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~Received 3 May 2001; accepted 24 April 2002!

A basic theoretical structure for mechanochemical transformations based on prior models for
solid-state reactions and HOMO–LUMO~highest occupied molecular orbital–lowest unoccupied
molecular orbital! gap closing produces the concept of distortion-induced molecular electronic
degeneracy~DIMED! of the highest occupied and lowest unoccupied molecular orbitals of an
energetic molecule. Both intermolecular and intramolecular charge transfer are involved. The
resulting distortion-induced local instability, a mechanochemical effect, leads to chemical
transformations and can be analyzed by renormalization of the molecular hardness through the
molecular deformation energy. Linear combinations of normal modes are shown to be useful for
description of the mechanically induced reaction path. Numerical calculations for the RDX
~hexahydro-1,3,5-trinitro-1,3,5-triazine! molecule are used to construct a path for initiation of a
reaction by shock. They show the breaking of asingleN–N bond as the primary step. DIMED is
shown to be a kind of ‘‘inverse Jahn–Teller effect’’ leading to the general conclusion that
distortion-induced instabilities and mechanically induced reactions require some, but not necessarily
complete, HOMO–LUMO gap closure. This indicates that large local strains due to defects or
cracks will contribute to DIMED. The DIMED concept, because of its generality, has wide
applicability in solid-state chemistry. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1485968#

I. INTRODUCTION

The role of mechanical energy in the chemistry of mo-
lecular systems is of growing importance. Although micro-
scopic models exist that describe the role of thermal, electri-
cal and photonic fields on chemical reactions, a general
model for mechanical fields has not yet been formulated.
Aside from the obvious relevance to solid-state reactions and
phase transitions, many important applications remain:
strength of materials, detonation, conformational polymor-
phism, ambient-gas independent triboluminescence, laser-
pulse-generated shock waves and sonochemistry in general,
as well as the configuration and folding of macromolecules
under stress. Although chemists often speak of the strain a
molecule undergoes, it is rarely in the context of the mol-
ecule’s response to an external field. Indeed, a general mi-
croscopic model for the many kinds of mechanochemical
transformations has not been available. The breadth of these
applications in chemistry warrants development of such a
conceptual framework. This paper reports such a model and
applies it specifically to the problem of shock initiation of a
molecular decomposition although, as noted, it may be ex-

tended to any problem where a transformation on the mo-
lecular level is caused by an applied mechanical field. The
application to shock initiation of a reaction is particularly
relevant to the behavior of energetic materials.

In spite of centuries of use, explosives present many
scientific problems. Chief among these is the mechanism of
detonation. The enormous significance of energetic materials
lends significant impetus to understanding detonation, par-
ticularly in the case of secondary explosives where both sta-
bility and high power are desirable. In recent years, there has
been much work done in the field and within the last decade
new models have been proposed. As Friedet al.1 have ob-
served, ‘‘Understanding the first step in the response of en-
ergetic molecules to shock is a topic of considerable impor-
tance because it ultimately would shed light on the
sensitivity properties of energetic materials.’’ It is the objec-
tive here to provide a theoretical framework upon which un-
derstanding of that initial step can be built.

The problem of detonation or any sudden input of me-
chanical energy is complicated by the large span of time and
length scales involved. This range is on timescales shorter
than and up to those characteristic of molecular vibrations.
Such a front is far from thermal equilibrium and initiation of
decomposition at the front has to be treated as a nonergodic,a!Electronic mail: eckhardt@unlserve.unl.edu
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nonequilibrium process. The first step in a detonation in-
volves the initial effect of the shock wave on a molecule and
does not necessarily involve complete decomposition of the
molecule but rather the initial response that may introduce
the mechanism of decomposition. The initial response at
such a front appears to be anathermal transformationwhere
the mechanical energy of the shock does not have to be con-
verted into heat to become available as activation~excita-
tion! energy. Thus, a comprehensive theory of detonation
must examine the first step mechanism of energy transfer
from the shock wave into the molecular degrees of freedom.

Reviews of detonation mechanisms proposed for explo-
sive molecular crystals have been recently published.1,2

Shock compression of an energetic material is well charac-
terized by translational overheating~phonon quasitempera-
ture!. In a model proposed by Dlott and Fayer,3 it is assumed
that there is continuous energy flow from the compressively
heated phonon bath into vibrational doorway modes medi-
ated by a multiphonon up-pumping mechanism that heats the
molecules to temperatures at which chemical bonds break.
This mechanism requires times of the order of hundreds of
picoseconds for a ladder of vibrational states to be climbed
and to reach vibrational thermal equilibrium. The transla-
tional temperature overshoot for complex molecules can be
tens of thousands Kelvin for shock-wave intensities charac-
teristic of the detonation of explosives although the molecu-
lar degrees of freedom remain relatively cool. At such tem-
peratures, electronic excitations become possible within the
phonon-overheated zone due to electron–phonon coupling
enhanced by the shock. Thus, it is reasonable to assume that
for secondary explosives or any system suffering a rapid in-
put of mechanical energy, initial processes occurring within
the shock wave front must be electronic in origin as it is for
most primary explosives, while those decomposing behind
the front can arise from vibrational instabilities.

Here we concentrate on a microscopic electronic mecha-
nism of shock-induced molecular decomposition. A number
of authors have proposed that electronic excitations are in-
volved in chemical processes involved with detonation, es-
pecially in the initial step. This has been reviewed by Faust,4

and recently addressed for secondary explosives.5,6 The es-
sence of the idea is that a shock wave can generate molecules
in highly excited electronic states, a mechanoelectronic ef-
fect. Thus the initiating reaction due to shock is taken to be
an electronic mechanism.

In a series of papers, Gilman7 has emphasized the role of
mechanical energy in solid-state reactions and specifically of
HOMO–LUMO ~highest occupied molecular orbital-lowest
unoccupied molecular orbital! gap closure in molecules suf-
fering shear strain. Further elaboration on the excitonic
mechanism of detonation initiation for RDX~hexahydro-
1,3,5-trinitro-1,3,5-triazine! crystal is found in a recent infor-
mative study by Kunz and co-workers.6 The model, based on
numerical results, suggests that the pressure inside the im-
pact wave front reduces the band gap between valence and
conducting bands and promotes the HOMO–LUMO transi-
tion within a molecule.6 Gilman’s strain-induced HOMO–
LUMO gap closing,7 the Kunz group calculations,6 and our
previous model8 for solid state reactions have stimulated us

to investigate in detail an electronic instability mechanism
for molecular decomposition and its relation to the mecha-
noelectronic effect.

The calculational experiments by Kunz and co-workers6

have shown lattice deformations can significantly decrease
the HOMO–LUMO gap for molecules and further demon-
strate that any excess strain, such as that associated with a
shock wave or defects, can further reduce the gap, as origi-
nally suggested by Gilman.7 For the specific case of RDX,
the calculations clearly indicate that the gap closure leads a
single N–NO2 bond to break.

A detailed study of the photodecomposition5 of free
RDX has demonstrated conclusively that its photodissocia-
tion around 5.50 eV initially produces NO. This does not,
however, define the reaction pathway producing the NO.
Nevertheless, the study establishes that the N–NO2 group is
involved in the photodissociation of RDX as it appears to be
in detonation.

As in all materials research, we seek structure-function
relationships. In the case of energetic materials~henceforth
taken as representative of all materials undergoing rapid in-
put of mechanical energy!, we look for the microscopic ori-
gin of the molecular multistability, a ground state with mul-
tiple minima, that is the essential property of such systems.
The multistability is a manifestation of strong vibrational
mixing between the ground and excited states. Thus, for en-
ergetic molecules we expect an important contribution of
electron-molecular vibration coupling to the ground state
properties. This naturally suggests an electronic mechanism
for the first step of shock-induced reaction. Our hypothesis is
that energetic materials’ sensitivity is associated with those
whose electronic structure changes under compression so
electronic excitation of constituent molecules is favored.
This electronic mechanism for nonequilibrium decomposi-
tion of a molecule within a shock compression is closely
related to a change in reactivity index under stress, the mo-
lecular hardness. Gilman has examined the connection of
mechanical stress and molecular hardness.9

Because solids are the primary concern for the shock
initiation of reaction, our general theory of solid-state
reactions8 can be applied. Indeed, in that prior work, a brief
discussion of the shock initiation of reaction relating to the
detonation problem was presented. Here we incorporate the
above considerations into our general theoretical formulation
for solid-state reactivity so that a specific model for the
shock initiation of a chemical reaction and, as shall be seen,
mechanochemical transformations in general, can be devel-
oped.

In this paper we next discuss the electron-driven insta-
bilities due to stresses related to molecular hardness. Density
functional theory~DFT! is then used to calculate the relevant
properties for the RDX molecule. These results are subse-
quently related to the mechanoelectronic effect that is con-
nected to local instability arising from gap closure. Finally,
local mechanical instability and the electron–electron cou-
pling relation to cooperativity is considered.
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II. ELECTRON-DRIVEN INSTABILITIES

The stress-induced chemical decomposition process
within the compressed region due to shock, which must have
an electronic mechanism, is similar to photoinduced struc-
tural changes.10 In both cases, a molecule undergoes pertur-
bation for such a short period that there is insufficient time to
establish thermal equilibrium in the system, and, as in pho-
toexcitation, the energy goes directly into electronic degrees
of freedom. Mechanical shock, as with optical excitation of
molecules, creates a sudden change in the electron distribu-
tion, thereby destroying the balance of electron-mediated in-
teratomic forces that dictate the electronic ground state.
There is an experimental observation that substantiates this
view. Shock decomposition products of RDX molecules dif-
fer from those found from thermal decomposition and are
identified with those of photochemical decomposition.11,12

This suggests decomposition within the shock front occurs
by an electronic process since it is known that photochemical
decomposition proceeds through electronic excitation.5

For shock-induced changes, one may ask what are the
roles of molecular electronic instability and cooperative in-
teractions in the solid. For a strongly coupled electron-lattice
system, such as with energetic materials, the stability of a
cluster ofm perturbed molecules can be considered for illus-
trative purposes. The crystal is treated as an elastic medium
described by the mechanical susceptibility,X~q!. The inverse
of this matrix is the dynamical matrix, with eigenvalues,
v2(qj ), and eigenvectors,e(qj ), that characterize phonons
of both intermolecular and intramolecular origin in thejth
dispersion branch for a given wave vector,q. When a mol-
ecule at siten8 is perturbed by the mechanical energy,E, it
and the surrounding lattice deform siten, by the amount,

^Q~n!&5(
n

X~n,n8!F~n8!, ~1!

expressed in terms of the coordinate vector,Q. This vector is
composed of external~translational and rotational! as well as
intramolecular degrees of freedom. The cause of the struc-
tural change is the force,F(n8)52@]E/]Q(n8)#0 , gener-
ated at the perturbed site due to coupling between the elec-
tronic structure of the molecule and the nuclear structure of
the molecules and the lattice. The force is a measure of
chemical pressure and, as an analog of local stress, can be
described in terms of elastic multipoles.8 The response func-
tion, X(n,n8), is the inverse Fourier transform ofX~q!.

Here, a comment about the notation and its relation to
elasticity theory is required. Eq.~1! is analogous to the
stress–strain relationship for a continuous medium. For a
particular molecule in a crystal, instead of a deformation
tensor, we use the vector,Q(n), that describes molecular
distortions in terms of traditional external and internal coor-
dinates. Similarly, the perturbation is expressed as a force
vectorF(n8), and consequently Eq.~1! is vectorial and not
tensorial, as it would be for a continuous medium. Conse-
quently, throughout the paper the displacement vector,Q(n),
will be used to express a molecular deformation.

Although one could represent the mechanical properties
of a molecule by a molecular elastic tensor, it would invite

comparison with the elastic tensor associated with bulk ma-
terial and contravene established conventions in molecular
physics. The concepts of isotropic and shear strain are not
particularly useful at the molecular level and have not, to our
knowledge, been employed in a formal construction. Force
constants and normal coordinates are normative in discus-
sions of molecular distortion and strain and we conform to
those conventions. This is consistent with the fact that the
elastic constants that appear in an elastic tensor are them-
selves functions of the force constants of the bodies they
describe. In this sense, a molecular elastic tensor would be a
derived quantity of doubtful practical value at the micro-
scopic level. In a later discussion~Sec. III! of molecular
interactions with mechanical fields, we show the utility of
elastic multipoles that may be easily represented as tensors.

Denoting molecules perturbed by compression by the
operators(n)51 and unperturbed ones bys(n)50, we
have previously shown that the energy change due tom per-
turbed molecules isDE5mE01Fdef, where the deforma-
tion energy is8

Fdef52
1

2 (
n

(
n8

FT~n!X~n,n8!F~n8!s~n!s~n8!

52
1

2 (
n

(
n8

J~n,n8!s~n!s~n8!. ~2!

The n5n8 term corresponds to the self-deformation energy,
Fself52(1/2)J(n,n), and renormalizes the on-site energy,
E0 . It is the solid-state analog of the solvent reorganization
energy. The energy change of the system is therefore,

DE5md2
1

2 (
n

(
n8

J~n,n8!s~n!s~n8!, ~3!

whered5E021/2J(n,n) is the effective energy needed to
perturb a molecule in a crystal. It describes an energetic ef-
fect due to both molecular volume and shape changes with
respect to the unperturbed state. Equation~3! expresses the
balance between the expense of energy to perturb the mol-
ecules~first term! and the gain of energy due tocooperative,
phonon-mediated interactions. In case of an electronic exci-
tation of energyE0 , the self-deformation energy may be
viewed as the energy gain in a process of structural intramo-
lecular and lattice relaxations and the second term represents
an additional gain arising from cooperative relaxation of the
m excited molecules. The athermal system becomes unstable
toward a conformational change whenDE<0. A change of
bonding cannot be predicted, but it is reasonable that this is
also the condition for the most probable initial step in spon-
taneous decomposition. The reaction can occurlocally or
cooperatively.

The condition for a local instability isd50, which ex-
presses the compensation of electronic,E0 , and mechanical,
Fself, energies. This can be understood two ways depending
upon which energy has been supplied to the system by a
direct action. For example, supply of electronic energy by
photoexcitation allows an excited site to relax to a deformed
site. A molecule in a crystal will therefore deform, as will its
nearest surroundings. In this case, the energy is transferred
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from electronic to vibrational degrees of freedom, i.e. by
electronic relaxation. This transfer occurs by coupling be-
tween these degrees of freedom and is quantified by the
force, F(n) defined above. It is the same coupling that is
involved in the reverse process of transferring mechanical
energy from vibrational degrees of freedom to electronic
ones. Such a process may occur upon introduction of a lo-
calized deformation energy comparable to the gap (E0) in
the electronic energy levels of a molecule. The energy gap
corresponds to the energy difference between the HOMO
and LUMO orbitals. The instability condition,E05Fself, de-
fines the degree of deformation required to promote an elec-
tron from the HOMO to the LUMO. In a crystal, of course,
the HOMO and LUMO form the highest occupied crystal
band, the valence band, and the lowest unoccupied crystal
band, the conduction band, respectively. However, energetic
materials are insulators and their bands are very narrow.
Thus, in a first approximation focus may be on a single site.
The criterion for the local instability then becomesE05I
2A5Fself, where the HOMO–LUMO gap has been de-
scribed by the difference between the ionization energy~I!
and the electron affinity~A!.

III. LOCAL ELECTRONIC INSTABILITY
AND MOLECULAR HARDNESS

Modern reactivity is described within density functional
theory ~DFT! that introduces hardness~h! and softness~s
51/h! as13

h5
1

2 S ]m

]ND
n~r !

, ~4!

wheren~r ! is an external potential,N stands for the number
of electrons andm is the chemical potential,

m5S dE@r~r !#

dr~r ! D
n~r !

5S ]E

]ND
n~r !

, ~5!

wherer~r ! is the electron density andE@r(r )# is the energy
functional.14,15 It follows that hardness is the second deriva-
tive of energy with respect of the number of electrons,15

h5
1

2 S ]2E~N,n~r !!

]N2 D
n~r !

. ~6!

Taking the finite difference approximation for the curvature
of E@N,n(r )#, one obtains the following formulas for hard-
ness,h, and chemical potential,m, respectively,13

h5~ I 2A!/2 and m5~ I 1A!/2, ~7!

where I is the ionization potential andA is the electron af-
finity of a molecule at equilibrium. This is a working defini-
tion of hardness where the HOMO–LUMO gap is approxi-
mated within Koopman’s theorem by the energy difference,
I 2A. A small gap increases quantum mixing and therefore
enhances chemical reactivity. Thus, the softness is the mea-
sure of reactivity of a molecule—the smaller the gap, the
more readily a unimolecular reaction can occur.

The hardness, a molecular quantity, provides a conve-
nient way to handle the energetics of the HOMO–LUMO
gap. Although a molecular quantity, it may be used in the

analysis of the role of mechanical energy upon molecular
energetics in much the same way that the free molecule en-
ergy levels are used in the exciton theory of solids. A more
exact treatment would actually deal with a conduction band–
valence band gap but, because in molecular crystals these
bands are very narrow, the HOMO–LUMO gap retains close
connection to molecular properties. This is of particular rel-
evance in the design of energetic materials. Thus, while a
formulation using band theory would be more exact, it prob-
ably would offer little additional insight regarding this initial
step.

The energy gap also has its effect on molecular polariz-
ability. A small energy gap means that a manifold of excited
states lies near the ground state; a small gap means high
polarizability. Therefore, electronically~chemically! soft and
highly polarizable molecules are the most sensitive to uni-
molecular decomposition. Indeed, it has been shown16 that
there is a reasonable correlation between the ‘‘drop height
sensitivity’’ of 50 organic explosives and the HOMO–
LUMO energy gap. We shall analyze this correlation from a
molecular point of view and examine how hardness depends
on molecular deformation.

In the simplest approximation, one can express the hard-
ness of a deformed molecule as

h5h01(
i

S ]h

]Qi
D

N

•Qi , ~8!

whereh0 is the hardness of a nondeformed molecule at equi-
librium. Molecular deformation is expressed in terms of an
atomic displacement set,$Qi%. Following the derivation pre-
sented earlier,17 one finds that the hardness’ dependence on
the ith atomic displacement is given as

Gi5S ]h

]Qi
D

N

>2
1

2
~Fi

11Fi
2!, ~9!

where

Fi52S ]E~N,n~r !!

]Qi
D

N

~10!

is the Hellman–Feynman force.18 Fi
1 and Fi

2 are the total
forces acting on theith nucleus in the positively and the
negatively charged molecules, respectively.Gi has been
called the nuclear stiffness17 or nuclear Fukui function19 in
contrast to the nuclear reactivity as defined and discussed by
Cohenet al.20

Similarly, one obtains an expression for the deformation
dependence of the chemical potential

m5m01(
i

S ]m

]Qi
D

N

•Qi , ~11!

where

wi52S ]m

]Qi
D

N

5S ]Fi

]N D
n~r !

5
1

2
~Fi

22Fi
1! ~12!

has been introduced as the nuclear reactivity index.17,19,20

The forcesGi and Fi , acting on theith atom at the
distancer i from the center of gravity of a molecule form a
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distribution of forces. Thus, the nuclear reactivity can be
alternatively expressed in terms of elastic multipoles8 and, in
particular, the elastic dipole tensor with componentsPmn
5 (

i
Fi

mQi
n1Fi

nQi
m represents a molecular strain/stress ten-

sor, i.e., essenitially serves as a molecular elastic tensor,
where off-diagonal terms represent shear components. How-
ever, this formulation is more general and easier to work
with in terms of the forces associated with molecules than a
true molecular elastic tensor would be. Nevertheless, such a
representation suggests that the nuclear reactivity can be ex-
pressed as a tensor, just as, for example,d orbitals may be
represented as tensors, and thus, the usefulness of tensor
properties can be retained.

It is more convenient to work in the space of molecular
normal mode coordinates,Qa , and transform indices into
that space,

Ga5S ]h

]Qa
D

N

5(
i

S ]h

]Qi
D

N

•S ]Qi

]Qa
D

N

5(
i

Gi•S ]Qi

]Qa
D

N

. ~13!

Ga indicates how hardness decreases due to a molecular de-
formation that is described by the atomic displacements of
the ath normal mode coordinate. For the chemical potential
derivative we obtain

wa52S ]m

]Qa
D

N

52(
i

S ]m

]Qi
D

N

•S ]Qi

]Qa
D

N

5(
i

w i•S ]Qi

]Qa
D

N

. ~14!

Consider a molecule in a stress-free state. Its chemical po-
tential is m05(I 1A)/2 and its hardness ish05(I 2A)/2.
The change in the energy of the molecule due to its defor-
mation and the related change in the electron density, strictly
speaking, the change in the number of electrons in the fron-
tier orbitals,DN, is

DE5m~DN!1h~DN!21
1

2 (
a

kaQa
2, ~15!

where the chemical potential and hardness are approximated
by their linear dependencies on the normal mode displace-
ment amplitudes,Qa , andka is the force constant related to
the ath normal mode frequency,va . Due to the change in
number of electrons,DN, there is molecular deformation
along the normal mode coordinate

^Qa&5
wa~DN!2Ga~DN!2

ka
~16!

whenDE is at a minimum with respect toQa

S ]DE

]Qa
D

N

50

and the electronic part of the energy is renormalized,

DE5m0~DN!1h0~DN!2

2
1

2 (
a

~wa~DN!2Ga~DN!2!2

ka
. ~17!

The renormalized hardness of a molecule is

h5h02
1

2 (
a

wa
2

ka
, ~18!

where modes that represent the molecular deformation will
contribute most to decreasing the molecular hardness.

Even if the contribution of a single mode is not signifi-
cant, the number of normal modes that can contribute to the
renormalization is important for polyatomic molecules. The
term that renormalizes the hardness is themolecular defor-
mation energythat is analogous to the small polaron binding
energy.8 It is the energy that a molecule gains in a process of
intramolecular relaxation when an electron is promoted from
the HOMO to the LUMO. Thus, the conditionh→0 signifies
promotion of an electron from the HOMO to the LUMO
without any energy cost. This corresponds to an unstable
state of a molecule with strong electron–molecular vibra-
tional coupling.

Which normal mode coordinate distortions contribute to
the change in the HOMO–LUMO energy gap? What are the
selection rules imposed on the coupling constants? These
questions have been discussed by Lipariet al.21 whose sym-
metry arguments show that only totally symmetric molecular
vibrational modes couple linearly to nondegenerate molecu-
lar orbitals. If ionized states of a molecule are nondegener-
ate, the forces, (]h/]Qi)N and (]h/]Qa)N , possess molecu-
lar symmetry. However, the normal coordinate
displacements, (]Qi /]Qa)N , are not necessarily totally sym-
metric. The criterion for nonzero coupling, as defined by Eq.
~13!, is that the irreducible representation of a molecular or-
bital, Gb , be contained in the direct product of that represen-
tation and the representation of theath molecular vibration,
Ga , Gb ^ GaPGb . Thus, the set of normal mode coordinate
deformations~Q deformations! that contributes to the linear
coupling constants contains only the totally symmetric mode
distortions for low-symmetry molecules. For a molecule at a
crystal site, this requires totally symmetricQ-distortions un-
der the site symmetry. In the case of shock-induced reaction
~SIR!, the shock wave, in particular the associated shear
stress, destroys the crystal and site symmetries and effec-
tively allows linear coupling with all molecular normal mode
displacements.

In analyzing an isolated molecule, particularly an often
high-symmetry secondary explosive, the role of degeneracy
must be considered. In this case, the forces do not possess
molecular symmetry and nonzero coupling constants are ob-
tained for thoseQ distortions of the same symmetry as the
forces. For example, when the HOMO is doubly degenerate
~E symmetry! and an electron is removed from the molecule,
the forces that drive the molecule to a new global minimum
break the molecular symmetry according to the Jahn–Teller
theorem. This means that for high symmetry molecules, the
molecular electronic instability determined by the condition,
h→0, may result in nontotally symmetric decomposition of a
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molecule. This effect is clearly illustrated by the following
numerical calculations performed for the RDX molecule.

IV. CALCULATIONS FOR THE RDX MOLECULE

RDX is an important secondary explosive that for the
last few years has served as a model system for study of the
details of detonation and molecular decomposition. For this
reason it has been chosen to illustrate our model. The main
goal is to understand and predict mechanistic details of the
initial step in the shock-induced molecular decomposition
mechanism. Many experimental studies have been directed
toward this problem and various reaction pathways have
been proposed~for the list of references, see Ref. 22!. In
short, there is experimental evidence for two pathways:~i!
concerted ring fission to three CH2N2O2 radicals, and~ii !
nonsymmetric N–NO2 bond rupture. Recent UV photolysis
experiments23–27 support pathway~ii !, infrared multiphonon
dissociation experiments28 conclude that pathway~i! is the
dominant channel, and very recent experiments on photodis-
sociation of RDX suggest that NO is an initial product of
decomposition.5

The mechanism of unimolecular decomposition of RDX
has been studied numerically viaab initio quantum chemical
methods~Ref. 22 and references therein!. These studies have
provided support for both pathways with some favor for ho-
molytic N–N bond fission. In particular, after carrying out
extensive high-level DFT calculations, Wu and Fried29 have
concluded that N–NO2 bond rupture is the dominant channel
for the decomposition of RDX. Very recent DFT studies22

have suggested a third pathway: successive HONO radical
elimination as the most exothermic primary RDX decompo-
sition channel.

These results may be compared to the predictions of our
renormalized hardness model. There is, of course, a funda-
mental difference between these approaches. In the case of
the ab initio studies, the energy barriers are calculated for
assumedpathways, e.g., energy changes along molecular co-
ordinates which are involved in the pathway. In this model of
renormalized hardness,all coordinates allowed by symmetry
considerations contribute to the renormalization. This per-
mits the pathway for molecular decomposition to be esti-
mated using those coordinates with the largest contribution
to the molecular deformation energy.

The calculations of structure, normal mode frequencies
and forces for RDX molecule were performed using the DFT
method15 in conjunction with the Becke30 ~exchange! and
Lee–Young–Parr31 ~correlation! functionals. The geometry
optimization employed a quasi Newton–Raphson
procedure29 and the basis set 6-31G** has been used. The
DFT calculations have been performed with Gaussian 94
code.32 Geometry optimization was obtained withinC3v
symmetry constraints. The resulting optimized geometry is
presented in Fig. 1 with the values of the bond angles and
lengths listed in Table I of the supporting information.33 The
results are in very good agreement with theab initio studies
of Rice and Chabalowski34 and the experimental data they
cite. Especially, bond lengths are within 1% of experimental
results. Bond angles are not reproduced as well, but they
agree with the theoretical results of Ref. 34. Atomic

Hellman–Feynman forces were calculated for a positively
and negatively charged RDX molecule as defined by Eq.~10!
with values available in Table II of the supporting
information.33 These forces have been used to calculate the
nuclear reactivity indices, Eqs.~9! and~12!, and are assigned
to every atom in Table III of the supporting information.33

The combination of forces corresponding to the nuclear re-
activity indices is shown in Fig. 2. The most significant force
acts alongoneN–NO2 bond as a consequence of the Jahn–
Teller effect and indicates that this bond is most affected by
the stress-induced electronic mechanism of decomposition.

Normal mode frequencies, their symmetries, and the re-
activity indices projected into normal coordinate space are
available in Table IV of the supporting information.33 The
frequencies are in agreement with experimental data.35 These
results show that doubly degenerateQ-distortions contribute
significantly to renormalization of the hardness. The RDX
molecule has a twofold degenerate HOMO~E symmetry!

FIG. 1. Ball and stick drawing of the RDX molecule according to the
calculated optimized geometry.

FIG. 2. RDX nuclear reactivity indices (w i) for top view of the molecule.
Magnitudes are proportional to line lengths at each nucleus,i.
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with energyEHOMO528.32 eV. Therefore, by removing an
electron from RDX, the electronic state of the ion becomes
doubly degenerate and, according to the Jahn–Teller theo-
rem, the resulting forces lower the molecular symmetry to
Cs . This is shown in Fig. 3 where RDX nuclear stiffnesses
are represented; numerical values are collected in Table IV of
the supporting information.33

The global hardness,h0 , of the RDX molecule is calcu-
lated to be 5.16 eV. The molecular deformation energy cor-
responding to promotion of an electron from the HOMO to
the LUMO renormalizes the hardness to 7.99 eV~see Table
IV of supporting information!.33 From these calculations it
follows that the largest influence decreasing the hardness is
due to~1! extending the N–N bond and~2! forcing the car-
bon atom opposite the N–N bond from the ring. These de-
formations correspond to the suggested pathways~ii ! and~i!,
respectively. However, the N–N bond extension has a greater
effect on the hardness than ring fission. Moreover, the
nuclear reactivity index shows that the most significant con-
tribution to the decrease of hardness comes from the nitrogen
and oxygen atoms of the nitro group. In other words,
changes in position of these atoms lead to the largest change
in the reactivity index of the molecule. This indicates that the
most probable, distortion-induced, initial, unimolecular reac-
tion in RDX is breaking of an N–NO2 bond. These results
should be considered to be general and demonstrate how a
possible shock-induced reaction pathway can be constructed
from a linear combination ofQ deformations. For this, it is
important to identify thoseQ distortions that contribute most
to the hardness renormalization. For RDX these are all char-
acterized by an N–N bond extension that is in phase with the
ring deformation and are listed in Table V of the supporting
information.33

The flexibility of RDX that is reflected by its low fre-
quency intramolecular vibrations is a key factor in the deter-
mination of the pathway for SIR. This indicates that the low
energy intramolecular vibrations may also be considered as
‘‘doorway modes’’ for the electronic mechanism of decom-

position as well as for the vibrational up-pumping
mechanism.3 This also explains why the empirical design of
energetic materials has resulted in systems that are quite con-
formationally labile.

Although quantum chemistry calculations are important
to describe complex systems, understanding such systems
with desired predictive power and analysis requires insights
obtained from conceptually manageable models. The ensuing
sections are devoted to such a description.

V. THE MECHANOELECTRONIC EFFECT

The molecular distortion that accompanies the promo-
tion of an electron from the HOMO to the LUMO is found
from the condition for a minimum of the total energy of a
molecule. Thus, the hardness is expressed alternatively as

h5h02 1
2 (

a
ka^Qa&2. ~19!

This equation is fundamental to understanding the increase
in reactivity of a molecule due to a molecular deformation.

When an externally applied force deforms a molecule,
the mechanical energy introduced into the molecule is trans-
ferred into the electronic degrees of freedom. Therefore, the
instability condition,h→0, determines the critical distortion,
(aka^Qa&c

25(I 2A), needed to promote an electron from
the HOMO to the LUMO via the mechanoelectronic effect.
We refer to such a state as adistortion-induced molecular
electronic~HOMO/LUMO! degeneracy~DIMED! that is an
analog to the Jahn–Teller effect that may be viewed as an
‘‘inverse’’ Jahn–Teller effect, since it appears withstructur-
ally relaxed electronic states. One can speculate about such a
state for a molecule with a negative hardness created by mo-
lecular deformation. It could be thought of as a molecule
with negative polarizability, a molecular state with anoma-
lous polarization arising as a product of bond distortions pro-
duced by a self-trapping effect such as in photoexcitation.36

It is instructive to set the above considerations into the
perspective of potential energy surfaces. A molecule in a
crystal is described by an energy surface in a multidimen-
sional space with a critical path along which the potential
decomposition reaction travels. From the above calculations
for RDX, this path is a combination of those normal mode
coordinates that contribute the most to the hardness renor-
malization. Assume the pathway to be described by coordi-
nateQ, which describes an effective N–N stretching mode
with force constant,k, for the RDX molecule. The ground
state of the molecule is represented by the parabolic poten-
tial, ER5(1/2)kQ2. Now consider the same molecule, but
with electronic structure changed due to promotion of an
electron from the HOMO to the LUMO. For the same coor-
dinate, we assume that the energy of the molecule depends
linearly on theQ deformation, and that molecular elasticity
does not significantly change due to the promotion of the
electron. The potential energy for the state with the promoted
electron is represented by the parabolic potential,EP5(I
2A)1GQ1(1/2)kQ2 whereG is the force due to deforma-
tion and the other arguments have their usual meanings.

FIG. 3. RDX nuclear stiffness (Gi) for top view of the molecule. Magni-
tudes are proportional to line lengths at each nucleus,i.
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These two potentials, schematically shown in Fig. 4, are
diabatic energy curves; they correspond to two different elec-
tronic structures of the molecule. The scheme in Fig. 4 ap-
plies equally well to an electron transfer reaction between
two molecules~M!, M1M⇒M11M2. This means that,
qualitatively, the process of single molecule excitation, pro-
motion of an electron from the HOMO to the LUMO, and
creation of charge-transfer excitation, which is the essence of
the mechanoelectronic effect, can be discussed within the
same framework.

What happens to a molecule when it becomes mechani-
cally deformed? Deformation may be viewed as raising the
molecule’s energy from the bottom of theER potential well
to the value of the deformation energy,Fdef5k^Q&2. Since
the electrons immediately follow the deformation, there is
vertical relaxation to a new state—a deformed molecule with
an electron in the HOMO and in the LUMO. If the bottom of
the new state’s potential well lies above the reactant’s energy
as shown by the dashed curve in Fig. 4, the new state is
unstable and immediately relaxes back into the minimum of
energy for the reactant state. Such a situation happens when
the applied deformation,̂Q&, is insufficient to compensate
for the electronic energy expense, (I 2A).Fdef. However,
when the molecule is driven to critical deformation, the new
state of the molecule has equally occupied HOMO and
LUMO and a deformation geometry,^Q&cd, which is stable.
Of course, the inequality, (I 2A),Fdef, will cause sponta-
neous creation of unstable molecules in the new electronic
state via DIMED.

VI. MOLECULAR ELECTRONIC DEGENERACY
ARISING FROM GAP CLOSURE

The diabatic energy curves describe formation of a mul-
tistable ground state due to an applied mechanical field. This
is an adiabatic state with multiple minima. The multistability
of the ground state is anessentialrequirement for having
molecules susceptible to mechanochemical reaction in a con-
densed phase. Recent extensive calculations have shown
RDX has a variety of conformations that are close in
energy30 and thus consistent with this model. The diabatic

energy functions have been approximated by parabolic po-
tentials, but they would be more realistic if represented by
Morse functions such as have been used in numerical simu-
lations for model explosive molecules.37,38

Consider formation of an adiabatic ground state from
quantum mixing of the diabatic states as in Fig. 4. The states
are either those corresponding to a single molecule with ei-
ther a LUMO empty (ER) or occupied (EP), or to a dimer
without and with a transferred electron. We denote the quan-
tum mixing by t, and assume the states are of proper sym-
metry for mixing. The adiabatic ground state energy is then

EG5 1
2 @E2~E214t2!1/2#1 1

2 kQ2, ~20!

where,E5(I 2A)1GQ. This can be generalized for many
electron-molecular vibration couplings as considered above.
The degree of transformation of a molecule from the ground
state to one with a promoted~intramolecular or intermolecu-
lar! electron can be calculated as the derivative of the ground
state energy with respect to the ‘‘field,’’ the electronic energy,
E. The result is

r~Q!5 1
2 @12E~E214t2!21/2#. ~21!

For sufficiently small mixing, the nondeformed molecule re-
mains in its ground state. But when the electronic energy
decreases (I 2A1GQ)→0, r(Q)→1/2, and an energy level,
which has 2t bandwidth and population12, is formed. Thus,
we have obtained the condition for the critical deformation,
^Q&cd52(I 2A)/G, which causes HOMO–LUMO gap
closure—the state which Gilman6 has calledlocal metalliza-
tion and which is a special case of DIMED.

Figure 4 gives a visual interpretation of the critical de-
formation energy. It corresponds to the maximum in the
ground state energy encountered on passing from the normal
state to a state with a promoted electron, or in case of a
dimer, to a state with degree of charge transfer of1

2. We
conclude that the deformation required to cause degeneracy
of the nonrelaxed HOMO/LUMO states is smaller than, and
differs from, the critical deformation required to promote an
electron from the HOMO to the LUMO.

FIG. 4. Diabatic potentials,ER and
EP , illustrating deformation-induced
molecular electronic degeneracy
~DIMED!. Q is the vibrational normal
coordinate,Fdef is the deformation po-
tential, and 2t is the bandwidth of the
deformation-induced state.
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The gap closure and mechanoelectronic mechanisms are
complementary. In order to cause a HOMO–LUMO gap clo-
sure for a molecule, it is required that it be deformed by the
amount^Q&cd. This causes formation of an electronic level
of width 2t and population1

2. In order to stabilize that state,
it is sufficientto deform the molecule to the critical deforma-
tion geometry,̂ Q&cd. This means that a molecule with an
electron promoted from the HOMO to the LUMO has been
created. However some, but less than sufficient, deformation
of a molecule causes a nonrelaxed HOMO–LUMO degen-
eracy. Without the extra energy required to cross the^F&crit

barrier, the molecule may relax to its unstressed ground state
~lower energy! minimum. The extra energy that stabilizes the
process is supplied by cooperative interactions.

VII. LOCAL MECHANICAL INSTABILITY

We now analyze an important consequence for molecu-
lar mechanics that follows from the local electronic instabil-
ity. Within the simplified model we locate the frequency,V,
of a critical mode under deformation. The square of the fre-
quency is given by the second derivative of the ground state
energy with respect to the mode coordinate,Q. The result is

V25v22g2xel , ~22!

where

xel5
2r~12r!

@E214t2#1/2 ~23!

is the electronic susceptibility,v2 is the force constant,k,
divided by a reduced mass, andg is the Grüneisen parameter.
The denominator is the effective energy gap, and the molecu-
lar deformation that causes the gap closure drives the suscep-
tibility towards infinity, i.e., causes the electronic instability.
However, the immediate effect of the molecular deformation
in closing the gap is to decrease the critical mode frequency.
The molecule becomes mechanically softer and the limit of
its mechanical stability isV2→0. This is, of course, molecu-
lar decomposition according to the atomic displacements de-
fined by the critical mode coordinate, i.e. the path of the
unimolecular reaction. Thus, it is not necessary to completely
close the electronic gap to decompose a molecule. Before the
incipient electronic instability occurs, the molecule can de-
compose. However, if the gap closes completely, the mol-
ecule will decompose instantaneously. In the context of SIR,
the deformation energy supplied to a molecule is transferred
into the electronic system so quickly that the nuclear system
cannot respond. Thus, it is necessary to close the gap within
2t after which decomposition of the molecule follows from
the resulting mechanical instability.

For a system in equilibrium, where the nuclear degrees
of freedom have enough time to follow changes in the elec-
tronic energy states, intramolecular mode softening due to
applied stress, e.g., pressure, should be observed. Such a
phenomenon has been reported, but not sufficiently ex-
plained, in studies of pressure effects on the vibrational spec-
tra of liquid nitromethane~another model molecule for sec-

ondary explosives! where softening of some normal modes
has been detected.39 The sensitivity of the critical mode to
stress can be estimated from

]V2

]Q
52g2

]xel

]Q
~24!

which is a direct measure of the influence of the stress on the
molecular electronic structure. This is important because it
shows that by measurement of the strain Gru¨neisen param-
eters one can learn about the deformation potential which is
related to (]xel /]Q).

These considerations about the mechanical instability of
a molecule may be generalized to the case of many vibra-
tions. The renormalized normal mode frequencies are found
from

Di j 2V2d i j 50, ~25!

where

Di j 5v2d i j 2G iG jxel . ~26!

A similar relation has been used to definemolecular
compressibility.40 The condition for molecular instability can
be formulated as det~D!→0.

From this analysis, it is evident that any defect that cre-
ates large local strains will contribute to gap closure and
DIMED. There is an extensive literature that posits so-called
‘‘hot spots,’’ essentially large local defects and cracks that
apparently ‘‘nucleate’’ detonation. These are clearly defects
that can generate large internal and local strains that could
bring many molecules near the defect very close to the 2t
bandwidth necessary to decomposition. Thus, the application
of any excess external stress could bring molecules in these
regions of the crystal to decomposition much earlier than
those that are in defect-free domains.

This analysis of mechanical instability shows that, be-
cause of electron-molecular vibration coupling, a molecule
will always be unstable to decomposition as a result of
HOMO–LUMO gap closure. Since this process is slower
than purely electronic processes, but faster than purely vibra-
tional ones, the decomposition is on the time scale of the
detonation process.

VIII. COOPERATIVITY THROUGH
ELECTRON–ELECTRON COUPLING

So far, we have discussed the process of mechanoelec-
tronic instability of a single molecule in a crystal. However,
such molecules actively interact with their surroundings.
Thus, we should consider a possibleintermolecular charge-
transfer contribution to the mechanism of electron delocal-
ization in a SIR. Such a process is very likely because of the
large density increases and structural irregularities created at
the reaction front. Both effects stimulate intermolecular elec-
tron transfer by an increase of the overlap integral arising
from stress and molecular inequivalence due to defects, va-
cancies, etc. The very recent history of hydrogen metalliza-
tion supports the view that such charge-transfer states play
an important role in highly compressed molecular solids.41

Consider two molecules in a shock-compressed region.
Intermolecular charge-transfer may occur, i.e., a promotion
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of an electron from the HOMO of one molecule~M! to the
LUMO of the other. This corresponds to a reaction, M
1M⇒M11M2 as presented in Fig. 4 with the assignment
of the ER and EP diabatic functions to reactants and prod-
ucts, respectively. The only modification needed to the pre-
vious discussion is that the energy of the intermolecular
charge transfer be lower than the HOMO–LUMO energy
gap for a single molecule since there is energy gain due to
Coulomb interactions. This electron–electron coupling, to-
gether with lattice relaxation, creates cooperativity through
the deformation-induced degeneracy of the electronic states
and can be quite efficient in molecular explosives. This prob-
lem is left for further study.

IX. CONCLUSIONS

We have proposed a new microscopic approach to
mechanochemical processes. The first step in a shock-
induced reaction is the electronic mechanism of molecular
decomposition that proceeds by adeformation-induced mo-
lecular electronic degeneracy~DIMED! of nonrelaxed
HOMO–LUMO states that results in the disappearance of
chemical hardness. A qualitative picture for the coupling of
electronic and vibrational degrees of freedom has been pre-
sented. A result of the analysis is that molecules of high
symmetry will be quite unstable to deformation-induced de-
composition. A numerical calculation for chemical hardness
and of the hardness dependence on normal mode coordinates
has been performed for the RDX molecule. The results show
that N–N bond rupture is a more likely pathway than ring
fission. The model further justifies the role of ‘‘hot spots’’
and cracks in enhancing the detonation sensitivity of ener-
getic materials.

By applying our earlier formulation of a theory of solid-
state reactivity,8 we have shown that the mechanoelectronic
mechanism of reactivity is not only possible, but it also al-
lows for a comprehensive picture of the previously suggested
HOMO–LUMO gap closure and electromechanical effects.
The model has specific applicability to the initial response of
energetic materials to shock. In particular, we show that
complete closure of the HOMO–LUMO gap is not necessary
for a mechanically induced chemical reaction. We are further
able to specify the degree of gap closing that is needed to
effect such a reaction and to demonstrate the role of symme-
try. A natural extension of the single molecule mechanism
into a cooperative, intermolecular charge-transfer driven,
mechanism is an obvious avenue for further investigation.

Although our focus has been on applying the mecha-
nochemical model to the initial step of a shock-induced re-
action, it has application to other outstanding problems. The
model developed herein has sufficient generality that it may
be expected to provide: the basic concepts for analyzing tri-
boluminescence that does not arise from ambient gas
emission,42 an approach for understanding conformational
polymorphism,43 explanation of mechanically induced
chemical transformations such as the triclinic phase of
anthracene,44 and may even be useful in developing new
avenues to problems in macromolecular structure. Broaden-
ing the paradigm to these problems is underway.
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