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Identification and characterization of calcium and manganese transporting
ATPase (PMR1)geneof Pichia pastoris

Abstract

A gene homologous to Saccharomyces cerevisiae PMR1 has been cloned in the
methylotrophic yeast Pichia pastoris.The entire P. pastoris PMR1 gene (PpPMRI1 ) codes a
protein of 924 amino acids. Sequence analysis of the PpPPMR1 cDNA and the genomic DNA
revealed that there is no intron in the coding region. The putative gene product contains all
of the conserved regions observed in P-type ATPases and exhibits 66.2%, 60.3% and 50.6%
identity to Pichia angusta (Hansenula polymorpha), Saccharomyces cerevisiac PMR1 and
human ATP2C1 gene products, respectively. A pmrl null mutant strain of P. pastoris
exhibited growth defects in media with the addition of EGTA, but with supplementation of

2
Ca  to a calcium-deficient media reversed the growth defects of the mutant strain.
Manganese reversed the growth defects of the mutant strain; however, the cell growth was

2
not as profound as the Ca +-supplemented media. The results demonstrated that the P.
pastoris gene encodes the functional homologue of the S. cerevisiac PMR1 gene product, a P-

type Ca2+/Mn2+-ATPase. The DNA sequence of the P. pastoris PMR1 gene has been
submitted to GenBank under Accession No. DQ239958.
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Introduction

A number of ion-motive ATPases have been identified in a broad variety of organisms, from yeast
to human. They have been group into four major classes, the F-, V-, P-and ABC-type ATPases
2+

(Pederson, 2002). The P-type Ca ATPases, having Very distinct biochemical characterization
from the other ATPases, includes secretory pathway Ca ATPases (SPCA), sarco/endoplasmic
reticulum Ca ATPases (SERCA) and plasma-membrane Ca pumps (PMCA) (Ton et al.,

2002). The secretory pathway Ca ATPase (SPCA) or their yeast counterparts (PMR1 pumps)
have attracted attention recently when Hailey—Hailey disease was linked to a mutation in the
human ATP2C1 gene (Hu et al., 2000; Sudbrak et al., 2000).

The yeast PMR1 gene product was localized only in later compartments of the secretory
pathway (Antebi and Fink, 1992; Sorin et al., 1997) whereas SERCA pumps are expressed both
in the ER and 1n the Golgi complex (Wuytack et al., 2003). The yeast pmrl mutants fail to

2+
concentrate Ca and Mn within the Golgi secretory pathway, leading to defective growth in
media containing BAPTA or EGTA (Rudolph et al., 1989; Wei et al., 2000). Addition of

pxs
extracellular Ca reversed these defects in pmrl mutant yeast strains (Antebi and Fink, 1992).
2+
Given the central importance of Ca as an intracellular messenger, it should not be surprising that
+ 2+

2
complex mechanisms exist in cells to manage and control Ca . Much of the Ca accumulates in
2+

the endoplasmic reticulum and calciosomes. Ca is released when messenger signals are
generated. These signals are translated into desired intracellular responses by calcium-binding
proteins, which in turn regulate many cellular processes 1nclud1ng secretion of proteins. Recently,

it has been shown that, in addition to its role as Ca and Mn pumps, the PMR1 gene product
plays a central role with cellular functions, such as glycosylation, sorting (Rudolph et al., 1989),
endoplasmic reticulum-associated degradation (ERAD) (Durr et al., 1998; Ramos-Castaneda et
al., 2005), salt tolerance (Park et al., 2001), cell shape (Cortes et al., 2004) and virulence (Bates
et al., 2005). The pmr1 mutant strains were also evaluated for improved secretion of heterologous
recombinant protein productions (Ko et al., 2002; Sohn et al., 1998).

P. pastoris has become an organism of interest for heterologous protein expression for
industrial applications. This organism is also suitable for studying cellular processes such as
peroxisome biogenesis and protein secretion (Johnson et al., 1999; Mogelsvang et al., 2003;
Payne et al., 2000). In this study, we report identification of the Pichia pastoris PMR1 gene
(PpPMR1 ), which codes for a S. cerevisiac Pmrlp homologue and phenotypic characterization of
the PpPPMR1-disrupted mutant strain.

Materials and methods

Strains, media and standard methods

The P. pastoris strain used in this study was GS115 (hi4 ). Escherichia coli TOP10 cells and the
plasmid pAO815 were purchased from Invitrogen (Carlsbad, CA). S. cerevisiae AAY?247 (a gift
from Audrey Atkin, University of Nebraska, Lincoln, NE) was used as a positive control for PCR.
The medium used for cell growth was YSD (yeast extract 10 g/l, Soytone 10 g/l, dextrose 20 g/I)
or minimal dextrose (MD: yeast nitrogen base with ammonium sulphate without amino acids 1.34
g/l, dextrose 10 g/l, biotin 0.0004 g/1). MDH medium consisted of MD with the addition of
his;irdine (0.0004 g/1). Solid media were prepared with a 15 g/l agar addition. Synthetic

Ca deficient medium was prepared as MD medium with the omission of CaCl2, as previously



described in Rudolph et al. (1989). The only calcium ions in this medium were from calcium salt

of panthothenate (0.84 uM). The cultures were grown at 30 Cina stationary incubator on plates
or with shaking at 225 rpm in a reciprocal shaker.

All DNA manipulations were performed using methods described by Sambrook et al. (1989).
The DNA probes were labelled with digoxigenin, using a High Prime DNA Labeling and
Detection Starter Kit from Roche Molecular Systems Inc. (Alameda, CA). Restriction enzymes

O
and the Quick ligation kit were from New England Biolabs (Ipswich, MA). The SMART RACE
cDNA Amplification Kit was from BD Clontech (Palo Alto, CA). The primers were purchased
from Eurogentec North America Inc. (San Diego, CA).

Cloning of P. pastoris PMR1 gene

To identify the P. pastoris PMR1 gene, forward (5 GGTTGCTGCTATTCCAGAAGG-3) and
reverse (5 -CCAACGGCGTAGTTGAACAT-3) primers were designed, based on the consensus
sequence of the PMR1 DNA sequence from S. cerevisiae (P13586), which were highly
homologous to P. angusta (AAC68831) and Yarrowia lipolytica (043108). The genomic DNA of
P. pastoris GS115 strain was used as a template, along with the above primers to amplify the
PpPMRI gene fragment. As a positive control, another PCR reaction was run using S. cerevisiae
genomic DNA with the same primers. The expected [11.6kb PCR product, based on the S.
cerevisiae PMRI1 gene, was gel-purified from the PCR product of P. pastoris genomic DNA and
subcloned into a pCRII-TOPO vector. The fragment was sequenced at the University of Nebraska
Lincoln Genomics Core Research Facility (GCRF) by the dideoxy method.

Total RNA of P. pastoris GS115 was prepared from YSD-grown cells. The cells were broken
with
0.5 mm Zirconia/silica beads in a Bead Beater (BioSpec Products Inc., Bartlesville, OK) with 1
min breaking time followed by a 5 min resting interval. Total RNA was extracted with TRI
reagent (Molecular Research Center Inc., Cincinnati, OH). mRNA was purified from total RNA
with Oligotex Spin Column Purification Kit (Qiagen Inc., Valencia, CA).

The entire DNA sequence of PpPMR1 gene was obtained by the rapid amplification of cDNA

0 0
ends (RACE) PCR method. The 5 and 3 RACE Ready cDNA was prepared following the
instruction manual from the SMART RACE QDNA 7ampliﬁcation kit (BD Biosciepces, San Jose,

CA). This cDNA was used as a template for 5 and 3 race PCR reactions, using a 5 RACE primer

(CTGCATGGCATTCAATGGATTTGGCAGGTTQG) and a 3 RACE primer
(GCTGAAGGTATCGCCACTCCACTCACAQG), respectively, in separate reactions. The PCR
products were gel-purified and subcloned into a pGEM-T vector (Promega, Madison, WI). Insert
fragments were sequenced and then assembled into one sequence. The entire PMRI gene

sequence was amplified from 5 Race Ready cDNA and GS115 total genomic DNA with forward
(GGACAACTGTTATTTGCTTCTTTCCTGG) and reverse
(GCACATGAAACTATATCTAATG) primers. The PCR products were then subcloned into the
pCRIITOPO vector and the insert fragments were sequenced, with 12 primers covering the entire
sequence twice.

Disruption of the PpPMRL1 gene

The PpMR1 gene was disrupted with a DNA fragment encoding the functional HIS4 gene, which
was excised from the plasmid pAO815 (Invitrogen) with BamHI and Bgl II. The gel-purified
fragment was inserted into the BgIII site of the PpPMR1 gene in the pCRIIPpPMR1 plasmid.



Then the plasmid was digested with AflII and Sacl restriction enzymes. The 6.1 kb linear pmr1
disruption fragment (Figure 3B) was gel-purified and transformed into P. pastoris GS115
electrocompetent cells prepared according to the method described by Wu and Letchworth
(2004). The transformed cells were plated on 1+\/[D + 10 mM CaCl2 plates.

The single colonies grown on MD + Ca plates were inoculated in YSD broth and grown

overnight at 30 C. Chromosomal DNA from the yeast cells was prepared from the YSD culture
using a Yeast Pure Chromosomal DNA kit (Epicentre, Madison, WI). Chromosomal DNA (3 ng)
from the chosen clones was cut with ECORI enzyme and then separated on a 0.8% agarose gel.
The DNA fragments were transferred to a positively charged nylon membrane (BioRad, Hercules,
CA). The 600 bp of PMR1 gene (EcoRI and BglIl) fragment was used as a probe for Southern
blot analysis by following the instructions of a High Prime DNA Labeling and Detection Starter
Kit from Roche Molecular Systems, Inc. (Alameda, CA).

Results and discussion

Cloning and sequence analysis of the P. pastoris PMR1 gene

The PMR1 genes of several yeasts, including S. cerevisiae (Rudolph et al., 1989), Y. lipolytica
(Park et al., 1998), H. polymorpha (Kang et al., 1998), Neurospora crassa (Benito et al., 2000),
Aspergillus niger (Yang et al., 2001), Schizosaccharomycess pombe (Cortes et al., 2004),
Candida albicans (Bates et al., 2005) and Aspergillus fumigatus (Soriani et al., 2005) have been
identified and characterized. The pmrl null mutants of these yeasts showed growth defects in

media containing EGTA or BAPTA. The addition of Ca reversed the growth defects of these
mutants.

In order to clone the PpPMR1 gene, a PCR experiment was carried out with two primers which
were specific to the S. cerevisiae PMR1 gene. The S. cerevisiae PMR1 gene-specific primers were
used rather than degenerate primers, due to high homology of the DNA sequences of conserved
regions from S. cerevisiae, P. angusta and Y. lipolytica pmr1 proteins. A 1.6 kb PCR product was
obtained both from S. cerevisiac AAY?247 and P. pastoris GS115 genomic DNA with the same
primers. The sequence of the DNA fragment of P. pastoris revealed 65% homology to the S.
cerevisiaec PMR1 gene. This fragment was likely a product of the PpPMR1 gene. Specific RACE
PCR primers were designed, based on the DNA sequence of the 1.6 kb fragment. The entire

PMRI1 gene was obtained by RACE PCR. The 5 and 3 RACE PCR products were sequenced and
assembled to one sequence. Finally, a full-length sequence encoding the entire PpDPMR1 gene was
amplified, using first-strand cDNA and genomic DNA as templates with two specific primers. The
sequences of the cDNA and genomic DNA products were identical, suggesting that the PpPMR1
gene does not contain any intron.

The DNA sequence of PPPMR1 and deduced amino acid sequence revealed that the coding
region was 2772 bp, encoding 924 amino acids with a calculated molecular mass of 101 000 Da
(Figure 1). The pmrl protein contained all of the 10 highly conserved regions (a—j) of P-type
ATPases (Serrano et al., 1986) (Figure 2). Comparison of amino acid sequences with secretory
pathway ATPases revealed 66.2% and 60.3% identity with
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Figure 1. Nucleotide sequence and predicted amino acid sequence of P. pastoris PMR1 gene
(GeneBank Accession No. DQ239958). The amino acid sequences corresponding to regions a—j

GGEGEACAACTGTTATITGCTTCTT TCCTGGTTGGATTGAATT TG TAAGTCCTCGTARCTTAT TCTACTAGARGAGC TATT GGATTGAACAG
ATTTGGGECATTTAGTGRACT CAGAAT GACAGCTAAT GARAARTCCTTTTGAGRATGAGC TGACAGGATC TTCTGRATCTGOCCOCCCTGOR
M TANZEWNEPEPVF ENUETLTGS 8 E 8 A P P A
TTGEGAATCGAAGAC TGGAGAGTCTCT TARGTATTGCARATATACCGTGGA TCAGGTCATAGARGAGTT TCARACGGAT GGTC TCARRGGA
L E S KT GE S L XK Y ¢ KY T VDgVIETETFOQTDGOGILI K G
TTGIGCAATTCCCAGGACAT CGTATATCGGAGGTCT GT TCATGGGCCAAA TGARATGGARGTCGAAGA GGAAGAGAGTCT TT TTTCGARN
L ¢ N § g DI VY RRSVHGUZPWNUZEMEUVTETETETETU STILETFSK
T I TGTCAAGT TICTACAGCGATCCAT TGATTC TG ITACTGATGGET TCCGCTGTGATTAGCTTTTT GATGTC TAACAT TGATGATGOG
F L § § FY S S D PULIULULILMOGSAV IS FLMSGSNTITUDTUDA
ATATCTATCACTAT GGCART TACGATCGTTGTCACAGT TGGATTTGT TCAAGAGTATCGATCCGAGRAARTCATTGGAGGCAT TGARCARG
I 8 I THATITTIV VT VGG F VY Q EY RS EE 8 L EATLHNEK
TTAGTCCCTGCCGAAGCTCATC TARC TAGGAAT GGGARCACTGAARC TGT TCTTGCTGOCARCCTAGT CCCAGGAGACTT GG TGGATTTT
L v P A E A HIL T RMNUGMNTETVLAAMAMMNILVYPGDUL YV D F
TCGETTGETGACAGAATTCCGECTGATG TGAGARTTAT TCACGCTTCCCACT TGAGTATCGACGAGAGCARCCTARCT GGTGARAATGAR
8§ V6 DR I P A DV ERITIHASGSHTL S I DE S NL TG E N E
CCAGTTTCTAAAGACAGCAARRACCTGT TEAAAGT GAT GACCCARACATTCCCTTGRACAGCCGTTCATGTATTGGETATATGEGECACTTTA
P V8 KD 8 K PV ESDODEPNTIZPILMNZSRSCIGYMSGGTL
GITCETGATEETAATGECARAGETAT TG TCATCGEAAC AGCCARARAC AC AGCTTTTGECTCTGTT TTCGARATGATGAGCTICTATTGAG
vV R D G N G K 6 I vI GTAMIEKMNTAMAMVFGS V F E M MOS8 5 I E
AARCCARAAGACTCC TCTTCAACAGGC TATGGATAARCT TGGTARGGATTTGTCTGCTTTT ICCTTCGGAATCATCGGCCTTATTTGCTTG
K P KT FLGQOQAMTDUIEKTLUGI KT DTULSATF S FGITIGILIOCTL
GITGGETGT TITTCAAGGTAGACCCT GET TGGAAA TG TTCCAGATCTCTGTAT TCTGGGCTGT TGCTGC TATTCCAGAAGGTC TTCCTATT
vV vV F §Q 6 R P WL EMFQTIS WV FWAYVAWAMTIUZPEUGTILPTI
ﬂ'l'mmTCTTBJWTT%TWQHTMWWMEWWMWMTTW
I VT VTULATLGUVIL M A K QR A I ¥V KRL P § V E T L
”CCG!CHHTGTTHTCTGTHGTGﬁIHhGHCGGGEACHTTGHCCCHAHHTCRTHTGACCETThACHGﬂTTATGGHCTGTGGﬁTﬁTGGGCGHT
8 VN VI ¢ 5 D KT 6 TL T ¢ MNHMTVYNDRTIELWWNTYDMG?D
GAATTCTTGAAAAT TGRACARGUGEAGTCCTATGOCAATTATCTCAARCCCGATACGC TAAAAGTTCT GCAAACTGGETAATATAGTCAAC
E FL KI EQ E &Y ANJYTULI KU P?PDTULEKUVILOQTUGWHNTIUV VYN
AATGCCARATATTCARATGARAAGGARAMATACCTC GGAARCCCARCTGATATTGCAATTAT TGAATC TTTAGRARAATTTGATTTGCAG
N A K Y 8 NE KEKTYTULGNUPTUDTIA ATITITE STLTEUERKT FUDTLOQ
GACATTRGRGCRACARRGGARAGAAT GT TGGAGATICCATTTTCTTCGTCCARGARATATCAGECC GTCAGTGT TCACTC TGGAGRCARK
DI RATIKTEWRMIETETIU PTF S S 5 KK Y Q AV S VHS GDEK
AGCARATCTGARATTTTTGT TAAAGGCGCTCTGAACAARGT T TTGGAAAGAT GTTCAAGATATTACAATGC TGRAGGTATCGCCACTCCA
8 K 8 £EI F V K& AL NIKUVTELIERTCECSESERYIYNMWMAMETGTIWAMT?®P
CTCACAGATGAAAT TAGARAGAAMATCCT TGCAAATGECUGATACGT TAGCATCTTCAGGATTGAGAATACTGTCGT TTGC TTACGACAAR
L TDETIUZRTRIKSGSGILAGOQMM®AMTLDTTULSAZGSS G6GL RTIULS FATYTUDIK
GGCAAT TTTGAAGARACTGGCGATGGACCATCGGATATGATC TTTTGTGETCTTTTAGGTATGARCGATCCTCCTAGACCATCTGTARGT
G N FEETGGDGPE& DMIVFCGLULGMNTUDEP?PRZPE V 8
AMATCAATTTTGAAATTCAT GAGAGGTGGEGETTCACAT TATTATGAT TACAGGAGATTCAGAATCCAC GGCCGTAGCCGT TGOCAAACAG
K 8 T L K F M R GG WV HTI I MTI T G D S5 E S5 TAUWV AWV A KQ
GTCGGAATGGTAAT TGACAATTCARAATATGCTGTCCTCAGT GGAGACGA TATAGATGCTATGAGT ACAGASCAAC TGTC TCAGGCGATC
YV 6 M V I DN 5 K Y AV LS G6GDDIDAMSETEG QTLSQATI
TCJEEITGITCTGTATTTGCCCGGHCTACTCCAAAACATAAEGTGTECRTTGTHAG!GCACTEC!GGC&AGAEGHGATRTTGTTGCAATG
8 HC s V A R T T P K H K V 8 VR AL A R G D I WV A
HCIGGTGﬂCﬁﬁwﬁﬁCHATGﬁTGCCCCAGCTCT&BﬁACTGGCCGlClﬂxxiilhTIGCCATGGGTAATATGGGE!CCGETGTTGCEAA!G!E
T 6 D 6 V N DA P AL KL AUD I G I A MG NMUGTUDV AIEKE
GCAGCCGANCATGET TTTGAC TGATGATGACTTT TCTACAATC TTATCTGC ARTCCAGEAGGETARAGG TATTTTCTACAACA TCCAGANC
A ADMVLTUDDDFSTTIILSATIOQESGIKTEGITF?YHNTIA® QHN
TTITITARCGTTCCAACTTTCTACTTCAATTGCTGCICTTTCGTTAAT TGC TCTGAGTACT GCTT TCANCC TGOCAMATCCAT TGRATGCC
F LTV FOGQILS ST S 3 TIAALSTIL I AL GSTA ATFNILUZPMNUPEILWMNA
ATGCAGATTTTGTGGATCARTATTATCATGGATGGACCTCCAGCTCAGTC TTTGGETETTGAGCCAGT TGATARAGC TGT GATGAACAAN
M @ I L W I N I I M DGUPUPAOQS LGV ETFVY DI KA AWVMUEINK
CCACCARGRAAGOGAART GATARAAT TCTGACAGGT AAGGTGAT TCAAAGGETAGTACARAGTAGT TTTATCATTGTT TGTGGTACTCTG
P PR KRNDEKTILT?TGEKWVIOQRWVV QS S FITITI VCGTL
TACGTATACATGCATGRAGATCAAAGATAATGAGGTC ACAGCARGAGACAC TACGATGACCTTTACATGCTTTGTATTICTITGACATGTIC
Y VY M H EI K P NZEVT AU RDTTMTFTOCTFVWVFFDMTF
AMACGCATTAACGACARGACACCATTC TARAAGTATT GCAGAACT TGGATGGAATARTACTATGTTCARCT TTTCOGTTGCAGCTICTATT
N AL T TRHKUHS KS T AEL 6 WNNTUITMVPFNUPFS VAASTIT
TIGGEET CARCTAGGAGC TAT TTACAT TCCATTT TTGCAGT CTATTTICCAGACT GRACCTCTGAGCCTCAAAGRTT TGGTCCATTTATTG
L ¢ @ L& AT Y I PFL @S I FQ@QTZEWPUILSULE KU EULVUHILL
TTGITATCGAGT TCAGTATGGA T TGTAGACGAGC TTCGAARACTCTACGT CAGGAGAC GTGACGCATCCCCATACAATGGATACAGCATG
L L § § § VW I VDETLUSRIKLYVRRURDA ASUPEPYNUGTYS5S M
GCTGTTTGATATAGAT TITTAATTACTTAGAATCAT TAGATATAGT TTCATGTGCARARARAAAARAAAAAAAARARARAAR
AV *

of ATPases are underlined (Serrano, 1988)

those of P. angusta and S. cerevisie pmrl, respec-(regions a—j), the following putative functional
tively. Relatively high sequence identity was found regions were detected: residues E318,N749
and with the human ATP2C1 (50.6%), human ATP2C2 D753 are predicted to be involved in
binding of (47.2%) and mouse ATP2C1 (51.2%) gene prod-calcium ions, whereas Q. is

predicted to be ucts. Other than those highly conserved domains involved in manganese ion

binding (Wei et al.,



Region a Region b Region ¢
QEYRSERSLEATNELVEBARAMLTR VLAANLVEGDL VD PO VEDRIEADYR IDESNLTGENERVEK
QEYREERSLEALNELVEELAHLTR VMASTLVPGDLVHFOVGDRIFADVR IDESNLTGETNEI SR
QEYRSERSLEALNELVEAECHLME YLASTLVECDLVHFRIGDRIDADIE IDESHNLTGENEPVHR
QEYRSEKSLEALNELVEEEAHLIR VLASTLVPGDLVEFSVGDRIPADCR IDESNLTGETTEVIR
QEYRSEKSLEEL SKLVEEECHOVR, TLARDLAPGDTVCLAVEDRVEADLR VDESSLTGETABCSK
QEYRSERSLEELIFLVEPECHCVR TLARDLVEGDTVCLAVGDRVEADLR IDESSLTGETTPC3K
QEYRBEESLEELTELVFFECNCLE LLARELVEGDVVALATGDRIPADTE VDE33FTGEAEFCAK
QEYRBEETLEQLTELVEFFTCHVLE MLARELVEGDIVLLNTGDRIESDLE IDESSLTGETEFEHK
QEYRSERSLEALNELVFPECHLLE YLARDLVDESDLY LAVGDRTDADLA IDESSLTGETERPVIK

Region d Region & Region f

YMETLVRDGNGRGIVIGTARNTAFG FOLAVFWAVAAIPESLPIIVT
FMGTLVRDGHGIGIVIAT SHETALG FOIAVCLAVAATPEGLEIIVA
YHETLVEEGHGRGIVVETETNT 3FG FOI3VALAVAATPEGLPIIVT
YHGETLVRDGNGTGIVVETSEHTAPG FTIGVALAVAATPEGLEIIVT
SMGTLVRCGRARGIVIGTGENIERG PTISVSLAVAAIPESLPIVUT
FMGETLVRCGRARGVVIGTGENIEFG PTISVILAVAAIPESLPIVUT
FMGTLVOYGREQGVVIGTGEISQPG PTIGVILAVAAIPEGLEIVIM
FMGTLVCAGRGRGIVISTAANSQFG FTIGV3SLAVAATIFPESLPIVVA
FMGTLVRDGRGREIVIGTE N3AFG FTISVILAVAATIFEGLPIIVT

MARCRAIVRRLEPSVETLGIVNVICSDRTGTLTON
MARQRAIVERLPSVETLGRVNVICSDRTGTLTON
MARREATIVRRLPSVETLGAVNVICSDRTGTLTAN
MIROEATVRELPSVETLGAVNVICSDETGTLTRN
MVERRAIVRELPIVETLGCCNVICSDRTGTLTEN
MVEKRAIVRELPIVETLGCCNVICSDRTGTLTEN
MARKRAVIVRELPIVETLGCCSVLCSDRTGTLTAN
MARRRAVVEFMPAVETLGCVTVICIDETGTLTEN
MARRRATVERLF SVETLGEVNVICSDRTETLTRN

Region g Region h
VEGAL FOGLLGMNDEPPRP SVERSILKFMAGGVHITMITGD SE STAVAVARQVGMY
AFGAT FCGLMGMNDPPRPOVIQSIASLIRGEVHVIMITGD SEVTATNIARKIGME
VEGAF FrCLIGMNDPPRPNVEFATEQLLOGGVHIIMITGCOD SENTAVNTIARQIGTIP
VEGAG FAGIMGLYDPPRPDVEPRATRRLTTGGVAVVMITGD SAATALSIGRRIGMP
MEGAY FLGLVGIIDPPRTGVEEAVTTLIASGVEIFEMITGD SQETATATASRLGLY
MEGAY FLELVGIIDPPRTGVEEAVITLIASGYIIFMITGD SQETAVATAIRLGLY
MEGAL FLELVGIIDPFRVGVREAVOVLAESGV IVEMITGDALETALATIGRNIGLC
IFGAL FLGMIGMMDFFREGAADAT SIVEASGVDVELITGDAMETAQSIGOILGIL
MEGAL FLELVGMIDEFPRPGVEEBAT LI 86V IEMITGDS ETAVATARRIGL
Region i Region j

FARTTEPEHEVAIVRALCARGDIVAMTGDGVNDAPALELADTGTAM HMETDVAREBAADMVLTDDDF STIL3ATOEGRGT
FARTTPEHKVIIVRALQMREGDIVAMTGDGVNDAPALRLADT GIAM NGTDVAREAADMVLTDDDF STILHATREGRGT
FARATPEHKLNIVRALRFERGDVVAMTGDGVNDAPALRLIDIGVAM IGTDVAREASDMVLTDDDF STILTATIEEGRGT
FARTSPEDKMEIVRGFQRAGDVVAMTGDGVNDAPALRLADTI GTAM GETDVAREAADMILTDDDFATILSATEEGRGT
FYRASPRIFMEIIRSLOFRNGAVVAMTIGD EVNDAVALFAADIGVAM TETDVCEREAADMILVDDDFOTIMSATIEEGRET
FYRASFRHEMEIIRSLORNGIVVAMNTGDGVNDAVALFAADI GVAM TETDVCEEAADMILVDDDFUTIMSAIEEGRGT
FFRTOPFHRELEIIFALOESGATIVAMTGDGVNDAVALRBADIGIAM TETDVIKEAANMILVDDDF SATMNAVEEGRGT
FYRASPRHELEIVFALQALGEVVAMTGDGVNDAVALRRADIGVAM CETDVCHREAADMILCDDDF STMTAALIEEGRATL
FARTIFRHELEIVFALQRRGDVVAMTGDGVNDAVALRLADIGIAM GTDVARBAADMILTDDDF STILIATIEEGRGT

pastoris (100%)
angusta (66.Z2%)
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. elegans (47.9%)
onzensus
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Figure 2. Amino acid sequence alignment of with conserved domains (regions a—j) of
homologous PMR1 genes of P. pastoris (ABB70815), P. angusta (AAC68831), S. cerevisiae
(P13586), Y. lipolytica (043108), M. musculus (CAD82864), C. elegans (CAC19896), H. sapiens
ATP2C1 (AAH28139) and H. sapiens ATP2C2 (NP 055676). GeneBank protein Accession

Nos are given in parentheses following each organism name

2000; Mandal et al., 2000). These analysis results demonstrate that the PMR1 gene product is
24+ 2%
probably a Ca /Mn ATPase pump.

Disruption of PpPMR1 and gene characterization of a null mutant

To disrupt the PpPMRI1 gene,a4 kb BgllI/BamHI fragment harbouring the functional HIS4 gene
of
P. pastoris from the pAO815 plasmid was inserted at the internal BgIII site of the PPPMR1 gene
in the plasmid pCRII-PMR1 (Figure 3A, B). The 6.1 kb AfllI-Scal fragment was gel-purified and
transformed into the GS115 (his4 ) strain. The colonies were screened for growth on MD plates
with 10 mM CaCl2. Four colonies were further characterized by Southern blot analysis, using the
DIG-labelled EcoRI/BglII (400 bp) fragment as a probe (Figure 3C). As expected, the mutant
strains had a 4.5 kb band, while the host strain, GS115, had a 617 bp band with an expected intact
PMR1 gene. This result proves that the 6.1 kb fragment disrupted the PPPMR1 gene, since the
genomic DNA digested with ECORI enzyme in Figure 3C shows the different band patterns.

After confirming that the PPPMRI1 gene was disrupted, clone #2 was chosen for further
characterization experiments. To show that mutation in the PMR1 gene of P. pastoris was



consistent with the previous PMR1 mutations in different yeasts,
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I HIS4
1 6136
600bp
c Disruption fragment
Kb
23.1 1 2 a4 6l
9.42
6.56
4.36 e T
2.32
2-D3 .

0.56

Figure 3. Disruption strategy of the PPPMR1 gene. (A) Diagram of the coding region of the
PpPMR1 gene. The 400 bp EcoRI-BglII fragment of PPPMR1 was DIG-labelled and used as a
probe for Southern blot analysis. Only relevant restriction enzymes are shown. (B) PMRI
disruption fragment. A 4 kb BamHI-BglII fragment encoding the HIS4 gene is inserted at the
BglII site of the PpPMRI1 gene. The 6.1 kb AfllI-Scal fragment was transformed into P. pastoris
GS115 strain. (C) Southern blot analysis of P. pastoris chromosomal DNA. Lanes 1-4, Pppmr1
mutant strains; lane 5, GS115. The molecular size of the DIG-labelled marker is also shown

the GS115 wild-type strain and the mutant Pppmr1 strain were plated on MDH plates, and MDH
plates with the addition of either 40 mM EGTA or 30 mM CaCl2. As shown in Figure 4, the pmr1
mutant did not grow on minimal media containing EGTA, and the growth was reduced on MDH

Y
plates which had low Ca2 concentration, but with the addition of 30 mM CaCl2 the Pppmrl
strain growth recovered and was identical as the GS115 wild-type strain. The addition of 40 mM
EGTA and 30 mM CaCl2 did not affect the growth of the GS115 strain on the plates.

The mutant strains’ growth characteristics were evaluated further in liquid media. Figure SA
shows growth curves of GS115 in MDH and Pppmrl mutant in MD. It is clear from Figure 5A
that the mutant had a longer lag time than GS115. The addition of 10 mM calcium to the medium
slightly shortened the lag time by about 5 h. alternatively, the addition of EGTA (10 mM)
prolonged the lag time and 40 mM EGTA stopped growth completely. These observations were
in agreement with the report for other pmrl mutant yeast strains (Kang et al., 1998; Park et al.,

+

2

1998; Rudolph et al., 1989). Similar results were observed with Ca -deficient media. The only

calcium source in this medium was from the calcium salt of panthothenate, which was not enough

to support the growth of the Pppmr1l mutant, while GS115 growth was not affected (Figure 5B).
2+

The mutant strain did not grow during the 25 h of analysis on the Ca -deficient media. Again, the
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Figure 4. Growth characteristics of P. pastoris Pppmr1 and GS115 on solid media. The indicated
strains were grown for 2 days in YSD medium, then streaked on MDH, MDH + 40 mM EGTA,

and MDH + 30 mM CaCl2 plates. The plates were incubated for 3 days at 30 C
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Figure 5. Growth characteristics of P. pastoris Pppmr1 and GS115 on defined media. (A) MD
media. Growth of GS115 wild-type in MDH and the Pppmr1 mutant in MD, MD + 10 mM
CaCl2,MD + 10 mM EGTA, and MD + 40 mM EGTA. The results are an average of two separate
experiments run in duplicate. (B) Calcium-deficient media. Growth (A600)ofGS115 wild-type in
calcium-deficient medium + histidine and the Pppmr1 mutant in calcium-deficient medium,
calcium-deficient medium + 5 and 10 mM CaCl2, and calcium-deficient medium + 5 and 10 mM
MnCI2. The results are an average of two separate experiments run in duplicate

addition of 5 and 10 mM Ca d1d partially recover pathway Ca /Mn —ATPase which acts as a
growth. The addition of 5 and 10 mM MnCl2 was Ca /Mn pump. ableto promote the growth of

the pmr1 mutant, We have tested the Pppmr1 mutant for man-but was not as significantly as Ca -
containing ganese sensitivity, as reported in S. cerevisiaec media. These results demonstrate that
the Pppmr1 by Wei et al. (2000). Interestingly, the P. pas-mutant strain is defective in a P-type
secretion toris Pppmr1 mutant did not show sensitivity to
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Figure 6. Effect of MnCI2 on growth of GS115 and Pppmrl. Growth of GS115 wild-type in
MDH and the Pppmr1 mutant in MD medium with varying concentrations of MnCI2 (2.5-50 mM
MnCl2), was measured after 48 h and is plotted as a percentage of growth of the control GS115
culture. The results are an average of two separate experiments run in duplicate

manganese concentrations up to 50 mM in MD medium (Figure 6). Regardless of the amount of
manganese in MD medium containing about 1 mM CaCl2, Pppmr1 showed 40-60% of growth of
the GS115 strain, which was grown in MD medium without manganese supplementation. The
GS115 strain showed about a 50% reduction in growth at the 50 mM MnCI2 concentration, but
not Pppmrl. This was contrary to S. cerevisiae pmrl mutants, which were shown to be

hypersensitive to higher concentrations of manganese (>2mM) due to a loss of Mn2+ transport
outside the cell through the secretory pathway. (Lapinskas et al., 1995; Wei et al., 2000).
However, this is not surprising, since manganese toxicity was also not observed in the
C. albicans pmr1 mutant (Bates et al., 2005). Further investigation is needed to truly understand
the differences between the Pppmr1 mutant and the mutants shown by Lapinskas et al. (1995) and
Wei et al. (2000).

Future research will also be focused on the effect of Pppmrl mutations on the secretion and
processing of recombinant proteins. Mutations in the PMR1 gene in different types of yeast have
been shown to reduce outer chain glycosylation of secreted proteins (Ko et al., 2002; Sohn et al.,



1998). P. pastoris has shown to be a very useful host system and this mutant strain should
increase the usefulness in future of recombinant protein production.
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