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Factorized representation for parity-projected Wigner dj
„b… matrices

N. L. Manakov and A. V. Meremianin
Department of Physics, Voronezh State University, 394693 Voronezh, Russia

Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111

~Received 4 June 1999; published 5 January 2000!

An alternative representation for the parity-projected Wignerdj (b) rotation matrix is derived as the product
of two triangular matrices composed of Gegenbauer polynomials with negative and positive upper indices,
respectively. We relate this representation fordj (b) to the one presented by Matveenko@Phys. Rev. A59,
1034 ~1999!#, which, in contrast with our result, requires for its evaluation a matrix inversion. In addition,
identities for bilinear sums of Gegenbauer polynomials are derived. This work is based on our recently
introduced invariant representations for finite rotation matrices@Phys. Rev. A57, 3233~1998!#.

PACS number~s!: 03.65.Ca, 03.65.Fd

I. INTRODUCTION

Finite rotation matrices~FRM! Rkm
j (V) and especially

their parametrization by Euler anglesV5(a,b,g) @in which
case one speaks of Wigner functions,Dkm

j (a,b,g)# are fun-
damental objects of the quantum theory of angular momen-
tum @1#. They describe the transformation of an irreducible
tensor of rankj ~such as, e.g., the wave function of a quan-
tum system having total angular momentumj ) under a rota-
tion V of the coordinate frame. These objects have an inter-
disciplinary interest and new results have an evident
importance and usefulness in various applications. The non-
trivial parts of the Wigner functions are theb-dependent
dj (b) matrices, defined by

Dkm
j ~a,b,g!5exp~2 ika!dkm

j ~b!exp~2 img!,

where2 j <k,m< j . These have well-known representations
in terms of trigonometric, hypergeometric, or Jacobi polyno-
mial functions ofb @1#. For physical problems having defi-
nite parity ~or exchange symmetry, e.g., in the case of two-
electron wave functions!, the so-called parity-projected
FRM’s or Wigner functions are convenient. These functions
are symmetrized with respect to the first~k! or second~m!
lower index. The symmetrized combinations of Wigner func-
tions were introduced for the first time by Fano@2# in his
analysis of real representations for finite rotation matrices.
The usefulness of parity-projected Wigner functions in
many-body problems was demonstrated by Bhatia and
Temkin @3#, who analyzed the angular dependence of two-
electron wave functions. Various authors have used slightly
different phase and normalization conventions for such
parity-projected functions~see, e.g., Refs.@3–6#!. Recently,
Matveenko@6# derived a new analytic expression for parity-
projected combinations of Wignerdj (b) matrices as a fac-
torized product of two matrices, one of which is defined in
terms of ~renormalized! associated Legendre polynomials,
and the other is the inverse of a similarly defined matrix. In

this paper we employ the invariant representations for
FRM’s introduced in Ref.@5# to obtain a simple form for
parity-projected Wigner functions as the product of two tri-
angular matrices, each of which is given explicitly in terms
of well-known classical~Gegenbauer! polynomials. In addi-
tion, we are able to give an alternative, simple derivation of
Matveenko’s result@6#, thereby also establishing a relation
between our result and his. As noted by Matveenko@6#, fac-
torized representations of the parity-projected Wigner rota-
tion matrices should prove useful in the theoretical analysis
and representation of interacting three-body states.

II. PARITY-PROJECTED ‘‘MINIMAL’’ BIPOLAR
HARMONICS AND FRM’S

In order to present our results in the most compact way, it
is useful to first rewrite some of the key results of Ref.@5# in
more symmetric forms. Parity-projected FRM’s, denoted by
Rkm

j 6(V), were defined in Ref.@5# as follows:

Rkm
j 1~V!5R2km

j ~V!1~21!kRkm
j ~V!, ~1!

Rkm
j 2~V!52 i @R2km

j ~V!2~21!kRkm
j ~V!#, k.0. ~2!

However, it is more convenient for our present purposes to
define slightly different matrices, denoted byRkm

j lp(V), hav-
ing a unified form for both1 and2 cases~corresponding,
respectively, tolp50,1):

Rkm
j lp~V!5S 12

d0,k

2 D @R2km
j ~V!1~21!k1lpRkm

j ~V!#,

~3!

wherek>lp . In Eqs.~47! and ~48! of Ref. @5#, the FRM’s
Rkm

j 6(V) are presented as expansions on ‘‘minimal’’ bipolar
harmonics~MBH! depending on two noncolinear unit vec-
tors,n andn8:

Y jm
s ~n,n8!5$Yj 2s~n! ^ Ys~n8!% jm , ~4!
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wheres50,1, . . . ,j . Yaa denotes the spherical harmonic, and
standard definitions of angular-momentum techniques are
used@1#. The unit vectorn is directed along thez axis of the
‘‘old’’ ~fixed! frameK; n8 lies in thezx plane ofK; andu is
the angle betweenn andn8(0,u,p). Thus, the three real
parameters of the rotation,V ~such as, e.g., the Euler angles
for the Wigner representation of the FRM!, in our approach
are determined by angular coordinates of vectorsn andn8 in
the ‘‘new’’ ~rotated! frameK8. Moreover, in Ref.@5# differ-
ent sets of MBH,

Y jm
s ~n,n8! and $@n3n8# ^ Yj 21

s ~n,n8!% jm ,

enter the expansion ofRkm
j 1(V) and Rkm

j 2(V), respectively.
The identity@see Eq.~B.6! of Ref. @7##

$@n3n8# ^ Yj 21
s ~n,n8!% jm5 i A j 11

~2s13!~2 j 22s11!

3$Yj 2s~n! ^ Ys11~n8!% jm ,

~5!

allows us to introduce a unified basis set of parity-projected
MBH’s,

Y jm
slp~n;n8!5$Yj 2s~n! ^ Ys1lp

~n8!% jm

5(
ab

Cj 2s a s1lpb
jm Yj 2s a~n!Ys1lpb~n8!,

~6!

for both cases, i.e.,lp50 (or1) andlp51 (or2), where
the Caabb

cg denote Clebsch-Gordan coefficients.
Using definitions in Eqs.~3! and~6!, Eqs.~47! and~48! of

Ref. @5# for the FRM’s Rkm
j 6(V) may be written in the fol-

lowing compact form in terms ofRkm
j lp(V) andY jm

slp(n;n8):

Rkm
j lp~V!5

4p

~sinu!k (
s50

k2lp

Aks
(lp)C k2s2lp

(1/2)2k ~cosu!Y jm
slp~n;n8!,

~7!

wherek>lp , and the factorA is given by

Aks
(lp)

52~k!12lp
~k1s1lp21!!

~2k21!!!
A ~ j 1lp!! ~ j 2s2lp!! ~2 j 21!!!

s! ~ j 1k!! ~ j 2k!! ~2 j 22s11!!! ~2s12lp11!!!
,

whereA00
(lp)

[d0,lp
and where theC k2s2lp

(1/2)2k (cosu) are Gegen-

bauer polynomials with negative upper indices@8#.
It is important to note that the set of (2j 11) MBH’s in

Eq. ~6! with lp50,1 ands50, . . . ,j 2lp form a basis set of
irreducible tensors with integer rankj @5,7# and that Eq.~7! is
an example of an expansion in this basis@9#. For lp50, the
MBH’s in Eq. ~6! are polar tensors, while forlp51 they are
axial tensors~pseudotensors!. In the terminology of Ref.@6#,
Rkm

j lp(V) with lp50 (lp51) is said to have ‘‘normal’’
~‘‘abnormal’’! parity. Equation~7! is the simplest form of
the invariant representations for FRM’s derived in Ref.@5#.
In what follows, we analyze the algebraic properties of the
representation~7! and utilize it for various special choices of
the parameteru.

III. FACTORIZED FORM OF d j

The right-hand side of Eq.~7! is the product of two ma-
trices: one of them, involving Gegenbauer polynomials, has
~lower left! triangular form; the other one has matrix ele-
ments which are components of a MBH@cf. Eq. ~6!# with
indicess and m. Although for an arbitrary parameteru the
factorized form of the FRM is rather complicated, it is pos-
sible to find a simple factorized form for the Wignerdj (b)
matrix by considering the~auxiliary! rotation fromK to K8
described by the Euler anglesa5g50, b5u. For such a
rotation, Eq.~7! reduces to

dkm
j lp~u!5

4p

~sinu!k (
s50

smax

Aks
(lp)C k2s2lp

(1/2)2k ~cosu!

3Y jm
slp~2u,0;0,0!, ~8!

wheresmax5min(k2lp , j2m) and the parity-projected com-
bination of dj matrices is defined by Eq.~3!, taking into
account the relationRkm

j (0,u,0)5dkm
j (u). The MBH on the

right-hand side of Eq.~8! may be calculated explicitly as

4pY jm
slp~2u,0;0,0!5A4p~2s12lp11!

3Cj 2s m s1lp 0
jm Yj 2s m~2u,0!

5Bsm
(lp)P j 2s

m ~cosu!. ~9!

HerePj 2s
m (cosu) is an associated Legendre polynomial@1#,

which is related to a Gegenbauer polynomial with positive
upper index by the identity

P a
a~cosu!5~2a21!!! ~2sinu!aC a2a

(1/2)1a~cosu!,

a>0.

The coefficientBsm
(lp) in Eq. ~9! is defined by
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Bsm
(lp)

5
~21!mmlp

~ j 2s1m!!
A~2s12lp11!!! ~ j 2s2lp!! ~2 j 22s11!!! ~ j 2m!! ~ j 1m!!

s! ~ j 1lp!! ~2 j 21!!!
. ~10!

For the simplest presentation of results, it is convenient to
introduce the renormalized matrixd̃km

j lp(u), where

dkm
j lp~u!5A~ j 1m!! ~ j 2m!!

~ j 1k!! ~ j 2k!! S sinu

2 D m2k

d̃km
j lp~u!. ~11!

Substituting Eq.~11! into Eq.~8!, the matrixd̃ is obtained as
the product of two triangular matrices,

d̃j lp~u!5C( j ,lp)~u!•P( j ,lp)~u!, ~12!

where the matrix elements of the lower left triangular matrix
C and the upper left triangular matrixP are defined by

Cks
( j ,lp)

~u!5
~k2lp!! ~k1s21!!

~s2lp!! ~2k21!!
C k2s

(1/2)2k~cosu!, ~13!

Psm
( j ,lp)

~u!5
~2m!! ~ j 2s!!

~m2lp!! ~ j 2s1m1lp!!
C j 2s2m1lp

(1/2)1m ~cosu!

5S 22

sinu D m mlp~ j 2s!!

~ j 2s1m1lp!!
P j 2s1lp

m ~cosu!,

~14!

where in these equationslp<k,m,s< j , andC00
( j ,lp)(u)51.

Equations.~11!–~14! are the principal result of this paper.
We note the surprisingly simple form and the intrinsic beauty
of this new factorized form fordj : matrix elements of both
triangular matrices are well-known classical~Gegenbauer!
polynomials in cosu with rational coefficients; diagonal ele-
ments ofC( j ,lp) andP( j ,lp) are equal to unity, i.e.,

Ckk
( j ,lp)

~u!5Pm j2m1lp

( j ,lp)
~u!51. ~15!

Note that matrix elements ofC( j ,lp) and P( j ,lp) do not de-
pend on the value ofj; rather, only their dimension depends

on j. Indeed, both indicesj ands enter Eq.~14! only in the
combination (j 2s), which determines the dimensions of the
matrices entering Eq.~12!. These dimensions arej and j
11 for lp51 andlp50, respectively. As a consequence of
the independence of the matrix elements onj, the matrices
C( j 11,lp) and P( j 11,lp) @and obviously thedj 11,lp(b) func-
tions# can be calculated by simply adding one additional
~lowest! row to C( j ,lp) and one additional~highest! row to
P( j ,lp), as we illustrate in the example below, in which we
present explicit forms for the matricesC( j ,lp) andP( j ,lp) for
j <3. The results forlp51 are

C(2,1)~u!5S 1 0

2cosu 1D , ~16!

C(3,1)~u!5S 1 0 0

2cosu 1 0

1

4
~3 cos2u11! 22 cosu 1

D , ~17!

P(2,1)~u!5S cosu 1

1 0D , ~18!

P(3,1)~u!5S 1

4
~5 cos2u21! 2 cosu 1

cosu 1 0

1 0 0

D , ~19!

and we recall from Eq.~15! that the diagonal elements are
unity, so that the 131 matricesC(1,1) andP(1,1) are trivially
unity. As noted above, we see thatC(2,1) and P(2,1) are the
upper left and lower left parts of the matricesC(3,1) and
P(3,1), respectively. The result forj 53,lp50 is

~20!
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~21!

The marked internal 232 and 333 matrices in these equa-
tions are the results forj 51, lp50 and j 52, lp50, re-
spectively. We observe thatC(1,0)5C(2,1) andP(1,0)5P(2,1).

IV. RELATION TO THE RESULT OF MATVEENKO

Matveenko’s derivation@6# of a factorized form for the
parity-projected combinations ofdj (b) matrices exploits a
nontrivial technique of hyperspherical harmonics in terms of
Jacobi vectorsX andx of the three-body problem. In order to
establish the connection of these results@6# with our results
presented above, let us consider the transformation of the
MBH in Eq. ~6! under the auxiliary rotationV5(0,u,0)
from the frameK to K8, i.e., the same type of rotation as
considered in Eq.~8!. Under this rotation, the irreducible
tensor in Eq.~6! is transformed using the parity-projecteddj

matrix according to the relation

Y jm
slp~2u,0;0,0!5 (

k5lp

s1lp

Y j 2k
slp ~0,0;u,0!dkm

j lp~u!. ~22!

This equation may be written as a matrix identity

B( j ,lp)~2u!5B( j ,lp)~u!•dj lp~u!, ~23!

where matrix elements of the upper left triangular matrix
B( j ,lp)(2u) are defined above by Eq.~9! and coincide with
matrix elements ofP( j ,lp)(u) @which are defined by Eq.~14!#
up to numerical coefficients:

Bsm
( j ,lp)

~2u!5Bsm
(lp)P j 2s

m ~cosu!. ~24!

The lower left triangular matrixB( j ,lp)(u) is defined by an
interchange of the rows ofB( j ,lp)(2u), namely

Bsm
( j ,lp)

~u!5Bj 2s2lp m
( j ,lp)

~2u!. ~25!

Thus, both matricesB( j ,lp)(2u) and B( j ,lp)(u) are com-
posed of associated Legendre polynomials~or, equivalently,
of Gegenbauer polynomials with positive half-integer upper
indices!. Equation~23! is equivalent to Eqs.~26! and~29! of
Ref. @6#. The main difference between Eq.~23! and the result
in Eq. ~12! is that the calculation of thedj lp matrix as the
solution of the matrix equation~23! requires the inversion of
the matrixB( j ,lp)(u). Note that there are some evident dif-
ferences in the notation between the results in this paper and
those of Ref.@6#. These differences stem from the fact that
we consider the rotation of the coordinate frame~because it

provides the standard definition for rotation matrices@1#!,
while Ref. @6# considers the rotation of the body-fixed frame
~because it is convenient for the three-body problem!. The
relation between our matricesd

m8m

j lp (u) and the slightly dif-

ferent matricesdmm8
jp (u) of Ref. @6# is

d
m8m

j lp ~u!5~21!lp1m8A 11d0,m

11d0,m8

dm8m
jp

~u!. ~26!

Taking account of this relation, Eq.~23! for lp50 and for
lp51 coincides with the basic Eqs.~26! and~29! of Ref. @6#.

V. APPLICATION TO INVERSION OF A MATRIX
COMPOSED OF CLASSICAL POLYNOMIALS

From Eqs.~12! and ~23!, it follows that there must exist
appropriate algebraic formulas for explicitly inverting a tri-
angular matrix composed of Gegenbauer~or associated Leg-
endre! polynomials. Indeed, such formulas can be derived
from Eq. ~7! by considering a zero rotation,V5(0,0,0). On
the one hand, we must haveRkm

j (0)5dk,m , but, on the other
hand, the direct use of Eq.~7! gives

Rkm
j lp~0!5

4p

~sinu!k (
s50

smax

Aks
(lp)C k2s2lp

(1/2)2k ~cosu!Y jm
slp~0,0;u,0!,

~27!

wherek>lp . Calculating the MBH on the right-hand side
of Eq. ~27! explicitly @cf. Eq. ~9!#, we arrive at the identity
~for both lp50 and 1)

dk,m52k (
s5m

k
~k1s21!!

~s1m!!
C k2s

(1/2)2k~cosu!C s2m
(1/2)1m~cosu!.

~28!

We believe Eq.~28! to be a new result. Equation~28! can
also be written in the matrix form

I5C( j ,lp)~u!•P( j ,lp)~u!, ~29!

whereI is the diagonal unit matrix, and the matrixP( j ,lp)(u)
is defined by an interchange of the rows ofP( j ,lp)(u),
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Psm
( j ,lp)

~u!5Pj 2s1lp m
( j ,lp)

~u!.

Noting the fact that if the product of two matrices is the unit
matrix I , then these matrices are commuting, we obtain from
Eq. ~29! one additional interesting relation@cf. Eq. ~12!#:

I5P( j ,lp)~u!•C( j ,lp)~u!, ~30!

whereI is the ‘‘quasidiagonal’’ unit matrix

I5S 0 0 . . . 0 1

0 0 . . . 1 0

••• ••• ••• ••• •••

1 0 . . . 0 0

D .

Matrix identities~12!, ~29!, and~30! allow us to write the
chain of equalities

d̃j lp~u!•d̃j lp~u!5C( j ,lp)
•P( j ,lp)

•C( j ,lp)
•P( j ,lp)

5C( j ,lp)I•P( j ,lp)5C( j ,lp)
•P( j ,lp)5I .

~31!

Thus, we have proved thatdj lp(u)•dj lp(u)5I . This identity
can be proved also using unitarity properties of Wigner func-
tions. It is important that Eq.~30! can be used to control the
accuracy of numerical calculations of matricesP( j ,lp)(u) and
C( j ,lp)(u). Namely, if the calculated matrix product on the
right-hand side of Eq.~30! differs from the exact matrixI ,
then one loses precision in one’s calculations.

The identity ~29! demonstrates the unexpected fact that
for a triangular matrix composed of Gegenbauer polynomials
C n

(1/2)2k(cosu) or C n
(1/2)1k(cosu) ~or of associated Legendre

polynomials!, the explicit form of the inverse matrix exists,
again in terms of Gegenbauer polynomials whose upper in-
dices have the opposite sign to those of the initial~nonin-
verted! matrix. In particular, we have

@B( j ,lp)~u!#ms
215

Ams
(lp)

~sinu!m
C m2s2lp

(1/2)2m ~cosu!. ~32!

Thus, matrix elements of the matrix@B( j ,lp)(u)#21 coincide
with matrix elements ofC @cf. Eqs. ~13! and ~32!# up to
some coefficients. Using Eqs.~24! and ~32!, the expression
for dj lp(u),

dj lp~u!5@B( j ,lp)~u!#21
•B( j ,lp)~2u!,

is easily transformed to the form in Eqs.~11!–~14!. This
result gives an independent proof of our basic result in Eq.

~12! and establishes the connection of our result with that of
Ref. @6#.

VI. CONCLUSIONS

Invariant representations of FRM’s@5# @such as, e.g., Eq.
~7!# are powerful tools of angular-momentum algebra. Uti-
lizing these results for special Euler rotations, we have found
in this paper a simple form for the parity-projected Wigner
dj lp matrices as the product of two triangular matrices. Both
matrices are presented here explicitly in terms of well-known
classical polynomials. The use of Eqs.~12!–~14! in problems
having definite paritylp is much more convenient than the
standard representation fordj matrices in terms of Jacobi
polynomials or hypergeometric functions@1#. Indeed, for
fixed j andlp , according to Eq.~12! one needs to calculate
only ( j 2lp)( j 2lp11) different Gegenbauer polynomials
instead ofj (2 j 11) different Jacobi or hypergeometric poly-
nomials. Furthermore, Eq.~12! is especially convenient for
numerical evaluation ofdj lp matrices having different ranks
j, because, as mentioned above, matrix elements ofC andP
do not depend onj, and hence the matrices forj 85 j 11 may
employ results calculated forj without recalculation. Con-
cerning applications of the present results in analyses of
many-body problems, we note that the angleu in Eq. ~7! is
an arbitrary parameter, which may be considered, e.g., as the
angle between a Jacobi vector pairX andx of the three-body
problem @6#, choosingn and n8 as the corresponding unit
vectors X̂ and x̂. In this case the set of parity-projected
MBH’s in Eq. ~6!, i.e., a basis set of irreducible tensors with
integer rankj, may be useful in the construction of a conve-
nient angular basis for the three-body problem similar to the
three-body angular basis discussed in Ref.@6#.

We note finally that both our results here and those in Ref.
@6# are applicable for integerj, which is the most important
case for a number of applications. Invariant representations
for FRM’s for half-integerj may also be derived using the
formal similarity of vectors to spinors with rank 1/2, thereby
generalizing the results of Ref.@5#. Based on such a gener-
alization, the factorized form ofdj matrices can be derived
for half-integerj also and will be published elsewhere.
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