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Validity of Tolman’s equation: How large should a droplet be?
Kenichiro Kogaa) and X. C. Zeng
Department of Chemistry and Center for Materials Research and Analysis, University of Nebraska, Lincoln,
Nebraska 68588

A. K. Shchekin
Department of Statistical Physics, St. Petersburg State University, 198904, St. Petersburg, Russia

~Received 23 February 1998; accepted 2 June 1998!

Surface tension and the lengthd ~distance between the Gibbs surface of tensionRs and the
equimolar surfaceRe! of simple liquid droplet~Lennard-Jones and Yukawa! are computed over a
wide range of droplet sizes up to about 43106 molecules. The study is based on the Gibbs theory
of capillarity combined with the density–functional approach to gas–liquid nucleation. Since this
method provides behavior of the surface tension fully consistent with the tension of the planner
surface, the constant in Tolman’s equationd` can be determined unequivocally from the asymptotic
behavior ofss . Comparison of the tension given by Tolman’s equation against the result of exact
thermodynamic relations reveals that Tolman’s equation is valid only when the droplet holds more
than 106 molecules for the simple fluid systems near their triple points, in contrast to the
conventional wisdom that Tolman’s equation may be applicable down to droplets holding a few
hundreds of molecules. ©1998 American Institute of Physics.@S0021-9606~98!50334-0#

I. INTRODUCTION

One fundamental question on properties of droplets of
liquid is the dependence of surface tension on droplet radius.
Numerous theoretical investigations have been devoted to
this question, including the original thermodynamic consid-
eration by Gibbs,1 later development by Tolman,2 and recent
studies based on statistical mechanical theories3–8 and com-
puter simulations.9–12

When a droplet is sufficiently large, size dependence of
the surface tension can be expressed by Tolman’s equation
of the form2

ss

s`
5

Rs

Rs12d`
. ~1!

Here, ss is the surface tension with respect to the Gibbs
surface of tension andRs denotes the radius of this dividing
surface;s` is the planner surface tension, andd` is defined
as limRs→`d, whered is the distance between the equimolar
surface with radiusRe and the surface of tension. Tolman
derived Eq.~1! based on the Gibbs theory of capillarity1 plus
two additional assumptions:d!Rs ~assumption A! and d
5d` ~assumption B!.

On the other hand, in the case of small droplets, no ana-
lytical relation has been found so far to expressss in terms
of Rs . There have been several numerical calculations ofss

for various sizes of droplets via the gradient theories,3,4,6 the
density–functional theory,7 and computer simulations.9–12

Most studies reached a common conclusion that very rapid
decrease in surface tension takes place with decrease in drop-
let size whenRs is sufficiently small~e.g., smaller than about
ten molecular radii3!. Some studies3,7 also showed thatd is a

strong function ofRs , i.e., assumption B is invalid for very
small droplets.13 Size dependence of surface tension and
lengthd becomes more and more controversial as one con-
siders larger and larger droplets. This is mainly due to the
fact that numerical errors in the calculations overwhelm the
precision one needs for large droplets for which dependence
of ss and d on Rs is very weak. To our knowledge, no
quantitative information has been reported as to a range of
droplet sizes where we can apply Tolman’s equation for cal-
culating surface tension.

The purpose of this article is to shed some light on to
what extent Tolman’s equation is valid. To this end, we com-
pute the surface tension and the lengthd for a wide range of
droplet sizes on the basis of the Gibbs thermodynamic theory
of capillarity combined with the density–functional theory of
gas–liquid nucleation.14,15

We first study behavior ofd for sizes of droplet ranging
from 40 to about 4.03106 particles. Two different routes to
d, both of which are exact, are taken: a direct route which
calculatesRe andRs separately, and an adsorption route we
propose in Sec. IV. We will show that the direct route gives
rise to unphysical behavior ofd when we approach the plan-
ner surface limit whereas the adsorption route can lead to
self-consistent and precise results of asymptotic behavior of
the lengthd. From the asymptotic behavior, the value of
Tolman’s lengthd` can be determined accurately. It is then
possible to examine the range of droplet sizes where Tol-
man’s equation is valid by comparing results of Tolman’s
equation~using d`! with those from rigorous calculations
based on the thermodynamic definition of surface tension.

We also discuss the validity of other thermodynamic
routes~mostly used in computer simulations! to surface ten-
sion, lengthd, and Tolman’s lengthd` . One such route is
the thermodynamic route proposed by Thompsonet al.10 in
the molecular dynamics simulation study of Lennard-Jonesa!Electronic mail: koga@phase2a.unl.edu
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~LJ! liquid drops. Recently, Nijmeijeret al.11 adopted an-
other thermodynamic route tod in large scale computer
simulations. Both of the routes seem particularly convenient
for the computer simulation because they require neither the
equation of state of the bulk fluid nor the grand potential of
the droplet–vapor system. We note, however, that these
routes are based on several approximations to the rigorous
thermodynamic theory and become exact only in the large
droplet limit. We therefore also examined the extent to
which these routes are applicable to the determination ofss

andd.
This paper is organized as follows: Section II gives

Gibbs thermodynamic description of the droplet–vapor sys-
tem. Section III summarizes the density–functional theory of
gas–liquid nucleation. Results and discussion are given in
Sec. IV and concluding remarks are given in Sec. V.

II. THERMODYNAMIC DESCRIPTION OF THE
DROPLET–VAPOR SYSTEM

We consider a critical droplet of a single-component liq-
uid in ~unstable! equilibrium with a supersaturated vapor at
temperatureT. The system is taken to be a conical section
~with solid anglev! of a sphere~with radiusR! which in-
cludes the droplet at the center with surrounding vapor. The
radius R is chosen to be sufficiently large such that the
vapor at the boundary acquires the bulk properties. The
chemical potentialm of the system is higher than the chemi-
cal potentialmeq at vapor–liquid~stable! equilibrium at T.
The reversible transformations of the system are described
by the Gibbs fundamental relation

dU5T dS2dW1m dN, ~2!

where the symbolsU, S andN denote, respectively, the en-
ergy, entropy and number of molecules of the system. The
work performed by the system is represented bydW. To
define the surface or excess variables including surface ten-
sion, one needs to introduce a mathematical dividing surface
with an arbitrary radiusR, which partitions the total volume
(V) into two parts: one inside the dividing surfaceVa and
the other partVb. Then a hypothetical reference system is
introduced, which possesses the samem, T, and V but is
composed of the uniform liquid and vapor phases~let us call
thema andb phases, respectively! right up to the dividing
surface; namely, the reference system consists of two parts: a
portion (Va) of a bulk liquid atm andT and a portion (Vb)
of a bulk gas atm andT. Sincem.meq, phasea is thermo-
dynamically stable, whereas phaseb is metastable. Now the
surface variables can be defined as

Ns5N2Na2Nb, ~3!

Us5U2Ua2Ub, ~4!

Ss5S2Sa2Sb, ~5!

where the superscriptsa andb indicate the quantities of each
part of the reference system. The infinitesimal change in the
internal energy of each part of the reference system is de-
scribed by the fundamental relation

dUa5T dSa2pa dVa1m dNa, ~6!

dUb5T dSb2pb dVb1m dNb. ~7!

It is important to emphasize thatpa is not the pressurep(0)
at the center of the droplet but is the pressure of homoge-
neous phasea in the reference system; in general, these two
values are different. The change in the surface energy is
assumed to be given by

dUs5T dSs1s dA1C dR1m dNs, ~8!

whereA is the surface area of the dividing surface ands is
the surface tension defined as a conjugate variable ofA; C is
the conjugate variable ofR. Combining Eqs.~6!–~8! results
in a relation

dU5T dS2pa dVa2pbdVb1s dA1C dR1m dN.
~9!

Comparing Eqs.~9! with ~2!, one can find thats dA
1C dR is the difference between the work done on the real
system (2dW) and the work done on the hypothetical ref-
erence system (2pa dVa2pb dVb). Integrating Eq.~9!
with respect to the solid anglev at fixedT, m andR yield

s5
V1paVa1pbVb

A
5

DV1DpVa

A
, ~10!

where V[U2TS2mN is the grand potential,DV[V
1pbV is the work of formation of the critical droplet, and
Dp stands forpa2pb. Equation~10! holds for surface ten-
sion with respect toany dividing surface. Note thats de-
pends not only on the thermodynamic state of the system but
also on the choice of the parameterR. However, if a particu-
lar dividing surface such as the surface of tension or the
equimolar surface is chosen, the corresponding surface ten-
sion turns out to be a state function.

The surface of tension with radiusRs is a special divid-
ing surface for which the coefficientC in Eq. ~9! vanishes
and the Laplace equation holds:16

Dp52ss /Rs . ~11!

Recalling thatVa54pRs
3/3 andA54pRs

2, one can solve the
coupled equations~10! and ~11! to obtain

ss5S 3DV~Dp!2

16p D 1/3

, ~12!

and

Rs5S 3DV

2pDpD 1/3

. ~13!

These are rigorous thermodynamic expressions forss and
Rs . One may question the validity of thermodynamic argu-
ments when a droplet is too small to possess bulk liquid
properties inside its surface. However, as noted by Gibbs,1

his original thermodynamic arguments~presented above! do
not assume any thermodynamic property inside the droplet;
instead they rely upon the properties of the homogeneous
liquid phase having the same chemical potential as the
droplet–vapor system has. Whether or not there is a homo-
geneous liquid phase inside the droplet, the thermodynamic
quantities of the reference system are well defined. There-
fore, the surface tension and other surface quantities are well
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defined no matter how small the droplet is. In this sense, the
Gibbs thermodynamic arguments hold for any size of a drop-
let. On the other hand, any thermodynamic arguments rely-
ing upon thermodynamic quantities in the actual droplet
~e.g., pressure at the center of the droplet! become less and
less reliable when we go to smaller and smaller droplets.

Tolman’s equation is derived as follows. From the
Gibbs–Duhem equation for the surface variables (A dss

1Ns dm1Ss dT50) together with the definition of the sur-
face adsorption (Gs[Ns/A), we have

Gs52~]ss /]m!T . ~14!

Combining a similar relation for the reference system,Dr
[ra2rb5(]Dp/]m)T , with Eq. ~14! yields a differential
equation:

S ]ss

]DpD
T

52
Gs

Dr
. ~15!

In the planner surface limit, the quantityGs /Dr on the right
hand side of Eq.~15! is identical to Tolman’s lengthd` .
This is seen from an exact relation~originally derived by
Tolman2!

Gs

Dr
5dS 11

d

Rs
1

1

3

d2

Rs
2D . ~16!

If we integrate Eq.~15! with respect toDp from the planar
surface limit (Dp50), assuming thatGs /Dr is constant
over the range, we find

ss2s`52d`Dp. ~17!

Substitution of Laplace equation~11! into Eq. ~17! results in
Tolman’s equation~1!.

III. APPLICATION OF THE DENSITY–FUNCTIONAL
THEORY TO THE DROPLET–VAPOR SYSTEM
OF SIMPLE FLUIDS

Although Eqs.~12! and~13! are rigorous thermodynamic
expressions for the surface tensionss and the radiusRs of
the surface of tension, the determination ofss and Rs re-
quires values ofDV ~the work of droplet formation! andDp.
Thermodynamics does not provide these data for the
droplet–vapor system; a molecular-based approach~statisti-
cal mechanics or computer simulation! is needed to deter-
mine them. The density–functional theory of nucleation is
such an approach.14,15 This approach has the advantage that
molecular-level detail can be incorporated, and in the limit of
large droplets the theory goes naturally to the classical nucle-
ation theory. Effects of curvature dependence of the surface
tension arise naturally, rather than being added asad hoc
assumptions. Using the density–functional theory, one can
obtain the density profiler~r ! of a spherical droplet, which is
a critical nucleus of the liquid phase, and also the grand
potentialV of the droplet–vapor system.14

The formalism of the density–functional theory of
nucleation can be briefly summarized as follows: The Helm-
holtz free energy functional is taken to be a simple form17

F@r~r !#5E dr f h@r~r !#

1
1

2 E E dr dr 8 r~r !r~r 8!fatt~ ur2r 8u!,

~18!

where f h(r) is the Helmholtz free energy density~the free
energy per unit volume! of a uniform hard-sphere fluid,
which is given by

f h~r!5rmh~r!2ph~r!. ~19!

The chemical potentialmh(r) and the pressureph(r) of the
reference hard sphere fluid are evaluated using the highly
accurate Carnahan–Starling equation.18 fatt in Eq. ~18! is the
attractive part of a pair potential.

We consider the Lennard-Jones~LJ! fluid and Yukawa
fluid in this study. In the case of the LJ fluid,fatt is taken to
be the Weeks–Chandler–Anderson~WCA! perturbation part
of the LJ potential function19

fatt~r !54eLJF S sLJ

r D 12

2S sLJ

r D 6G r>21/6sLJ

52eLJ r ,21/6sLJ . ~20!

The two parameterseLJ andsLJ are, respectively, the depth
of the potential well and the collision diameter. Reduced
variables@denoted by an asterisk~* !# are defined in terms of
parameters: distance is given in units ofsLJ , energy in units
of eLJ , and temperature in units ofeLJ /kB , wherekB is the
Boltzmann constant. We chose the LJ droplet–vapor system
since it has been extensively studied both by computer
simulation9–11 and by the density–functional theory.15 In or-
der to fairly reproduce the liquid density of the LJ fluid at
temperatures lower than the critical point, we use the
temperature-dependent hard sphere diameterd(T).20 In the
case of the Yukawa fluid, the attractive part is taken to be

fatt~r !52al3 exp~2lr !/4plr . ~21!

Furthermore we setl to be d21, the inverse of the hard
sphere diameter of the repulsive part. In this system, reduced
variables are defined in terms ofd and kBTc : distance is
given in units ofd, densities in units ofd23, energy in units
of kBTc , temperature in units ofTc .

We note that Eq.~18! is based on two key approxima-
tions: First, the pair distribution functionr (2)(r ,r 8) of an
inhomogeneous fluid is replaced byr(r )r(r 8). This is the
so-called random phase approximation.21 Second, the local
density approximation is used to determine the hard sphere
part of the free energy functional. These two approximations
have been well tested for weakly inhomogeneous systems
such as a vapor–liquid interface and are fairly good approxi-
mations when the system is not as close to the critical point.

The grand potential functional is given as a Legendre
transform ofF

V@r#5F@r#2mE dr r~r !. ~22!
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The density profile of a critical nucleus atm andT ~as well as
that of a planar surface atmeq andT! can be determined from
the equilibrium condition

dV@r#/dr~r !50, ~23!

or

m5mh@r~r !#1E dr 8 fatt~ ur2r 8u!r~r 8!. ~24!

We also note that the density profile of the planar surface
can be obtained from Eq.~24! using the conventional itera-
tion technique. However, the density profile of a critical
nucleus is not a stable solution of Eq.~24! since it corre-
sponds to a saddle point in the functional space. Nonetheless,
if an appropriate initial guess is made, one can find the un-
stable equilibrium density profile which satisfies the condi-
tion ~23! over many iterations.15

The density profile and the grand potential of the critical
droplet–vapor system were calculated over a wide range of
supersaturationDm[m2meq at a fixed temperature: for the
LJ systemT* 50.7, which is close to the triple-point tem-
peratureTtp* '0.69 of the system; for the Yukawa system
T/Tc50.6.

IV. RESULTS AND DISCUSSION

A. Behavior of the length d

The usual way of determining the lengthd is to calculate
Re andRs and then use the definitiond[Re2Rs , which we
hereafter refer to as ‘‘a direct route tod’’. The radiusRe of
the equimolar surface can be determined from the density
profile of a critical droplet by the exact relation

Re
35

3

Dr E
0

R

@r~r !2rb#r 2 dr. ~25!

Location of the surface of tension,Rs , is given by Eq.~13!.
Another way of determiningd, which we propose here,

is to use the relation

2
~]ss /]m!T

Dr
5dS 11

d

Rs
1

1

3

d2

Rs
2D . ~26!

This is derived from Eqs.~14! and~16!. ss andRs are given
by the exact expressions~12! and ~13!, respectively. The
derivative (]ss /]m)T can be calculated via numerical differ-
entiation. We refer to this method as ‘‘an adsorption route to
d.’’

We now discuss both the result of the direct route and
that of the adsorption route. Figure 1 showsd of the LJ
droplet as a function of supersaturationDm. When supersatu-
ration is large (Dm* .0.2), the behavior ofd obtained from
the two routes is almost indistinguishable. In this ranged
decreases linearly with the decrease inDm and changes its
sign at aboutDm* 50.3. The two routes, however, lead to
qualitatively different results whenDm* ,0.2, that is, in a
range of very large droplets;d via direct route turns to be
positive and tends to diverge asDm goes to zero, whereasd
via the adsorption route still decreases linearly and eventu-
ally converges to a small negative valued`520.15sLJ in
the planar surface limit. Qualitatively the same result is

found for the Yukawa potential system; the direct route gives
rise to the diverging behavior ofd, whereas the adsorption
route leads tod`520.26d. The diverging behavior ofd via
direct route is unphysical because both the equimolar surface
(Re) and the surface of tension (Rs) should lie within the
vapor–liquid interface whose width remains finite over a
whole range of supersaturation at thermodynamic states near
the triple point.

In principle, both direct and adsorption routes should
lead to the same behavior ofd over a whole range ofDm
because no approximations are made in either route~except
common approximations in the density–functional theory!.
Therefore, the problem with the direct route~unphysical be-
havior ofd in a range of smallDm! is a numerical one rather
than a theoretical one. The reason is the following. AsDm
goes to zero,Rs andRe increase simultaneously and diverge
ultimately. In this process, absolute numerical errors ofRs

and Re also increase systematically although relative errors
may remain small@see, for example, expression~13! for Rs ;
the denominatorDp goes to zero.# Consequently, relative
errors ofd given by subtractingRs from Re are expected to
be large and increase systematically. This problem would be
even more serious for computer simulation studies due to the
statistical errors. In fact, computer simulation results show
that the sign ofd is uncertain for large droplets.11 Thus, we
must conclude that exact asymptotic behavior ofd in the
range of very large droplets cannot be obtained through the
direct route.

On the other hand, the adsorption route is free from the
numerical problem. The reason is the following. This ap-
proach requires (]ss /]m)T , Dr, and Rs ; however, in the
large droplet limit the ratio of the first two quantities deter-
minesd @see Eq.~26!#. Unlike Re andRs , both (]ss /]m)T

and Dr remain finite values asDm goes to zero. Thus, the
ratio (]ss /]m)T /Dr can be determined accurately over a
whole range of droplet sizes. As a consequence, asymptotic
behavior ofd and the value ofd` can be determined without
suffering from any numerical problem.

Furthermore, it can be seen from the following that the

FIG. 1. The lengthd* vs the supersaturationDm* at T* 50.7: the direct
route~dotted line! and the adsorption route~solid line!. The reduced dimen-
sionless variables are defined in terms of the LJ size and energy parameters.
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asymptotic behavior ofd obtained by the adsorption-route
calculation is consistent with the properties of the planar
liquid–vapor interface. Figure 2 shows that the surface ten-
sion of the spherical surface of the LJ droplets is fully con-
sistent with that of the planar surface; extrapolation shows
ss(Dm50)/s`51.000 07, wheres` was obtained from the
density–functional calculation for the planar liquid–vapor
interface. The self-consistency for the values ofss guaran-
tees that for (]ss /]m)T . In addition, the behavior ofDr is
also self-consistent. Therefore, the asymptotic behavior ofd
is also consistent with the properties of the liquid–vapor in-
terface within the framework of the density–functional
theory.

B. Range of the validity of Tolman’s equation

Once Tolman’s lengthd` is determined accurately, di-
rect comparison can be made between the behavior of
ss(Rs) given by exact thermodynamic relation~12! and that
by Tolman’s equation~1!. Figure 3~a! shows a comparison
for the LJ droplet–vapor system. When the reduced radius
Rs* is greater than about 50, prediction of Tolman’s equation
is almost indistinguishable in the scale of the plots from the
result of the exact thermodynamic formula; the ratio
ss(Rs)/s` is slightly larger than unity and increases very
slowly asRs decreases. The same result was obtained in the
case of the Yukawa potential system@Fig. 3~b!#. This con-
firms thatd` was determined accurately in such a way that
d` is consistent with the asymptotic behavior ofss .

However, whenRs* is smaller than about 20, orNa

,106, prediction of Tolman’s equation becomes signifi-
cantly different from the result of the rigorous calculation.
The surface tensionss of the exact formula shows nonmono-
tonic behavior; asRs decreases it reaches a maximum at
aboutRs* 510 and begins to decrease rapidly. On the other
hand,ss of Tolman’s equation is necessarily a monotonic
function of Rs ; Fig. 3~a! shows monotonicincreasein ss

with decrease inRs due to the negative value ofd` . The
same significant difference was found in this range of droplet
size in the case of the Yukawa potential fluid@see Fig. 3~b!#.

These results suggest that Tolman’s equation is valid
only for droplets with sizeNa>106, at least near the triple
points of the systems. This is the main conclusion of this
article. Since basically the same results are obtained from the
two distinctive potential functions~LJ and Yukawa!, it is
very unlikely that replacement of the long-range interaction
by r 27 ~i.e., consideration of the retardation effect in the
dispersion force at a very large distance22,23! would give a
qualitatively different result.

We also note that assumption B (d5d`) becomes incor-
rect in a range of droplet sizes where assumption A (d/Rs

!1) is still valid; d is no longer constant whenRs* ,20,
whereasd/Rs50.02 atRs* 55 ~see the solid line with points
in Fig. 5!. The breakdown of assumption B is closely related
to the nonmonotonic size dependence of surface tension
since if d changes its sign so does the term (]ss /]m)T and
vice versa@see Eq.~26!#. Also if Tolman’s lengthd` is nega-
tive, assumption B should become incorrect in some range of
droplet sizes sinced.0 and (]ss /]m)T,0 for very small
droplets. Thus,d`,0 is also closely related to the break-
down of assumption B and to the nonmonotonic behavior of
ss .

FIG. 2. The surface tension ratioss /s` vs the supersaturationDm* at
T* 50.7. The inset is the magnification at small supersaturation. Dotted line
in the inset is drawn by extrapolation.

FIG. 3. The surface tension ratioss /s` obtained via the rigorous thermo-
dynamic route~solid line with circles! and the prediction of Tolman’s equa-
tion ~solid line!: ~a! Lennard-Jones fluid and~b! Yukawa fluid. Values ofd`

~in Tolman’s equation! were obtained via the adsorption route.
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C. Examination of other thermodynamic routes

As mentioned in Sec. III, rigorous calculation ofss and
Rs requires the work of formation of a critical dropletDV
and the pressure differenceDp as thermodynamic inputs.
Although the latter two quantities can be obtained straight-
forwardly by the density–functional theory, they are not eas-
ily obtained from computer simulation. For example, the
equation of state of the bulk fluid is required to determine the
pressures~pa andpb! of the reference homogeneous system
unless the droplet size is sufficiently large so thatpa can be
replaced by the value at the droplet centerp(0).

To circumvent the technical difficulties in the simula-
tion, several alternatives to the rigorous thermodynamic
routes have been proposed. Since these thermodynamic
routes involve certain approximations, the extent to which
they are applicable for determiningss as a function of drop-
let size needs to be examined. One thermodynamic route we
examine here was originally proposed by Thompsonet al. in
their molecular dynamics study of microliquid drops.10 In
this route,ss andRs are obtained by solving the two coupled
equations: Tolman’s equation~1! and Laplace’s equation
~11!. Approximations in this route are the following:~i! the
use of Tolman’s equation;24 ~ii ! replacement of the constant
d` in Eq. ~1! by a variabled5Re2Rs ; ~iii ! replacement of
Dp in the rigorous thermodynamic relation~11! by Dp(0);
and ~iv! replacement ofDr in the formula~25! by Dr(0)
[r(0)2rb. Note that all the approximations listed above
turn to be exact in the large droplet limit. This route is par-
ticularly convenient for the computer simulation since quan-
tities such asRe , Dp(0), andDr~0! can be calculated di-
rectly in the simulation of a droplet–vapor system. However,
in order to apply this method we need to clarify the range of
validity for these approximations.

Figure 4 compares behavior ofss obtained via the route
of Thompsonet al. with that obtained via the rigorous route
over a wide range of droplet sizes. The difference is signifi-
cant for small droplets, that is, in the rangeRs* ,20. Similar
results at different temperatures have been obtained by Ta-

lanquer and Oxtoby.7 We also find from Fig. 4 that even for
very large droplets~e.g.,Rs* ;100 where Tolman’s equation
is valid and all the other approximations are totally reason-
able! there exists a small but systematic difference inss .
Again, this is due to the fact that the quantityd is determined
by the subtraction of two large quantities,Re2Rs , which
causes larger and larger numerical errors as we go to larger
and larger droplets~see Fig. 5!. The computer simulation is
more prone to this problem because of the statistical errors
involved in averaging.

Let us consider the possibility of improving the thermo-
dynamic route of Thompsonet al. Since both the use of Tol-
man’s equation and the replacement ofd` by d are key ap-
proximations in this route, let us focus on approximations
~iii ! and~iv!, which can be removed provided the equation of
state for the particular system is known. It is expected that
the effect of approximation~iii ! on the results becomes larger
and larger with the decrease in droplet size. This is because
the size dependence of the center pressureDp(0) is opposite
that of Dp in a range of small droplets;Dp(0) decreases
with the decrease in droplet size, whereasDp increases
monotonically.

To examine the effects of approximations~iii ! and ~iv!
we calculatedss and the lengthd after replacingDp(0) and
Dr~0! by Dp andDr of the rigorous route.~We refer to this
approach as the modified route.! Figures 4 and 5 show the
results ofss and d determined by the modified route, to-
gether with the results from the rigorous route and from the
route of Thompsonet al. Contrary to our expectation, we
find that results of the modified route are rather worse than
those of the original route of Thompsonet al. except in the
large droplet limit where both results converge to the same
values. That is, with the decrease inRs the surface tension
increases monotonically and the values ofd remain negative
over a whole range ofRs . The fact that removing approxi-
mations ~iii ! and ~iv! worsens the results of the route of
Thompsonet al. indicates that although the results obtained
via the route of Thompsonet al. bear some similarities to
those obtained via the rigorous route~e.g., asRs decreases

FIG. 4. The surface tension ratioss /s` vs Rs* : the rigorous thermody-
namic route~solid line with circles!; the route of Thompsonet al. ~dashed
line!; and the modified route~dotted line!.

FIG. 5. The lengthd* vs Rs* : the strict thermodynamic route~solid line
with circles!; the route of Thompsonet al. ~dashed line!; and the modified
route ~dotted line!.
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ss decreases for a range of small droplets, andd changes its
sign from negative to positive!, these similarities appear for-
tuitous.

From these analyses, we conclude that as far as the size
dependence of the surface tension and Tolman’s lengthd`

are concerned, the thermodynamic route proposed by
Thompsonet al. seems unsuitable.

Nijmeijer et al.11 also attempted to determined` from
the molecular dynamics simulation of LJ droplets with re-
duced radiiRs* <13. The route of Nijmeijeret al. to d` re-
quires the use of the relation

ReDp~0!

s`
2252

2d

Re
, ~27!

which entails essentially the same approximations as used in
the route of Thompsonet al. Thus the route of Nijmeijer
et al. should encounter the same problem emerged in the
route of Thompsonet al., particularly when the droplet is
small. Although Eq.~27! becomes exact in the large droplet
limit, again this route invokes the subtractionRe2Rs which
causes large numerical errors ford. The limitation of this
thermodynamic route tod` has already been pointed out by
Nijmeijer et al.11

V. CONCLUDING REMARKS

Based on the Gibbs thermodynamic theory of capillarity
combined with the density–functional theory of gas–liquid
nucleation, size dependence of the surface tension of LJ and
Yukawa droplets and that ofd were investigated over a wide
range of droplet sizes. Tolman’s lengthd` , namelyd in the
planar surface limit, was determined unequivocally via what
we call the adsorption route tod which relies on an exact
thermodynamic relation~26!. Direct comparison between re-
sult of rigorous calculation based on the thermodynamic re-
lations ~12!–~13! and that from Tolman’s equation shows
that Tolman’s equation is valid only when the droplet holds
more than 106 molecules or has a radius larger than about 20
molecular diameters, which is much larger than droplets
mostly studied so far by computer simulations. We pointed
out that Tolman’s equation becomes invalid mainly due to
the breakdown of assumption B (d5d`), rather than A (d
!Rs). As discussed in Sec. IV, the breakdown of assump-
tion B is closely related to the nonmonotonic behavior ofss

~as a function ofRs or Dm! and the negative value of Tol-
man’s length. The nonmonotonic behavior has been found
previously in the framework of phenomenological gradient
theories4,5 and the square gradient theory with a double-
parabola model for free energy density.6 In the latter model,
Tolman’s length is expressed in terms of correlation lengths
of bulk gas and liquid phases; Iwamatsu concludes from the
result that in general Tolman’s length should be negative
(d`520.38d at T50.8Tc!. Also, recent calculation ofd`

~as the first-order curvature correction to the surface free
energy! based on a mean field approximation shows that
d`'20.20d at all temperatures.25 Furthermore it is shown26

that close results are obtained from three different formulas
~two of Blokhuis and Bedeaux27 and one of Bykov and
Shchekin! for calculating Tolman’s length from the first-

order curvature correction to the profile of the planner inter-
face. Since nonmonotonic behavior of surface tension or
negative Tolman’s length is a common result of all recent
mean-field theories with different approximations, it is very
unlikely that our results are due to the random phase ap-
proximation to the perturbation term in the functional we
employed or to the potential functions~LJ and Yukawa! for
the attractive part we employed. It is, however, a future sub-
ject to examine these results using more sophisticated ap-
proximations to the reference hard sphere part such as a non-
local density functional approximation.28

We also discussed to what extent other thermodynamic
approaches10,11 can be used as alternatives to the rigorous
thermodynamic approach for studying the size dependence
of surface tension and of the lengthd. Although these ap-
proximate methods become formally exact in the large drop-
let limit, correct asymptotic behavior of the surface tension
and lengthd cannot be obtained via these routes due to the
underlying numerical-error problem in evaluatingd.

The results summarized above suggest that in the appli-
cation of computer simulation to the investigation of the size
dependence of surface tension of a liquid droplet, one should
consider the so-called mechanical routes9,16 or statistical me-
chanical routes23,29 rather than the thermodynamic routes.
The reasons are the following. The strict thermodynamic
route to the surface tension requires certain quantities which
are not readily calculated from computer simulations. Other
alternative thermodynamic routes proposed for computer
simulation are not valid for small droplets due to the ap-
proximations such as the use of Tolman’s equation, and can
be problematic for large droplets due to the numerical-error
problem. On the other hand, we note that through the statis-
tical mechanical route as proposed by Blokhuis and
Bedeaux23 computer simulation can be still useful for the
calculation ofd` . This route demands information on the
pair distribution functions of the planar liquid–vapor inter-
face, which can be calculated straightforwardly via molecu-
lar simulation. Indeed results of molecular dynamics simula-
tions of Haye and Bruin29 do not suffer from the large
numerical errors problem as appeared in the simulations
based on thermodynamic routes. However, their values ofd`

at several temperatures are all positive~e.g., d *̀ 50.16 at
T* 50.75!, which contrast with our calculation based on the
combined theory thatd` is negative near the triple point
(d`520.15sLJ at T50.70eLJ /kB for the LJ fluid; d`

520.26d at T50.6Tc for the Yukawa fluid!. As mentioned
above other mean-field or density–functional
approaches5,6,25,26 also give rise to negative values ofd` .
Further investigation is needed to resolve the difference in
prediction of the sign from the simulation and from the the-
oretical approaches.

The density–functional theory of nucleation when com-
bined with the strict thermodynamic route to the surface ten-
sion is shown to be a very useful tool for examining the size
dependence of surface tension and of lengthd of a critical
droplet. Despite the fact that the absolute value of the surface
tension is dependent on the underlying approximations~such
as the local density approximation!, this combined theory has
the virtue of self-consistency in calculation over a whole
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range of droplet sizes, including the planar surface limit.
Consequently, the density–functional theory provides a
unique means for determining Tolman’s length. Neverthe-
less, the elusiveness of its sign still demands further studies.
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