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Summary

In the track structure model, the inactivation cross
section is found by summing an inactivation probability
over all impact parameters from the ion to the sensitive
sites within the cell nucleus. The inactivation probability
is evaluated by using the dose response of the system to
gamma rays and the radial dose of the ions and may be
equal to unity at small impact parameters. We apply the
track structure model to recent data with heavy ion
beams irradiating biological samples ofE. Coli, Bacillus
Subtilis spores, and Chinese hamster (V79) cells. Heavy
ions have observed cross sections for inactivation that
approach and sometimes exceed the geometric size of the
cell nucleus in mammalian cells. We show how the
effects of inactivation may be taken into account in the
evaluation of the mutation cross sections from heavy ions
in the track structure model through correlation of sites
for gene mutation and cell inactivation. The model is fit
to available data for HPRT (hypoxanthine guanine phos-
phoribosyl transferase) mutations in Chinese hamster
cells, and good agreement is found. The resulting calcu-
lations qualitatively show that mutation cross sections for
heavy ions display minima at velocities where inactiva-
tion cross sections display maxima. Also, calculations
show the high probability for mutation by relativistic
ions due to the radial extension of the ion track from
delta rays in agreement with the microlesion concept.
The effects of inactivation on mutation rates make it very
unlikely that a single parameter such as LET (linear
energy transfer) or  (where  is effective charge
number andβ is ion velocity) can be used to specify radi-
ation quality for heavy ion bombardment.

Introduction

The level of biological injury expected from galactic
cosmic rays (GCR) during prolonged manned spaceflight
is difficult to estimate because of the lack of human data
from exposures to high charge and energy (HZE) parti-
cles. Experimental studies for estimating the risk from
long-term GCR exposures include track segment irradia-
tions with HZE particles in which animals or cell cultures
are used. The most useful end points for such studies
with animals are cancer induction and mortality. Cellular
studies using cytotoxicity as an end point are useful for
providing estimates of the relative biological effective-
ness (RBE); the stochastic end points of mutagenesis or
neoplastic transformation provide additional information
on the late effects that may be useful in extrapolations of
the level of risk for man and on the underlying mecha-
nisms of damage from HZE particles. Studies for sto-
chastic end points, in vitro, are ultimately limited by the
multistep nature of carcinogenesis (Weinberg 1991;
Vogelstein and Kinzler 1993). Although it is unclear if

carcinogens, including radiation, cause one or several
mutagenic changes in the pathways of tumor formation
or if a mutator phenotype is induced (Loeb 1991; Little
1994) leading to genomic instability, the implications are
that RBEs derived from one-step processes may be lim-
ited. In fact, the hypothesis exists that RBEs for tumor
formation in protracted exposures may approach the
RBE for a one-step process raised to the power of the
number of mutations observed in cancer formation and is
suggested by some studies (Ullrich 1984) where large
RBEs are found. For defining radiation quality of heavy
ion beams the parameter linear energy transfer (LET) is
expected to be insufficient due to track structure effects.
We consider through comparisons with experiments the
use of the track structure model for determining the radi-
ation quality of ion beams for in vitro studies.

The track structure model was first used to describe
heavy ion inactivation cross sections by Butts and Katz
(1967) and has continued success in describing radiobio-
logical data with heavy ion beams since that time. In the
track model, the spatial distribution of energy about an
ion is used to map the response of low LET irradiations,
such as gamma rays or electrons, to that of an ion. An
inactivation probability as a function of impact parameter
or radial distance about the ion can be described in this
manner by using the ion radial dose and the gamma-ray
response function. For a finite target size, the radial dose
is averaged over the target volume assumed to be a short
cylinder of radius  Several experiments have now
been performed (Facius et al. 1983; Weisbrod et al.
1992) to measure the inactivation probabilityP(t) for ion
bombardment ofBacillus subtilis spores. These measure-
ments appear to indicate that the probability is not unity
for small impact parameters for uranium bombardments;
this indication seems to contradict the predictions of the
track structure model. Recently, calculations for the inac-
tivation probability of spores (Cucinotta et al. 1995) have
shown that, if the sensitive targets in the spores are
allowed to be displaced from the center of the spore
volume, a good representation of these measurements is
provided by the track model, and a unit probability for
small impact parameters is not ruled out. Recent mea-
surements of the DNA (deoxyribonucleic acid) content in
yeast cells by Kost and Kiefer (1993) also support the
assertion that the impact parameters in the inactivation
measurements are likely to be displaced from the sensi-
tive site for inactivation.

An experimental assay has been developed for stud-
ies of mutations at the hypoxanthine guanine phosphori-
bosyl transferase (HPRT) locus in mammalian cell
cultures. The HPRT gene is located on the X chromo-
some, and the mutation of this gene is related to DNA
damage. The HPRT mutation assay is used to study large

Z*2 /β2 Z*
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deletions or rearrangements by ionizing radiation
(National Council on Radiation Protection Measure-
ments (NCRP) 1990). This assay system has been used
by several groups with a variety of light and heavy ion
types in several cell lines (Thacker, Stretch, and Stephens
1979; Cox and Masson 1979; Kronenberg and Little
1989; Kranert, Schneider, and Kiefer 1990). One of the
shortcomings of this assay system is that the chromo-
some involved is necessary for cell replication, which
results in the loss of potential mutants. Human-hamster
hybrid systems are being used to obtain higher mutation
rates in other studies (NCRP 1990). Also, measurements
(Kronenberg and Little 1989) of mutations to trifluo-
rothymidine resistance locus indicate slow-growth
mutants that are not typical of the HPRT mutants, an
indication that some variability exists in mutations at
specific genetic loci in human cells.

In describing mutagenesis from heavy ions, the
question arises of whether there will be any mutations
observed at all if single tracks of heavy ions kill the cell
due to the large energy they deposit in the cell nucleus.
Goodhead et al. (1980) and Kranert, Schneider, and
Kiefer (1990) have discussed this problem noting that for
heavy ions, the inactivation cross section is generally
smaller than the nuclear area for mammalian cells and
that track structure effects should be considered in order
to understand the role of inactivation on heavy ion
mutagenesis. Studies by Lett, Cox, and Story (1989) with
repair deficient LS1784 S/S cells show that inactivation
cross sections may exceed the geometric cross section
sometimes. We use the track structure model of Katz et
al. (1971) and Katz, Dunn, and Sinclair (1985) in order to
evaluate the mutation cross section for ion bombardment
of Chinese hamster fibroblasts (V79). We show that the
mutation cross sections for ions throughout the periodic
table can be described by the track model when inactiva-
tion effects are accounted for in the model. In effect, we
will have a qualitative model of what has long been sug-
gested (Grahn 1973; Todd 1983; Kiefer 1993) of heavy
ion mutagenesis, including the concept of a microlesion
where mutated cells surround a core of inactivated ones.

The experimental data for the dose response for
mutations from gamma rays in mammalian cells are
severely limited. Data below doses of 0.5 Gy are difficult
to obtain because of poor statistics. Data above doses of
10 Gy are also difficult to obtain because of the high
inactivation rates leading to poor recovery of mutants.
The track structure model relies on extrapolating effects
of low LET irradiations at high dose rate to that of ions
using the low LET dose response. The extrapolation
becomes difficult because of the limited range of data for
the dose response. The track model employs a multi-
target or multihit model for the functional form of the
dose response. Wilson, Cucinotta, and Shinn (1993) have

developed a linear repair/misrepair kinetics model for
multiple lesion formation appropriate for mutation in
competition with inactivation. We consider both the
multitarget and linear kinetics model for the low LET
dose response model.

Our accounting of inactivation effects on heavy ion
mutation cross sections relies on the assumption that the
sensitive sites for inactivation may be displaced from that
of mutation. We average the displacement distance over
the nuclear volume for the V79 cells; this leads to a good
representation of the existing measurements of mutation
cross sections in V79 cells. Parameters for cell inactiva-
tion are fixed in the model from inactivation data. The
resulting model shows, in agreement with the data, that
the mutation cross section for very heavy ions plotted as
a function of ion energy is a minimum when the inactiva-
tion cross section is a maximum. Also, we show that the
effects of inactivation on mutations from light ions is
small. In the rest of this paper, we first describe the cal-
culation of inactivation and mutation cross sections in the
track model. The model is then fit to the several data sets
for inactivation and mutation, and the inactivation and
mutation probability as a function of ion charge and
energy is discussed.

Inactivation and Mutation Cross Sections in
Track Model

In order to introduce the effects of survival probabil-
ity on the evaluation of mutation cross sections in the
track model, we first review the evaluation of the inacti-
vation cross section. The dose response of the system to
low LET irradiations for the end point of inactivation
(loss of colony forming ability) is assumed to be known
and represented by the probability function
whereD is the absorbed dose in greys. Track structure is
understood by finding the spatial distribution of local
dose about the path of an ion, as deposited in the sensi-
tive volume elements of the cell. For calculations, the
average radial dose as a function of the radial distancet
in a short cylinder of radius  is used as denoted by

 The inactivation cross section for a single
punative target is found by integrating the probability for
inactivation evaluated with the average radial dose in

 over all radial distances, as (Katz et al. 1971)

(1)

wheret is in units of centimeters and  is the maxi-
mum range of the delta rays, often denoted the penumbra
radius, which is a function of ion velocityβ.

PI D( )

a0I
DI t( ).

a0I

σI 2πt PI DI t( )[ ] td
0

Tmax

∫=

Tmax
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In implementing equation (1) for describing survival
curves, a multitarget model for low LET dose response is
often assumed where

(2)

wherem is the target number and  is the low LET
characteristic dose at which an average of one hit per tar-
get occurs. The surviving fraction of cells after low LET
irradiation atD is  The use of a
multitarget model to fit the high dose rate, low LET dose
response is convenient in the calculations, and it can be
shown that other parametric models will work equally as
well in predicting action cross sections for ions using
equation (1).

The inactivation cross section evaluated from equa-
tion (1) and plotted as a function of the velocity of an ion
is observed to reach a plateau at a value of about

 to mark the transition from the grain-count
regime to the track-width regime (Katz et al. 1971). The
sensitive targets for  are contained in some volume
represented by the cross-sectional area  which may
be less than the total cross-sectional area of the cell
nucleus. The cross sections calculated by equation (1) are
then multiplied by the ratio  when
The values of  and  are determined by fitting the
model equations to an experimental data set with track
segment irradiations. In the track model, the surviving
fraction after irradiation with track segment ion bom-
bardments is separated into intratrack and intertrack
effects as

(3)

where the intratrack or ion-kill contribution is given by

(4)

whereF is the fluence of the ion and the intertrack or
gamma-kill probability is

(5)

where  is the gamma-kill dose given by

(6)

with  for

At sufficiently large fluence, the survival curves
resulting from equations (1) to (6) display an exponential

tail, and the extrapolated cross section can be found as
(Katz et al. 1971)

(7)

The extrapolated cross section is also termed the “final
slope cross section” and is the same as  (the initial
slope cross section) only when

In order to evaluate the mutation cross section in the
track model the probability of survival of the cell must be
considered in order for the mutation phenotype to be
expressed. Unlike the target for inactivation, the target
for gene mutation is well localized. For the HPRT muta-
tion assay, this target is on the X chromosome. We
assume that the targets for inactivation are located ran-
domly in the cell nucleus (i.e., not chromosome specific).
In figure 1, we depict the sites for mutation and inactiva-
tion relative to the ion path.

The cross section for mutation is evaluated by con-
sidering the dose-response probability per surviving cell
for low LET induction of the mutation, denoted
multiplied by the dose-response probability that the cell
survives. The product of the mutation frequency per

PI D( ) 1 −D/D0I( )exp–[ ]m
=

D0I

N /N0 1 PI D( ).–=

1 1.4πa0I
2–

m 1>
σ0I

σ0I /1.4πa0I
2 m 1> .

a0I σ0I

N
N0
------- πi πγ×=

πi −σIF( )exp=

πγ 1 PI Dγ( )–=

Dγ

Dγ 1
σI

σ0I
--------–

 
 
 

F=

Dγ 0= σI σ0I .> Figure 1.  Schematic diagram of correlation of lesion sites for
mutation and inactivation relative to path of ion of velocityβ
and chargeZ at impact parametert from mutated gene withr
displacement of two sites.
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survivor  times the survival probability  repre-
sents the number of mutants observed. Track structure is
introduced by correlating the location of these events
within the cell nucleus. The cross section for production
of observable mutants is then

(8)

where  is the volume of the cell nucleus and the
radial dose at the gene, is averaged over the mutation
site of radius  The success of equation (8), as
shown in the calculations later, is to correlate the spatial
distributions of lesions for these end points. In calcula-
tions, the value of  is restricted to account for the
finite size of  such that the displacement keeps the
inactivation sites inside the nuclear volume. We expect
the displacement distance then to be localized within
about 3µm from the mutation site. Many factors, such as
the finite chromosome number, chromosome geometry,
temporal position, preclude any ab initio correlation of
the mutation and inactivation lesion sites. Its actual value
for calculations is described later.

Radial Dose Model

For calculations of cross sections, the radial dose
from secondary electrons based on the model of
Kobetich and Katz (1968) is used. Some physical inputs
in this calculation have been updated (Cucinotta et al.
1996), including the use of the secondary electron spec-
trum from proton impact in water from Rudd (1989), a
revised angular distribution function, and the electron
range-energy and stopping-power formula from Tabata,
Ito, and Okabe (1972). Also, a contribution has been
included for excitations to the radial dose model by using
the function of Brandt and Ritchie (1974), normalized
such that the summed contributions from excitations and
delta rays (from modified Kobetich and Katz model)
conserves the LET for each ion where

(9)

The effects of nuclear stopping power, which should
become important at low energies (<1 MeV/u), have not
been considered.

The radial dose model used in calculations is based
on the model of Kobetich and Katz (1968) and uses
recent models for secondary electronic production and
the electron range-energy formula and stopping power
(Tabata, Ito, and Okabe 1972; Rudd 1989). In this model
the radial doseD(t) as a function of the radial distancet
from the center of the path of the ion and including an

angular distribution for the ejected electrons with energy
W at an angleθ is given by

(10)

where  is the maximum secondary electron energy,
 is the ionization energy for an electron,η is the trans-

mission function, andW is the residual energy of the
electrons. In equation (10), the summation is over all
atoms. The range-energy formulas assumed are from
Tabata, Ito, and Okabe (1972) and the transmission func-
tions from Kobetich and Katz (1959).

A qualitative model for the angular distribution of
the secondary electrons is to assume that a distribution
peaked about the classical ejection value, such as

(11)

with

(12)

with  determined as the root of

(13)

with N a normalization constant andA a constant found
to be about 0.015 keV to simulate the data of Rudd,
Toburen, and Stolterfoht (1976) and Toburen (1974).
The distribution of equations (11) to (13) does not repro-
duce any forward or backward peaking in the electron
production spectrum. For the single differential distribu-
tion in equation (11), the model of Rudd (1989) was used
for scaling to heavy ions by using effective charge.
Extensive comparisons of the model described previ-
ously with experiments for radial dose from heavy ions
are described in Cucinotta et al. (1995). The use of the
model of Rudd and the angular distribution of equations
(11) to (13) generally reduces the dose in the core region.

The model for the radial dose from delta rays
described previously can be parameterized by utilizing
the  fall-off dependence at intermediate distances
and introducing functions that modify the distribution at
small and large distances. The radial dose in water is then

(14)

PM 1 PI–

σM 2πt t PM DM t( )[ ] 1
V N
------- r 1 PI DI t r–( )[ ]–{ }d∫d

0

T max

∫=

V N
DM

a0M .

V N
a0I

LET 2π t t Dδ t( ) Dexc t( )+[ ]d
0

T max

∫=

Dδ t( ) 1–
2πt
-------- Ω ω ∂

∂t
-----d

ωt θ( )

ωm-I i

∫d∫
i

∑=

η t,ω,θ( ) W t,ω,θ( )[ ]×
nid

dω dΩ
-----------------

ωm
I i

nd
ω Ωdd

----------------
nd
ωd

------- f θ( )=

f θ( ) N

θ θc ω( )–[ ]2
A/ω( )+

-----------------------------------------------------=

θc ω( )

cos
2θ ω

ωm
-------=

1/t2

Dδ t( ) Z
*2

/β2( ) Ne
4
/mec

2( ) f s t( ) 1/t
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whereβc is the ion velocity,  is the effective charge,
N is number,e is electron, andme is the electron mass.
The function  modifies the short distance behavior
and is represented by

(15)

with

(16)

The function  modifies the long distance behavior
and is represented by

(17)

where  is the maximum radial penetration distance
for delta rays of an ion at speedβc.

The radial dose from excitations is assumed to be in
the form (Brandt and Ritchie 1974)

(18)

whereC is determined by normalizing to the total LET
from equation (9) and  with  for
water. The radial dose contribution from excitations is
then contained to small radii of less than a few 10 nm.

The results of our calculations, for 1-MeV protons
and 20Ne at 377 MeV/amu in water, using different
assumptions are shown in figure 2. Also shown in fig-
ures 2(a) and 2(b) are measurements by Wingate and
Baum (1976) for protons and measurements by Varma
and Baum (1980) for Ne, respectively. The present calcu-
lations made for other ions (adjusted from calculations
for protons by multiplication with the square of the
effective charge) are used for the evaluation of action
cross sections. Typically different assumptions yield

Z
*

f s t( )

f s t( ) 10
7–

t
----------- c1+ 

 
1–

=

c1 0.6 1.7β 1.1β2
–+=

f L t( )

f L t( ) exp t/0.37Tmax( )2
–[ ]=

Tmax

Dexp t( ) C −t/d( )exp

t
2

---------------------------------=

d β/2ωr= ωr 13 eV=

(a)  Protons at 1 MeV in water. (b)20Ne at 397 MeV/amu.

Figure 2.  Radial dose distribution calculated with different assumptions.
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major differences close to the ion path (most important
for latent tracks and possibly for consideration of damage
to crystalline structure) and remote from the ion path
(most important for considerations of “thin down,” the
decrease in the inactivation cross section while the ion
LET increases, as the ion approaches the end of its
range). A comparison using equations (14) to (17) for the
radial dose from secondary electrons and the model of
equations (10) to (13) is shown in figure 3 where t2D(t) is
plotted; good agreement is found.

Comparisons for Inactivation Cross Sections

We first discuss calculations and comparisons with
experiment for the inactivation ofE. Coli B/r, E. Coli

 andBacillus Subtilis spores (Katz, Cucinotta, and
Zhang 1996). Values of  forγ rays for these cells
differ among different investigators. Thus forB/r,
Takahashi et al. (1986) find 36.5 Gy, whereas Schäfer,
Schmitz, and Bücker (1994) find 47.6 Gy. We have cho-
sen a value of 40 Gy for best fit of our calculations to the
heavy ion data (Schäfer, Schmitz, and Bücker 1994). For

 Takahashi reports 12.6 Gy, whereas Schäfer
reports 15.4 Gy. For this report, we have chosen 12.6 Gy
for best fit of calculations to data. Calculated cross sec-
tions for a variety of heavy ion bombardments are shown
in figures 4(a) and 4(b), with data points superimposed.

For the inactivation ofBacillus subtilis spores of
strain rec–, we have chosen  Gy as compared
with the experimental value of  Calculated
cross sections versus LET are shown in figure 4(c) with
data from Baltschukat and Horneck (1991) superim-
posed. In figure 4(d) calculations for the inactivation of
Bacillus subtilis spores (wild) have been shown with data
from Baltschukat and Horneck (1991) and Donnellan and
Morowitz (1957) superimposed. We have used
and  and have included in figure 4(d) the
misrepair term to the cross section as described in
Wilson, Cucinotta, and Shinn (1993). In figure 5, we
show calculations and data for inactivation cross sections
of wild-type spores ofBacillus subtilus versus the ion
energy where the gamma-ray response is parameterized
by using a linear kinetics model of repair/misrepair. The
application of the linear kinetics model in evaluating
action cross sections is seen to be most important at low
ion energy where a second maximum in the inactivation
cross section is predicted because of misrepair in agree-
ment with the data of Schneider, Kost, and Schäfer
(1990). The higher energy maximum in the cross section
is at the velocity where delta rays are most efficient but
also dependent on the density of the track. Below a few
MeV/amu, the range of the delta rays becomes smaller
than the size of important targets in the cell nucleus, and
thin down occurs.

Inactivation as a function of impact parameter has
been measured for 1.4 MeV/amu heavy ion beams
(Weisbrod et al. 1992) using wild-type strain spores. In
figure 6 we compare these measurements with the
present model. In one set of calculations (the upper set of
curves), we consider the experiment impact parameter
relative to the sensitive site in the spore. Here there is
unit probability for inactivation following uranium bom-
bardment to about 0.2µm and for nickel bombardment to
about 0.15µm. Note that this is different from the results
found by Weisbrod et al. (1992) with the earliest version
of the Katz model (Butts and Katz 1967), where a one-
hit response and a simplified radial dose model are
assumed. With this earlier version of the Katz model, the
inactivation probability for uranium was found to be
unity for larger impact parameters than found here, and
the electron range is underestimated. In the lower set of
curves, we have used the estimates of the size of the
spore to average the inactivation probability according to
a random location for the sensitive volume in the spores.
We have averaged over two short cylinders of radius cor-
responding to the estimated minor (0.18µm) and major
(0.36 µm) radii of an ellipsoid-shaped spore (Weisbrod
et al. 1992). The lower set of curves is in much better
agreement with the experiment, and it is expected that

Bs-1,
D0

Bs-1,

D0 110=
93 7.6 Gy.±

m 2=
D0 222 Gy=

Figure 3.  Calculations of radial dose from parameterization of
equations (14) to (17) and calculations on which it is based.
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(a) E. Coli B/r ; m = 1; D0I = 40 Gy;a0I = 0.1µm; superim-
posed data from Schäfer, Schmitz, and Bücker 1994.

(b) E. Coli Bs-1; m = 1;D0I = 12.6 Gy;a0I = 0.1µm; superim-
posed data from Schäfer, Schmitz, and Bücker l994.

(c) Bacillus subtilis (rec) spores; m = 1; D0I = 110 Gy;a0I =
0.3µm; superimposed data from Baltschukat and Horneck
1991.

(d) Bacillus subtilis (wild) spores;m = 2;D0I = 222 Gy;a0I =
0.3µm; superimposed data from Baltschukat and Horneck
1991; Donnellan and Morowitz 1957.

Figure 4.  Calculated inactivation cross sections.m is target number,D0I is characteristic dose, anda0I is target radius.
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details of the geometry of the spores and the sensitive
sites are required for further improvements of calcula-
tions to experiment.

Comparisons for Mutation Cross Sections

We next consider the cross sections for HPRT muta-
tions in V79 cells. For survival, the X-ray response
parameters as well as the geometric parameters have
been fitted by Katz et al. (1994) as listed in table 1. For
HPRT mutations the X-ray response in V79 cells has
been measured by Kranert, Schneider, and Kiefer (1990)
for doses of 1 to 10 Gy. The multitarget model can be
applied directly to the mutation frequency as shown by
the solid line in figure 7 with the resulting parameters

 Wilson, Cucinotta, and Shinn
(1993) formulated a linear kinetics model of repair/
misrepair to treat multiple lesion types such as mutation
and inactivation and which also considers dose-rate
effects. The fit of this model to the X-ray data is shown
by the dashed line in figure 7. For our purpose of treating
track structure effects on evaluating mutation cross sec-
tions, the use of the multitarget model or linear kinetics
model for mutations gave similar fits to the data. The
multitarget model is used in the figures discussed later.

Calculations of inactivation cross sections for V79
cells and experimental data are presented versus LET in
figure 8. Shown are the final slope or extrapolated cross

sections for several charges. Cellular response parame-
ters for inactivation (Katz et al. 1994) are presented in
table 1. The maximum value of the inactivation cross
section versus LET for each specific ion occurs in the
energy range of about 5 to 30 MeV/amu. The decrease in
the inactivation cross sections is called “thin down” and
occurs when the value of  The nuclear area

Figure 5.  Calculated inactivation cross section forBacillus subtilis
(wild) spores versus ion energy using repair kinetics model.
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Figure 6.  Calculation versus experimental histograms (Facius
et al. l983) forBacillus subtilis spore inactivation versus impact
parameter.

Table 1. Cellular Response Parameters for V79 Cells

End point m D0, Gy σ0, µm2 a0, nm

Inactivation 3 1.82 42.8 820
HPRT mutations 2 950 6.5 × 10−3 50
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for V79 cells has been reported as 130µm2 (Goodhead
et al 1980), which is roughly three times the value of

 We note that for a small range of

energies and for very large charges, the model inactiva-
tion cross sections exceed 130µm2.

In the evaluation of mutation cross sections by equa-
tion (8) the upper limit onr should be on the order of 1 to
3 µm in view of the measured nuclear area for V79 cells
and the fitted values of  and  We have treated the
maximum value ofr, denoted  as a fitting parame-
ter estimated as  from calculations. We
first show plots of  for uranium and oxygen ions ver-
sus energy in figure 9 for several fixed values ofr. For
small values ofr, virtually no mutations are seen for
heavy ions of modest energies where the highest rates of
inactivation occur. At low energies (below 1 MeV/amu),
the mutation cross sections increase where thin down in
the inactivation cross sections occurs. A second maxi-
mum in the inactivation cross section in yeast and bacte-
ria has been observed at low energies (Schneider, Kost,
and Schäfer 1990) which is not accounted for by the
delta-ray model and would most likely reduce the muta-
tion cross sections in the energy region from 0.1 to 1.0
MeV/amu from the calculations shown if the same effect
is present for the inactivation of V79 cells.

In figure 10 we show the model calculations and
experimental values for V79 mutation cross sections ver-
sus ion energy for several ion types. The data shown for
heavy ions withZ > 8 are from Kranert, Schneider, and
Kiefer (1990) and Kiefer, Stoll, and Schneider (1994).
The data shown for He and B are the initial slope cross
sections from Thacker, Stretch, and Stephens (1979); the
data for protons, from Belli et al. (1993). Different
strains of V79 cells are used by the authors noted.
Cellular response parameters for mutation are given in
table 1. The value of  most strongly affects the fit
for light-charged ions and is somewhat sensitive to the
angular distribution of secondary electrons assumed in
calculations. The value of  obtained by fits, as
noted by Goodhead (1989), corresponds to a large por-
tion of the HPRT gene. The agreement between calcula-
tions and experiment is good. Heavy ions are seen to
display minima in their mutation capability due to inacti-
vation effects. These minima occur for kinetic energies
from a few MeV/amu to about 30 MeV/amu. The overes-
timation of the model inactivation cross section for ura-
nium in this energy regime affects the mutation cross
sections too severely; however, the trends are correct.
Relativistic heavy ions thus become more effective for
mutation induction because of the large radial extent of
their tracks from delta rays. The spreading of the ion
track at high energies reduces the effects of inactivation;
thus, the likelihood of mutation is increased. Note also
that ions of moderate charge become more efficient than
higher charge ions in the moderate energy region from
about 5 to 50 MeV/amu. Light ions are only mildly
affected by inactivation effects.

Figure 7.  Dose response for number of mutations per 106 surviv-
ing cells for HPRT mutations in V79 cells. Data from Kranert,
Schneider, and Kiefer 1990; m = 2;D0M = 950 Gy.

Figure 8.  Calculations and experimental values of inactivation
cross sections (final slope) for V79 cells versus LET. Data from
Thacker, Stretch, and Stephens 1979; Kranert, Schneider, and
Kiefer 1990; Belli et al. 1993; Kiefer, Stoll, and Schneider
1994.
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In figure 11 we show the mutation cross sections
versus LET. A “hook” structure distinct from the hooks
seen in inactivation cross sections because of thin-down
effects is observed. A minimum in the mutation cross
section for heavy ions is seen at the LET value corre-
sponding to the maximum inactivation probability. A
sharp rise in  is seen for a narrow band of LET as

correlated with the thin down of  for the same LET
band. The complicated structure of  predicted by
the model prohibits the use of a single quantity such
as LET or  for defining radiation quality.

Cross sections for HPRT mutations have also been
reported for human fibroblast cells (Cox and Masson
1979; Tsuboi, Yang, and Chen 1992) and for human
B-lymphoblastoid cells (Kronenberg and Little 1989;
Kronenberg 1994). The response of fibroblasts and lym-
phoblasts to heavy ions has been noted to be quite differ-
ent by Kronenberg (1994) as seen, for example, in the
large differences in cross sections for relativistic iron
nuclei of similar energies where the cross sections in
fibroblasts are about a factor of 15 larger in the human
fibroblasts. The present models suggest that these differ-
ences are inherent in the gamma-ray response without
regard to any specific expression pathways for heavy
ions. In table 2, we list reported initial slope estimates
and cross-sectional geometric areas for several cell types
in which HPRT mutations have been measured. We note
that the low LET response is different, larger for the
human fibroblasts and similar for the V79 and lympho-
blasts. Also, the measured cross-sectional area of the
human fibroblast is about twice as large as that of the
V79 and lymphoblasts. If the multitarget model is fit to
the human fibroblast data withm = 2, a value of about

 is found which compares with the
950 Gy found for V79 cells. Also, calculations for an

(a)  Oxygen.

(b)  Uranium.

Figure 9.  Calculations of mutation cross sections versus energy at
various fixed separation distances from mutation lesion site to
inactivation lesion site.
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from Thacker, Stretch, and Stephens 1979; Kranert, Schneider,
and Kiefer 1990; Belli et al. l993; Kiefer, Stoll, and Schneider
1994.
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earlier model (Cucinotta and Wilson 1994) which
neglected inactivation effects were in disagreement with
the data of Tsuboi, Yang, and Chen (1992) for Fe and La
nuclei. In the cross-section formula of equation (8), the
values of  are also expected to be increased for the
larger nucleus of the human fibroblast cells; thus, the role

of inactivation on the evaluation of mutation cross sec-
tions was slightly reduced. We expect that the differ-
ences in low LET response to be sufficient to explain the
differences in mutation rates between cell lines without
the introduction of any new mechanisms for ions. The
recent measurements of Kiefer, Stoll, and Schneider
(1994) using nickel with energy of 400 MeV/amu sup-
port this premise where the mutation cross section in V79
cells is  in comparison with iron nuclei
with energy of 600 MeV/amu in lymphoblasts and fibro-
blasts with mutation cross sections of
and  respectively.

Concluding Remarks

The track structure model uses a model fit to experi-
mental measurements for high dose-rate response to low
LET (linear energy transfer) radiations, the radial dose
distribution about the path of a heavy ion, and a few geo-
metric parameters to predict the effects of the identical
system to an arbitrary ion. In the past this procedure has
been shown to be quite successful for describing inacti-
vation cross sections in many biological samples. The
earlier calculations have been improved by using
improved models of the radial dose distribution and good
agreement was found with recent experiments. Herein
we have shown that a similar procedure can be applied to
predict mutation rates when the effects of inactivation are
included by spatially correlating lesion sites. The contin-
ued success of the track model in fitting biological data
with ion beams suggests that a fundamental approach to
biological damage from energetic photons would provide
much of the understanding needed for ion beams as well.
The action cross sections for mutation versus LET will
have a distinct structure due to the effects of inactivation,
especially for heavy ions. The use of a single parameter
such as LET or  (where  is the effective
charge number andβ is the ion velocity) to represent
radiation quality is thus even less accurate for mutations
than inactivation. This result suggests important implica-
tions for space radiation shielding studies.

NASA Langley Research Center
Hampton, VA 23681-2199
January 10, 1997

Figure 11.  Calculations and experimental values of mutation cross
sections versus LET for HPRT mutations in V79 cells. Data
from Thacker, Stretch, and Stephens 1979; Kranert, Schneider,
and Kiefer 1990; Belli et al. 1993; Kiefer, Stoll, and Schneider
1994.

Table 2. Photon Initial Slopes and Geometric Parameters
for Several Cell Lines

Cell type

Initial slope
for HPRT
mutations,

cGy−1

Geometric
area,
µm2

Radius,
µm

V79 0.35× 10−7 130 6.4
Human lymphoblasts 0.6 87 5.3
Human fibroblasts 2.3 220 8.4
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