
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Peter Dowben Publications Research Papers in Physics and Astronomy 

May 1995 

Scanning tunneling microscopy study of intermediates in the Scanning tunneling microscopy study of intermediates in the 

dissociative adsorption of closo-1,2-dicarbadodecaborane on dissociative adsorption of closo-1,2-dicarbadodecaborane on 

Si(111) Si(111) 

J.M. Carpinelli 
University of Tennessee, Knoxville 

E.W. Plummer 
Oak Ridge National Laboratory 

Dongjin Byun 
University of Nebraska-Lincoln 

Peter A. Dowben 
University of Nebraska-Lincoln, pdowben@unl.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/physicsdowben 

 Part of the Physics Commons 

Carpinelli, J.M.; Plummer, E.W.; Byun, Dongjin; and Dowben, Peter A., "Scanning tunneling microscopy 
study of intermediates in the dissociative adsorption of closo-1,2-dicarbadodecaborane on Si(111)" 
(1995). Peter Dowben Publications. 144. 
https://digitalcommons.unl.edu/physicsdowben/144 

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Peter Dowben Publications 
by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17242735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/physicsdowben
https://digitalcommons.unl.edu/physicsresearch
https://digitalcommons.unl.edu/physicsdowben?utm_source=digitalcommons.unl.edu%2Fphysicsdowben%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.unl.edu%2Fphysicsdowben%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/physicsdowben/144?utm_source=digitalcommons.unl.edu%2Fphysicsdowben%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages


Scanning tunneling microscopy study of intermediates in the dissociative
adsorption of closo-1,2-dicarbadodecaborane on Si(111)

J. M. Carpinelli
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996

E. W. Plummer
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996
and Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

Dongjin Byun and P. A. Dowben
Department of Physics, University of Nebraska, Lincoln, Nebraska 68588

~Received 27 October 1994; accepted 16 January 1995!

Closo-1,2-dicarbadodecaborane~C2B10H12! is a source compound found to be suitable for the
deposition of a high resistivity form of boron-carbide~B5C!, and the fabrication of boron-rich
semiconductor devices. A scanning tunneling microscope~STM! was used to image these molecular
icosahedra on Si~111!-~737!. Molecular decomposition~tip induced and otherwise! produced a
boron-carbide/silicon interface with pronounced heterojunction electronic characteristics. In STM,
this interface is characterized by a disordering of the Si~111!-~737! reconstruction. We suggest,
based on Auger electron spectroscopy data and low-energy electron diffraction observations, that
boron atoms from the dissociated source molecules substitutionally occupy selvedge sites, as in the
boron-induced~A33A3!R30° reconstruction of Si~111!. © 1995 American Vacuum Society.

I. INTRODUCTION

The combination of a chemical vapor deposition~CVD!
source molecule and a scanning tunneling microscope~STM!
has long been considered a promising route to the ‘‘direct
writing’’ of nanostructures with varying compositions. In this
process, an STM tip programmed to trace an arbitrary pattern
performs like a subnanometer-resolution electron gun. The
energy-tunable electron flux from this highly positionable
source is used to decompose portions of a deposited layer of
CVD source molecules. Further processing can afterward be
applied to complete the nanofabrication process. Annealing,
for example, could be employed to remove any unwanted
species/undecomposed molecules through thermal desorp-
tion. The final product is a designed array of local regions
with altered composition. Both organometallic
compounds1–4 and main group carboranes5 have thus far
been explored as potential CVD source compounds for direct
writing in an STM.

For the STM-induced dissociation to be truly a selective
area deposition process, the source must adsorb molecularly,
rather than dissociatively.5 In this article, we show that such
a molecular precursor state exists over a limited coverage
range at room temperature for the icosahedral cage molecule
closo-1,2-dicarbadodecaborane~C2B10H12; denoted as ortho-
carborane in this paper!. In much the same way as has been
attempted fornido-decaborane6 and NH3,

7 we have studied
the surface reactions of the Si~111!-~737! reconstruction
with orthocarborane using an STM. Spectra from the
B5C/Si~111! interface showing anisotropic rectifying behav-
ior will also be presented.

II. EXPERIMENT

Orthocarborane is a commercially available molecule
with its two carbon atoms next to each other and only exo-
polyhedral hydrogen atoms8 ~see Fig. 1!. The orthocarborane

was distilled and admitted to the ultrahigh vacuum~UHV!
chamber following a procedure described elsewhere.9 The
final purity of the orthocarborane~Aldrich! was determined
by infrared, mass spectral, and nuclear magnetic resonance
measurements~purity .98%! and compared with literature
values;10 no isomers were found to be present.

Scanning tunneling microscopy experiments were per-
formed with the JEOL JSTM-4500VT microscopy. Normal
imaging and spectroscopy set point values wereVbias512 V
and I tunnel50.5 nA. Images were acquired in both the tradi-
tional ‘‘constant current’’ mode, as well as the ‘‘constant
height’’ mode, where the tunneling current feedback loop
responds slowly, maintaining only theaveragetunneling cur-
rent. STM data shown were processed to remove acoustically
and electronically induced noise. Low-energy electron dif-
fraction ~LEED! observations were made using conventional
rear-view optics. Auger electron spectroscopy~AES! mea-
surements were performed in a different UHV chamber using
a double-pass cylindrical mirror analyzer. The substrates
used in these experiments were Si~111! polishedn-type wa-
fers cut to appropriate geometries. These samples were
cleanedin situ by heating to approximately 1150 °C for sev-
eral seconds, while ensuring that the pressure did not rise
above 1.031029 Torr.

III. RESULTS AND DISCUSSION

After a moderate~1–50 Langmuir; 1 L5131026 Torr s!,
uncalibrated dose of orthocarborane, STM imaged a series of
10–15 Å diameter protrusions atop the 737 reconstruction
of Si~111! as seen in Fig. 2. The average size of the observed
species appears larger than the orthocarborane molecule~5.6
Å!. However, this can be explained by considering that in
STM images, the apparent lateral diameter of a tall protru-
sion is a convolution of tip shape/radius and real protrusion
size. Also, it is possible that molecular clustering and some
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fragmentation result in the variety of sizes found during im-
aging. Although molecular orthocarborane is believed to be
only weakly bound to metal surfaces,9 the loss of only a few
exopolyhedral hydrogens might substantially increase its
heat of adsorption and decrease its mobility. This type of
selective ligand loss has been observed with smaller carbo-
rane cage molecules.11 Decaborane decomposition studies12

suggest that hydrogen is removed as H2 in the adsorption
process. The molecular icosahedral species observed is
clearly a possible candidate as a precursor state to dissocia-
tive adsorption.

Concomitant with continuing orthocarborane adsorption,
however, a disordering of the Si~111!-~737! surface, brought
about through decomposed source molecules, becomes evi-

dent as seen in Fig. 3. While tip induced decomposition was
also observed, spontaneous decomposition happened readily
over time and made selective area deposition of boron car-
bide extremely difficult to achieve. The surface reconstruc-
tion, as recorded by STM, closely resembles the reconstruc-
tion of Si~111! upon exposure to decaborane.6 A number of
studies have investigated the binding site for initial boron
coverages.6,12–20 It is now generally accepted for initial de-
caborane exposures,6,12,17,20as with other methods for form-
ing a surface boron layer, the initial coverage of boron~1/3
monolayer! occupies the subsurface site with a coordination
of 5 ~S5!, below a silicon surface adatom.6,13–17A simple
AES study suggests a similar mechanism for our system.
Figure 4 shows the AES data for an 80 Langmuir dose of
orthocarborane~C2B10H12! on clean Si~111!-~737!. The up-
per inset shows similar data for a film of B5C. The relative
intensity of the boron Auger electron feature to the carbon
Auger electron feature differs substantially for these two
plots, indicating the loss of some boron by either desorption
or absorption. This later explanation is consistent with the
surface disordering seen with STM, and our LEED observa-
tions. After rapidly heating an orthocarborane-exposed
sample to approximately 800 °C, weak but definite
(A33A3)R30° LEED spots became visible. However, un-
like the ~A33A3)R30° produced with decaborane, STM
observations of the surface show only clumpy disorder, most
likely the result of silicon carbide formed with the two cage
carbon atoms during annealing. Decaborane contains no
carbon, and therefore produces a pure, well-ordered
(A33A3)R30°.

Local spectroscopy done with an STM gives verification
of the heterojunction behavior of this boron carbide/silicon
interface. Figure 5 shows threeI –V curves. One is from a
clean 737 reconstruction and shows this surface’s metallic
character. In contrast, data from disordered regions produced

FIG. 1. Schematic diagram ofcloso-1,2-dicarbadodecaborane~orthocarbo-
rane!, with a calculated radius of 5.6 Å.

FIG. 2. 8003730 Å2 constant-height STM image of orthocarborane species
atop the Si~111!-~737! reconstruction.

FIG. 3. 4703500 Å2 constant-current STM image of the disordered Si~111!
surface following long exposure to orthocarborane. An arrow marks a region
where remnants of the 737 unit cell can still be identified. Full height
contrast in this image is 4.7 Å.
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upon orthocarborane decomposition show a range of anisot-
ropy. One suchI –V trace is very similar to boron carbide/
n-Si~111! diodes formed by more conventional methods.21

The goal now is to produce localized regions with such
altered electronic properties. Although orthocarborane exists
initially in the molecular form on Si~111!, and tip-induced
decomposition was achieved, at room temperature decompo-
sition unavoidably occurred over time. Therefore, further re-
finement of the ‘‘direct writing’’ procedure, including the use

of a cold substrate for initial exposure and tunneling
electron-induced decomposition, will be required to produce
localized ‘‘boron-carbide diodes’’ surrounded by clean me-
tallic 737. The results of our room-temperature efforts sug-
gest that length scales on the order of 10 nm or less will be
readily achievable.

IV. CONCLUSIONS

A complex interface of a boron delta-doped silicon layer
and a carbon-rich boron-carbide layer is formed at the
B5C/Si~111! heterojunction interface. Avoiding formation of
this complex interface will require passivation of the Si~111!-
~737! reconstruction. A consequence of this complex inter-
face is that a B5C/Si~111! heterojunction may form ap- i -n
junction, instead of ap-n junction. We believe that the boron
occupies a subsurface site within the silicon.

Largely complete orthocarborane icosahedral molecules
can be imaged on Si~111!-~737!. This may be the precursor
state to dissociative adsorption. The possible loss of one or
two hydrogens from such species cannot, however, be ex-
cluded.
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