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Abstract
A graphical procedure is presented for calculating first order tran-
sition matrices for a general (open-shell) atom. The first order 
transition matrix may be used to calculate matrix elements of a 
general one-body operator of rank λ in orbital space and σ in spin 
space. In the random phase approximation we obtain a set of N 
+ N′ coupled differential equations for N final state radial func-
tions and N′ initial state radial functions which completely deter-
mine the first order transition matrix for an atomic system hav-
ing N final state channels. (The relation of N′ to N is dependent 
on the atomic system studied.) These N + N′ differential equations 
reduce to familiar forms in the following cases: (1) When initial 
state correlations are ignored, we obtain the N coupled differen-
tial equations of the Close-Coupling Approximation; (2) When the 
atom has only closed subshells we obtain N′ = N and the 2N cou-
pled differential equations are those obtained in the Chang-Fano 
version of the Random Phase Approximation.

1. Introduction

Current theoretical understanding of closed-shell atom 
photoionization cross sections has been based on the Random 
Phase Approximation (RPA) [1, 2], which implies that, in ad-
dition to the usual final state interactions, virtual excitations 
of pairs of valence electrons have an important influence on 
these cross sections. The importance of the electron correla-
tions included in the random phase approximation have been 
confirmed for closed shell atoms by other theoretical methods, 
especially the Many-Body Perturbation Theory [3] and the R-
Matrix Theory [4, 5]. The theoretical understanding of the in-
fluence of the electron correlations on open-shell atom photo-
ionization cross sections is less developed. This is due to the 
greater theoretical difficulty of dealing with atoms that are not 
spherically symmetric and which thus have a great number of 
final state channels. While RPA theories have been developed 
to treat open-shell atoms [6–9] these have been given in the 
form of matrix or integral equations which require the use of 
large numbers of basis functions for their solution.

In what follows we outline a new graphical method for cal-
culating the first order transition matrix [10, 11] for a general 
(open-shell) atom. This matrix may be used to calculate matrix 
elements of a general one-body operator having ranks λ and 
σ in orbital and spin space respectively. In particular we may 
calculate the electric dipole matrix elements (having λ = 1 and 
σ = 0) which are needed to calculate photoionization cross-sec-
tions. The graphical method greatly simplifies the treatment of 
antisymmetrization and of angular momentum algebra and in 
addition affords a physical insight into the physical processes 
involved that is similar to that afforded by the diagrams of or-
dinary many-body perturbation theory. In the RPA we show 
that the first order transition matrix for an atom having N fi-

nal state channels is determined by a set of N final state radial 
functions and N′ initial state radial functions which satisfy N + 
N′ coupled differential equations. (The relation of N′ to N de-
pends on the particular atom studied.) Large numbers of basis 
functions are thus not needed. The (N + N′) coupled differen-
tial equations reduce to familiar forms in the following lim-
iting cases: (1) When initial state correlations are ignored we 
obtain the N coupled differential equations of the Close-Cou-
pling Approximation [12] ; (2) When the atom has only closed 
shells, N = N′ and we obtain the 2N coupled differential equa-
tions of the Chang-Fano version of the RPA [11, 13]. A detailed 
description of our theoretical methods will be published else-
where [14].

2. The graphical method

2.1. Definition of the transition matrix

Suppose that in a certain transition an N-electron atom may 
be described by an initial state 〈i and a final state f 〉. We de-
fine the first order transition matrix 〈r′NΓrN〉 as [10, 11]

(1)

Here each r includes also the spin coordinate of the corre-
sponding electron. Once the first order transition matrix is de-
termined, the matrix element of any one-body operator Oλ,σ(r) 
of rank λ in orbital space and rank σ in spin space is deter-
mined by the following one-electron integral:

 (2)

The outer product f 〉 〈i must satisfy the following dynami-
cal equation if the atom is described by the Hamiltonian H: 

Hf 〉 〈i – f 〉 〈iH = ħωf 〉 〈i                   (3)

Here ħω is the transition energy, Ef – Ei. If equation (3) is in-
tegrated over N – 1 coordinates then on the right hand side 
we obtain ħω〈r′NΓrN〉, while on the left we obtain partially 
integrated matrix elements of H between the initial and final 
states. The result is a consistency equation which the orbitals 
defining f 〉 and  〈i must satisfy.

We suppose that the object of a calculation is to obtain the 
matrix elements of an operator Oλ,σ according to equation (2). 
To do this we must first specify the form of i〉 and 〈 f in terms 
of certain unknown radial wavefunctions, and then use the dy-
namical equation (3) to determine these unknown radial func-
tions. We shall assume in this paper that the atom has an outer 

Published in Physica Scripta 21 (1980), pp. 368–372.   Copyright © 1980 Royal Swedish Academy of Science; published by Institute of Physics 
Publishing. Used by permission.  http://www.iop.org/EJ/journal/PhysScr

Submitted July 10 , 1979.

A Graphical Method for Calculating First Order Transition Matrices 
for Open-Shell Atoms in the Random Phase Approximation

Anthony F. Starace and Siamak Shahabi
Behlen Laboratory of Physics, University of Nebraska–Lincoln, Lincoln, Nebraska 68588, USA

368



Calculating first order transition matrices for a general (open-shell) atom  369

configuration pq, where 2 ≤ q ≤ 6, although this is not a restric-
tion on the theory. Since we are concerned with one-body tran-
sition operators we assume the final state to have the form

 (4)

Here Γ specifies a particular final state set of quantum num-
bers, ψΓ

l′L̃′S̃ ′(r) is an unknown radial wavefunction for the ex-
cited electron, and the ionic core wavefunctions are assumed 
to be Hartree-Fock wavefunctions. The initial state is assumed 
to have the following correlated form:

(5)

Here f a and f b are the radial wavefunctions for a pair of elec-
trons excited out of the initial state configuration, each as-
sumed to have an orbital angular momentum lf. The orbitals 
of the configurations pq and pq–2 are taken to be Hartree-Fock 
orbitals. Substituting equations (4) and (5) in equation (3) and 
integrating over N – 1 coordinates we obtain equations that 
enable us to determine the unknown functions ψΓ

l′L̃′S̃ ′(r) and 
a particular linear combination of f a(r) and f b(r) that we need 
to obtain the matrix elements in equation (2).

2.2. The graphical rules

The graphical method that we introduce has been developed 
to calculate the matrix elements arising when equation (3) is in-
tegrated over N – 1 coordinates. The right hand side of equa-
tion (3) may be evaluated simply from the graph in Figure 1. 
On the left hand side of equation (3), the scalar one-body oper-
ators in H lead to diagrams similar to those of Figure 1 and thus 
are not shown. The two-body Coulomb operator in H leads to 
more complicated diagrams: the first term on the left of equa-
tion (3) leads to final state correlation diagrams, shown in Fig-
ure 2, while the second term on the left of equation (3) leads to 
initial state correlation diagrams, shown in Figure 3. Each of the 
direct interaction diagrams in Figures 2 and 3 has a correspond-
ing exchange diagram which, for brevity’s sake, is not shown.

The rules for writing down the graphs in Figures (1)–(3) are 
a slight modification of those in Section 6.1 of the review ar-
ticle of Briggs [15]. That is, we use his graphical notation for 
state vectors and Coulomb interaction operators. In contract-
ing the state vectors with the Coulomb interaction operator, 
however, we have left a gap between a p-electron and an l′-
electron in each diagram to indicate that the Nth coordinate is 
not integrated over. The vertical bars on these electron lines in-
dicate the radial wavefunctions (from the left-hand and right-
hand state vectors) which are not integrated over. The square 
boxes on some nodes indicate appropriate coefficients of frac-
tional parentage, and the cross on the interaction line k in Fig-
ure 2(a), for example, indicates a partially integrated reduced 
matrix element [11]

(6)
where

(7)

and where [l] = 2l + 1 and r< = min (r, r′).

Figure 1. Graphical representation of the first order transition matrix 
for final and initial atomic state vectors represented by equations (4) 
and (5), respectively. Diagram (a) results from the initial state config-
uration npq, while diagram (b) results from the initial state configura-
tion  npq – 2f af b .

Figure 2. Final state direct interaction diagrams resulting from inte-
grating the first term on the left hand side of equation (3) over N – 1 
coordinates.

Figure 3. Initial state direct interaction diagrams resulting from inte-
grating the second term on the left hand side of equation (3) over N – 1 
coordinates.
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In those diagrams involving the correlated ground state 
terms (i.e., those in Figures l(b), 2(b), 3(b), and 3(c)) there are 
a number of additions to the rules in Section 6.1 of Briggs’ re-
view [15]. (1) There is an overlap integral (f bψΓ

l′L̃′S̃ ′) indi-
cated by the single vertical bar between the corresponding 
electron lines. This overlap implies a delta function δ(lf, l′′). 
(2) When the labels a and b are switched, we obtain diagrams 
identical in form to those shown but differing by the phase (–
1)Lp+Sp. (3) Briggs’ weight factor rule (i.e., rule (viii) in Section 
6.1 of [15]) must be modified in order to include certain exclu-
sion-principle-violating diagrams that are characteristic of the 
RPA. This modification is discussed later below.

Each of the diagrams in Figures 1–3 has four open lines: the 
two one-electron lines representing the Nth electron, whose 
coordinates are not integrated over, and the two lines indi-
cating the initial and final orbital and spin angular momenta 
LiSi and LfSf. These latter two open lines imply a dependence 
on magnetic quantum numbers. We can factor out this depen-
dence and obtain a closed diagram in two steps: (1) We expand 
the two one electron states p and l′ in states of orbital angular 
momentum λ and spin angular momentum σ; (2) we then fac-
tor out the dependence on magnetic quantum numbers by a 
graphical step analogous to the Wigner-Eckart Theorem. Thus 
each of the graphs in Figures 1–3 is transformed according to 
the rule shown in Figure 4. The symbols ψa(ra) and ψb(rb) rep-
resent the radial wavefunctions associated with the horizon-
tal bars in the dangling lines on the left side of the equation 
shown in Figure 4. The double tensor operator Wλ, σ in Figure 
4 is defined by [11] :

(8)

In equation (8) the χ’s represent two component spin wave-
functions and the Y’s represent spherical harmonics.

The closed diagrams resulting from application of the rule 
in Figure 4 to the diagrams in Figures 1–3 may now be trans-
formed to the pure angular momentum diagrams of Jucys et 
al. [16] by application of rules (i)–(v) in Section 4.2 of Brigg’s 

review [15]. (Note that rule (iv) of Briggs [15] must be amended 
as follows: one changes the sign of all nodes except those on the 
λ, σ interaction line in both the orbital and spin diagrams.) The 
resulting diagrams can be manipulated according to the rules 
of Jucys et al. [16] and reduced to algebraic expressions.

2.3. The random phase approximation

So far our treatment has been exact, given our choice of ini-
tial and final states in equations (4) and (5) and our selection of 
interactions, shown in Figures 2 and 3 (and including the ex-
change interactions corresponding to those shown). Some of 
the diagrams represent rather complicated interactions, partic-
ularly those involving the interactions of the correlated ground 
state function fa with the npq – 2 core (i.e., diagrams 2(b), 3(b), 
and 3(c)). These latter interactions are difficult to treat primar-
ily because the presence of coefficients of fractional parent-
age does not permit the summations over L″ and S″ to be per-
formed analytically. We therefore make an approximation to 
these diagrams which, in the closed shell case, results precisely 
in the correct RPA matrix elements. The approximation is this: 
we assume that when the correlated ground state function fa 
interacts with the npq – 2 core, there is no exchange of orbital or spin 
angular momentum with the core. Furthermore, the weight factor 
for this interaction is not (q – 2), as given by Briggs’ rules, but 
rather 6, corresponding to the fact that the exclusion principle 
is ignored and all core state magnetic quantum numbers are 
summed over.

The graphical expression of our RPA rule, which we apply to 
diagrams 2(b), 3(b), and 3(c), is shown in Figure 5. The diagram 
at the top of Figure 5 shows the general structure of the dia-
grams 2(b), 3(b), and 3(c). The block labeled β includes in par-
ticular the interaction of the one electron orbital p, ½ with the 
correlated ground state function fa . The middle part of Figure 
5 shows an exact expansion (in orbital and spin angular mo-
menta λ′ and σ′) of the one-electron orbital p, ½ before and af-
ter interaction with the block labeled β. The last line in Figure 5 
shows our approximation to this exact expansion: we have kept 
only the terms with λ′ = σ′ = 0, and we have multiplied by the 
weight factor 6 = [1] [½] rather than q – 2. This approximation 
gives the delta functions δL‾ L‾′ and δS‾ S‾′ and permits an analytic 

Figure 4. Graphical rule for removing the dependence on magnetic 
quantum numbers of diagrams such as those in Figures 1-3.

Figure 5. Graphical representation of our random phase approxima-
tion: we assume the npq – 2 core exchanges zero orbital and spin angu-
lar momentum (i.e., λ′ = σ′ = 0) with the rest of the diagram, indicated 
by the block β.
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summation over L″ and S″. It is to be emphasized that requir-
ing zero angular momentum exchange between the npq – 2 core 
and the rest of the diagram does not mean that there are no in-
teractions between this core and fa or fb : one should remem-
ber that the block β still includes such interactions. Since the 
rule in Figure 5 gives precisely the correct RPA interactions 
for a closed shell atom, we use Figure 5 to define our random 
phase approximation for an open-shell atom also.

3. The coupled differential equations

In Section 2 we have given our graphical procedures for 
evaluating the result of integrating equation (3) over N – 1 co-
ordinates using the initial and final states given in equations 
(4) and (5). We have still to obtain a set of equations which will 
determine the final radial functions ψΓ

l′L̃′S̃ ′ and a linear com-
bination of fa and fb needed to obtain the matrix elements 
in equation (2). To obtain these equations, we note that each 
of the diagrams in Figures 1(a), 2(a), and 2(b) involves, by the 
rule in Figure 4, a linear combination of double tensor opera-
tors (l′, r̂′Wλ, σp, r̂). The diagrams in Figures 1(b), 3(a), 3(b), 
and 3(c), on the other hand, involve a linear combination of 
double tensor operators (p, r̂′Wλ, σl′, r̂). For each λ and σ, 
these two double tensors are linearly independent. Finally, by 
using the orthogonality properties of the 3j-symbols in Figure 
4, we may, for each λ and σ, set the coefficients of the two dou-
ble tensors above equal to zero.

The resulting pair of equations, for each set of values of λ, 
σ, and l′, are sufficient to determine the radial wave functions 
we need in the closed shell case [11, 13]. For open-shell atoms, 
however, these equations still have summations over certain 
quantum numbers (for example, the quantum numbers L̃ and 
S̃ of the npq – 1 core [see Figures 1(a), 2(a), and 3(a)]), and thus 
we have fewer equations than we have radial functions to de-
termine. This problem is overcome, however, by multiplying 
by an appropriate pair of 6j-coefficients and summing over 
λ and σ in order to project out exactly as many equations as 
there are radial functions to determine.

Resulting from these rather cumbersome but straightfor-
ward operations are the following coupled differential equa-
tions, in which for simplicity we have only indicated the inter-
actions of the excited electrons with the open subshell:

           +  (interaction with closed subshells)

(9)

           +  (interaction with closed subshells)

(10)

The coefficients A, B, C, D, E, and F appearing in equations 
(9) and (10), as well as the linear combination of fa and fb de-
noted by  ΦΓ

lfΛΣ , are defined in the Appendix. (The orbital and 
spin quantum numbers Λ and Σ may assume all values consis-
tent with the triangular relations for certain 6j-coefficients ap-
pearing in equation (A9).) Note that the coefficients A and B 
are precisely the direct and exchange coefficients, respectively, 
of the close-coupling approximation [12]. Thus, in the absence 
of ground state correlations, equation (9) reduces to the close-
coupling equations. Furthermore, we note that in the closed-
shell case there is only a single value for the quantum num-
bers L̃S̃ and ΛΣ. In this case our equations (9) and (10) as well 
as our functions ΦΓ

lfΛΣ  reduce to those of the Chang-Fano ver-
sion of the RPA [11, 13]. The interactions with closed subshells, 
indicated in equations (9) and (10), will be given elsewhere 
[14]. Finally, once equations (9) and (10) are solved for the ra-
dial functions ψΓ

l′L̃ S̃(r) and ΦΓ
lfΛΣ (r) one may calculate the ma-

trix elements of any one-body operator. In particular, the re-
duced radial dipole matrix elements are given by

(11)

Again, we have given the coefficients G and H in the Appen-
dix. The reduced radial matrix elements are defined by

(12)

where l> = max (la, lb).

Acknowledgments

We wish to acknowledge support of this research by the U.S. Depart-
ment of Energy under Contract No. EY-76-S-02-2892. A. F. Starace also 
wishes to acknowledge support of the Alfred P. Sloan Foundation. S. 
Shahabi would like to thank Professor K.-N. Huang for discussions 
concerning the graphical treatment of covariant and contravariant 
state vectors. A. F. Starace would like to thank Professors T. N. Chang 
and U. Fano for discussions concerning their derivation of RPA equa-
tions for closed shell atoms.

References

1.  Amusia, M. Ya, and Cherepkov, N. A., Case Studies in Atomic Phys-
ics 5, 47 (1975).

2.  Wendin, G., Photoionization and Other Probes of Many-Electron In-
teractions (Edited by F. J. Wuilleumier), p. 61, Plenum Press, New 
York, 1976.

3.  Kelly, H. P., Photoionization and Other Probes of Many-Electron In-
teractions (Edited by F. J. Wuilleumier), p. 83, Plenum Press, New 
York, 1976.

4.  Burke, P. G. and Robb, W. D., Adv. Atomic Mol. Phys. 11, 143 (1975).
5.  Burke, P. G., and Taylor, K. T., J. Phys. B8, 2620 (1975).
6.  Armstrong, L., J . Phys. B7,2320 (1974).
7.  Dalgaard, E., J. Phys. B8, 695 (1975).
8.  Starace, A. F., and Armstrong, L., Phys. Rev. A13, 1850 (1976).
9.  Cherepkov, N. A., and Chernysheva, L. V., Phys. Letters 60A, 103 

(1977); Izvestia Akadernii Nauk USSR 41, 2518 (1977).
10.  Lowdin, P. O., Phys. Rev. 97, 1474 (1955).
11.  Chang, T. N., and Fano, U., Phys. Rev. A13, 263 (1976); Phys. Rev. 

A13, 282 (1976).
12.  Smith, K., Henry, R. J. W., and Burke, P. G., Phys. Rev. 147, 21 

(1966).
13.  Chang, T. N., Phys. Rev. A18, 1448 (1978).
14.  Starace, A. F., and Shahabi, S., Phys. Rev. A (to be submitted).
15.  Briggs, J. S., Rev. Mod. Phys. 43, 189 (1971).
16.  Yutsis, A. P., Levinson, I. B., and Vanagas, V. V., The Theory of Angu-

lar Momentum, Israel Program for Scientific Translation, Jerusalem. 
1962.



372 A. F. Starace & S. Shahabi in Physica Scripta 21 (1980) 

Appendix

The coefficients introduced in equation (9) are:

(A1)

(A2)

(A3)

The coefficients introduced in equation (10) are:

(A4)

(A5)

(A6)

The coefficients G and H introduced in equation (11) are given 
by:

(A7)

(A8)

Finally, the function ΦΓ
lfΛΣ (r) introduced in equations (9)–(11) 

is defined in terms of the functions fa and fb of equation (5) as 
follows:

(A9)

Note that we never need to determine the functions fa(r) and 
fb(r), but only the linear combination given by equation (A9).
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