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Validity of Tolman’s equation: How large should a droplet be?

Kenichiro Koga® and X. C. Zeng
Department of Chemistry and Center for Materials Research and Analysis, University of Nebraska, Lincoln,
Nebraska 68588

A. K. Shchekin
Department of Statistical Physics, St. Petersburg State University, 198904, St. Petersburg, Russia

(Received 23 February 1998; accepted 2 June 11998

Surface tension and the length (distance between the Gibbs surface of tendiynand the
equimolar surfacér,) of simple liquid droplet(Lennard-Jones and Yukajvare computed over a
wide range of droplet sizes up to aboux20° molecules. The study is based on the Gibbs theory
of capillarity combined with the density—functional approach to gas—Iliquid nucleation. Since this
method provides behavior of the surface tension fully consistent with the tension of the planner
surface, the constant in Tolman’s equati&ncan be determined unequivocally from the asymptotic
behavior ofas. Comparison of the tension given by Tolman’s equation against the result of exact
thermodynamic relations reveals that Tolman’s equation is valid only when the droplet holds more
than 16 molecules for the simple fluid systems near their triple points, in contrast to the
conventional wisdom that Tolman’s equation may be applicable down to droplets holding a few
hundreds of molecules. @998 American Institute of Physids$$0021-96068)50334-(

I. INTRODUCTION strong function ofRg, i.e., assumption B is invalid for very
) ) small dropletsl.3 Size dependence of surface tension and

~ One fundamental question on properties of droplets Ofengih 5 becomes more and more controversial as one con-
liquid is the dependence of surface tension on droplet radiug;gers |arger and larger droplets. This is mainly due to the
Numerous theoretical investigations have been devoted 0t that numerical errors in the calculations overwhelm the
this question, including the original thermodynamic consid-p e cision one needs for large droplets for which dependence
eration by Gibbg,later development by Tolmahand recent of o, and & on R, is very weak. To our knowledge, no

studies based on stafistical mechanical thedrfeand com- guantitative information has been reported as to a range of

: 912
puter simulation: _ - , droplet sizes where we can apply Tolman’s equation for cal-
When a droplet is sufficiently large, size dependence OEulating surface tension.

the surface tension can be expressed by Tolman’s equation tpa purpose of this article is to shed some light on to
of the forn? what extent Tolman’s equation is valid. To this end, we com-
pute the surface tension and the lengtfor a wide range of
S5 (1) droplet sizes on the basis of the Gibbs thermodynamic theory
0. Rst+26, of capillarity combined with the density—functional theory of
gas—liquid nucleatioh**®
We first study behavior of for sizes of droplet ranging
m 40 to about 4.8 10° particles. Two different routes to
6, both of which are exact, are taken: a direct route which
] ’ ) calculatesR, and Ry separately, and an adsorption route we
surface with radiuR, and the surface of tension. Tolman , 05456 in Sec. IV. We will show that the direct route gives
derived Eq/(1) based on the Gibbs theory of papﬂlaf‘ngdus rise to unphysical behavior gfwhen we approach the plan-
two additional assumptions¥<R; (assumption Aand & her surface limit whereas the adsorption route can lead to
=0, (assumption B self-consistent and precise results of asymptotic behavior of
_ On the other hand, in the case of small droplets, no angpg |ength 5, From the asymptotic behavior, the value of
lytical relation has been found so far to expressin terms  14;man's lengths,, can be determined accurately. It is then
of Rg. There have been several numerical calculations.of possible to examine the range of droplet sizes where Tol-
for various sizes of droplets via the gradient theotié8the - ¢ equation is valid by comparing results of Tolman’s
density—functional theory,and computer _S|mulat|or?§.12 _equation(using &..) with those from rigorous calculations
Most studies reached a common conclusion that very rapiglaseqd on the thermodynamic definition of surface tension.
decrease in surface tension takes place with decrease in drop- \ye also discuss the validity of other thermodynamic

let size wherRg is sufficiently small(e.g., smaller than gbout routes(mostly used in computer simulation® surface ten-
ten molecular radf). Some studie’s’ also showed thafis a sion, lengths, and Tolman’s lengths,, . One such route is

the thermodynamic route proposed by Thompsoall® in
dElectronic mail: koga@phase2a.unl.edu the molecular dynamics simulation study of Lennard-Jones

Os R

Here, o is the surface tension with respect to the Gibbs
surface of tension anRg denotes the radius of this dividing fro
surface;o, is the planner surface tension, afd is defined

as Iim?sﬂxé, where§ is the distance between the equimolar
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(LJ) liquid drops. Recently, Nijmeijeet al!! adopted an- dUP=T d—pf dVP+ u dNP. )
other thermodynamic route té in large scale computer _ .

simulations. Both of the routes seem particularly convenienft IS important to emphasize that' is not the pressurp(0)

for the computer simulation because they require neither th8t the center of the droplet but is the pressure of homoge-
equation of state of the bulk fluid nor the grand potential of'€0US Phase in the reference system; in general, these two

the droplet—vapor system. We note, however, that the\,:,)éalues are different. The change in the surface energy is

routes are based on several approximations to the rigoro@SSumed to be given by
thermodynamic theory and become exact only in the large  qUS=T dS+ o dA+C dR+ u dNS, 8
droplet limit. We therefore also examined the extent to

which these routes are applicable to the determinatiomof WhereA is the surface area of the dividing surface ant
and s. the surface tension defined as a conjugate variabke 6fis

This paper is organized as follows: Section Il gives!n® conjugate variable &t Combining Eqs(6)—(8) results
Gibbs thermodynamic description of the droplet—vapor sysin @ relation
tem. S.ec'tion n summarizes the density—funptional thepry qf dU=T dS-p* dV*—pPdVA+ o dA+C dR+u dN.
gas—liquid nucleation. Results and discussion are given in 9)

Sec. IV and concluding remarks are given in Sec. V. Comparing Egs.(9) with (2), one can find thato dA

+C dRis the difference between the work done on the real
Il. THERMODYNAMIC DESCRIPTION OF THE system (-dW) and the work done on the hypothetical ref-
DROPLET-VAPOR SYSTEM erence system +{p® dv®—p? dVP). Integrating Eq.(9)

We consider a critical droplet of a single-component lig-ith respect to the solid angle at fixedT, « andR yield

uid in (unstable equilibrium with a supersaturated vapor at Q+p*Ve+pAVA  AQ+ApVe

temperaturel. The system is taken to be a conical section 0= A = A ) (10

(with solid anglew) of a sphergwith radius.#2) which in-

cludes the droplet at the center with surrounding vapor. Thavhere Q=U—-TS—uN is the grand potential AQ=0Q

radius .7 is chosen to be sufficiently large such that the +p?V is the work of formation of the critical droplet, and

vapor at the boundary acquires the bulk properties. Thép stands forp®—p”. Equation(10) holds for surface ten-

chemical potentiak of the system is higher than the chemi- sion with respect tany dividing surface. Note thatr de-

cal potentialueq at vapor—liquid(stable equilibrium atT. pends not only on the thermodynamic state of the system but

The reversible transformations of the system are describedlso on the choice of the parameRrHowever, if a particu-

by the Gibbs fundamental relation lar dividing surface such as the surface of tension or the
equimolar surface is chosen, the corresponding surface ten-

dU=T dS-dW+4 dN, @ sion turns out to be a state function.

where the symbold), SandN denote, respectively, the en- The surface of tension with radi# is a special divid-

ergy, entropy and number of molecules of the system. Théng surface for which the coefficier@ in Eg. (9) vanishes

work performed by the system is representedddy. To  and the Laplace equation holtfs:

define the surface or excess variables including surface ten- Ap=20./R (11)

sion, one needs to introduce a mathematical dividing surface P=20s/Rs-

with an arbitrary radiu®, which partitions the total volume Recalling thal*=47R3/3 andA=47R2, one can solve the

(V) into two parts: one inside the dividing surfa®® and  coupled equationél0) and(11) to obtain

the other partv®. Then a hypothetical reference system is

. . - 3AQ(Ap)2 1/3

introduced, which possesses the sameT, and V but is Us=(—) , (12)
composed of the uniform liquid and vapor phades us call 16w

them « and g phases, respectivelyight up to the dividing 54

surface; namely, the reference system consists of two parts: a

portion (V*) of a bulk liquid atx and T and a portion Y#) [ 3A0\18 13
of a bulk gas afx andT. Sinceu> e, phasex is thermo- s \27Ap (13

dynamically stable, whereas pha8és metastable. Now the

surface variables can be defined as These are rigorous thermodynamic expressionsofpand

R;. One may question the validity of thermodynamic argu-
N°=N-N*—N¥, (3 ments when a droplet is too small to possess bulk liquid
US=U—U®—UA8 @) properties inside its surface. However, as noted by Gibbs,
’ his original thermodynamic argumenisresented aboyelo
$=5-5*—SF, (5) not assume any thermodynamic property inside the droplet;

where the superscriptsand g indicate the quantities of each mstgad they rely.upon the properties .Of the homogeneous
liquid phase having the same chemical potential as the

part of the reference system. The infinitesimal change in th%roplet—vapor system has. Whether or not there is a homo-

Isnctﬁg:a?jl t?;(tar:?ayﬂ?r: dze:;:Zn‘t);rtre?;ttigﬁ reference system is degjeneous liquid phase inside the droplet, the thermodynamic

quantities of the reference system are well defined. There-
dU®=T dS*—p®* dV*+ u dN*, (6) fore, the surface tension and other surface quantities are well
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defined no matter how small the droplet is. In this sense, the
Gibbs thermodynamic arguments hold for any size of a drop-
let. On the other hand, any thermodynamic arguments rely-

ing upon thermodynamic quantities in the actual droplet

F[P(r)]:f dr fp[p(r)]

(e.g., pressure at the center of the drgpbketcome less and
less reliable when we go to smaller and smaller droplets.

Tolman’s equation is derived as follows. From the

Gibbs—Duhem equation for the surface variablésdg

1
+§ff dr dr’ p(r)p(r')dau(|r—r']),
(18

wheref(p) is the Helmholtz free energy densifthe free

+N°® du+S° dT=0) together with the definition of the sur- energy per unit volumeof a uniform hard-sphere fluid,

face adsorptionI(s=N>%A), we have

I=—(dosldu)T. (14)

Combining a similar relation for the reference systep,
=p*—pP=(9Apl/iw)t, with Eq. (14) yields a differential
equation:

dos)| I's
dAp T_ Ap’

(19

In the planner surface limit, the quantiig/Ap on the right
hand side of Eq(15) is identical to Tolman’s lengths,, .
This is seen from an exact relatiqoriginally derived by
Tolmarf)

Ezg( 0

Ap 1+ —+=

R, 3R?

S

16
(16)
If we integrate Eq(15) with respect taAp from the planar
surface limit Ap=0), assuming thal's/Ap is constant
over the range, we find
0= — 0,AD. a7

Substitution of Laplace equatiql) into Eq.(17) results in
Tolman’s equatior(1).

Og—

Ill. APPLICATION OF THE DENSITY-FUNCTIONAL
THEORY TO THE DROPLET-VAPOR SYSTEM
OF SIMPLE FLUIDS

Although Egs(12) and(13) are rigorous thermodynamic
expressions for the surface tensiog and the radiugkg of
the surface of tension, the determination «f and Ry re-
quires values 0A() (the work of droplet formationandAp.
Thermodynamics does not provide these data for
droplet—vapor system; a molecular-based apprdgataidtisti-
cal mechanics or computer simulatjois needed to deter-

which is given by

fh(p)=pun(p) —Pn(p). (19

The chemical potentigk,(p) and the pressurp,(p) of the
reference hard sphere fluid are evaluated using the highly
accurate Carnahan—Starling equati®gh,, in Eq. (18) is the
attractive part of a pair potential.

We consider the Lennard-Jon€és)) fluid and Yukawa
fluid in this study. In the case of the LJ fluigh, is taken to
be the Weeks—Chandler—Anders®iCA) perturbation part
of the LJ potential functiol?

12 6
(O] (OS] 16
T — T r=2 g

dal 1) =4€y

=€ r<21/6(TLJ. (20)

The two parameters, ; and o ; are, respectively, the depth
of the potential well and the collision diameter. Reduced
variables denoted by an asterigk)] are defined in terms of
parameters: distance is given in unitsagf;, energy in units

of €3, and temperature in units ef ;/kg, wherekg is the
Boltzmann constant. We chose the LJ droplet—vapor system
since it has been extensively studied both by computer
simulatio?~*!and by the density—functional theotyIn or-

der to fairly reproduce the liquid density of the LJ fluid at
temperatures lower than the critical point, we use the
temperature-dependent hard sphere diamét&).Z° In the
case of the Yukawa fluid, the attractive part is taken to be

ba(r)=—an® exp(— \r)/4m\r. (21)

Furthermore we sek to be d™?, the inverse of the hard
sphere diameter of the repulsive part. In this system, reduced
variables are defined in terms dfand kgT: distance is

thgjiven in units ofd, densities in units ofi 3, energy in units

of kgT., temperature in units of ..
We note that Eq(18) is based on two key approxima-

mine them. The density—functional theory of nucleation istions: First, the pair distribution functiop®(r,r’) of an
such an approact:™® This approach has the advantage thatinhomogeneous fluid is replaced byr)p(r'). This is the

molecular-level detail can be incorporated, and in the limit ofso-called random phase approximatforSecond, the local

large droplets the theory goes naturally to the classical nucledensity approximation is used to determine the hard sphere
ation theory. Effects of curvature dependence of the surfacgart of the free energy functional. These two approximations
tension arise naturally, rather than being addecadshoc  have been well tested for weakly inhomogeneous systems
assumptions. Using the density—functional theory, one casuch as a vapor-liquid interface and are fairly good approxi-
obtain the density profile(r) of a spherical droplet, which is  mations when the system is not as close to the critical point.

a critical nucleus of the liquid phase, and also the grand The grand potential functional is given as a Legendre
potential ) of the droplet—vapor systeffi. transform ofF

The formalism of the density—functional theory of
nucleation can be briefly summarized as follows: The Helm-

holtz free energy functional is taken to be a simple fbrm (22

Q[p]=F[p]—Mf dr p(r).
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The density profile of a critical nucleus atandT (as well as 0.4 T T T T T
that of a planar surface at.,andT) can be determined from
the equilibrium condition 03 | -
Q[ pl/p(r)=0, (23) 02 b i
or .

6*

04 i
M=Mh[P(f)]+f dr’ dad([r=r"Dp(r"). (24) :

We also note that the density profile of the planar surface
can be obtained from Ed@24) using the conventional itera-
tion technique. However, the density profile of a critical
nucleus is not a stable solution of E@4) since it corre-
sponds to a saddle point in the functional space. Nonetheless,
if an appropriate initial guess is made, one can find the un-
stable equilibrium density profile which satisfies the condi-
tion (23) over many iteration$® FIG. 1. The lengths* vs the supersaturatioAu* at T*=0.7: the direct

The density profile and the grand potential of the critical rt_)ute(dotteo! ling and the gdsorption routsolid Iine).. The reduced dimen-
droplet—vapor system were calculated over a wide range oslionless variables are defined in terms of the LJ size and energy parameters.
supersaturatiolh 4= u — ueq at a fixed temperature: for the
LJ systemT* =0.7, which is close to the triple-point tem-
peratureTE~0.69 of the system; for the Yukawa system

tp
T/T.=0.6.

04 06 08 1 1.2
Ap*

found for the Yukawa potential system; the direct route gives
rise to the diverging behavior of, whereas the adsorption
route leads ta5,,= — 0.26d. The diverging behavior of via
direct route is unphysical because both the equimolar surface
IV. RESULTS AND DISCUSSION (Re) and the surface of tensiorRf) should lie within the

A. Behavior of the length & vapor—liquid interface whose width remains finite over a
whole range of supersaturation at thermodynamic states near
the triple point.

In principle, both direct and adsorption routes should
lead to the same behavior &fover a whole range ohAu
Because no approximations are made in either réaxteept
common approximations in the density—functional theory

3 3 (7 1.2 Therefore, the problem with the direct routmphysical be-
ReZE fo [p(r)—pPIredr. (25 havior of §in a range of small ) is a numerical one rather
than a theoretical one. The reason is the following. Xs
Location of the surface of tensioRs, is given by Eq(13).  goes to zeroR, andR, increase simultaneously and diverge
Another way of determining, which we propose here, yitimately. In this process, absolute numerical errorsRgf

The usual way of determining the lengghs to calculate
R. andR; and then use the definitiodf=R.— Ry, which we
hereafter refer to as “a direct route . The radiusR, of
the equimolar surface can be determined from the densit
profile of a critical droplet by the exact relation

is to use the relation andR, also increase systematically although relative errors
(dosldp)t S 1682 may remain smallsee, for example, expressi@ihd) for Rg;
T Ay = 6( 1+ R + 3 ?) . (26)  the denominatorAp goes to zerd. Consequently, relative
S S

errors of § given by subtractind® from R, are expected to
This is derived from Eqg14) and(16). o5 andRg are given  be large and increase systematically. This problem would be
by the exact expressiond?2) and (13), respectively. The even more serious for computer simulation studies due to the
derivative @as/du)t can be calculated via numerical differ- statistical errors. In fact, computer simulation results show
entiation. We refer to this method as “an adsorption route tcthat the sign ofs is uncertain for large droplets. Thus, we
s must conclude that exact asymptotic behaviordoin the

We now discuss both the result of the direct route andange of very large droplets cannot be obtained through the
that of the adsorption route. Figure 1 shoWwsf the LJ  direct route.
droplet as a function of supersaturatidp. When supersatu- On the other hand, the adsorption route is free from the
ration is large A w* >0.2), the behavior o6 obtained from  numerical problem. The reason is the following. This ap-
the two routes is almost indistinguishable. In this raye proach requiresdos/duw)t, Ap, and Rg; however, in the
decreases linearly with the decreaseAin and changes its large droplet limit the ratio of the first two quantities deter-
sign at aboutA u* =0.3. The two routes, however, lead to mines§ [see Eq.(26)]. Unlike R, andRg, both (@og/du)t
qualitatively different results whedA u* <0.2, that is, in a and Ap remain finite values adu goes to zero. Thus, the
range of very large dropletsj via direct route turns to be ratio (dos/du)t/Ap can be determined accurately over a
positive and tends to diverge as: goes to zero, wherea® whole range of droplet sizes. As a consequence, asymptotic
via the adsorption route still decreases linearly and eventusehavior ofé and the value ob., can be determined without
ally converges to a small negative valdg=—0.15%r; in suffering from any numerical problem.
the planar surface limit. Qualitatively the same result is  Furthermore, it can be seen from the following that the
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Ap* 60 80 100

FIG. 2. The surface tension ratie;/o,, vs the supersaturatioA u* at
T*=0.7. The inset is the magnification at small supersaturation. Dotted line 1.1
in the inset is drawn by extrapolation.

(b)

asymptotic behavior o obtained by the adsorption-route
calculation is consistent with the properties of the planar
liquid—vapor interface. Figure 2 shows that the surface ten-
sion of the spherical surface of the LJ droplets is fully con-
sistent with that of the planar surface; extrapolation shows
os(Au=0)/0,,=1.000 07, wherer,, was obtained from the
density—functional calculation for the planar liquid—vapor
interface. The self-consistency for the valuesogfguaran-
tees that for §os/du)t. In addition, the behavior adp is
also self-consistent. Therefore, the asymptotic behaviat of 0.9 ' ' ' '

is also consistent with the properties of the liquid—vapor in- 100
terface within the framework of the density—functional R

theory.

O / o planner

FIG. 3. The surface tension ratie;/o.. obtained via the rigorous thermo-
dynamic routgsolid line with circle and the prediction of Tolman’s equa-
tion (solid line): (a) Lennard-Jones fluid angh) Yukawa fluid. Values of.,
(in Tolman’s equationwere obtained via the adsorption route.

B. Range of the validity of Tolman’s equation

Once Tolman’s lengths,, is determined accurately, di-
rect comparison can be made between the behavior of
os(Rs) given by exact thermodynamic relatigh2) and that These results suggest that Tolman’s equation is valid
by Tolman’s equatior(1). Figure 3a) shows a comparison only for droplets with sizN*=10°, at least near the triple
for the LJ droplet—vapor system. When the reduced radiupoints of the systems. This is the main conclusion of this
R is greater than about 50, prediction of Tolman’s equatiorarticle. Since basically the same results are obtained from the
is almost indistinguishable in the scale of the plots from thetwo distinctive potential functiongLJ and Yukawa, it is
result of the exact thermodynamic formula; the ratiovery unlikely that replacement of the long-range interaction
o4(Ry)/ o, is slightly larger than unity and increases very by r =7 (i.e., consideration of the retardation effect in the
slowly asR decreases. The same result was obtained in thdispersion force at a very large distaffc® would give a
case of the Yukawa potential systdfffig. 3(b)]. This con-  qualitatively different result.
firms thaté,, was determined accurately in such a way that  We also note that assumption B= §.,) becomes incor-
6., is consistent with the asymptotic behavior «f. rect in a range of droplet sizes where assumptiondAR(

However, whenR} is smaller than about 20, di*  <1) is still valid; § is no longer constant wheR% <20,
<10°, prediction of Tolman's equation becomes signifi- whereass/Ry=0.02 atR} =5 (see the solid line with points
cantly different from the result of the rigorous calculation. in Fig. 5. The breakdown of assumption B is closely related
The surface tension of the exact formula shows nonmono- to the nonmonotonic size dependence of surface tension
tonic behavior; asRg decreases it reaches a maximum atsince if § changes its sign so does the tersw{/du)t and
aboutR% =10 and begins to decrease rapidly. On the othewice versgdsee Eq(26)]. Also if Tolman’s lengthd.. is nega-
hand, o5 of Tolman’s equation is necessarily a monotonictive, assumption B should become incorrect in some range of
function of Rg; Fig. 3(@ shows monotonidéncreasein o5  droplet sizes sincé>0 and @os/du)+<0 for very small
with decrease irRg due to the negative value af,. The  droplets. Thusé.<O0 is also closely related to the break-
same significant difference was found in this range of dropledown of assumption B and to the nonmonotonic behavior of

size in the case of the Yukawa potential fl{ige Fig. 80)].  os.
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11 T T T T

Gs / o planner
8*

80 100

FIG. 4. The surface tension raties/o.. vs R; : the rigorous thermody-  FIG. 5. The lengthd* vs R : the strict thermodynamic routsolid line
namic route(solid line with circleg; the route of Thompsoet al. (dashed  with circles; the route of Thompsoet al. (dashed ling and the modified
line); and the modified routédotted ling. route (dotted ling.

lanquer and Oxtoby We also find from Fig. 4 that even for
very large dropletge.g.,RY ~100 where Tolman’s equation
As mentioned in Sec. lll, rigorous calculation @f and is valid and all the other approximations are totally reason-
Rs requires the work of formation of a critical dropla)  able there exists a small but systematic differencesin
and the pressure differenckp as thermodynamic inputs. Again, this is due to the fact that the quantitys determined
Although the latter two quantities can be obtained straightby the subtraction of two large quantitieR,— R, which
forwardly by the density—functional theory, they are not eascauses larger and larger numerical errors as we go to larger
ily obtained from computer simulation. For example, theand larger droplet§see Fig. 5. The computer simulation is
equation of state of the bulk fluid is required to determine themore prone to this problem because of the statistical errors
pressuregp® andp”) of the reference homogeneous systeminvolved in averaging.
unless the droplet size is sufficiently large so thatcan be Let us consider the possibility of improving the thermo-
replaced by the value at the droplet ceni€0). dynamic route of Thompsoet al. Since both the use of Tol-
To circumvent the technical difficulties in the simula- man’s equation and the replacementsfby & are key ap-
tion, several alternatives to the rigorous thermodynamigroximations in this route, let us focus on approximations
routes have been proposed. Since these thermodynamiidi) and(iv), which can be removed provided the equation of
routes involve certain approximations, the extent to whichstate for the particular system is known. It is expected that
they are applicable for determining, as a function of drop- the effect of approximatiofiii ) on the results becomes larger
let size needs to be examined. One thermodynamic route wand larger with the decrease in droplet size. This is because
examine here was originally proposed by Thompsbal.in  the size dependence of the center presaAyp@)) is opposite
their molecular dynamics study of microliquid drof¥sin  that of Ap in a range of small droplets\p(0) decreases
this route,os andR, are obtained by solving the two coupled with the decrease in droplet size, whereap increases
equations: Tolman’s equatiofl) and Laplace’s equation monotonically.
(11). Approximations in this route are the following) the To examine the effects of approximatiofis) and (iv)
use of Tolman’s equatioff: (i) replacement of the constant we calculatedrs and the lengths after replacingA p(0) and
8. in Eq. (1) by a variabled=R.—Rg; (iii) replacement of Ap(0) by Ap andAp of the rigorous route(We refer to this
Ap in the rigorous thermodynamic relatidthl) by Ap(0); approach as the modified royté&igures 4 and 5 show the
and (iv) replacement ofAp in the formula(25) by Ap(0) results ofog and & determined by the modified route, to-
=p(0)—p”?. Note that all the approximations listed above gether with the results from the rigorous route and from the
turn to be exact in the large droplet limit. This route is par-route of Thompsoret al. Contrary to our expectation, we
ticularly convenient for the computer simulation since quan-ind that results of the modified route are rather worse than
tities such asR,, Ap(0), andAp(0) can be calculated di- those of the original route of Thompset al. except in the
rectly in the simulation of a droplet—vapor system. However large droplet limit where both results converge to the same
in order to apply this method we need to clarify the range ofvalues. That is, with the decreaseRg the surface tension
validity for these approximations. increases monotonically and the valuesSoEmain negative
Figure 4 compares behavior of obtained via the route over a whole range dRg. The fact that removing approxi-
of Thompsonret al. with that obtained via the rigorous route mations (iii) and (iv) worsens the results of the route of
over a wide range of droplet sizes. The difference is signifi-Thompsonet al. indicates that although the results obtained
cant for small droplets, that is, in the ranB& <20. Similar  via the route of Thompsoet al. bear some similarities to
results at different temperatures have been obtained by T#hose obtained via the rigorous rougg., asRs decreases

C. Examination of other thermodynamic routes
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o decreases for a range of small droplets, amthanges its  order curvature correction to the profile of the planner inter-
sign from negative to positiyethese similarities appear for- face. Since nonmonotonic behavior of surface tension or
tuitous. negative Tolman’s length is a common result of all recent
From these analyses, we conclude that as far as the sizmeean-field theories with different approximations, it is very
dependence of the surface tension and Tolman’s ledgth unlikely that our results are due to the random phase ap-
are concerned, the thermodynamic route proposed bygroximation to the perturbation term in the functional we
Thompsonret al. seems unsuitable. employed or to the potential functiorikJ and Yukawa for
Nijmeijer et al!! also attempted to determing, from  the attractive part we employed. It is, however, a future sub-
the molecular dynamics simulation of LJ droplets with re-ject to examine these results using more sophisticated ap-
duced radiiRs <13. The route of Nijmeijeet al. to 5.. re-  proximations to the reference hard sphere part such as a non-

quires the use of the relation local density functional approximaticf.
We also discussed to what extent other thermodynamic
ReAp(0) 26 4911 : :
—2=— R 27 approaches'* can be used as alternatives to the rigorous
[0 e

thermodynamic approach for studying the size dependence
which entails essentially the same approximations as used f surface tension and of the length Although these ap-
the route of Thompsort al. Thus the route of Nijmeijer proximate methods become formally exact in the large drop-
et al. should encounter the same problem emerged in th&t limit, correct asymptotic behavior of the surface tension
route of Thompsoret al, particularly when the droplet is and lengthé cannot be obtained via these routes due to the
small. Although Eq(27) becomes exact in the large droplet underlying numerical-error problem in evaluatidg

limit, again this route invokes the subtracti®a— R which The results summarized above suggest that in the appli-
causes large numerical errors fér The limitation of this  cation of computer simulation to the investigation of the size
thermodynamic route té,. has already been pointed out by dependence of surface tension of a liquid droplet, one should
Nijmeijer et al!* consider the so-called mechanical rodt€r statistical me-
chanical routés"?® rather than the thermodynamic routes.
The reasons are the following. The strict thermodynamic
V. CONCLUDING REMARKS route to the surface tension requires certain quantities which

Based on the Gibbs thermodynamic theory of capillarityare not readily calculated from computer simulations. Other
combined with the density—functional theory of gas—liquid@alternative thermodynamic routes proposed for computer
nucleation, size dependence of the surface tension of LJ ariimulation are not valid for small droplets due to the ap-
Yukawa droplets and that @fwere investigated over a wide Proximations such as the use of Tolman’s equation, and can
range of droplet sizes. Tolman’s lengsh , namely§ in the be problematic for large droplets due to the numerical-error
planar surface limit, was determined unequivocally via whaproblem. On the other hand, we note that through the statis-
we call the adsorption route t6 which relies on an exact tical mechanical route as proposed by Blokhuis and
thermodynamic relatiof26). Direct comparison between re- BedeauX® computer simulation can be still useful for the
sult of rigorous calculation based on the thermodynamic recalculation of §,.. This route demands information on the
lations (12)—(13) and that from Tolman’s equation shows pair distribution functions of the planar liquid—vapor inter-
that Tolman’s equation is valid only when the droplet holdsface, which can be calculated straightforwardly via molecu-
more than 1® molecules or has a radius larger than about 20dar simulation. Indeed results of molecular dynamics simula-
molecular diameters, which is much larger than dropletdions of Haye and Bruft! do not suffer from the large
mostly studied so far by computer simulations. We pointedhumerical errors problem as appeared in the simulations
out that Tolman’s equation becomes invalid mainly due tobased on thermodynamic routes. However, their values, of
the breakdown of assumption B€ 6..), rather than A §  at several temperatures are all positifeeg., 55 =0.16 at
<R,). As discussed in Sec. IV, the breakdown of assumpT* =0.75), which contrast with our calculation based on the
tion B is closely related to the nonmonotonic behaviorgf = combined theory thab,, is negative near the triple point
(as a function ofR; or Ax) and the negative value of Tol- (8.,=—0.150; at T=0.70¢,/kg for the LJ fluid; .
man’s length. The nonmonotonic behavior has been founes —0.26d at T=0.6T, for the Yukawa fluig. As mentioned
previously in the framework of phenomenological gradientabove other mean-field or  density—functional
theorie4® and the square gradient theory with a double-approache¥?>%also give rise to negative values @f,.
parabola model for free energy denditin the latter model, Further investigation is needed to resolve the difference in
Tolman’s length is expressed in terms of correlation lengthgrediction of the sign from the simulation and from the the-
of bulk gas and liquid phases; Iwamatsu concludes from theretical approaches.
result that in general Tolman’s length should be negative The density—functional theory of nucleation when com-
(6,=—0.3& at T=0.8T.). Also, recent calculation of,, bined with the strict thermodynamic route to the surface ten-
(as the first-order curvature correction to the surface fresion is shown to be a very useful tool for examining the size
energy based on a mean field approximation shows thatependence of surface tension and of lengtbf a critical
5.~—0.2d at all temperature®. Furthermore it is showfi  droplet. Despite the fact that the absolute value of the surface
that close results are obtained from three different formulagension is dependent on the underlying approximatisosh
(two of Blokhuis and Bedeadk and one of Bykov and as the local density approximatipthis combined theory has
Shchekin for calculating Tolman’s length from the first- the virtue of self-consistency in calculation over a whole
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range of droplet sizes, including the planar surface limit.2%In fact, Tolman correctly noted in the discussion of the validity of @g.

Consequently, the density—functional theory provides a that 8 can be expected to vary appreciably when droplets are small
unique means for determining Tolman'’s Iength. Neverthe- €nough. Also Tolman predicted the rapid decrease in surface tension; the

less, the elusiveness of its sign still demands further studieg,c°"¢Usion was, however, derived from Ed).
D. W. Oxtoby and R. Evans, J. Chem. Phg8, 7521(1988.

15X. C. Zeng and D. W. Oxtoby, J. Chem. Phygl, 4472(1991).
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