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Refractive indices and band-gap properties of rocksalt
MgxZn1−xO „0.68ÏxÏ1…

Rüdiger Schmidt-Grund,a� Anke Carstens, Bernd Rheinländer, Daniel Spemann,
Holger Hochmut, Gregor Zimmermann, Michael Lorenz, and Marius Grundmann
Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Universität Leipzig,
Linnéstrasse 5, 04103 Leipzig, Germany

Craig M. Herzinger
J. A. Woollam Co., Inc., 645 M Street, Lincoln, Nebraska 68508

Mathias Schubertb�

Department of Electrical Engineering and Center for Materials Research and Analysis (CMRA),
University of Nebraska-Lincoln, 240N WSEC, Lincoln, Nebraska 68588-0511

�Received 19 April 2005; accepted 25 April 2006; published online 19 June 2006�

The room-temperature optical pseudo-dielectric-functions of single-phase, single-crystalline
rocksalt-structure MgxZn1−xO with Mg-content x between 0.68 and 1 were determined in the photon
energy range from 0.75 to 9.10 eV using spectroscopic ellipsometry. The refractive index
determined in the spectral region below the fundamental absorption edge decreases with increasing
Mg content. The pseudo-dielectric-functions reveal structures caused in critical points due to
electronic band-to-band transitions and free exciton formation at the fundamental band-gap
transition. Standard model dielectric function approaches were applied for line shape analysis. Upon
increase of the bond ionicity with increasing Mg content the energies of the band-to-band transitions
as well as the fundamental-band-gap exciton binding energy parameters increase, while the �-point
spin-orbit-splitting energy parameter decreases. We compare our results with the band-gap
properties of wurtzite-structure MgxZn1−xO with Mg-content x between 0 and 0.5 obtained
previously, and we discuss discontinuities across the phase transition. We provide estimates for the
band gap bowing parameter of rocksalt-structure MgxZn1−xO and the band-gap value of
rocksalt-structure ZnO. © 2006 American Institute of Physics. �DOI: 10.1063/1.2205350�

I. INTRODUCTION

Considerable attention is currently devoted to the
MgxZn1−xO alloy system due to its attractive properties for
possible applications in ultraviolet optoelectronics. A large
band-gap variation in thin films between the wurtzite-
structure ZnO �3.37 eV� �Refs. 1–3� and the rocksalt-
structure MgO �7.77 eV� �Ref. 4� is anticipated. Bragg re-
flector structures consisting of MgxZn1−xO layers with high
and low Mg contents are of potential interest for ZnO-based
optoelectronic devices due to the large variability of the re-
fractive indices. Superlattices structures of MgO and ZnO
layers allow tuning of the quasiternary band-gap energy by
varying the sublayer thickness values, and may open alterna-
tive pathways to the use of ternary materials.5 Cubic crystal-
line MgxZn1−xO has recently revealed potential for use as
high-k dielectric material in silicon technology.6 The ionicity
of the Zn–O bonds compared with the Mg–O bonds are
lower. Therefore, for MgxZn1−xO with high Mg content one
expects high exciton binding energies, which should increase
by increasing the Mg content in the crystal. The large value
of the exciton binding energy of MgO �80 meV�,4 although
comparable to the energy of the optical phonon mode
frequency,7 predicts high-Mg-content material to be advanta-

geous for excitonic light emitters, because the exciton-
phonon scattering decreases with an increasing ratio of the
exciton binding energy to the optical phonon energy, and
which is more favorable than in ZnO. Whereas for small Mg
contents the compounds are commonly found to crystallize
in the wurtzite-structure, high-Mg-content alloys are of rock-
salt structure. While the wurtzite structure composition re-
gion is often investigated �e.g., Refs. 1, 2, and 8–15�, many
optical properties of the rocksalt phase remained unknown so
far and further studies are required. Among these properties
are the electronic band-to-band transition energies, exciton
binding energies, and refractive indices. Successful growth
of rocksalt MgxZn1−xO films was reported for x�0.4.16–19

Using transmittance measurements, a blueshift of the funda-
mental band-gap energy E0 with increasing Mg content x
was found, but detail analysis of spin-orbit split �E0+�0� and
of free exciton contributions was not performed. An estima-
tion of the refractive index dispersion was deduced in Ref.
19 from model analysis of thin-film transmittance spectra in
the photon energy range between 1.46 and 3.10 eV.

Due to its sensitivity to the complex optical sample re-
sponse, spectroscopic ellipsometry �SE� provides a valuable
tool for determination of dielectric function spectra, even for
thin layers.20 Infrared �IR� dielectric function spectra of
rocksalt-structure MgxZn1−xO thin films were previously in-
vestigated by Bundesmann et al.7 using IR-SE, and static
dielectric constant, optical phonon mode frequencies, ampli-
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tudes, and broadening parameters were derived from dielec-
tric function line shape analysis. In the photon energy range
of the electronic band-to-band transitions, which cause typi-
cal critical-point �CP� structures in the dielectric function �,
energies, amplitudes, and broadenings of such CP structures
can be obtained as best-model parameters from subsequent
model dielectric function �MDF� line shape analysis of �
spectra using standard MDF approaches.20,21 Critical points
are connected to Van-Hove singularities within the density of
states in the electronic energy-momentum band diagram in
zero, one, two, or three dimensions �0D, 1D, 2D, or 3D,
respectively� commonly abbreviated by M0, M1, M2, and,
M3-type CP’s respectively.21 With increasing photon energy
starting within the band gap of a semiconductor, � reveals
the fundamental absorption edge, which is typically of the
3D-M0-CP type for direct-gap materials. At higher energies
CP structures occur, which are often described as 3D-M1, or
equivalently as 2D-M0, or M2-type singularities.21

In this paper we focus on the CP structure associated
with the electronic polarization near the fundamental band-
to-band transition, and report on the model specific param-
eters for the fundamental-band-gap energies, the
fundamental-band-gap exciton binding energies, as well as
on the refractive indices of rocksalt MgxZn1−xO for Mg con-
tents 0.68�x�1. We obtain these information from MDF
analysis of SE data taken from thin layers of MgxZn1−xO in
the spectral range between 0.75 and 9.10 eV.

II. EXPERIMENT

The thin films with thickness values of 100–400 nm and
Mg mole fractions of x=0.68–1 were grown by pulsed laser
deposition �PLD� on c-plane �0001� sapphire. The substrate
temperature was 750 °C. Rutherford backscattering spec-
troscopy and x-ray diffraction �XRD� measurements were
performed to study the composition and crystal structure of
the films, respectively. The XRD results indicate that the
single-phase rocksalt structure and the layers are relaxed.7

SE measurements were performed at room temperature in the
photon energy range from 0.75 to 9.10 eV with a spectral
spacing of 50 meV and, in addition, within the near-band-
gap spectral region in steps of 10 meV.20 All ellipsometry
data were measured at angles of incidence of 60° and 70°
using a rotating-analyzer ellipsometer with automated com-
pensator function, where the samples were placed within a
dry-nitrogen-purged sample compartment in order to prevent
probe light absorption within the vacuum ultraviolet �VUV�
spectral region by atmospheric water content. Substantial in-
formation on ellipsometry instrumentation and related matter
can be found in Ref. 20.22 All samples were measured as
received from the growth process, i.e., without any surface
treatment. Storage of samples after removal from the PLD
growth chamber was done in dried atmosphere. Native sur-
face over layers and roughness influenced the ellipsometric
measurement, in the below-band-gap photon energy region
to some extend only, and were accounted for during the nu-
merical model analysis. The surface properties of the
samples were investigated using atomic force microscopy
�AFM� and render values of the surface roughness in the

range between 2 and 25 nm. In Fig. 1, as a typical example
for all Mg contents investigated here, the AFM picture of the
surface of a Mg0.82Zn0.18O sample is shown. As can be seen,
the size of the surface structures is not homogeneous across
the sample surface.

III. THEORY

A. Ellipsometry data analysis

Ellipsometry at oblique angle of incidence � determines
the ratio � of the complex p-and s-polarized reflectance co-
efficients rp and rs from layered systems with plane parallel
interfaces.20 By definition, in the standard ellipsometry situ-
ation � and � do not depend on the polarization state of the
incident plane wave.23 Within the Jones presentation the ge-
neric expression is

� =
jp

js
= tan � exp�i�� . �1�

Here jp and js denote the p-and s-polarized complex reflec-
tion �jp,s=rp,s� or transmission coefficients �jp,s= tp,s�. This
situation is applicable to sample systems which behave iso-
tropic, such as for rocksalt-structure single-crystalline thin
films on c-plane oriented sapphire substrates, i.e., for sur-
faces which do not reflect �or transmit� p-polarized light into
s-polarized light and vice versa.24,25 The ellipsometric pa-
rameters depend on the photon energy, the sample layer
structure, the materials dielectric function, and �. The
pseudo-dielectric-function ���= ��1�+ i��2�, �i��−1�, is a
common representation of the ellipsometric parameters �
and �:26

��� = tan2 �	cos2 � + sin2 �
1 − �

1 + �
�2� . �2�

For ellipsometry data analysis, using standard multilayer
calculation schemes, a two-layer model is employed here
including the c-plane �uniaxial� sapphire substrate �the re-
fractive indices were taken from Yao and Yan27�, the
MgxZn1−xO layer, and the thin cap layer. Using a Levenberg-
Marquardt numerical regression algorithm, the model param-
eters �layer thickness, MDF parameters� were varied until the
model calculated spectra matched the experimental spectra
as closely as possible. A weighted test function �maximum
likelihood approach� connects measured and calculated data,
and related issues of parameter accessibility from spectro-

FIG. 1. AFM image of a typical MgxZn1−xO surface.
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scopic ellipsometry data have been thoroughly discussed by
Jellison in Ref. 20. The experimental error bars on the mea-
sured data, which were accounted for appropriately within
the test function, were propagated into the error bars on our
model parameters. These error bars also represent finite cor-
relation values among the fit parameters. The light propaga-
tion within the sample is calculated using standard matrix
formalism for multilayered systems with plane parallel
interfaces.20,28

B. Model dielectric function

For parameterization of the MgxZn1−xO dielectric func-
tions �, two MDF approaches were invoked. The first con-
sists of CP line shape functions �CP-MDF� for determination
of the fundamental-band-gap transition energies and exciton
binding energies, which is based on the approach suggested
by Adachi,29 including contributions of the 3D-M0-CP-type
�E0, E0+�0; �0 is the spin-orbit-split energy� and related free
exciton and exciton continuum contributions �exciton bind-
ing energy Exb�. The contributions of the E0 and E0+�0 CP
structures to � are described as follows:

�E0,E0+�0 = AjEj
−1.5	2 − �1 + 	 j�0.5 − �1 − 	 j�0.5

	 j
2 � , �3�

with 	 j = �E+ i� j� /Ej �j=0, �0 for E0 and E0+�0, respec-
tively�. Aj, Ej, and � j are, respectively, the amplitude, tran-
sition energy, and broadening parameter of each CP struc-
ture. E is the photon energy. The free exciton contribution at
transition energy Ej can be written as

�Exb�Ej� =
Axb

�Ej − Exb� − E − i�xb
, �4�

where Axb and �xb are the discrete exciton strength parameter
and the broadening parameter, respectively. Contributions
due to band-to-band transitions outside the photon energy
range studied were accounted for by a damped harmonic
oscillator set to an arbitrary but fixed energy Et
E0+�0:

�he =
A

Et
2 − E2 − i�tE

. �5�

The complete CP-MDF in the spectral range investigated
here is the sum of the above terms:

� = �Exb�E0� + �Exb�E0+�0� + �E0 + �E0+�0 + �he. �6�

In order to provide a more simple parameterization for the
below-band-gap index of refraction we further employed a
simple Cauchy formula �CA-MDF�.2 The cutoff energy for
selecting experimental data for the CA-MDF analysis was set
to approximately 90% of the actual band-gap energy E0. The
CA-MDF parameters were assumed to depend on x by
second-order polynomials:

n�x,�� = A0 + A1x + A2x2 +
B0 + B1x + B2x2

�2

+
C0 + C1x + C2x2

�4 , �7�

where � is the incident light wavelength in units of microns.

C. Surface over layer effects

The surface of the thin films potentially is not ideal,
where roughness and/or surface contaminants may be gener-
ally present. For accurate determination of the MgxZn1−xO
refractive index dispersion and MDF parameters, the effect
of the surface must be removed numerically. The results
from AFM studies suggest to model the surface roughness
effects by inclusion of a surface over layer into the model
calculation, where the dielectric function of the surface over
layer is estimated by the Bruggeman effective medium ap-
proximation weighing the dielectric functions of the
MgxZn1−xO layer and void ��=1�, which is a common
approach.20 Alternatively, the surface over layer can be mod-
eled due to a transparent layer using a Cauchy approach for
the refractive index dispersion �cf. Eq. �7�� or with Brugge-
man effective medium approaches consisting of three mate-
rials.

In order to highlight the influence of the cap layer on the
MgxZn1−xO refractive index dispersion and MDF parameters,
we have applied different approaches �A�–�F� �Table I� for
the model of the surface over layer. For the approaches �B�–
�F�, comparable good quality of the fit was reached. Consid-

TABLE I. Comparison of the surface over layer �SOL� models used in the layer stack model.

SOL model Comments

�A� No SOL No match between the calculated and experimental
data possible.

�B� BEM.a

50% MgxZn1−xO+50% void
In comparison to �A�: one additional parameter.

�C� BEM:
with variable MgxZn1−xO to void fraction

In comparison to �A�: two additional parameters.

�D� CAb In comparison to �A�: three to four additional
parameters.

�E� BEM:
33% MgxZn1−xO+33% void+33% CA

In comparison to �A�: three to four additional
parameters.

�F� BEM:
with variable MgxZn1−xO to void to CA
material fraction

In comparison to �A�: five to six additional
parameters.

aBEM: Bruggeman effective medium approximation.
bCA: Cauchy approximation, cf. Eq. �7�.
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ering the number of parameters used in the fit procedure,
model �B� is preferable. Therefore, with lacking accurate
data for the actual surface over layer optical constants, we
have used the Bruggeman effective medium approximation
and set the fraction of the MgxZn1−xO and void dielectric
functions to be 50% each thereby avoiding the effect of cor-
relation between the surface over layer thickness and the
void fraction parameters in this approach. The validity of this
treatment is supported by the AFM studies, from which, in
consideration of the nonuniformity of the size of the surface
structures, average MgxZn1−xO and void fractions of 50%
each can be estimated �cf. Fig. 1�. While the precise deter-
mination of the cap layer dielectric function is not of concern
here, this approach accounts satisfactorily for the influence
of the cap layer on to the measured ellipsometric spectra as
long as the overlayer thickness remains small as compared to
the wavelength. The cap layers were found from our numeri-
cal model analysis with thickness values of 7–14 nm, which
match good with the surface roughness values obtained by
the AFM investigations.

Likewise, an over or underestimation of the cap layer
dielectric function done thereby may affect the absolute
value of the MgxZn1−xO dielectric function �, whereas the
energies of the CP structures are influenced only little by the
absolute values of �. The uncertainty introduced thereby onto
the index of refraction in the transparency region of the
MgxZn1−xO layers, estimated using the models listed in Table
I, is lower than ±0.004 �at 0.75 eV� and ±0.02 �at 90% of the
actual band-gap energy E0� and is within the error bar speci-
fied in Sec. IV below. The contributions to the uncertainties
of the MDF parameters E0, �0, and Exb which originated in
different surface modeling amount to maximal ±0.007 eV,
±0.02 eV, and ±2 meV, respectively, which is within the er-
ror bars given in Fig. 7. The influence of the surface model-
ing on the MgxZn1−xO dielectric function � is exemplarily
shown in Fig. 2 for x=0.72. As can be seen, the different
approaches result in height shifts between the dielectric func-
tions which were obtained using the different surface over
layer models, and to various sharp onset of the absorption at
the fundamental absorption edge �6 eV�. The energetic po-
sitions of the CPs are not significantly influenced.

IV. RESULTS AND DISCUSSIONS

Figure 3 depicts experimental and best-fit calculated data
exemplarily for the sample with x=0.82. The calculated data

were obtained by the CP-MDF �entire spectral range� and the
CA-MDF �below-band-gap range�, as discussed below. The
spectra are representative for the samples investigated in this
work. Figure 4 summarizes ��2� spectra for thin-film samples
with representative x values.

A. Below-band-gap index of refraction

For photon energies below E0 thickness interference ef-
fects occur indicating the spectral range of transparency. Fig-
ure 5 presents the refractive index dispersions determined
upon the CA-MDF analysis �Eq. �7�� within the below-band-
gap spectral range. With increasing x, the refractive index n

FIG. 2. Spectra of MgxZn1−xO dielectric functions �2 obtained from the
MDF analysis using the surface over layer models �B�–�F� listed in Table I
exemplarily for x=0.72.

FIG. 3. Experimental �symbols� and best-model calculated ellipsometry data
for a MgxZn1−xO film deposited on c-plane sapphire �CP-MDF: solid lines;
CA-MDF: dashed lines�. Vertical bars denote transition energies of CP con-
tributions in the near-band-gap spectral region E0 and E0+�0.

FIG. 4. Experimental �symbols� and best-model calculated �CP-MDF: solid
lines� ��2� spectra for various MgxZn1−xO films deposited on c-plane sap-
phire. Brackets with vertical bars indicate the transition energies E0 and
E0+�0 �long bar�, and their respective exciton resonance E0−Exb and E0

+�0−Exb �short bar�.
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decreases, which resembles previous results for the wurtzite-
phase MgxZn1−xO system.2 Data for the refractive index dis-
persion from SE investigation of a MgO bulk sample in the
spectral region from the infrared to vacuum ultraviolet were
reported previously by Synowicki and Tiwald.30 Rocksalt-
structure MgxZn1−xO thin films with x=0.57, 0.70, 0.83, and
1 were studied in the photon energy region 1.46–3.10 eV by
Chen et al.19 While the absolute values and the dispersion of
n determined in Ref. 30 using SE match our data excellently
�cf. Fig. 5�, the values of n obtained from model analysis of
transmittance spectra using the Manifacier method in Ref. 19
are distinctly lower and overestimate the index dispersion for
x�1. These differences may originate in uncertainties in the
Manifacier-method analysis of the interference pattern of the
transmittance intensity spectra.

The inset in Fig. 5 shows the x dependency of the refrac-
tive index for x=0–1 exemplarily for the photon energies of
1 eV �within the band gap�, 3.37 eV �the band-gap energy of
ZnO�, and 5.3 eV. Note that the wurtzite-structure alloy is
optically uniaxial, with small differences between ordinary
�n�; polarization perpendicular to c axis� and extraordinary
�n�, parallel c axis� indices.2 Similar to the discontinuous
composition dependence of E0 �discussed further below�, the
refractive index reveals strong discontinuity and increases
across the wurtzite-rocksalt-phase transition of the alloy sys-
tem, which occurs for x�0.5–0.6. For example, n for com-
position x=0.68, is similar to n� for x=0.17. Extrapolating
the n� values for a given photon energy within the wurtzite
phase towards compositions within the rocksalt phase would
result in much lower indices than observed here. It follows
from simple sum rule considerations31 that the discontinuity
in the refractive index must be accompanied by substantial
increase in oscillator strengths of higher energy transitions
above the spectral range studied here because the disconti-
nuity in E0, which increases across the phase transition �see
below�, would otherwise cause a decrease in the refractive
index if these oscillator strengths would remain comparable
to those within the wurtzite-structure alloy.

The Cauchy parameters according to Eq. �7� are given in
Table II. In the inset in Fig. 5, the refractive indices deter-
mined using the CP-MDF analysis in the whole spectral
range and the CA-MDF analysis in the below-band-gap
spectral range done for each sample independently are shown
in comparison to n determined by a CA-MDF analysis where
all samples were involved simultaneously solving for the x
dependency of the CA-MDF parameters given in Table II.
The good agreement between the results obtained by the
three methods is notable and permits us to conclude that the
influence of the surface roughness on the refractive index
dispersion is sufficiently well described by the used cap layer
model.

B. Near-band-gap dielectric function

Line shape analysis of fine structures in the sample re-
sponse near the fundamental band-gap energy using the CP-
MDF line shape functions �Eqs. �3�–�6�� reveals parameters
of the E0, E0+�0, and related discrete as well as continuum
exciton CP contributions �vertical bars in Figs. 3 and 4�. The
most prominent structure within the spectra in Fig. 3 origi-
nates from the CP structures due to the free exciton and
band-to-band transitions at photon energies �=E0−Exb,
E0+�0−Exb, and �=E0, E0+�0, respectively, followed in
the low-energy part of the spectra by thickness interference
effects, which are affected by index of refraction dispersion
and residual absorption due to band-gap transition broaden-
ing. Figure 6 presents the best CP-MDF calculated �2 spectra
in the near-band-gap spectral region obtained by the CP-
MDF analysis with the above described surface over layer
model for the MgxZn1−xO samples in Fig. 4.35 The insets
show exemplarily the individual CP-MDF contributions due
to the excitonic, band-gap, and spin-orbit-split CP’s. Note
that for reasons of denying any strong correlation amongst
the MDF parameters, the broadening parameters were set to
be equal for each excitonic respective �-point band-to-band
transition, the amplitude parameters for the excitonic transi-
tions, and the exciton binding energy for the E0 and E0+�0

related excitonic transitions. The exitonic contributions are
much stronger than the contribution from the fundamental
band-to-band transitions for MgO, but become less pro-
nounced towards higher Zn content. While the individual CP
contributions can be clearly differentiated for the MgO

FIG. 5. MgxZn1−xO index of refraction n according to Eq. �7� and param-
eters in Table II �solid lines�. For comparison, data reported by Synowicki
and Tiwald �Ref. 30� for x=1 are included �dashed lines�. The inset depicts
n for individual photon energies calculated from the best-model CP-MDF
�open squares�, the best-model CA-MDF for each sample individually
�crosses�, and for all samples simultaneously �solid lines�. Data for the
wurtzite part were taken from Ref. 2.

TABLE II. Best-model CP-MDF parameters �Eq. �7�� for the x dependency
of the below-band-gap index of refraction dispersion of MgxZn1−xO �x
=0.68–1�, for photon energies from 0.75 eV to 0.9E0�x�.

CA-MDF parameter Value

A0 2.146±0.01
A1 −0.508±0.01
A2 0.083±0.01
B0 ��m2� �1.6±0.2��10−2

B1 ��m2� �−2.5±0.5��10−2

B2 ��m2� �1.3±0.3��10−2

C0 ��m4� �1.38±0.03��10−3

C1 ��m4� �−1.48±0.05��10−3

C2 ��m4� �0.36±0.04��10−3
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sample, the structures merge into broad yet distinct absorp-
tion edge, for which all model terms in Eq. �6� are required
for successful line shape match. With increasing Zn content,
the band-gap energies reveal a distinct redshift, and the ab-
sorption edges broaden. The latter is most likely due to the
atomic potential fluctuations, common to disordered com-
pounds, and which is leading to locally varying band-gap
properties with appearance of absorption tails extending into
the band-gap spectral range. For the thin-film samples inves-
tigated here, the broadening parameter values of the E0- and
E0+�0-CP structures are found to be approximately 50 meV,
for low Zn contents, with slight increase for alloys with high
Zn contents. The free exciton broadening parameters in-
crease from �xb70 meV�x=1� to �xb100 meV�x=0.68�.
We attribute the large exciton broadening to dephasing and
scattering of the free excitons by local potential fluctuations
as well as structural inhomogeneities �defects, grain bound-
aries� of the MgxZn1−xO layers. Therefore, in the experimen-
tal MgxZn1−xO data, the free exciton CP structures are less
pronounced than in the spectra of MgO or ZnO. A similar
exciton broadening was observed in the wurtzite-phase
MgxZn1−xO alloy system.2

C. Band-gap and exciton binding energies

1. Band-gap energy

Figure 7 contains the observed dependencies of the CP-
MDF model parameters E0, �0, and Exb on x, together with
the wurtzite-structure band-gap and exciton binding energies

obtained in our previous work.2 For x=1 the ellipsometric
results presented here for the thin films �E0

=7.674±0.005 eV, �so=53±15 meV, and Exb

=85.3±1.5 meV� are concordant with data obtained from re-
flectivity analysis on bulk crystals in Ref. 4 �E0=7.77 eV,
�so=30 meV, and Exb=80 meV� and are highly consistent
with those obtained from SE studies on bulk crystals in Ref.
30 �E0−Exb=7.6 eV�. With decreasing Mg content, E0 shifts
to lower energies, while the spin-orbit split parameter �0

increases. For the rocksalt-structure alloy system E0 can be
well approximated by a second-order polynomial,

E0�x��eV� = 7.6 ± 0.5 − �7 ± 1�x + �7 ± 1�x2, �8�

suggesting, although with somewhat large error bars, the
band-gap value for virtually unstrained ambient-pressure
rocksalt-structure ZnO E0�0�=7.6 eV with strong bowing co-
efficient of b=7 eV. Previous calculations suggest the
indirect-gap ��5.4 eV� high-pressure rocksalt-structure
phase of ZnO with a much larger �-point band-gap energy
�E0�0�=6.54 eV� than its wurtzite-structure counterpart
�3.34 eV�,1,32,33 and which is in good agreement with our
estimation here.

Between the wurtzite and the rocksalt phases of the alloy
system, the band-gap energy parameter E0 possesses a dis-
continuity, which amounts to approximately 1 eV.2 A similar
discontinuity was reported from evaluation of absorption
edges in transmission measurements in Ref. 16. We attribute
this effect to the change of the Zn and Mg coordination in the
crystals from fourfold �wurtzite structure� to sixfold �rocksalt
structure�, which leads to different types of band structures

FIG. 6. Calculated �2 spectra applying for the used model with the CP-MDF
and surface over layer approach described above for the MgxZn1−xO samples
in Fig. 4. Brackets with vertical bars indicate the transition energies E0 and
E0+�0 �long bar�, and their respective exciton resonances E0−Exb and E0

+�0−Exb �short bar�, and insets display their individual model contributions
exemplarily for x=1 and x=0.68.

FIG. 7. CP-model parameters for the rocksalt-structure MgxZn1−xO band-
gap and exciton binding energies E0, �0, and Exb vs Mg-content x obtained
from ellipsometry data analysis using functions for CP-MDF spectra de-
picted in Fig. 6, and wurtzite-structure MgxZn1−xO band-gap and exciton
binding energies E0

A, E0
C−E0

A, E0
B−E0

A, and Exb reproduced from Ref. 2. The
solid line for the rocksalt-structure composition range connecting data points
for E0 follows Eq. �8�. The other lines are drawn as guide to the eye.

123701-6 Schmidt-Grund et al. J. Appl. Phys. 99, 123701 �2006�

Downloaded 18 Apr 2007 to 129.93.17.223. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



and therefore to different values of the band-gap energy with
a trend towards higher band-gap energies for the rocksalt
structure. A similar trend was also found from local density
calculations for rocksalt- versus wurtzite-structure MgO, and
for the high-pressure rocksalt-structure ZnO.32,34

2. Exciton binding energy

The exciton binding energy parameter Exb decreases ap-
proximately linearly with decreasing Mg content, concordant
with the reduction of the band gap implying continuous re-
duction of the conduction and valence band curvatures.21

Whereas the x dependency of Exb for the wurtzite-structure
part reveals a considerable nonlinear behavior,2 the compo-
sition dependence of the binding energy within the rocksalt
structure follows a line, which further implies a discontinuity
across the phase transition increasing Exb towards the
wurtzite-structure part. This behavior can be well understood
by the discontinuity of the index of refraction n. The exciton
binding energy is proportional to n−4, and hence increases
upon the rocksalt-wurtzite phase transition.21 However, for
the latter a precise evaluation of the optical phonon mode
discontinuity has to be taken into account and which shall be
the subject of further work.

V. CONCLUSIONS

In summary, PLD-grown single-phase, single-crystalline
rocksalt-structure MgxZn1−xO thin films with x=0.68–1
were studied by spectroscopic ellipsometry. We have deter-
mined the refractive index dispersion and the model dielec-
tric function parameters for the energy of the fundamental
electronic band-to-band transition E0, the spin-orbit-splitting
energy �0, and the exciton binding energy Exb as a function
of the Mg-content x upon model line shape analysis of the
ellipsometry data. In comparison with the properties of the
wurtzite-structure MgxZn1−xO it was found that between the
two phases E0 reveals discontinuity due to the bond coordi-
nation change in the MgxZn1−xO system. The exciton binding
energy Exb follows anticipated trends decreasing upon Zn
incorporation, and indicates discontinuous behavior across
the phase transition. For the rocksalt part, a nearly linear
increase of Exb was found between x=0.68 and 1 from
60 to 85 meV, respectively, which may be promising
for use in optoelectronic applications. The large variation of
the index of refraction shall permit design of Bragg reflector
structures within the rocksalt-structure alloy system.
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