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ORIGINAL PAPER

Pichia pastoris fermentation with mixed-feeds of glycerol
and methanol: growth kinetics and production improvement

Received: 20 September 2002 / Accepted: 28 January 2003 / Published online: 2 April 2003
� Society for Industrial Microbiology 2003

Abstract Fed-batch fermentation of a methanol utili-
zation plus (Mut+) Pichia pastoris strain typically has a
growth phase followed by a production phase (induc-
tion phase). In the growth phase glycerol is usually used
as carbon for cell growth while in the production phase
methanol serves as both inducer and carbon source for
recombinant protein expression. Some researchers em-
ployed a mixed glycerol-methanol feeding strategy
during the induction phase to improve production, but
growth kinetics on glycerol and methanol and the
interaction between them were not reported. The
objective of this paper is to optimize the mixed feeding
strategy based on growth kinetic studies using a Mut+

Pichia strain, which expresses the heavy-chain fragment
C of botulinum neurotoxin serotype C [BoNT/C(Hc)]
intracellularly, as a model system. Growth models on
glycerol and methanol that describe the relationship
between specific growth rate (l) and specific glycerol/
methanol consumption rate (mgly, mMeOH) were estab-
lished. A mixed feeding strategy with desired lgly/
lMeOH =1, 2, 3, 4 (desired lMeOH set at 0.015 h)1) was
employed to study growth interactions and their effect
on production. The results show that the optimal de-
sired lgly/lMeOH is around 2 for obtaining the highest
BoNT/C(Hc) protein content in cells: about 3 mg/g wet
cells.

Keywords Pichia pastoris Æ Fed-batch fermentation Æ
Mixed feed Æ Growth model Æ Botulinum neurotoxin

Introduction

In the genome of the methylotrophic yeast Pichia pas-
toris, there are two copies of the alcohol oxidase (AOX)
gene, designated AOX1 and AOX2. These genes enable
the cells to assimilate methanol as their sole carbon and
energy source. The AOX1 promoter regulates 85% of
AOX production while the AOX2 promoter is less active
[9]. Pichia expression systems use the AOX1 promoter to
drive heterologous protein expression with methanol as
the inducer. Through gene disruption [7], the ‘‘AOX1
promoter-interesting gene’’ expression cassette is in-
serted in the genome [9, 10, 16]. Depending on the locus
of insertion, two different phenotypes of Pichia are
generated: methanol utilization plus (Mut+) or metha-
nol utilization slow (Muts). The former contains both
AOX1 and AOX2, the latter only AOX2. For Muts

strains, due to their slow utilization of methanol, a
mixed feed of glycerol and methanol is commonly em-
ployed in the fermentation induction phase; glycerol
functions as an efficient substrate for cell growth and
target protein production while methanol functions as
an inducer. With this strategy, various proteins have
been successfully expressed in either fed-batch or con-
tinuous operation mode by Muts strains [1, 2, 14, 19]. In
all of these studies, the optimization of mixed feeding
strategy was based on arbitrary ratios of the two sub-
strates in the feed solution. Growth kinetics on glycerol
and methanol, and the interaction between them were
not studied.

For Mut+ strains of Pichia, due to efficient utiliza-
tion of methanol, a typical fed-batch fermentation
strategy is to feed methanol alone as both inducer
and carbon and energy source in the induction phase.
We developed an exponential feeding strategy based on
a growth model describing the relationship between
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specific growth rate (l) and specific methanol con-
sumption rate (mMeOH) [23]. This makes it possible to
maximize production based on an optimal l. A basic
protocol book, ‘‘Pichia fermentation process guidelines’’,
which provides a methanol feeding strategy with step-
wise changing feed rate, is also available from Invitrogen
(San Diego, Calif.).

Mixed feeding strategies in Mut+ Pichia fermenta-
tions similar to those for Muts strains have been re-
ported. Katakura et al. [13] determined that product
formation was dramatically improved by simultaneously
feeding glycerol at a rate of 5 ml l)1 h)1 while main-
taining 0.55% (v/v) residual methanol in the induction
phase. McGrew et al. [15] employed mixed feeds at a
glycerol:methanol ratio of 1:1 and approximately dou-
bled growth and CD40 ligand expression levels com-
pared to feeding methanol alone. In contrast, Hellwig
et al. [12] found that, while maintaining a 0.5%methanol
concentration in the induction phase, supplementary
feeding of glycerol strongly inhibited production of an
scFv antibody fragment, and expression was almost
completely inhibited when the specific glycerol feed
rate (Fgly) was higher than 6 mg mg-wet cell weight
(WCW))1 h)1. Even at Fgly below 6 mg mg-
WCW)1 h)1, the expression level was only half that
found in the fermentation with methanol feed alone.
These attempts at running a mixed feeding strategy in
Mut+ Pichia fermentations did not further investigate
the interaction of cell growth on the two substrates. The
objective of this paper is to study mixed feeding strate-
gies based on cell growth kinetics to determine the po-
tential of improving product formation. We used a
GS115 Mut+ Pichia strain that intracellularly expresses
the heavy-chain fragment C of botulinum neurotoxin
serotype C [BoNT/C(Hc)] as a model system. When
growing on methanol, the BoNT/C(Hc) strain showed a
maximum specific growth rate (lm) of around 0.02 h)1

(as shown later), distinguishing it from a value 0.07 h)1

obtained for another Mut+ Pichia strain expressing a
similar protein, BoNT/A(Hc) [23] and a Muts strain we
measured at 0.008 h)1 (data not shown). Therefore,
choosing a BoNT/C(Hc) strain for this study could be
representative for both Muts and Mut+ Pichia expres-
sion systems. The strain was constructed at the United
States Army Medical Research Institute of Infectious
Diseases (USAMRIID). BoNT/C(Hc) is one of the seven
BoNT(Hc) serotypes, designated A–G, corresponding to
seven different strains of Clostridium botulinum. The re-
combinant BoNT(Hc) are nontoxic 50 kDa fragments
that elicit significant protective immunity in mice and are
candidate vaccines against botulinum neurotoxin [3, 5].

Materials and methods

Fermentation conditions

A 1-l shake flask with 300 ml buffered minimal glycerol yeast ex-
tract medium (BMGY, containing 1% yeast extract, 2% peptone,
1.34% yeast nitrogen base, 4·10)5% biotin, 1% glycerol, 100 mM

potassium phosphate, pH 6.0) was inoculated with 1 ml stock seed.
The cultivation lasted for 20–24 h at 30�C and 300 rpm to reach an
optical density (at 600 nm) of 10–20. The entire 300 ml propagated
culture was used to inoculate a 5-l fermentor (New Brunswick
Scientific, Edison, N.J.) containing 2 l basal salts medium (BSM)
and 8.7 ml PTM1 trace salts. One liter BSM consists of 26.7 ml
85% H3PO4, 0.93 g CaSO4, 18.2 g K2SO4, 14.9 g MgSO4Æ7H2O,
4.13 g KOH, and 40.0 g glycerol. One liter PTM1 (filter-sterilized)
consists of 6.0 g CuSO4Æ5H2O, 0.08 g NaI, 3.0 g MnSO4ÆH2O, 0.2 g
Na2MoO4Æ2H2O, 0.02 g H3BO3, 0.5 g CoCl2, 20.0 g ZnCl2, 65.0 g
FeSO4Æ7H2O, 0.2 g biotin and 5.0 ml H2SO4. The fermentation was
run in fed-batch mode at 30�C, and pH was maintained at 5.0 using
undiluted (28%) ammonium hydroxide. Dissolved oxygen (DO)
was maintained above 20% saturation by adjusting agitation rate
and pure oxygen supply.

When the initial glycerol (40 g/l) in batch phase was depleted, as
indicated by an abrupt increase in DO reading, a 63% (w/v) glycerol
solution containing 1.2% (v/v) PTM1 was fed at a feed rate of
12 ml h)1 l-broth)1 for 1 h (growth was limited by the feed rate and
no glycerol accumulation occurred). Methanol (4 ml) was then in-
jected into the fermentor and, simultaneously, the glycerol feed rate
was programmed to decrease linearly from 12 ml h)1 l)1 to 0 over a
period of 3 h. This 3-h period was considered a transition phase that
is important for cells to adapt to the methanol efficiently and com-
pletely [23]. Following the transition phase, the production phase
started, in which 100% methanol containing 1.2% (v/v) PTM1 and
0.05% (w/v) antifoam (KFO 673, KABO Chemicals, Cheyenne,
Wyo.) was fed under control of a methanol sensor (MC-168
MethanolMonitor and Controller, PTI Instruments, Kathleen, Ga.;
the sensing material in the MC-168 is TGS822 alcohol sensor from
Figaro USA, Glenview, Ill.), or at a programmed feed rate based on
a desired growth rate. Five or six time-course samples, taken every
4–6 h, were removed during the production phase.

To determine the growth model on a glycerol phase, a 63%
(w/v) glycerol solution containing 1.2% (v/v) PTM1 was fed at a
programmed feed rate based on a desired growth rate (glycerol
feeding strategy as shown later), after the initial glycerol batch
phase. Four to six time-course samples, taken every 3–5 h, were
removed during the glycerol fed-batch phase.

Cell density measurement

Cell density was expressed as grams WCW per liter broth, which
was obtained by centrifuging the samples at 2,000 g for 10 min. All
kinetic calculations were based on WCW. The methanol concen-
tration in samples was measured by gas chromatography (GC-17A,
Shimadzu, Columbia, Md.) with isopropyl alcohol as an internal
standard.

BoNT/C(Hc) analysis

BoNT/C(Hc) protein was released from cells through bead break-
ing, and quantified by western blot analysis. Cell paste samples of
0.2–0.5 g were suspended in 10 ml washing buffer (145 mM NaCl,
31.5 mM sodium acetate, 18.5 mM acetic acid, pH 5.0), then spun
at 2,000 g for 10 min to obtain washed cell pellets. The cell pellets
were resuspended to a density of 50 g-WCW/l in lysis buffer, which
contains 2.5 g/l 3-[(3-cholamidopropyl)dimethylammonio]-1-pro-
panesulfonate (CHAPS), 5 mM EDTA, 500 mM NaCl, 50 mM
NaH2PO4, 1 mM phenylmethanesulfonyl fluoride (PMSF), and pH
adjusted to 7.5. Aliquots (1 ml) of the cell suspension were mixed
with approximately 2.2 g zirconia/silica beads (Biospec, Bartles-
ville, OK) in 2.0 ml screw cap tubes followed by disruption at 4�C
with a vibrating disrupter (Mini-BeadBeater-8, Biospec) for eight
cycles (1 min vibrating and 4 min resting/cycle). The lysate/bead
mixture was centrifuged until the supernatant was clear.

The acquired supernatant was diluted 3-fold with lysis buffer,
and 90 ll diluted supernatant was mixed with 30 ll 4· concen-
trated Tris-glycerine SDS sample buffer (252 mM Tris-HCl, 40%
glycerol, 8% SDS, 0.01% bromophenol blue, pH 6.8). The mixture
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was heated at 90�C for 5–10 min, then 35-ll aliquots were loaded
onto a 10-well 4–20% Tris-glycine SDS-PAGE gel (Novex Pre-Cast
gel, Invitrogen, San Diego, Calif.). Each sample was loaded in
duplicate. A standard sample containing 703.13 ng BoNT/C(Hc)
was loaded on each gel. After running the SDS-PAGE (150 V,
1.8 h, running buffer: SepraBuff TRIS GLY SDS running buffer,
OWL Seperation Systems, Woburn, Mass.), the gel was soaked in a
transfer buffer (SepraBuff TRIS GLY running and blotting buffer)
for 5–10 min; proteins were then transferred from the gel to a
polyvinylidene fluoride (PVDF) membrane (soaked in methanol
before use) using a semi-dry transfer cell (Trans-Blot SD, Bio-Rad,
Hercules, Calif.; 12 V, 1 h). Following transfer, the PVDF mem-
brane was soaked in blocker solution (5% blotting grade dry milk
in 100 ml TBS buffer: 25 mM Tris base, 140 mM NaCl, 2.5 mM
KCl) for 1 h. The membrane was incubated with the primary
antibody solution for 16 h, then rinsed 3·10 min in TBS buffer,
and soaked in secondary antibody solution for 2–4 h. The final
rinse was 3·10 min in TBS buffer. Protein on the membrane was
visualized by chemiluminescence using ECL+Plus (Lumigen,
Southfield, Mich.) with a 5 min incubation (in the dark), followed
by exposure of two films (Hyperfilm ECL, Amersham Pharmacia,
Piscataway, N.J.) each with a different exposure time (2–5 min).
The films were developed (Kodak GBX fixer and developer) to
reveal the bands of BoNT/C(Hc) protein. Band intensities were
obtained by scanning the films (HP ScanJet 6300C scanner) and
digitizing the bands (UN-SCAN-IT, Automated Digitizing System,
Version 5.1, Silk Scientific Corporation, Orem, Utah). BoNT/
C(Hc) in each band was quantified from a standard curve that
showed the relationship between band intensity and protein
amount.

Results and discussion

Growth kinetics on glycerol

In the batch phase, with an initial glycerol concentration
of 40 g/l, cells were grown without limitation of nutri-
ents. The maximum growth rate on glycerol, lgly,m, and
maximum glycerol specific consumption rate, mgly,m,
were determined as lgly,m=0.177 h)1 and mgly,m=
0.0688 g h)1 g-WCW)1. Knowing lgly,m and mgly,m, the
glycerol feed rate, Fgly, to run a fed-batch process
with the desired lgly,d ( £ lgly,m) can be estimated as in
[23]:

Fgly ¼ mglyX0V0elgly;dt ¼
lgly;dmgly;mX0V0elgly;dt

lgly;m

ð1Þ

where X0 and V0 are the cell density and broth volume at
the beginning of the glycerol fed-batch phase, and t the
feed time of glycerol. Fed-batch runs with different lgly,d

from 0 to lgly,m were conducted using the feeding
strategy in Eq. 1. The actual lgly (which could differ
from lgly,d) and mgly, was determined from each run. The
method used to calculate the specific rates (as well as all
other kinetics) was referred to in a previous publication
[23]. Figure 1 shows the linear dependence of mgly on lgly,
and the resulting equation:

mgly ¼ 0:503lgly þ 0:0065 ð2Þ

With the fed-batch growth model in Eq. 2, estimation
of Fgly by Eq. 1) was corrected to realize a growth rate
approaching lgly,d, namely:

Fgly ¼ ð0:503lgly;d þ 0:0065ÞX0V0elgly;dt ð3Þ

As shown later, the feeding strategy of Eq. 3 will be
applied to the design of fed-batch fermentations with
mixed feeds of glycerol and methanol assuming the
coexisting methanol feed has no effects on the kinetics of
glycerol consumption.

The catabolic pathway of glycerol in a methylo-
trophic yeast such as Pichia, involves passive diffusion
across the membrane, phosphorylation by a glycerol
kinase, and oxidation by a mitochondrial glycerol
phosphate ubiquinone oxireductase [11]. Glycerol enters
glycolysis after its conversion to glyceraldehyde
3-phosphate, and requires respiration to oxidize NADH
in order to serve as an energy source. The glycerol cat-
abolic process is independent of the methanol metabo-
lism pathways described elsewhere [18]. Therefore,
although the growth model on glycerol, Eq. 2, was ob-
tained with the BoNT/C(Hc) strain employed in this
research, the model can be applied to the design of fed-
batch growth on glycerol for all other GS115-derived
Pichia clones, whether they are Mut+ or Muts.

Growth kinetics on methanol

P. pastoris cannot tolerate a high methanol concentra-
tion in the fermentation due to accumulation of form-
aldehyde and hydrogen peroxide inside the cells, both of
which are oxidized products of methanol by AOX and
toxic to the cells [6, 8, 21]. As discovered in our previous
work [23], methanol levels above 3.65 g/l (calculated
from the growth model) start to show growth inhibition.
Therefore, unlike growth on glycerol, it is impossible to
measure the maximum growth rate (lMeOH,m) by grow-
ing cells in batch mode with a high methanol level. To
reveal the lMeOH,m, as well as the corresponding maxi-
mum methanol specific consumption rate (mMeOH,m), we
ran the fed-batch fermentation employing a methanol
sensor to control methanol feeding to maintain the

Fig. 1 Dependence of glycerol specific consumption rate (mgly) on
specific growth rate (lgly) in glycerol fed-batch growth
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methanol level at 2–4 g/l. A proportional, integral and
derivative (PID) control mode was applied for the
methanol control system [24]. Figure 2 shows the time-
course of total cell growth (XV) and the methanol level
(S) controlled by the sensor. Exponential growth was
observed within 50 h of methanol feeding time. The
lMeOH,m and mMeOH,m were 0.02 h)1 and 0.028 g h)1 g
WCW)1, respectively. The lMeOH,m is much lower than
that of a typical Mut+ Pichia strain, i.e., 0.07 h)1 [24],
but higher than a Muts strain, 0.008 h)1 (data not
shown). This suggests that methanol metabolism of the
BoNT/C(Hc) Pichia strain was affected by either
expression of the heterologous protein or the gene
insertion event. A similar phenomenon was also ob-
served in an Escherichia coli expression system in which
a recombinant protein changed host strain bioactivities
[22].

Based on the obtained lMeOH,m and mMeOH,m, we
conducted fed-batch fermentations with different desired
growth rates, lMeOH,d ( £ lMeOH,m), by feeding meth-
anol at a feed rate, FMeOH, estimated as in [23]:

FMeOH ¼ mMeOHX0V0elMeOH;dt

¼
lMeOH;dmMeOH;mX0V0elMeOH;dt

lMeOH;m

ð4Þ

where X0 and V0 are the cell density and broth volume at
the beginning of the methanol fed-batch phase, and t the
feed time of methanol. Similar to the limited fed-batch
growth on glycerol, an actual lMeOH and mMeOH were
obtained from each run, and the linear dependence of
mMeOH on lMeOH is shown in Fig. 3. The linear rela-
tionships are expressed as:

mMeOH ¼ 0:766lMeOH þ 0:0128 ð5Þ
Equation 5 includes the maintenance coefficient,

0.0128 g-MeOH h)1 g-WCW)1, and was substituted
into Eq. 4, to give Eq. 6:

FMeOH ¼ ð0:766lMeOH;d þ 0:0128ÞX0V0elMeOH;dt ð6Þ

Mixed feed and production improvement

The BoNT/C(Hc) content in the cells (a) reached a
maximum after 10 h of methanol feeding, and remained
constant during the remainder of the exponential growth
phase, similar to the intracellular production of BoNT/
A(Hc) [23]. The average a during the stable period (de-
fined as quasi-steady state) represented the production
level at a corresponding lMeOH. The effect of lMeOH on a
using only methanol during fed-batch fermentation is
presented in Fig. 4. The optimum lMeOH was 0.015 h)1

and achieved a=2 mg/g. This is similar to that observed
for BoNT/A(Hc) production [23] in which the optimal
lMeOH was 0.0267 h)1 rather than the lMeOH,m

(0.0709 h)1).

Fig. 2 Time-course of total grown cells and controlled methanol
level in the methanol fed-batch phase. MeOH-sensor Methanol on-
line read value from the methanol sensor, MeOH-GC methanol
concentration in the samples analyzed by gas chromatography

Fig. 3 Dependence of methanol specific consumption rates (mMeOH)
on specific growth rate (lMeOH) in methanol fed-batch growth

Fig. 4 Heavy-chain fragment C of botulinum neurotoxin serotype
C [BoNT/C(Hc)] content in cells (a) under methanol feed alone and
mixed feed
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The detailed mechanism explaining why l affects a
remains unknown, but the imbalance of energy supply
for growth and production is believed to be one of the
reasons [4, 17]. Based on this supposition, and consid-
ering the slow methanol assimilation in this strain, we
proposed a mixed feeding strategy, namely, feeding
glycerol simultaneously in the methanol fed-batch
phase, to explore the potential for improving produc-
tion. As we discussed, the mixed feeding strategy is
generally employed for Muts Pichia fermentations in
view of their slow utilization of methanol, and has also
been applied in Mut+ strains by several researchers.
However, all these studies relied on arbitrary combina-
tions of the two substrates (glycerol and methanol) for
optimizing the mixed feed design. Here we investigated
the strategy based on the growth kinetics. Specifically,
we optimized the growth rate ratio of lgly:lMeOH rather
than the quantity ratio of glycerol:methanol in the mixed
feed. lgly and lMeOH are the growth rate contributed by
glycerol and methanol, respectively, and the total
growth rate on a mixed feed, lmix, expressed as:

lmix ¼ lgly þ lMeOH ð7Þ

We ran a mixed feeding strategy with desired
lgly:lMeOH =1, 2, 3, 4 to study the growth interaction
of the two substrates and its effect on production. With
growth on methanol feed alone, lMeOH =0.015 h)1

was the optimal growth rate for maximum a. Accord-
ingly, we fixed the desired growth rate on methanol
(lMeOH,d) at 0.015 h)1 while varying the desired growth
rate on glycerol (lgly,d) for the mixed feed design.
Based on Eqs. 3 and 6, the glycerol and methanol feed
rate were given as:

Fgly ¼ ð0:503lgly;d þ 0:0065ÞX0V0elmix;dt ð8Þ

FMeOH ¼ ð0:766lMeOH;d þ 0:0128ÞX0V0elmix;dt ð9Þ
where lmix,d was calculated as lMeOH,d + lgly,d accord-
ing to Eq. 7, and t the feed time of glycerol and metha-

nol. Figure 5 shows the actual lmix achieved from the
runs performing the feeding strategy of Eqs. 8 and 9 with
lMeOH,d=0.015 h)1 and various lgly,d. It was found that
lmix was slightly higher than lmix,d and had the following
relationship with lgly,d:

lmix ¼ 1:18lgly;d þ 0:015 ð10Þ

Compared with Eq. 7, and noting lMeOH,d

=0.015 h)1, Eq. 10 shows that the total growth was
promoted in the presence of glycerol feeding. It is
known that excess glycerol inhibits the AOX promoter
[20]. We obtained the opposite result due to the fact
that the glycerol feed rate we ran only supported
growth below 0.06 h)1, which was far from the maxi-
mum l on glycerol (0.177 h)1). Thus, we concluded
that during growth on a mixed feed with lgly,d £
0.06 h, i.e., lgly,d:lMeOH,d £ 4 for this strain, the sup-
plementary feeding of glycerol enhanced the overall
growth rather than functioned as a repressor. This
observation indicates that running a mixed feed in
Mut+ Pichia fermentations is feasible without causing
growth inhibition by glycerol when the feeding strategy
is properly designed. The production level under the
mixed feed design can be examined to discover the
optimal feeding strategy.

Figure 4 shows the production levels obtained under
the mixed feed strategy with various lgly,d/lMeOH,d

while lMeOH,d was set to 0.015 h)1, as well as a com-
parison with methanol feed alone. It was found that
lgly,d/lMeOH,d =2, which corresponded to an obtained
lmix of 0.05 h)1, delivered the highest a, and the pro-
duction was not inhibited by the supplementary glyc-
erol feeding until a feeding strategy with lgly,d/lMeOH,d

>3 was run. Substituting the optimal lgly,d =0.03 h)1

and lMeOH,d =0.015 h)1 into Eqs. 8 and 9, the optimal
feed rate ratio of Fgly:FMeOH was simply derived to be
0.889. This discovery demonstrated that the mixed
feeding strategy based on growth kinetics as in Eqs. 2
and 5 can be optimized to maximize production. The
optimal strategy can be applied to any cell densities as
a result of the direct association with growth rate in-
stead of the arbitrary combinations of the two sub-
strates that was used in previous researches. Since
growth models were developed on both glycerol (Eq. 2)
and methanol (Eq. 5), a thorough simulation for the
optimal process can be made in the same way as for
optimization of BoNT/A(Hc) production [23]. It is
predicted that the methods developed in this paper
can be applied to mixed feed design for both Mut+

and Muts Pichia fermentations producing a variety of
recombinant proteins.
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