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Search for lowest-energy structure of Zintl dianion Si12
2−, Ge12

2−,
and Sn12

2−

Nan Shao, Satya Bulusu, and X. C. Zenga�

Department of Chemistry, University of Nebraska-Lincoln Lincoln, Nebraska 68588, USA

�Received 16 January 2008; accepted 22 February 2008; published online 21 April 2008�

We perform an unbiased search for the lowest-energy structures of Zintl dianions �Si12
2−, Ge12

2−,
and Sn12

2−�, by using the basin-hopping �BH� global optimization method combined with density
functional theory geometric optimization. High-level ab initio calculation at the coupled-cluster
level is used to determine relative stabilities and energy ranking among competitive low-lying
isomers of the dianions obtained from the BH search. For Si12

2−, all BH searches �based on
independent initial structures� lead to the same lowest-energy structure Si12a

2−, a tricapped trigonal
prism �TTP� with Cs group symmetry. Coupled-cluster calculation, however, suggests that another
TTP isomer of Si12c

2− is nearly isoenergetic with Si12a
2−. For Sn12

2−, all BH searches lead to the
icosahedral structure Ih-Sn12a

2−, i.e., the stannaspherene. For Ge12
2−, however, most BH searches

lead to the TTP-containing Ge12b
2−, while a few BH searches lead to the empty-cage icosahedral

structure Ih-Ge12a
2− �named as germaniaspherene�. High-level ab initio calculation indicates that

Ih-Ge12a
2− and TTP-containing Ge12b

2− are almost isoenergetic and, thus, both may be considered as
candidates for the lowest-energy structure at 0 K. Ge12a

2− has a much larger energy gap �2.04 eV�
between highest occupied molecular orbital and lowest unoccupied molecular orbital than Ge12b

2−

�1.29 eV�, while Ge12b
2− has a lower free energy than Ih-Ge12a

2− at elevated temperature
��980 K�. The TTP-containing Si12a

2− and Ge12b
2− exhibit large negative nuclear independent

chemical shift �NICS� value ��−44� at the center of TTP, indicating aromatic character. In contrast,
germaniaspherene Ih-Ge12a

2− and stannaspherene Ih-Sn12a
2− exhibit modest positive NICS values,

�12 and 3, respectively, at the center of the empty cage, indicating weakly antiaromatic
character. © 2008 American Institute of Physics. �DOI: 10.1063/1.2897918�

I. INTRODUCTION

Although group-14 Zintl ion clusters can be described by
substituting a B–H unit of deltahedral boranes with group-14
atoms,1 the aromaticity of borane dianion BnHn

2− may be
quite different from that of Zintl dianions En

2− �E
=Si,Ge,Sn,Pb�. BnHn

2− �4�n�13� generally exhibit diat-
ropic nuclear independent chemical shift �NICS� at their
polyhedron center. For example, the isoelectronic
Ih-B12H12

2− is highly aromatic with a negative NICS value of
�−27 at the cage center. In contrast, icosahedral Ih-Si12

2−

exhibits a paratropic NICS value �56.4� at the cage center, a
characteristic of antiaromaticity. King et al. attributed this
antiaromaticity to the very paratropic threefold degenerate t1u

and the fivefold degenerate hg molecular orbitals �MOs� of
Ih-Si12

2− that offset the diatropicity.2 The difference in aro-
maticity between magic clusters Si6

2− and Si7
2− with the cor-

responding isolectronic boranes has been recently demon-
strated by Zdetsis.3

Also, it is known that Wade’s 2n+2 skeletal electron rule
for closed polyhedron, derived originally from closo carbo-
ranes, boranes and borane anions,4 can be extended to pre-
dicting stability of group-14 En

x− anions �x=2–4�. For ex-
ample, all the dianions E12

2− �E=Si,Ge,Sn,Pb� possess 26
skeletal electrons and, thus, should be stable according to the

Wade’s rule. Indeed, polyatomic anions of Sn12
2− and Pb12

2−

have recently been synthesized in the laboratory.5,6 Since
both Sn12

2− and Pb12
2− exhibit delocalized � bonding char-

acter and have empty-cage icosahedral structure, the two
clusters are named as stannaspherene and plumbaspherene,
respectively, by Wang and co-workers.5,6 In solids, endohe-
dral group-14 dianion units, such as M@Pb12

2− �M=Ni,7

Pd,7 and Pt �Ref. 8��, have been shown to have an icosahe-
dral structure by single-crystal x-ray diffraction, energy dis-
persive x-ray, and NMR spectroscopy experiments. Gas-
phase endohedral clusters M2+@Sn12

2− �M=Ti, V, Cr, Fe,
Co, Ni, Cu, Y, Nb, Gd, Hf, Ta, Pt, and Au�9 and AlPb12

+

�Ref. 10� have been synthesized in the laboratory. Previous
first-principles calculations show that the “outligands” and
“intraligands” only weakly interact with the icosahedral cage
Pb12

2− and Sn12
2−.5,6,8

Although the global-minimum structures of Zintl dianion
clusters Sn12

2− and Pb12
2− are fully established, to our knowl-

edge, the global-minimum structures of Si12
2− and Ge12

2− are
still unknown. Chen et al. have shown that the empty-cage
Ih-Si12

2− is not the global minimum.11 Whether Ge12
2− exhib-

its the same �lowest-energy� icosahedral structure as the stan-
naspherene Sn12

2− or that as the lowest-energy structure of
Si12

2− is another open question. In this paper, we present
results of low-lying structures of group-14 dianionic clusters
Si12

2−, Ge12
2−, and Sn12

2−, based on an unbiased global-a�Electronic mail: xczeng@phase2.unl.edu.
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minimum search. Electronic and aromatic properties of the
low-lying structures of Si12

2− and Ge12
2− are also presented.

II. COMPUTATIONAL DETAILS

To search for the lowest-energy structures of Zintl dian-
ions E12

2−, �E=Si, Ge, and Sn�, a three-step computation
procedure is undertaken. First, an unbiased search is per-
formed, using the basin-hopping12 �BH� method combined
with density functional theory �DFT� geometric optimiza-

tion. Specifically, the gradient-corrected Perdew–Burke–
Ernzerhof �PBE� exchange-correlation functional13 and the
double-numerical polarized basis set with effective core po-
tential �ECP�, implemented in DMOL3 software,14 are chosen
for geometric optimization. The combined DFT-BH ap-
proach has been proven to be quite effective to generate a
large number of low-energy clusters �typically 200–400 iso-
mers�. This approach has been used to search for the global
minima of medium-sized boron, germanium, and gold

TABLE I. Top ten low-lying isomers of Si12
2−, Ge12

2−, and Sn12
2−. The energy rankings are based on PBE/

DNP-ECP calculations, while the relative energy shown in parentheses is based on PBEPBE /6-311+G�d�
calculation, including zero-point energy correction. �E is in units of eV. The TTP motif is highlighted in opaque
gray.

aRelative energies are calculated using DMOL3 program. Medium integration grid and 4.0 Å global cutoff are
selected. Relative energies shown in parentheses are calculated using GAUSSIAN 03 package.
bSymmetry is obtained within a numerical tolerance of 0.1 Å.
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clusters.15 The DFT-BH search provides a compromise be-
tween computing time and sufficient accuracy in structural
determination and total-energy calculation.

Next, among the 200–400 isomers for the Zintl dianion
clusters, the top ten low-lying isomers are collected as can-
didates for the lowest-energy structure. For Si12

2− and
Ge12

2−, those isomers with energy difference from the
lowest-lying isomer less than 0.3 eV �Table I� are further
reoptimized using an all-electron DFT method �PBEPBE
functional� with the 6-311+G�d� diffusive basis set, as well
as using the second-order Moller-Plesset perturbation16

�MP2� method with the 6-31+G�d� basis set. Both methods
are implemented in GAUSSIAN03 package.17 Calculation of
harmonic vibrational frequencies is also performed to make
sure that the optimized structures give no imaginary frequen-
cies. For Sn12

2−, the PBEPBE/LANL2DZ functional/basis set
is chosen for geometric optimization and frequency calcula-
tion. In addition, the nuclear NICS values are calculated us-
ing the gauge-independent atomic orbital �GIAO� method18

at PBEPBE /6-311+G�d� level for Si and Ge, and at
PBEPBE/LANL2DZ level for Sn. The canonical MO �CMO�
NICS values are also calculated for the low-lying isomers of
Si and Ge using the NBO 5.0 program.19

Last, to determine the lowest-energy structure among top
candidate isomers of Si and Ge obtained from step 2, the

single-point energy calculation using the coupled-cluster
method with single, double, and perturbative triple
excitations20 �CCSD�T�� and with a larger and more diffusive
6-311+G�2d� basis set for Si and the same 6-31+G�d� basis
set for Ge is performed, based on geometric structures opti-
mized at the MP2 /6-31+G�d� level of theory/basis set.

III. RESULTS AND DISCUSSIONS

In the step-1 BH search, the lowest-energy isomer of
Si12

2− was obtained within 200 Monte Carlo �MC� steps.
Three independent initial structures were used. For Sn12

2−,
the lowest-energy isomers structure �stannaspherene� can be
quickly achieved, typically within 100 MC steps and regard-
less of the initial structure. For Ge12

2−, however, the lowest-
energy structure is much harder to attain, largely because
there are two competing lowest-energy isomers with very
different structures �see Sec. III B below�, one contains the
tricapped trigonal prism �TTP� motif and the other is a closo
cage, i.e., the icosahedral structure.

The top ten low-energy isomers obtained from step 1 are
listed in Table I. The top four candidates of Si12

2−, top two of
Ge12

2−, and Sn12
2− are plotted in Fig. 1, where the TTP motif

is highlighted in blue. For Si12
2− and Ge12

2−, zero-
point energy correction at the MP2 /6-31+G�d�

TABLE II. Point-group symmetries, relative energies ��E� �for Si and Ge�, HOMO-LUMO gaps, and GIAO-
NICSs of Zintl dianions at singlet state. Energies and HOMO-LUMO gaps are in units of eV, zero-point energy
�ZPE� in a.u., and NICS in ppm. The lowest-energy isomers are highlighted in boldface.

Si12a
2− Si12b

2− Si12c
2− Si12d

2− Ih-Si12
2−

Structure TTP TTP TTP Chair Icos
Symmetrya C1 C1 C1 C1�D3d0.1� Ih

�E �PBEPBE /6-311+G�d��ZPE 0.000 0.158 0.078 0.423 1.572
�E �MP2 /6-31+G�d�� 0.000 0.775 0.377 1.285
ZPE �MP2 /6-31+G�d�� 0.0199 0.0195 0.0196 0.0201
�E �MP2 /6-311+G�2d�� 0.000 0.437 0.465 1.720
�E �CCSD�T� /6-311+G�2d�� 0.031 0.751 0.000 0.500
HOMO-LUMO gapb 1.297 1.420 1.544 1.913 1.601
NICSb −44.02 −22.16 −55.26 −32.00 47.49

Ge12a
2− Ge12b

2− Ge12c
2− Ge12d

2−

Structure Icos TTP TTP TTP
Symmetry C1�Ih0.1� C1 C1 C2v

�E �PBEPBE /6-311+G�d��ZPE 0.000 0.067 0.329 0.322
�E �MP2 /6-31+G�d�� 0.873 0.000
�E �CCSD�T� /6-31+G�d�� 0.000 0.038
HOMO-LUMO gapb 2.038 1.293 0.846 1.442
NICSb 11.78 −43.77 −40.50 −20.99

Sn12a
2− Sn12b

2−

Structure Icos TTP
Symmetry C1�Ih0.01� C1

�E �PBEPBE /LANL2DZ�ZPE 0.000 0.748
HOMO-LUMO gapb 1.870 0.676
NICSb 2.62 −29.70

aSymmetry is obtained within a numerical tolerance of 0.001 Å and is based on geometries optimized at
PBEPBE /6-311+G�d� level for �Si and Ge� and PBEPBE/LANL2DZ �for Sn� level. Higher symmetries with
larger tolerance are assigned in parentheses.
bHOMO-LUMO gaps and NICS values are calculated at PBEPBE /6-311+G�d� level and PBEPBE/LANL2DZ
level �for Sn�.
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level of theory as well as the single-point energies
calculated at the MP2 /6-311+G�2d�//MP2 /6-31+G�d� and
CCSD�T� /6-311+G�2d�//MP2 /6-31+G�d� levels of theory
are given in Table II �see below for discussions�. Also given
in Table II are the gaps between the highest occupied MOs
and the lowest unoccupied MOs �HOMO-LUMO gaps� and
the NICS values, calculated at the PBEPBE /6-311+G�d�
�for Si and Ge� and PBEPBE/LANL2DZ �for Sn� level of
theory. The NICS value is an indicator of molecular aroma-
ticity, which has been used to characterize relative stabilities
among various Zintl Ih−E12

2− cluster with empty-cage
structures.11,21 We have also calculated the NICS value at the
center of TTP motif �Fig. 1�. In addition, CMO analysis
�implemented in the NBO 5.0 program�19 is carried out to
evaluate the contribution of each molecular orbital to NICS
value �Table III�.

A. Si12
2−

The TTP motif is known as one of major structural mo-
tifs in low-energy silicon clusters of Si10–Si20.

22 Indeed,
among the top ten low-lying isomers of Si12

2−, six contain
the TTP motif �highlighted in Table I�. The top four low-
lying isomers �Fig. 1�a�� have been reoptimized using
MP2 /6-31+G�d� level of theory. The MP2 /6-31+G�d� cal-
culations result in nearly the same geometries and the same
energy ranking but with different energy difference com-
pared to the DFT calculations. MP2 calculation with a larger
diffusive basis set �MP2 /6-311+G�2d�//MP2 /6-31+G�d��
also shows that Si12a

2− is the lowest-energy isomer as predict
based on the DFT calculation �Table II and Fig. 1�a��. Note
also that Si12a

2− contains a TTP motif and has Cs symmetry.
The second lowest-energy structure Si12b

2− �at the DFT level�
becomes the highest-energy isomer �at CCSD�T� level�
among the top four isomers. Note also that Si12b is the
lowest-energy structure of neutral Si12 cluster.22–24 Si12c

2− is
the third lowest-energy isomer �at DFT level�. However, it is
nearly degenerate in energy �at CCSD�T� level� with Si12a

2−

and, thus, it is a competitive candidate for the lowest-energy
isomer. The chair-shaped structure Si12d

2− with D3d

symmetry11 is the third lowest-energy structure at CCSD�T�
level but it has the largest HOMO-LUMO gap of 1.9 eV.
The two lowest-energy isomers Si12a

2− and Si12c
2− also have

sizable HOMO-LUMO gaps �1.3 and 1.5 eV, respectively�.
Both Si12a

2− and Si12c
2− exhibit large negative NICS val-

ues �−44.0 and −55.3 ppm, respectively�, suggesting that the
lowest-energy isomers are aromatic. The total NICS value
stems mainly from valence MOs, based on the CMO-NICS
analysis �Table III�. The least valence-orbital contribution to
the total NICS value is 90.6% for Si12b

2−. Note that the TTP
cluster Si9

2− itself entails a large negative NICS value
�−37.5 ppm� at its center �based on PBEPBE /6-311+G�d�
calculation�. Hence, Zintl dianion cluster Si12

2− which con-
tains a TTP motif is expected to show strong aromaticity.
The CMO-NICS analysis suggests that the positive CMO-
NICS values are due to the chemical bonds associated with
the three non-TTP atoms, rather than the bonds associated
within the TTP structure. Atoms with the Mulliken charge
�−0.7 e are shown in Fig. 1. Most of these atoms belong to
the TTP motif. For the chair-shaped Si12d

2−, large negative
charges accumulate on six atoms �see Fig. 1�a��. From Si to
Ge and to Sn, the charge distribution on the TTP-containing
clusters becomes more uniform.

For the purpose of comparison, we included data for the
empty-cage icosahedral isomer Ih-Si12

2− in Table II. Unlike
the stannaspherene Ih-Sn12

2− and plumbaspherene Ih-Pb12
2−,

which are the lowest-energy structures for Sn12
2− and Pb12

2−,
respectively, the Ih-Si12

2− has a much higher energy than
Si12a

2− and Si12c
2− ��1 eV at DFT level�. In addition, con-

sistent with the results of both King et al. and Zdetsis, we
found that Ih-Si12

2− entails a large positive NICS value
�47.5 ppm�, indicating strong antiaromatic character. Hence,
the Ih-Si12

2− isomer is unlikely to exist in the cluster
beam.5,6,11 The natural bond orbital �NBO�-CMO analysis
shows that the Zintl dianion with Ih symmetry has only one-
center core or one-center lone-pair type of MOs. The five-

FIG. 1. �Color online� Optimized structures of low-lying Si12
2−, Ge12

2−, and
Sn12

2− isomers. Relative energies �in parentheses� are computed at
CCSD�T� /6-311+G�2d�//MP2 /6-31+G�d� level for Si12

2−,
CCSD�T� /6-31+G�d�//MP2 /6-31+G�d� for Ge12

2−, and at PBEPBE/
LANDL2DZ for Sn12

2−. Energies are in units of eV. Lowest-energy struc-
tures are in bold index. Sn12b

2− is the lowest-energy isomer that contains a
TTP motif. The figure is prepared using GAUSSVIEW 3.0 program. The TTP
motif is highlighted in blue with a star. Atoms with large negative Mulliken
charge ��−0.7e� are also highlighted.
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fold degenerate HOMO is composed of localized lone-pair
NBOs which contribute 92.0% of the total positive NICS
value for Ih-Si12

2−.
The relative stabilities of the four low-lying isomers of

Si12
2− at higher temperatures can be studied from Gibbs free

energy versus temperature calculation �Fig. 2�a��. It appears
that Si12b

2−, the lowest-energy isomer of neutral cluster,
could become increasingly stable than Si12a

2− as the tempera-
ture is increased. Although the Gibbs free energy calculation
is based on harmonic approximation which may be inaccu-
rate at high temperatures, we expect that the trend in relative
stabilities at room temperature is still qualitatively correct.

It should be noted that the intraligands �or metal dopant�
might be able to stabilize certain cage clusters, such as the
icosahedral Si12

2−. In our calculation at PBE/ECP level, we
found that the optimized endohedral Pb@Ih-Si12

2− has a
lower electronic energy than the exohedral PbSi12a

2− by
0.51 eV. The endohedral Pb@Ih-Si12

2− also has a larger
HOMO-LUMO gap of 1.58 eV than 0.88 eV of PbSi12a

2−.
Last, to compare the MOs of Ih-Si12

2− with those of the
TTP Si12

2−, energy levels of twenty-five valence MOs of
Si12a

2−, Si12c
2−, and Ih-Si12

2−, calculated at PBEPBE /6-311
+G�d� level, are schematically plotted in Fig. 3. It can be
seen that the TTP Si12

2− has smaller 3s2 and 3p gaps than
Ih-Si12

2−, indicating that the inner 3s orbitals are more
delocalized.

B. Ge12
2−

Among the top ten low-lying isomers shown in Table I,
six isomers contain the TTP motif. At the DFT level of
theory, Ge12a

2− is the lowest-energy isomer, while at the
MP2 level, Ge12b

2− is the lowest-energy isomer. At higher
level CCSD�T� /6-31+G�d�//MP2 /6-31+G�d� calculation,
Ge12a

2− and Ge12b
2− are almost degenerate in energy. Hence,

both can be viewed as candidates for the lowest-energy
structure. Ge12b

2− contains a TTP motif and exhibits the same
structure as Si12a

2−, which is the lowest-energy structure of
Si12

2−. Ge2c
2− also contains a TTP motif and exhibits the

same structure as Sn12b
2−. The fourth lowest-lying structure

Ge12d
2− has C2v symmetry and is the lowest-energy structure

of neutral Ge12 cluster.24,25 Ge12a
2− exhibits the icosahedral

structure, similar to the stannaspherene Ih-Sn12
2− and plum-

baspherene Ih-Pb12
2−. Thus, Ge12a

2− may be named as ger-
maniaspherene.

The valence MOs of Ge12a
2− are very similar to those of

Ih-Sn12a
2− and Ih-Pb12

2−, which include four delocalized �

bonding orbitals �ag and t1u� and nine � bonding orbitals �gu

and hg�5,6 and twelve localized 4s orbitals �see Fig. 3�. Note
that for Ih-Pb12

2−, the five degenerated �-bonding hg ortibals
have higher electronic energy than �-bonding t1u orbitals,
but the energy ordering is reversed for Ge12a

2− and Ih-Sn12
2−.

TABLE III. CMO-NICS values of low-lying Zintle dianions. The calculations are performed at PBEPBE /6-311+G�d� level �for Si and Ge� and PBEPBE/
LANL2DZ level �for Sn�. Positive �total� NICS values are highlighted by bold.

CMO Si12a
2 Si12b

2− Si12c
2− Si12d

2− Ih-Si12
2− CMO Ge12a

2− Ge12b
2− Sn12a

2− Sn12b
2−

61 −10.46 −9.44 −8.87 −8.11 −8.72 169 −8.04 −9.29 −7.19 −6.26
62 −13.14 −13.21 −9.69 −7.69 −14.52 170 −10.53 −8.60 −7.7 −8.07
63 −3.17 −8.54 −7.34 −7.70 −14.76 171 −10.52 −6.46 −7.7 −6.72
64 −2.12 −6.97 −8.56 −4.80 −14.78 172 −10.50 −8.05 −7.7 −6.90
65 −10.01 −12.54 −7.14 −8.45 −6.15 173 −5.12 −5.75 −3.89 −5.03
66 −5.42 −7.73 −2.83 −8.46 −6.15 174 −5.12 −4.70 −3.89 −3.29
67 −0.47 −0.64 −5.98 −0.80 −6.15 175 −5.12 −4.20 −3.89 −3.04
68 −3.62 −2.91 −1.62 −0.82 −6.14 176 −5.11 −4.24 −3.89 −2.82
69 −4.18 −2.21 −5.25 −0.67 −6.15 177 −5.11 −4.13 −3.89 −2.80
70 −2.28 1.00 −5.57 −0.29 1.67 178 −1.75 −4.03 −0.83 −2.81
71 −3.19 1.88 −0.07 −0.28 1.67 179 −1.76 −2.61 −0.83 −2.13
72 −1.57 1.55 −1.99 −6.32 1.67 180 −1.75 −2.78 −0.83 −1.63
73 −5.14 −4.95 −6.76 −7.27 −10.53 181 −7.88 −6.38 −6.14 −4.29
74 −6.34 −6.34 −4.01 −5.77 −10.53 182 −8.42 −6.42 −6.14 −2.77
75 −3.37 −4.00 −0.05 −4.81 −10.53 183 −8.42 −4.09 −6.14 −2.34
76 −2.29 −2.20 −0.13 −4.80 −10.53 184 −8.42 −4.11 −6.14 −2.02
77 −0.35 −4.72 −2.14 1.80 −8.13 185 −8.41 −3.53 −6.32 −2.38
78 −0.73 −2.99 −3.56 1.81 2.68 186 1.61 −0.38 1.19 −1.43
79 0.68 −6.35 −2.08 6.61 2.17 187 1.54 3.19 1.19 1.02
80 −1.01 −0.26 0.56 6.61 2.16 188 1.68 0.17 1.2 2.78
81 0.67 2.18 0.27 −2.76 34.44 189 24.58 6.40 16.38 5.45
82 −2.06 13.98 3.12 11.32 34.44 190 24.60 3.80 16.43 4.07
83 11.13 19.54 6.36 −1.96 34.44 191 24.63 10.66 16.43 5.13
84 11.31 15.48 10.46 11.88 34.43 192 24.75 8.74 16.44 10.27
85 14.75 20.31 9.47 11.89 34.43 193 24.75 17.85 16.46 8.32
Totala −44.02 −22.16 −55.26 −32.00 47.49 Total 11.78 −43.77 2.62 −29.70
Val.%b 96.41 90.61 96.63 93.25 106.19 Val.% 137.18 88.97 99.62 99.97

aSum of CMO-NICS values for valence electrons.
bPercent of the contribution of valence electrons to the total NICS value.
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The energy gap between gu and hg orbitals increases from
Ih-Sn12

2− �1.3 eV� to Ge12a
2− �1.8 eV� and to Ih-Sn12

2−

�2.6 eV�. In Fig. 4, it can be seen that the HOMO of Ge12a
2−

is slightly more delocalized compared to Ih-Sn12a
2− and

Ih-Si12
2−.

Ge12b
2− is another candidate for the lowest-energy struc-

ture. It exhibits a large negative NICS �−43.8 ppm� at the
center of TTP structure, due to relatively less paramagnetic
contributions of its five highest occupied orbitals �Table III�.
Similar to TTP Si9

2−, the TTP Ge9
2− unit itself also entails a

large negative NICS value �−44.5 ppm calculated at
PBEPBE /6-311+G�d� level�. Hence, all TTP-containing di-
anions are expected to show aromatic character. Moreover,
similar to Si12a

2−, Ge12b
2− also shows negative charges on the

three capping atoms of TTP �Fig. 1�b��. However, the mag-
nitude of the charges is smaller compared to that of Si12a

2−

�Fig. 1�a��. In Fig. 2�b�, the Gibbs free energy versus tem-
perature curves are shown. As the temperature is increased,
Ge12b

2− becomes increasingly stable than Ge12a
2−. This is

another factor that favors Ge12b
2− over Ge12a

2− as the most
stable dianion cluster in the gas phase, in addition to the total
NICS factor.

Figure 4 shows a higher delocalized HOMO of Ge12a
2−

compared to two other icosahedral cages Ih-Si12
2− and

Sn12a
2−. This is likely due to the greater contribution of s

electrons to the HOMO, which is 49.4%, calculated at
PBEPBE /6-311+G�d� level of theory. As a comparison, the
contributions of s electrons to the HOMO are �43% for
Ih-Si12

2− and 38.9% for Sn12a
2−. Ge12b

2− and Si12a
2− exhibit

the same structure, as well as the same patterns of MOs �see
Fig. 4�. In Fig. 3, energy levels of MOs of Ge12a

2− and
Ge12b

2− are also plotted. It can be seen that the TTP Ge12b
2−

shows similar 4s2 localization as the Ih-Ge12a
2−.

C. Sn12
2−

The BH search shows that the stannaspherene Sn12a
2−

�Fig. 1�c�� is unequivocally the lowest-energy isomer. The
next lowest-energy TTP-containing isomer Sn12b

2− is
0.54 eV higher in energy �at PBE/DNP-ECP level� or
0.75 eV higher in energy �at PBEPBE/LANL2DZ level� than
Sn12a

2−. It is worth noting that Sn12b
2− exhibits the same

structure as the third lowest-lying structure Ge12c
2− and the

fifth lowest-lying structure Si12e
2− �Table I�. Expectedly, the

TTP-containing isomer Sn12b
2− has a large negative NICS

value of −29.7 ppm. Although Sn12a
2− has a positive NICS

value �2.6 ppm�, this value is much smaller than NICS val-
ues of Ih-Si12

2− �47.5 ppm� and Ge12a
2− �11.8 ppm�.

We note that the lowest-energy structure of neutral Sn12

contains a TTP motif,24 whereas the lowest-energy structure
of monoanion Sn12

− is an empty cage with C5v symmetry.5

Analysis of the valence MOs of Sn12a
2− has been reported in

a previous joint experimental/theoretical study.5 Sn12a
2− ex-

hibits similar MOs as Ih-Ge12a
2− and Ih-Sn12

2− �Fig. 4�.

FIG. 2. Relative Gibbs free energy vs temperature for �a� Si12a
2− ��, 0 eV

line�, Si12b
2− ���, Si12c

2− ���, and Si12d
2− ���; and �b� Ge12a

2− ��, 0 eV
line�, Ge12b

2− ���, and Ge12c
2− ���. The calculations are carried out at

PBEPBE /6-311+G�d� level.

FIG. 3. �Color online� Energy levels of twenty-five valence molecular or-
bitals of Si12a

2−, Si12c
2−, and Ih-Si12

2−, calculated at PBEPBE /6-311+G�d�
level. MOs of Ge12a

2− and Ge12b
2− are also plotted. The arrows separate the

inner �3s2 or 4s2� from the outer valence orbitals �3p or 4p�.
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IV. CONCLUSIONS

We perform a global-minimum search for the lowest-
energy structures of Zintl dianions Si12

2−, Ge12
2−, and Sn12

2−,
by using the basin-hopping global optimization method com-
bined with density functional theory geometric optimization.
High-level ab initio methods are used to determine relative
stabilities and energy ranking among candidate low-lying
isomers of the dianions. For the first time, two candidates of
the lowest-energy structures of Si12

2− are reported, namely,
Si12a

2− and Si12c
2−. Both candidate isomers contain a TTP

motif and both have Cs symmetry. Unlike other group-14
elements, the icosahedral isomer Ih-Si12

2− is much higher in
energy compared to top ten low-lying isomers of Si12

2−.
For Ge12

2−, two candidates for the lowest-energy struc-
ture are identified through the BH search, namely, Ih-Ge12a

2−

and a TTP-containing isomer Ge12b
2−. The latter exhibits the

same structure as Si12a
2−, whereas the former, namely, ger-

maniaspherene, exhibits the same structure as the stannas-
pherene Ih-Sn12a

2−. As expected, the structural characteristics
of germanium clusters are somewhere in between those of
silicon and tin clusters. On the relative stability between
Ih-Ge12a

2− and Ge12b
2−, Ge12a

2− entails a much larger

HOMO-LUMO gap �2.04 eV� than Ge12b
2− �1.29 eV� while

Ge12b
2− has a lower free energy than Ih-Ge12a

2− at high tem-
perature. Moreover, the Ge12b

2− entails a large negative
NICS value ��−44� at the center of TTP, indicating strongly
aromatic character. Hence, freestanding Ge12b

2− may be more
likely to exist in the cluster beam than the germaniaspherene
Ge12a

2−.
Finally, for Sn12

2−, the global search confirms a previous
finding that the lowest-energy structure is an empty cage
with icosahedral structure �stannaspherene�. Although the
stannaspherene has a positive NICS value �2.6 ppm� at the
center of the cage, this value is much smaller than that of
Ih-Si12

2− �47.5 ppm� and that of germaniaspherene
�11.8 ppm�, indicating that the stannaspherene is marginally
antiaromatic. In general, a strongly antiaromatic Zintl cage is
expected to be unstable, as demonstrated in the case of Si12

2−

�Ref. 11�. However, the stannaspherene Sn12
2− which has

been found to be very stable in the gas phase5 is an excep-
tion. This result suggests that having strong aromaticity is
perhaps only sufficient but not necessary to construct highly
stable Zintl dianion polyhedrons.
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