenstein ring, as

will be shown in Corollary 5.4.4.

Lemma 5.4.2. Let R be a ring and

0 → K → L→M
φ→ N → 0

be an exact sequence of R-modules. Suppose
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(i) Ext1
R(L,R) = Ext1

R(M,R) = Ext1
R(N,R) = 0, and

(ii) Ext2
R(N,R) = 0.

Then the sequence

0 → N∗ →M∗ → L∗ → K∗ → 0

is exact.

Proof. Let C = kerφ. Then the sequences

0 → K → L→ C → 0 and

0 → C →M → N → 0

are exact. Applying HomR(−, R), we have the exact sequences

0 → C∗ → L∗ → K∗ → Ext1
R(C,R) → 0 (5.4.1)

and

0 → N∗ →M∗ → C∗ → 0 → 0 → Ext1
R(C,R) → 0. (5.4.2)

Thus Ext1
R(C,R) = 0 and the sequence

0 → C∗ → L∗ → K∗ → 0

is exact. Pasting together (5.4.1) and (5.4.2) yields the desired exact sequence.

The following generalizes a result of Peskine and Szpiro found in [2].

Theorem 5.4.3. Let R be a ring and M a non-zero R-module such that

G̃-dimRM = t <∞. Suppose x ∈ AnnRM and x is R-regular. Then

G̃-dimR/(x)M = t− 1.
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Proof. As x is R-regular and xM = 0, it must be that t ≥ 1 by Remark 4.1.4. We

proceed by induction on t.

Suppose t = 1; there is an exact sequence

0 → G1 → G0 →M → 0 (5.4.3)

where G0, G1 ∈ G̃(R). Since x is R-regular and xM = 0, by Lemma 4.1.6

HomR(M,R) = 0 and ExtiR(M,R) = Exti−1
R/(x)(M,R/(x)) for all i ≥ 0. As

G̃-dimRM = 1, this gives ExtiR/(x)(M,R/(x)) = 0 for all i > 0 and

HomR/(x)(M,R/(x)) ∼= Ext1
R(M,R).

Applying HomR(−, R) to (5.4.3) gives

0 → G∗0 → G∗1 → Ext1
R(M,R) → 0.

Since G∗i ∈ G̃(R) and xExt1
R(M,R) = 0, we see that G̃-dimR Ext1

R(M,R) = 1. Set

R̄ = R/(x). Again using Lemma 4.1.6,

Ext1
R(Ext1

R(M,R), R) ∼= HomR̄(Ext1
R(M,R), R̄) ∼= HomR̄(HomR(M, R̄), R̄)

and ExtiR̄(HomR̄(M, R̄), R̄) = 0 for all i > 0.

For ease of notation define M † := HomR̄(M, R̄). Notice that TorR1 (M, R̄) ∼= M .

To see this, apply M ⊗R − to the exact sequence

0 → R
x→ R→ R̄→ 0
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to obtain

· · · → TorR1 (M,R) → TorR1 (M, R̄) →M
x→M → M̄ → 0,

where M̄ = M/xM . Since R is a free R-module, TorR1 (M,R) = 0, hence

TorR1 (M, R̄) = ker(M
x→M) = M since x ∈ AnnRM .

Applying − ⊗R R̄ to (5.4.3) and using both that TorR1 (M, R̄) = M and that by

Lemma 4.1.5 TorR1 (G0, R̄) = 0, we have the exact sequence

0 →M → Ḡ1 → Ḡ0 →M → 0,

where Ḡi = Gi/xGi ∈ G̃(R̄).

Applying Lemma 5.4.2 twice (using HomR̄(−, R̄)), we get the exact sequences

0 →M † → Ḡ0
† → Ḡ1

† →M † → 0

and

0 →M †† → Ḡ1
†† → Ḡ0

†† →M †† → 0.

Consider the commutative diagram

0 // M //

��

Ḡ1
//

∼=
��

Ḡ0
//

∼=
��

M //

��

0

0 // M †† // Ḡ1
†† // Ḡ0

†† // M †† // 0.

Since Ḡ0, Ḡ1 ∈ G̃(R̄), the canonical map M → M †† is an isomorphism by the Five

Lemma. Hence M ∈ G̃(R̄) and G̃-dimR̄M = 0.

Suppose t > 1; let φ : G → M be surjective for some G ∈ G̃(R). Then
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φ̄ : G/xG→M is surjective. Let K = ker φ̄. Then

0 → K → G/xG→M → 0

is exact. As

0 → G
x→ G→ G/xG→ 0

is exact, we see G̃-dimRG/xG = 1. Notice that G̃-dimRK < ∞ by Proposition

3.1.10. Then since G̃-dimRM = t > 1, the long exact sequence

· · · → Extt−1
R (K,R) → ExttR(M,R) → 0 → ExttR(K,M) → 0 → · · ·

shows G̃-dimRK = t−1 as ExttR(M,R) 6= 0. Since xK = 0 and G̃-dimRK = t−1, by

induction, we have G̃-dimR/(x)K = t−2. AsG/xG ∈ G̃(R/(x)), G̃-dimR/(x)M = t−1.

Corollary 5.4.4. Let R be a coherent Gorenstein ring and x ∈ R a non-unit regular

element. Then R/(x) is Gorenstein.

Proof. Through localization we may assume that (R,m) is a quasi-local coherent

Gorenstein ring and that x ∈ m is regular. Let Ī = I/(x) be a finitely generated ideal

of R̄ := R/(x). It suffices to show that G̃-dimR̄ R̄/Ī = G̃-dimR̄R/I <∞. Since R is

Gorenstein, G̃-dimRR/I <∞. By Theorem 5.4.3,

G̃-dimR̄R/I = G̃-dimRR/I − 1 <∞.

Given a regular ring R and x ∈ R an R-regular element, it is not necessarily

true that R/(x) is regular. Hence Corollary 5.4.4 provides us with many examples of

coherent Gorenstein rings that are not regular.

The converse of Corollary 5.4.4 holds for quasi-local coherent rings.
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Theorem 5.4.5. Let (R,m) be a coherent quasi-local ring and x ∈ m be an R-regular

element. If R/(x) is Gorenstein, then so is R.

Proof. LetM be a finitely presented R-module. If x isM -regular, then sinceM/xM is

a finitely presented R/(x)-module and R/(x) is Gorenstein, G̃-dimR/(x)M/xM <∞.

Thus G̃-dimRM <∞ by Proposition 4.1.15.

If instead x is a zero-divisor on M , let

0 → K → F →M → 0

be an exact sequence with F a finitely generated free R-module. Then K is finitely

presented by coherence, and x is K-regular. By the previous argument,

G̃-dimRK <∞. Hence G̃-dimRM <∞ by Corollary 3.1.9.

Corollary 5.4.6. Let R be a coherent ring and x ∈ R an R-regular element. Then

R is Gorenstein if R/(x) and Rx are Gorenstein.

Proof. Let m be a maximal ideal. By definition, it suffices to show that Rm is Goren-

stein. If x ∈ m, then (R/(x))m is Gorenstein, and thus Rm is Gorenstein by Theorem

5.4.5. If x 6∈ m, then Rm
∼= ((Rx)mx is Gorenstein as Rx is Gorenstein.

In the next results we explore under what conditions the ring R[x] is Gorenstein

if R is a Gorenstein ring.

Lemma 5.4.7. Let R be a ring, x an indeterminate over R, and M an R[x]-module.

Then there is an exact sequence of R[x]-modules

0 → R[x]⊗RM → R[x]⊗RM →M → 0.



75

Proof. If t is a second indeterminate over R, then M can be viewed as an R[t, x]-

module via the ring homomorphism f : R[t, x] → R[t, x]/(t − x) ∼= R[x], where for

f(t, x) ∈ R[t, x] and m ∈M , f(t, x)m := f(x, x)m. Consider the short exact sequence

of R[t, x]-modules

0 → R[t, x]
t−x→ R[t, x] → R[x] → 0.

Applying −⊗R[x] M , we get the exact sequence of R[t, x]-modules

Tor
R[x]
1 (R[x],M) → R[t, x]⊗R[x] M → R[t, x]⊗R[x] M → R[x]⊗R[x] M → 0

where Tor
R[x]
1 (R[x],M) = 0 since R[x] is a free R[x]-module. Now R[x]⊗R[x] M ∼= M

as R[t, x]-modules. Also

R[t, x]⊗R[x] M ∼= (R[t]⊗R R[x])⊗R[x] M ∼= R[t]⊗RM

as R[t, x]-modules. Thus we have a short exact sequence of R[t, x]-modules

0 → R[t]⊗RM → R[t]⊗RM →M → 0.

This is also a short exact sequence of R[t]-modules by restriction of scalars.

Replacing t with x and noting that the R[t]-module structure on M is the same

as the R[x]-module structure, we get the desired short exact sequence.

Corollary 5.4.8. Let R be a ring and x an indeterminate. Let R be an R[x]-module

and suppose G̃-dimRM = 0. Then G̃-dimR[x]M ≤ 1.

Proof. Since R[x] is a faithfully flat R-module, G̃-dimR[x]R[x]⊗RM = 0 by Proposi-

tion 4.1.2. We may now use the short exact sequence from Lemma 5.4.7 to see that

G̃-dimR[x]M ≤ 1.
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The proof the next result was inspired by a parallel result of [11] for coherent

regular rings.

Theorem 5.4.9. Let R be a ring and x an indeterminate such that R[x] is coherent.

Then R is Gorenstein if and only if R[x] is Gorenstein.

Proof. Since x is a non-unit R[x]-regular element, by Corollary 5.4.6 if R[x] is Goren-

stein, then so is R ∼= R[x]/(x).

Suppose R is Gorenstein and let p be a maximal ideal of R[x]. Localizing at p∩R,

we may assume that (R,m) is quasi-local and p∩R = m. Since R[x] is coherent, then

so is R. Since p/(mR[x]) is a maximal ideal of R[x]/(mR[x]), p = (m, f)R[x], where

f is a monic polynomial in p. Then R[x]/fR[x] ∼= Rn as R-modules where n = deg f .

Let J be a finitely generated ideal of R[x]p Then J = Ip for some finitely gener-

ated ideal I of R[x]. As R[x] is coherent, I is finitely presented as an R[x]-module.

Hence I/fI is finitely presented as an R[x]/fR[x]-module by Theorem 2.1.4. Since

R[x]/fR[x] ∼= Rn, I/fI is finitely presented as an R-module. Since R is a quasi-local

coherent Gorenstein ring, G̃-dimR(I/fI) <∞.

Claim 5.4.10. G̃-dimR[x] I/fI <∞.

Proof. We proceed by induction on t = G̃-dimR I/fI. If t = 0, the result follows

from Corollary 5.4.8. Suppose t > 0. Consider the exact sequence

0 → K → (R/[x]/fR[x])n → I/fI → 0.

Since R[x]/fR[x] is coherent and I/fI is finitely presented, K is a finitely presented

R[x]/fR[x]-module by Proposition 2.5.3 and coherence. Hence K is finitely presented

as an R-module. Moreover, as R[x]/fR[x] is a finitely generated free R-module,

G̃-dimR(R[x]/fR[x])n = 0. Thus G̃-dimRK = t− 1.
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By induction, G̃-dimR[x]K <∞ and by Corollary 5.4.8,

G̃-dimR[x](R[x]/fR[x])n <∞. Thus G̃-dimR[x] I/fI <∞ by Proposition 3.1.10.

Localizing at p we get G̃-dimR[x]p J/fJ <∞. As f is R[x]p-regular, and

f ∈ AnnR[x]p J/fJ , G̃-dimR[x]p/fR[x]p J/fJ <∞ by Theorem 5.4.3. Finally, since f is

R[x]p-regular and J-regular, and as R[x]p is coherent, G̃-dimR[x]p J <∞.
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Chapter 6

Other Characterizations of

Gorenstein Rings

6.1 (FP )∞-Injective Dimension and Gorenstein

Rings

In the previous chapter we explored the connection between FP -injective dimension

and Gorenstein rings. We now consider an injective dimension based on [FP ]R∞-

modules and its connection to the Gorenstein property.

Definition 6.1.1. Given a ring R, an R-module E is (FP )∞-injective if

Ext1
R(M,E) = 0 for all R-modules M ∈ [FP ]R∞. Similarly, E is BE-injective if

Ext1
R(M,E) = 0 for all R-modules M ∈ BE(R).

Definition 6.1.2. An R-module E has (FP )∞-injective dimension at most n, de-

noted (FP)∞-idRE ≤ n, if Extn+1
R (M,E) = 0 for all M ∈ [FP ]R∞.

BE-injective dimension is defined similarly.

We then have the following equivalences.
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Proposition 6.1.3. The following are equivalent for an R-module M :

(i) (FP)∞-idRM ≤ n (resp. BE-idRM ≤ n).

(ii) Extn+1
R (N,M) = 0 for all N of type (FP )R∞ (resp. N ∈ BE(R)).

(iii) ExtiR(N,M) = 0 for all i > n and N of type (FP )R∞ (resp. N ∈ BE(R)).

(iv) Given an exact sequence 0 → M → E0 → E1 → · · · → En−1 → K → 0 with Ei

(FP )∞-injective for 0 ≤ i ≤ n− 1, then K is (FP )∞-injective. (The analogous

statement holds for BE-dimension.)

Proof. The equivalences (i) ⇔ (ii) and (i) ⇔ (iii) follow by definition.

The equivalence (iii) ⇔ (iv) follows from the isomorphism

Ext1
R(N,K) ∼= Extn+1

R (N,M) for any N ∈ [FP ]R∞ which is obtained by breaking the

sequence

0 →M → E0 → E1 → · · · → En−1 → K → 0

into short exact sequences and using the fact that ExtiR(N,E) = 0 for any N ∈ [FP ]R∞

and all i > 0. Note that since every R-module can be embedded in an injective module

(which is (FP )∞-injective), every module M has a resolution of the type shown in

(iv) for all n.

The proof for BE(R)-modules is similar.

Proposition 6.1.4. Let R be a quasi-local coherent ring, and M an R-module. Then

FP-idRM = (FP)∞-idRM .

Proof. Lemma 2.4.4 shows this equality immediately, since any R-module is finitely

presented if and only if it is contained in [FP ]R∞.

Thus by Theorem 5.3.5,
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Corollary 6.1.5. A quasi-local coherent (FP )∞-injective ring is Gorenstein.

Within the context of BE(R)-modules we now consider a possible characterization

Gorenstein rings.

Definition 6.1.6. A quasi-local ring R is BE-Gorenstein if G-dimRM < ∞ for all

M ∈ BE(R).

In light of Proposition 5.1.4, we have the following result.

Proposition 6.1.7. A quasi-local coherent ring is Gorenstein if and only if it is

BE-Gorenstein.

With this equivalence in hand we next explore whetherR being (FP )∞-injective, is

equivalent to R being BE-Gorenstein. An R-module M is torsionless if the canonical

mapM →M∗∗ is injective. Lemma 6.1.8 and Theorem 6.1.9 are similar to Noetherian

results found in [26] and Jans [20], but are instead placed in the non-Noetherian

context of (FP )∞- and BE-injective dimensions.

Lemma 6.1.8. Let R be a ring and M ∈ BE(R) a torsionless R-module. Then there

exists N ∈ [FP ]R∞ such that the sequence 0 → M → M∗∗ → Ext1
R(N,R) → 0 is

exact.

Proof. Since M ∈ BE(R), there is a short exact sequence

0 → L→ F →M → 0

where F is a finitely generated free module and L ∈ BE(R). Applying HomR(−, R)

and setting N = coker(M∗ → F ∗) yields the exact sequence

0 →M∗ → F ∗ → N → 0.
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Note that N ∈ [FP ]R∞ by Corollary 2.5.4. Apply HomR(−, R) again and consider the

following diagram with exact rows and columns.

K1

��

0

��

0

��
0 // L //

��

F //

∼=
��

M //

δ

��

0

��
0 // N∗ //

��

F ∗∗
γ //

��

M∗∗ α //

β

��

Ext1
R(N,R) // Ext1

R(F ∗, R) // · · ·

C1 0 C2

Note that M → M∗∗ is injective because M is torsionless, and F ∼= F ∗∗ as F is

a finitely generated free module. Since F ∗ ∼= Rn, Ext1
R(F ∗, R) = 0. Notice that

kerα = im γ = im δ by the commutativity of the diagram. Thus Ext1
R(N,R) ∼= C2

and we have the short exact sequence

0 →M
δ→M∗∗ α→ Ext1

R(N,R) → 0.

Theorem 6.1.9. If a ring R is (FP )∞-injective, then M ∼= M∗∗ for any BE(R)-

module M .

Proof. Let M be a BE(R)-module; hence we have a short exact sequence

0 → K → F →M → 0 (6.1.1)

with F a finitely generated free module. Applying HomR(−, R) twice, consider the
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following diagram with exact rows and columns.

0 // K //

��

F //

∼=
��

M //

��

0

��
0 // K∗∗ // F ∗∗ // M∗∗ // Ext1

R(K∗, R)

By Lemma 3.2.14, the top row gives us that K ∈ BE(R); thus Ext1
R(K∗, R) = 0.

Since F is torsionless, by the Snake Lemma so is K. Thus by Lemma 6.1.8 there

exists L ∈ [FP ]R∞ such that

0 → K → K∗∗ → Ext1
R(L,R) → 0.

By assumption R is (FP )∞-injective, so Ext1
R(L,R) = 0 and thus K ∼= K∗∗. By the

Five Lemma, M ∼= M∗∗.

Using these results there is a link between (FP )∞-injective rings and

BE-Gorenstein rings.

Theorem 6.1.10. An (FP )∞-injective ring is BE-Gorenstein.

Proof. Let R be an (FP )∞-injective ring; by Theorem 6.1.9, M ∼= M∗∗ for any

M ∈ BE(R). It suffices to show any such M is totally reflexive. This holds since

M,M∗ ∈ [FP ]R∞ so by the (FP )∞-injectivity of R, ExtiR(M,R) = ExtiR(M∗, R) = 0

for all i > 0.

From Theorem 6.1.10 it also holds that all BE(R)-modules in an (FP )∞-injective

ring are totally reflexive.

Corollary 6.1.11. Let R be a ring. If (FP)∞-idRR = 0, then G-dimRM = 0

for all M ∈ BE(R). Conversely, if G-dimRM = 0 for all M ∈ [FP ]R∞, then

(FP)∞-idRR = 0.
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Proof. Suppose (FP)∞-idRR = 0. Given M ∈ BE(R), by definition

ExtiR(M,R) = ExtiR(M∗, R) = 0 for all i > 0. By Theorem 6.1.9, M is totally

reflexive.

If G-dimRM = 0 for all M ∈ [FP ]R∞, then for all such M , ExtiR(M,R) = 0 for all

i > 0. Hence (FP)∞-idRR = 0.

This result can easily be partially extended to BE-injective rings.

Corollary 6.1.12. If G-dimRM = 0 for every R-module M ∈ BE(R), then R is

BE-injective.

However, to obtain the converse of Corollary 6.1.12, one would need M ∼= M∗∗

for every M ∈ BE(R) in order for M to be totally reflexive.

Thus we have the following inequality for any R-module E

BE-idRE ≤ (FP)∞-idRE ≤ FP-idRE.
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