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Abstract

A process was developed for production of a candidate vaccine antigen, recombinant C-terminal heavy chain fragment of the
botulinum neurotoxin serotype E, rBoNTE(Hc) in Pichia pastoris. P. pastoris strain GS115 was transformed with the rBoNTE(Hc)
gene inserted into pHILD4 Escherichia coli—P. pastoris shuttle plasmid. The clone was characterized for genetic stability, copy
number, and BoNTE(Hc) sequence. Expression of rBoNTE(Hc) from the Mut+ HIS4 clone was confirmed in the shake-flask,
prior to developing a fed-batch fermentation process at 5 and 19 L scale. The fermentation process consists of a glycerol growth
phase in batch and fed-batch mode using a defined medium followed by a glycerol/methanol transition phase for adaptation
to growth on methanol and a methanol induction phase resulting in the production of rBoNTE(Hc). Specific growth rate, ratio
of growth to induction phase, and time of induction were critical for optimal rBoNTE(Hc) production and minimal proteolytic
degradation. A computer-controlled exponential growth model was used for process automation and off-gas analysis was used
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for process monitoring. The optimized process had an induction time of 9 h on methanol and produced up to 3 mg of rBoNTE(Hc)
per gram wet cell mass as determined by HPLC and Western blot analysis.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Recombinant C-terminal heavy chain fragment of the botulinum neurotoxin serotype E; Pichia pastoris; Cell-bank characterization;
Fed-batch fermentation; Potency studies

Nomenclature

D derivative factor
F methanol feed rate (g/h)
I integral constant
m maintenance coefficient (g/g/h)
P proportional constant
K cell density correction factor
T induction time
V fermentation medium volume (l)
X wet cell density (g/l)
Yx/s observed yield of biomass to substrate

(g/g)

Greek letters
ε error
μ specific growth rate (h−1)
ν specific methanol utilization rate (g/g/h)

Subscripts
max maximum
MeOH methanol
t at that particular time
0 at initial time

1. Introduction

Botulinum neurotoxins, the most poisonous sub-
stances known to mankind, are finding increased atten-
tion due to their potential threat as a biological war-
fare agent (Medical and Public Health Management,
2001). The toxin produced by the bacteria, Clostridium
botulinum and other closely related clostridial species,
is a zinc endoprotease that acts to prevent the release of
acetylcholine thus blocking neuromuscular transmis-
sion which, if untreated, progressively leads to skeletal
muscle paralysis and eventually death from respiratory
failure (Dreyer and Habermann, 1986; Simpson, 1986;
Pellizzari et al., 1999). There are seven antigenically

distinct serotypes of the neurotoxin designated as A, B,
C1, D, E, F and G (Hatheway, 1989). These neurotoxins
cleave specific sites on the soluble N-ethylmaleimide-
sensitive factor-attachment protein receptor proteins or
SNARE proteins (Schiavo et al., 1993; Foran et al.,
1996; Niemann et al., 1994; Blasi et al., 1993). SNARE
proteins are key components of the nerve cell sys-
tem responsible for the release of the neurotransmitter
acetylcholine into the synapse at the neuromuscular
junction, which ultimately stimulates the associated
muscle (Jahn and Südhof, 1999). The SNARE pro-
teins consist of synaptobrevin on the vesicle membrane
and syntaxin and synaptosome-associated protein of
25 kDa (SNAP25) at the synaptic membrane. Serotype
E cleaves SNAP25 which prevents assembly of the
synaptic fusion complex and therefore the fusion of
the acetylcholine-containing vesicle and the synaptic
membrane. This prevents the release of acetylcholine
into the synapse resulting in a lack of stimulation of
the downstream muscle fibers and results in muscle
paralysis (Schiavo et al., 1993; Simpson, 1986; Byrne
and Smith, 2000). Structurally, the botulinum neu-
rotoxins have two domains, a 100 kDa heavy chain
and a 50 kDa light chain bound together by a disul-
fide bond (DasGupta, 1989; DasGupta and Sugiyama,
1972). Functionally, the heavy chain consists of two
subdomains, a domain at the N-terminus responsible
for membrane transfer into the nerve cell, and a domain
at the C-terminus responsible for binding to the nerve
cell membrane. The light chain is zinc dependent pro-
teases which cleave the SNARE proteins (Smith, 1998).
However, both the non-toxic heavy and light chain
fragments are antigenic and can elicit protective immu-
nity in animals challenged with the toxin (Byrne and
Smith, 2000). To counteract the threat from the lethal
botulinum neurotoxin, various attempts were made to
develop an effective vaccine against all serotypes. Ini-
tial attempts included development of a pentavalent
(A–E) toxoid vaccine by the U.S. Army for immunizing
Army personnel who might be exposed to biological



464 J. Sinha et al. / Journal of Biotechnology 127 (2007) 462–474

warfare. However, the toxoid vaccines poses several
risks which include handling functional toxins, large
volumes of formaldehyde and the current requirements
for specific manufacturing facilities for growing spore-
forming bacteria (Byrne and Smith, 2000). In addition,
the toxoid vaccine candidates, which contain crude
extract of inactivated Clostridial proteins, might influ-
ence immunogenicity of the vaccine (Byrne and Smith,
2000). Recombinant vaccines can be custom designed
to be safe and effective. Proper choice of the vector
can make the vaccine easy to produce and the cul-
ture easy to maintain, and thereby reduce production
costs. Unwanted portions of the antigen that do not
elicit protective immunity or pose health risks can be
eliminated from the vaccine and is a huge advantage
over the toxoids (Smith, 1998; Clare et al., 1991). The
recombinant botulinum vaccine candidates were first
expressed in Escherichia coli. However, large quanti-
ties of soluble antigen E could not be produced in this
expression host due to formation of inclusion bodies
which made refolding difficult resulting in a low yield
(Smith et al., 2004).

Subsequently, a Pichia pastoris expression system
was evaluated for expression of rBoNTE(Hc). Previ-
ously, P. pastoris was used to express high levels (27%
of the total cell protein or about 12 g/L of culture) of
tetanus toxin fragment C, a subunit vaccine candidate
designed to provide protection against tetanus neuro-
toxin (Clare et al., 1991). P. pastoris is a commercially
useful organism for high level expression of recombi-
nant proteins with many advantages (Zhang et al., 2000;
Gellissen, 2000). The organism grows on defined media
to high cell densities on either glycerol or methanol
as the sole carbon source (Zhang et al., 2000; Sinha
et al., 2003) and heterologous protein production is
under the control of a strong but tightly regulated alco-
hol oxidase promoter induced by methanol. P. pastoris
can be grown to the desired cell density on glycerol
as the carbon source and then on methanol for high
level heterologous protein production (Cregg et al.,
1987). In addition, expression can be controlled to
direct expression of target proteins to either the intra-
cellular compartment or to the extracellular medium
by secretion. Expression studies with rBoNTB(Hc)
found that secretion of rBoNTB(Hc) resulted in glyco-
sylation due to N-glycosylation recognition sequences
even though native botulinum neurotoxin is not gly-
cosylated. Glycosylated rBoNTB(Hc) did not provide

protection in a mouse efficacy model while the ungly-
cosylated rBoNTB(Hc) control provided the necessary
protection (Byrne et al., 1998; Smith, 1998). The deci-
sion was made to express all rBoNT(Hc) intracellularly
to eliminate potential glycosylation. The expression of
rBoNTE(Hc) is under the control of the alcohol oxi-
dase promoter in a methanol utilization positive strain
(Mut+), which is induced by methanol as the sole car-
bon source and repressed by other carbon sources like
glycerol or glucose (Inan and Meagher, 2001).

The purpose of this work is to characterize a research
cell bank suitable for Current Good Manufacturing
Practice (CGMP) and to develop a fermentation pro-
cess suitable for transfer to a CGMP facility for pro-
duction of rBoNTE(Hc) for use as a vaccine candidate
in clinical testing.

2. Materials and methods

2.1. Strain development

A rBoNTE(Hc) gene was synthesized based on the
sequence of C. botulinum NCTC 11219 strain and P.
pastoris codon usage (Loveless, 2001). The codon opti-
mized rBoNTE(Hc) gene was inserted into the pHILD4
expression vector (Sreekrishna and Kropp, 1996) at the
EcoRI site (Fig. 1). After amplification in E. coli DH5�,
the plasmid was linearized with SstI and then trans-
formed into P. pastoris GS115 (his4) by spheroplast
procedure as described by Cregg and Kimberly (1998).
Cells growing on minimal dextrose (MD) media lack-
ing histidine were screened for copy number on YPD
plates containing increased concentrations of antibi-
otic, geneticin (G418) up to 10 mg/mL. Cells grown in
25 mL of minimal glycerol medium without histidine
(1.34% yeast nitrogen base (YNB), 4 × 10−5% biotin,
1% glycerol/L sterile distilled water) to an OD600 nm
of 4–8 were transferred to 2 L baffled flasks containing
175 mL of minimal methanol medium (1.34% YNB,
4 × 10−5% biotin, 0.5% methanol) (Loveless, 2001).
The cultures were harvested at 22.5 h by centrifuga-
tion at 2000 × g for 5 min at 4 ◦C. The cells were
ruptured and the cell extract after centrifugation at
10,000 × g was examined for best production by West-
ern blot analysis. The best producing clone, P. pas-
toris [rBoNTE(Hc) E3] was selected as the production
clone.
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Fig. 1. The expression vector pPHILD4/rBoNTE(Hc) The restriction
enzyme site EcoRI is utilized for the insertion of the gene of the
rBoNTE(Hc). The pHILD4 plasmid was derived by insertion of the
gene encoding aminoglycoside 3′-phosphotransferase from pUC-4K
into pHIL-D1 (Sreekrishna and Kropp, 1996).

2.2. Cell bank production

A single colony from a YPD plate was transferred
to a test tube containing 10 mL of YPD medium.
The test tube was incubated at 30 ◦C and 200 rpm
in a rotary shaker for 24 h. Five millilitres of culture
was used as inoculum for 100 mL of YPD media in
500 mL baffled shake flask. The culture was grown up
to 8–10 OD600 nm using the same conditions described
above. When the desired optical density was obtained,
glycerol was added to a final concentration of 15%
(v/v). The culture and glycerol were mixed thor-
oughly, and 1 mL of mixture was distributed asepti-
cally into 2 mL cryovials (Sarstedt, Hayward, CA).
The vials were stored in the vapor phase of liquid
nitrogen.

2.3. Cell bank characterization experiments

2.3.1. Culture identity test
The culture identity test was performed by Accu-

genix Inc. (Newark, DE). In brief, a 500 bp region
of the D2 segment of the 25–28S rRNA locus was
amplified from purified DNA using the PE Biosys-
tems’ MicroSeq DS LSU rDNA fungal sequencing
kit. Both DNA strands of the amplified fragment
were sequenced using di-deoxy terminator sequenc-

ing chemistry and analyzed using ABI Prism 377 DNA
sequencers. The data was assembled, aligned, and com-
pared to a database of 1200 validated entries using
the PE Biosystems’ MicroSeq Microbial Analysis
software.

2.3.2. Cellular morphology and cell viability
Cellular morphology was determined by the gram

staining process. The cells were visualized with a
microscope under oil immersion at 100× magnifi-
cation to distinguish cell size and shape. Cell via-
bility was obtained by counting colonies of cells
grown on agar plates after suitable dilution of the
original culture and reported as colony forming unit
(cfu/mL).

2.3.3. Structural integrity of the inserted
rBoNTE(Hc) gene

Structural integrity of rBoNTE(Hc) gene after cell
bank manufacturing with P. pastoris rBoNTE(Hc) E3
clone was assessed by Southern blot analysis. Genomic
DNA was isolated from P. pastoris rBoNTE(Hc) clone
using MasterPure Yeast DNA Purification Kit (Epi-
centre, Madison, WI) from YPD grown culture. One
microgram of genomic DNA was digested with BstXI,
EcoRI, EcoRV, HindIII, NheI and XbaI and separated
on a 0.8% Agarose gel. The DNA was transferred to
a positively charged nylon membrane, Zeta-Probe GT
(BioRad, Hercules, CA) using the method described
by Southern (1975) and fixed to the membrane by a
UV-Crosslinker. The membrane was pre-hybridized
for 30 min at 40 ◦C with a hybridization solution sup-
plied by DIG High Prime DNA Labeling and Detection
Starter Kit II (Roche Diagnostics Corporation, Indi-
anapolis, IN). Upon completion of pre-hybridization,
the DIG labeled whole rBoNTE(Hc) gene in the same
hybridization buffer was applied to the membrane
as a probe. This hybridization step was performed
for 16 h at 40 ◦C. Washing and detection protocol
was carried out according to the manufacturer’s
instructions.

2.3.4. Insert copy number
Insert copy number was also estimated using

Southern blot analysis. The chromosomal DNA of
P. pastoris rBoNTE(Hc) E3 clone, GS115, and
pHILD4/rBoNTE(Hc) plasmid DNA were digested
with XbaI and run on a 0.8% TAE agarose gel. South-
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ern blotting was performed according to the previously
described method using the 1600 bp NcoI/XbaI frag-
ment of HIS4 gene encoded on the plasmid.

2.3.5. Insert DNA sequencing
The DNA sequence of the rBoNTE(Hc) gene

inserted into the P. pastoris genome was determined as
follows. The cells were induced for 12 h in methanol
containing media (BMMY) before extracting total
RNA. The cells were disrupted in a bead beater
with TRI Reagent® (Molecular Research Center Inc.,
Cincinnati, OH) and 0.5 mm silica zirconia beads with
7 cycles of 1 min each, equilibrated at room temper-
ature for 5 min and then vortexed with chloroform.
After incubation at room temperature for 10 min the
resulting suspension was centrifuged and the aque-
ous phase was transferred to new microfuge tubes and
extracted with isopropanol. These samples were cen-
trifuged and the pellets of RNA were washed with 75%
ethanol, centrifuged and air-dried. The pellets were
re-suspended in FORMAZOL®, (Molecular Research
Center Inc., Cincinnati, OH) incubated for 10 min
at 60 ◦C in a multi-block heater and the RNA was
stored at −80 ◦C. Messenger RNA was purified from
total RNA with Qiagen Oligotex mRNA Spin Column
Purification Kit (Qiagen, Valencia, CA). The mRNA
was used as template for one step RT-PCR using
SuperScript One-Step RT-PCR for Long Templates
kit from Invitrogen (Carlsbad, CA) using forward 5′-
GAATTCACCATGGGAGAGAG-3′ and reverse 5′-
GAATTCCTATTATTTTTCTTGCCATCC-3′ primers.

The PCR product was ligated into pCRII-TOPO
vector using TOPO TA Cloning Kit Dual Promoter
from Invitrogen (Carlsbad, CA). Two positive clones
were sequenced with a total of eight primers to ensure
the sequence was covered twice.

2.4. Inoculum preparation

Frozen culture was thawed and added to previ-
ously sterilized BMGY medium (1% yeast extract, 2%
(w/v) soytone, 0.1 M potassium phosphate buffer-pH
6.0, 1.3% (w/v) yeast nitrogen base and 1.2% (w/v)
glycerol) in shake flasks. The culture was grown for
approximately 24 h to an OD600 nm of 4–5. The seed
culture (100 mL) was transferred aseptically to 2 L of
the fermentation medium in 5 L Bioflo III/3000 fermen-
tors or 500 mL seed culture was transferred aseptically

to 10 L of the fermentation medium in 22 L NLF22
fermentors.

2.5. Fermentation control

Bioflo III/3000 fermentors (5 L) were interfaced
with NBS BioCommand32 (New Brunswick Scientific
(NBS) Company, Edison, NJ) software while NLF22
fermentors (22 L) (Bioengineering AG) were inter-
faced with Batch Expert (Intelligent Laboratory Solu-
tions, Inc., Naperville, IL) for complete supervisory
control. The closed-loop feed control system consisted
of a feed pump for methanol, balance for methanol, and
a controller interface (Zhang et al., 2000). The NBS
controller converted the feed rate to a pump setting
which was then sent to the pump through the BioCom-
mand32 hardware. The NLF Bioengineering fermen-
tors were controlled by Mitsubishi FX programmable
logic controllers (PLCs) which were interfaced with
Batch Expert via an open connectivity (OPC) server
and an OPC bridge. A dynamic data exchange (DDE)
bridge was used to interface the Batch-Expert soft-
ware with a VG Prima �B mass spectrometer (Thermo
Electron Corporation, Houston, TX), which was used
for online analysis of residual methanol and other by-
products, as well as determining the respiratory quo-
tient. Open database connectivity (ODBC) bridge was
also set up to exchange data between Batch-Expert and
the database. The amount of methanol delivered was
measured using a balance as the difference between the
initial mass in the methanol tank and the current mass
(Sinha et al., 2003). Both Biocommand 32 and Batch
Expert were set up to calculate the feed rates during
glycerol and methanol feeding based upon the elapsed
induction time and the amount of methanol actually
delivered.

2.6. Fermentation conditions

P. pastoris cells were grown on basal salts
medium which contained in g/L deionized water:
KH2PO4, 42.9; (NH4)2SO4, 5.0; CaSO4·2H2O, 0.5;
MgSO4·7H2O, 11.7; K2SO4, 14.3; glycerol, 20. In
addition, 4.35 mL/L PTM1 salt was filter sterilized and
added to the medium. PTM1 salts contained (in g/L
deionized water): CuSO4·5H2O, 2.0; ZnCl2, 7.0; NaI,
0.08; FeSO4·7H2O, 22.0; MnSO4·H2O, 3.0; Biotin,
0.2; Na2MoO4·2H2O, 0.2; boric acid, 0.02; CoCl2, 0.5
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along with H2SO4, 2 mL. All chemicals were tested
for composition and upon release by the Biological
Process Development Facility, University of Nebraska-
Lincoln (UNL-BPDF) Quality Assurance Unit were
issued for use. All media components were entered
in the media preparation logbook and copies were
included in the UNL-BPDF’s standard fermentation
batch record, which are used for all research fermen-
tations. Technology transfer batch records were used
when the fermentation was scaled up to the 19 L.
The batch record provides details of all phases of the
fermentation with necessary checks, compliance with
accepted ranges, and space to document any process
deviations. Critical information also included culture
information and seed bank lot number, manufacturer
and lot number of all chemicals and supplies, and a
detailed equipment list. The batch record referenced all
pertinent standard operating procedures (SOP), which
were also transferred to the contract manufacturing
outsourcing (CMO) along with Material Safety Data
Sheets (MSDS) and other safety precautions.

After inoculation of the fermentation medium, the
cells were grown on glycerol (glycerol batch phase)
until the glycerol was consumed, which was marked
by a sudden and sharp increase in the dissolved oxy-
gen level (a DO spike). This was followed by a glycerol
fed-batch phase (linear feed: 13.3 g/L/h) to obtain a tar-
geted cell density. A 63% (w/v) glycerol (13.3 g/L/h)
feed containing 12 mL/L PTM1 salts was used as the
carbon source during the glycerol fed-batch phase. At
the end of the glycerol fed-batch phase, 2 g MeOH/L
of broth was injected into the fermentor as a bolus to
induce product gene expression. Simultaneously, the
glycerol feed rate was programmed to decrease lin-
early from 13.3 g/h/L to zero over a 3-h period. This
3-h period is considered the transition phase as the cells
adapt to methanol as the sole carbon source (Zhang et
al., 2000). A pre-calibrated methanol sensor was used
to monitor the level of methanol from off-gas which
started decreasing after 1 h of the methanol addition and
reached undetectable levels between 1.5 and 2 h after
the addition of the bolus of methanol to the fermentor.
At this time a continuous feed of methanol contain-
ing 12 mL/L of PTM1 salts (methanol fed-batch phase)
was started and the cells were grown using an expo-
nential methanol feed. Fermentations were performed
at 30 ◦C and pH was controlled at 5.0 using saturated
aqueous ammonium hydroxide throughout the fermen-

tation. The dissolved oxygen (DO) was set at 40% of
saturation and was controlled by a DO cascade of agi-
tation (maximum of 800 rpm for 5 L fermentor and
1000 rpm for 22 L fermentor) followed by supplement-
ing with pure oxygen to air sparging at 1 vvm. Sam-
ples were taken at regular intervals and analyzed for
rBoNTE(Hc) by Western blot (qualitative) and HPLC
(quantitative). A defined sampling schedule and sam-
pling instructions were given in the batch record. The
cells were harvested at the end of fermentation when-
ever necessary to support downstream processing and
purification experiments.

2.7. Detection of rBoNTE(Hc) by Western blot

Fermentation samples were collected at various
intervals and centrifuged at 8000 × g for 10 min at 4 ◦C.
The pellet was washed by re-suspending the pellet in
cold lysis buffer (50 mM sodium phosphate, pH 7.5),
centrifuged at 10,000 rcf for 5 min at 4 ◦C, decanting
the supernatant, and re-suspending the pellet in the cold
lysis buffer (10 mL buffer/g pellet) with 50 �L/(g cell
pellet) each of 0.5 M EDTA and 0.2 M phenylmethyl-
sulfonylfluoride (PMSF). The cells were broken in a
bead beater at 5 ◦C (3.7–3.9 g cold zirconia beads/g
cell pellet) with 3 cycles of 1 min burst each with 5 min
rest between cycles at 5 ◦C. The broken cells were cen-
trifuged at 5000 × g for 5 min at 5 ◦C to separate the cell
extract from the cell debris and the zirconia beads and
then re-centrifuged at 18,000 × g for 10 min at 5 ◦C to
remove any particulates prior to analysis. Protein bands
from fermentation samples were separated on a 10%
Bis–Tris gel with MOPS, pH 7.7 as the running buffer
and then transferred to a (polyvinylidine difluoride)
PVDF membrane using a semi-dry transfer appara-
tus (Bio-Rad, Hercules, CA). The PVDF membrane
was soaked with blotto (5% (w/v) skimmed milk pow-
der in Tris buffer saline) and treated sequentially with
anti-BoNTE(Hc) antibodies derived from chickens for
1 h at a dilution of 1:3000, washed at least twice with
Tris buffered saline (TBS) followed by treatment with
peroxide labeled affinity purified goat anti-chicken sec-
ondary antibodies (Kirkland and Perry, Gaithersburg,
MA) at a dilution of 1:6667 for 1 h. The membrane was
again washed several times with TBS and the image
was developed using the ECL + plus Western Blotting
Detection System (Amersham Biosciences, NJ). Puri-
fied rBoNTE(Hc) was used as the standard.
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2.8. Estimation of rBoNTE(Hc) by HPLC

The concentration of rBoNTE(Hc) in the cell extract
was estimated using a Waters (Milford, MA) high per-
formance liquid chromatography system comprising
a Model 600 four-solvent pump, Model 486 UV–vis
detector and a Model 717 Plus auto-sampler. Waters
HPLC software, Empower 5.0, was used for instru-
ment control, data collection and data processing.
Analysis was performed using a methyl acrylate co-
polymer (TSK gel phenyl 5-PW) hydrophobic inter-
action column (10 �m, 7.5 mm × 75 mm; Tosoh Bio-
Science, Tokyo, Japan). The cell extract (0.5 mg protein
per injection) was injected on to the column which was
pre-conditioned with a mixture of 25% (v/v) of mobile
phase A (0.2 M Tris–HCl, 2 mM EDTA, pH 7.7), 40%
(v/v) of mobile phase B (1 M ammonium sulfate, 2 mM
EDTA) and 35% (v/v) mobile phase C (2 mM EDTA)
for 1 h. The rBoNTE(Hc) protein was eluted using a
programmed gradient of the mobile phases A–C for
55 min at 1 mL/min. The composition of the individual
solutions is the same as described earlier.

2.9. Protease assay

Protease activity in the cell extract was analyzed
by measuring the fluorescent intensity of the liberated
dye-labeled peptides from highly quenched fluorescent
casein (Bodipy-casein FL) as a substrate (Jones et al.,
1997). One unit of protease activity was defined as
the unit increase in fluorescence intensity of Bodipy-
casein FL as substrate with excitation at 485 nm and
a fluorescence emission at 530 nm. Samples were ana-
lyzed using a SpectraMax M2 fluorescence spectrom-
eter (Molecular Devices Corporation, Sunnyvale, CA)
equipped with a 96 well micro plate reader.

2.10. Mouse potency bioassay

The potency of the purified rBoNTE(Hc) was deter-
mined using a mouse potency bioassay. A total of 7
groups of 10 mice each (Control: CD-1 mice, females,
Charles River, Raleigh, NC) were intramuscularly vac-
cinated with 0.1 mL of diluted antigen. The antigen
was diluted three-fold beginning at 8.1 �g to 11 ng
in 25 mM sodium succinate, 15 mM sodium phos-
phate, pH 5.0 with 5% mannitol and 0.2% Alhydrogel
(HCI Biosector, Frederikssund, Denmark) as adjuvant.
Twenty-one days following vaccination the mice were

challenged with 1000 mouse intraperitoneal LD50 of
botulinum type E toxin complex. Numbers of sur-
vivors were recorded 5 days post-challenge. Results
were evaluated by the analysis of survival rates and
calculation of the effective dose by probit analysis.
Probit dose–response models were fitted to dose lethal-
ity data and the estimated parameters of the probit
dose–response model were used to calculate ED50 val-
ues, i.e., the theoretical effective dose of vaccine at
which 50% of the animals vaccinated survive chal-
lenge. The 95% confidence interval for the ED50 was
calculated concurrently.

3. Results and discussion

3.1. Strain development and selection

The expression vector pPHILD4/rBoNTE(Hc) was
constructed as shown in Fig. 1 (Loveless, 2001). The
restriction enzyme site EcoRI was utilized for the
insertion of the rBoNTE(Hc) gene fragment. The plas-
mid was linearized at the AOX1 promoter site with
restriction enzyme, SstI before transforming P. pastoris
GS115 strain. Transformants were selected by expres-
sion of the histidinol dehydrogenase gene demon-
strated by growth on histidine deficient regeneration
medium (Cregg and Kimberly, 1998). Dose dependent
resistance to the antibiotic geneticin (G418) was con-
ferred by accumulation of the resistance determining
enzyme aminoglycoside phosphostransferase (APT).
His+ colonies which survived at 10 mg/mL G418 were
screened for expression of rBoNTE(Hc) by methanol
induction in shake flask culture. The best expressing
clone was chosen for further studies by comparing on
the basis of degree of band intensity (results not shown).

3.2. Cell bank characterization

Viable cell count of seed bank was 6.56 × 108

(cfu/mL) based on colony forming units (cfu) on
Luria–Bertany (LB) plates by plating serial dilutions
after freeze/thaw cycle of seed bank. Gram staining
of the cells revealed that the cells were gram positive,
ovoid cells with or without budding (results not shown)
confirming the expected P. pastoris cell morphology.
Cell growth on histidine-lacking media (MGY plates)
also confirmed that GS115 host strain His− pheno-
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type was recovered by transforming with pHILD4
rBoNTE(Hc).

The rBoNTE(Hc) gene sequence was confirmed by
sequencing of the RT-PCR product, which was the
expected 1.3 kb fragment as described in Section 2. The
consensus sequences of aligned DNA sequences with
eight primers matched the theoretical rBoNTE(Hc)
DNA sequence as well as the deduced amino acid
sequence of rBoNTE(Hc) protein.

The copy number of the rBoNTE(Hc) gene inserted
into the chromosome of P. pastoris rBoNTE(Hc)3E
clones was estimated by Southern blot analysis (Fig. 2).
The GS115 host strain resulted in a single band from the
defective histidinol dehydrogenase (his4) gene when
the genomic DNA was cut with XbaI enzyme and
probed with a NcoI/XbaI fragment of the HIS4 gene
(Fig. 2, lane 3). The transformed host resulted in two
bands, the 3 kb band corresponding to the chromosomal
copy of his4 gene, and an additional 10 kb band corre-
sponding to a copy of HIS4 gene from the expression
vector (Fig. 2, lane 2). Copy number was estimated as a
ratio of the intensity of the 10 kb band to the his4 band
(lane 2, 71/22 = 3.22). The experiment was repeated
twice and the average copy number value obtained was
3.2. The copy number cannot be a fractional number,
therefore, the copy number of rBoNTE(Hc) gene in P.
pastoris (rBoNTE(Hc)E3) was estimated as three.

Structural integrity of rBoNTE(Hc) in P. pastoris
rBoNTE(Hc)E3 clone was assessed by Southern blot
analysis. This time the genomic DNA of the P. pas-

Fig. 2. Southern blot of GS115 host and Pichia pastoris
rBoNTE(Hc)E3 strain using HIS4 as a probe. Chromosomal DNAs
were cut with XbaI enzyme. Lane 1, DNA ladder; lane 2, P. pas-
toris rBoNTE(Hc)E3 strain; lane 3, GS115 host strain; lane 4,
pHILD4/rBoNTE(Hc); lane 5, DIG ladder.

Fig. 3. Southern blot of GS115 host and P. pastoris rBoNTE(Hc)E3
strain using rBoNTE(Hc) as a probe. Lanes 1–6 are genomic DNA
of P. pastoris rBoNTE(Hc)E3 cut with enzyme that are indicated as
above the lanes; lane 7, genomic DNA of host starin GS115 cut with
EcoRI; lane 8, pHILD4/rBoNTE(Hc) plasmid DNA cut with EcoRI.

toris rBoNTE(Hc)E3 clone was digested by differ-
ent enzymes and hybridized with DIG labeled whole
rBoNTE(Hc) gene. The EcoRI digestion resulted in the
expected 1.37 kb single band for transformed strain and
no corresponding bands for the host strain (Fig. 3, lane
1). This band aligned as expected with 1.37 kb band
of plasmid pHILD4rBoNTE(Hc) digested with EcoRI
restriction enzyme. Two bands were observed when
genomic DNA was cut with NheI enzyme since the
rBoNTE(Hc) gene contain an internal NheI site. BstXI
digestion resulted in an expected 3 kb band (Fig. 3, lane
2) since BstXI digestion of the pHILD4/rBoNTE(Hc)
drops a 3 kb band from the plasmid by cutting outside
of the rBoNTE(Hc) gene.

3.3. Shake flask growth kinetics and effect of
inoculum age on fermentation

The P. pastoris rBoNTE(Hc)E3 clone was grown for
72 h under identical conditions in triplicate as described
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in Section 2. The lag phase lasted 12 h, after which
the cells grew exponentially at μobserved = 0.1701. The
effect of inoculum age on fermentation productivity
was evaluated. Inocula from shake flasks at the begin-
ning of the exponential phase, middle of the exponen-
tial phase and the end of stationary phase, 22.75, 29.75
and 46.75 h, respectively, were used to inoculate three
5-L fermentors. Differences in the OD600’s of the sam-
ples was compensated for by varying the volume used
to inoculate the fermentor (OD∗

600 volume = 3286) so
that the fermentor’s initial OD600’s were the same.
The length of the batch phase with an inoculum age
of 22.75 h was 19 h. The length of the batch phase
increased to 22.25 h for both the 29.75 and 46.75 h
inoculums. The age of the inoculum did not affect
the final cell density of the batch phase indicating the
yield coefficient of the cells was the same regardless of
the age of the inoculum. Optimizing the inoculum age
reduced total fermentation time by approximately 3 h.

3.4. Maximum methanol specific growth rate in
5-L fermentor

The maximum specific growth rate on methanol,
μMeOH,max was determined by maintaining the residual
methanol concentration in the fermentor below 2 g/L
using a methanol sensor, which is below the inhibitory
level (Zhang et al., 2000), A serial PID equation was
developed to maintain the methanol set point below
2 g/L in the fermentor as described below:

F = Pε + I

∫
ε dt + D × ε dt (1)

where F is the pump output in percent of maximum; ε

the error between sensor and set point; P the propor-
tional factor; I the integral factor and D is the derivative
factor.

Values of P = 2, I = 0.01 and D = 30 was found to be
optimal for smooth control of methanol addition.

The μMeOH,max averaged 0.0567 h−1 in duplicate
experiments, which is lower than 0.0709 h−1 for
rBoNTA(Hc) (Zhang et al., 2000) and 0.08 h−1 for
the wild type strain X-33 (GS115, His+) (unpub-
lished results), indicating that there is a metabolic
strain induced by production of rBoNTE(Hc). Recom-
binant BoNTE(Hc) analysis by HPLC revealed that
cell growth at μMeOH,max, resulted in a low yield of
rBoNTE(Hc) (0.51 mg rBoNTE(Hc)/g WCW) and the

Fig. 4. Western blot of time profile of rBoNTE(Hc) production grow-
ing at μmax; lane 1, M – marker; lane 2, 0 h; lane 3, 1.9 h; lane 4,
22.4 h; lane 5, 29 h; lane 6, 34 h, lane 7, 45 h; lane 8, rBoNTE(Hc)
standard. All times refer to elapsed induction time.

Western blot showed that rBoNTE(Hc) was substan-
tially degraded at 22.4 h of methanol induction (Fig. 4).
It has previously been observed that faster growth on
methanol elicits higher protease accumulation in P.
pastoris (Sinha et al., 2003, 2005) increasing the likeli-
hood of proteolytic degradation of the product. Hence,
growth rates below the maximum specific growth rates
were investigated to determine an optimal growth rate
for rBoNTE(Hc).

3.5. Optimal specific growth rate on methanol

Cells were grown on methanol at specific growth
rates of 0.02, 0.03, 0.04 and 0.05 h−1 and the effect
on rBoNTE(Hc) production was observed. The spe-
cific growth rates were controlled using a model feed
equation described by Zhang et al. (2000):

F = (0.84μ + 0.0071) K(X0V0)eμt (2)

where F is the methanol feed rate (g/h); X0 the wet cell
density at the beginning of methanol feed (g/l); t the
time of methanol fed-batch phase; V the fermentation
medium volume (l) at the beginning of methanol feed
and μ is the specific cell growth rate (h−1).

Initially, a cell density correction factor of K = 0.86
was introduced to account for shrinkage and changes in
wet cell density due to transition of carbon source from
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glycerol to methanol, which lasted approximately the
first 2–3 h of methanol feeding. Since this only lasts
for 2–3 h, a value of K = 1 was used. The observed
growth rates closely matched the growth rates used in
the growth model. Maximum rBoNTE(Hc) (1.93 mg/g
WCW) was obtained when the cells were grown
between μ = 0.02 and 0.03 h−1. Subsequent exper-
iments showed that optimum rBoNTE(Hc) produc-
tion occurred at a specific growth rate of 0.0267 h−1,
which is the optimum for rBoNTA(Hc) (Zhang et al.,
2000). Time course analysis of rBoNTE(Hc) sam-
ples by HPLC and Western blots showed that, irre-
spective of the specific growth rate on methanol, the
maximum rBoNTE(Hc) was produced between 8 ± 3
and 22 ± 3 h of induction approximately. After reach-
ing maximum value at 22 ± 3 h of induction approxi-
mately, rBoNTE(Hc) production decoupled from cell
growth and rBoNTE(Hc) decreased steadily to unde-
tectable levels after around 45 h of induction. The max-
imum yield of intact rBoNTE(Hc) was obtained at 9 h
of induction.

Total amount of intracellular proteases were ana-
lyzed at different times during the methanol induction.
It was observed that protease activity increased from
the start of methanol induction and reached a maxi-
mum value at 9 h (following BoNTE(Hc) production)
and remained at a constant level throughout the rest
of the methanol induction phase (Fig. 5). The protease
activity was found to have a direct correlation with anti-

Fig. 5. Protease activities in cell extracts of time course samples from
fermentation in 5 L bioreactor.

gen E production. It was determined that rBoNTE(Hc)
purified from a 9 h induction was stable at 4–8 ◦C for 7
days as compared to rBoNTE(Hc) purified from a 27 h
induction which degraded 5–10% based on SDS-PAGE
under the same conditions (data not shown). It was this
experiment that decided the 9 h methanol induction.

3.6. Extended glycerol feed rate and optimum
MeOH induction time

The effect of growing P. pastoris cells to vari-
ous high cell densities on glycerol prior to methanol
induction was investigated. The objective was to deter-
mine the effect of extended glycerol feeding on protein
expression and the optimal induction wet cell density
for maximum product yield. The wet cell densities at
the beginning of induction were varied from 200, 250,
300 and 350 g/L by growing the cells on a constant glyc-
erol feed rate for an extended period of time. The cells
were fed glycerol, as the sole carbon source, until they
reached their desired wet cell weight (WCW) prior to a
9 h methanol induction. It was observed that the max-
imum specific yield of rBoNTE(Hc) per gram of wet
cells was attained when cells were induced at a WCW
of 200 g/L (Fig. 6). In comparison, induction at a WCW
of 100 g/L resulted in the same BoTNE(Hc) specific
yield as a WCW of 200 g/L. Induction at higher WCW
resulted in a lower productivity per unit cell mass.

Fig. 6. Time course of rBoNTE(Hc) production after induction at
different initial wet cell densities. (�) 200 g/L; (�) 250 g/L; (�)
300 g/L; (♦) 350 g/L.
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3.7. Scale-up of fermentation

The rBoNTE(Hc) fermentation process was scaled-
up to a 22 L Bioengineering NLF22 fermentor (Wald,
Switzerland) to confirm product yield prior to transfer
for CGMP production at the 100 L scale. A technology
transfer batch record was implemented for the 22 L fer-
mentation in preparation for transfer to a CGMP facil-
ity. In the batch record, the entire fermentation process
was divided into several phases like inoculum batch
up, inoculation, incubation, fermentor batch up, inocu-
lation, batch, fed-batch and methanol induction phases,
monitoring and sampling, harvest. Acceptable ranges
were defined for each variable, e.g. pH: 5 ± 0.5, temper-
ature: 30 ± 2 ◦C, air flow: 1 ± 0.1 vvm flow, inoculum
level: 50 ± 5 mL/L medium with a OD600: 13 ± 2. In
the case of the methanol feed profile, the CMO did
not have the ability program an exponential methanol
feed rate so this was simulated by a series of linear
steps, which overlapped the exponential profile. Using
a series of linear steps produced the same quality and
quantity of rBoNTE(Hc) and was easily transferred to
the CMO. The technology transfer batch records pro-
vide more process specific information as compared
to our CGMP batch records which are both process
specific and equipment specific. The residual methanol
level was monitored by off-gas measurement using a
mass spectrometer interfaced to the control software
Batch-Expert via a DDE bridge as described earlier.
Methanol was detected in the fermentation broth when
a bolus of methanol (1.5 g/L) was added for adaptation;
the methanol level in the off-gas spikes as the cells do
not utilize methanol immediately (the cells were uti-
lizing glycerol as the carbon source), but with time the
cells adapt to the methanol and this is reflected in a
decrease of methanol in the off-gas (Fig. 7a). When
the methanol level reduces to (50 ± 25 ppm), i.e. the
cells utilize the initial bolus of methanol injected to
the system, a second bolus of methanol (2 g/L broth)
is introduced (as a bias) and the methanol feed started,
so that the control system does not oscillate to control
the methanol level at 2 g/L which is very critical for
the process. The methanol level however was almost
undetectable during induction, indicating that there was
no accumulation of methanol in the medium (Fig. 7a).
Analysis of off-gas data showed that the respiratory
quotient (RQ) ranged from 0.5 to 0.7 and that the CO2
evolution rate was 2–3% during methanol induction.

Fig. 7. Profile of various parameters and off-gas analysis during
rBoNTE(Hc) fermentation in 19 L Bioengineering fermentor. (a)
( ) Methanol feed rate; ( ) glycerol feed rate; (�)
amount of glycerol fed; (*) amount of methanol fed; (©) methanol
in off-gas. (b) ( ) Oxygen consumed; (*) carbon dioxide
evolved; ( ) respiratory quotient (RQ).

The fluctuations observed in oxygen uptake rate and
RQ (Fig. 7b) were the result of a pulsating oxygen
supply from the fermentor control unit which controls
oxygen input by an on–off control at an oxygen require-
ment of less than1 L/min. However, when the oxygen
requirement is above 1 L/min, the oxygen supply was
controlled at 0.1 L/min increments resulting in smooth
oxygen supply. The respiration rate increased during
the transition period and then decreased gradually to a
steady value throughout induction. The observed spe-
cific growth rate was 0.0237 h−1 which was close to
the theoretical specific growth rate of 0.0267 h−1. The
induction WCW varied between 114 and 134.2 g/L
in duplicate fermentation experiments. An induction
time of 9 h produced 3.6 mg rBoNTE(Hc) per gram of
wet cell. Cell growth, substrate utilization, and oxy-
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Fig. 8. Profile of off-gas analysis during rBoNTE(Hc) fermentation
in 5 L Bioflo fermentor. ( ) Oxygen consumed; (*) carbon
dioxide evolved; ( ) respiratory quotient (RQ).

gen consumption rate were comparable when the pro-
cess was scaled-up from the 5 to 19 L scale, however,
rBoNTE(Hc) yield was 1.25 mg/g WCW at 11.2 h in the
5 L bioreactor compared to 3.60 mg/g WCW produced
at 9.05 h in the 19 L bioreactor. The cell density aver-
aged an increase of 41.5 and 40 g/L at 5 and 19 L scale,
respectively, during the methanol fed-batch phase. The
yield coefficient on methanol was 0.8 g WCW/g MeOH
consumed at the 5 L scale versus 0.71 g WCW/g MeOH
consumed at 19 L scale. The RQ varied from 0.5 to 1.0
at the 5 L scale which was close to the RQ values of
0.5–0.7 at the 19 L scale (Figs. 8 and 9). However, the
product quality was found to improve in the 19 L fer-
mentor as no degradation fragments was detected by

Fig. 9. Western blot time profile of rBoNTE(Hc) production in 19 L
fermentor for large scale fermentation and purification. Lane 1,
marker; lane 2, 0 h; lane 3, 2.3 h; lane 4, 9 h; lane 5, rBoNTE(Hc)
standard. All times refer to elapsed induction time.

Western analysis compared to rBoNTE(Hc) produced
in the 5 L fermentors (Fig. 9). At this time there is no
obvious or scientific reason to the significant increase in
rBoNTE(Hc) yield at the 19 L scale, except that it was
observed that 19 L system provided “smoother” control
of fermentation variables and carbon source feeding.

3.8. Studies on mouse potency bioassay of
rBoNTE(Hc)

The potency of the rBoNTE(Hc) produced from fer-
mentations described above was determined using a
mouse bioassay. Results were subjected to probit anal-
ysis to determine the ED50, or theoretical antigen dose
that will protect 50% of the mice from lethal injec-
tion. The survival of the mice after immunizations with
rBoNTE(Hc) doses ranging from 11 ng to 8.1 �g was
carried out. The calculated ED50 for this potency assay
was 214 ng, with 95% confidence limits ranging from
86 to 491 ng. The rBoNTE(Hc) for vaccination of mice
was obtained from purification of protein from the 19 L
scale fermentation.

4. Conclusion

A scalable fermentation process for the manufac-
ture of rBoNTE(Hc) was developed in preparation for
transfer to a CGMP manufacturing facility, using a fully
characterized accession cell bank. An induction time
of 9 h was optimal for minimizing proteolytic degrada-
tion of rBoNTE(Hc). The process is well-defined and
scale-up studies at the 19 L scale indicate the ability to
transfer the process to pilot-scale. This process is robust
and should serve as a framework for development of
the remaining botulinum recombinant vaccines under
development, i.e. serotypes C, F, D and G.
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