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PHYSICAL REVIEW A, VOLUME 61, 022103

Factorized representation for parity-projected Wigner d'(8) matrices

N. L. Manakov and A. V. Meremianin
Department of Physics, Voronezh State University, 394693 Voronezh, Russia

Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111
(Received 4 June 1999; published 5 January 2000

An alternative representation for the parity-projected WigHég) rotation matrix is derived as the product
of two triangular matrices composed of Gegenbauer polynomials with negative and positive upper indices,
respectively. We relate this representation db3) to the one presented by Matveenf@hys. Rev. A59,
1034 (1999], which, in contrast with our result, requires for its evaluation a matrix inversion. In addition,
identities for bilinear sums of Gegenbauer polynomials are derived. This work is based on our recently
introduced invariant representations for finite rotation matrjgds/s. Rev. A57, 3233(1998].

PACS numbd(s): 03.65.Ca, 03.65.Fd

[. INTRODUCTION this paper we employ the invariant representations for
. FRM’s introduced in Ref[5] to obtain a simple form for
Finite rotation matriceSFRM) R} (Q) and especially parity-projected Wigner functions as the product of two tri-
their parametrization by Euler angls= (e, 3,y) [in which ~ angular matrices, egch of which is given explicitly in terms
case one speaks of Wigner functiobs, («,,7y)] are fun- qf well-known cIassmg(Gegenbaue)rpolynpmlals. In_ ad@—
damental objects of the quantum theory of angular momention, we are able to give an alternative, simple derivation of
tum [1]. They describe the transformation of an irreducibleMatveenko’s resulf6], thereby also establishing a relation
tensor of rank (such as, e.g., the wave function of a quan-Petween our result and his. As noted by Matveeffac-
tum system having total angular momentjjrunder a rota- torized representations of the parity-projected Wigner rota-
tion Q of the coordinate frame. These objects have an interfion matrices should prove useful in the theoretical analysis
disciplinary interest and new results have an evidenfind representation of interacting three-body states.
importance and usefulness in various applications. The non-

trivial parts of the Wigner functions are the-dependent Il. PARITY-PROJECTED “MINIMAL" BIPOLAR
d'(B) matrices, defined by HARMONICS AND FRM'S
A . In order to present our results in the most compact way, it
Dim(@,B,y)=exp —ika)dl(B)exp —imy), is useful to first rewrite some of the key results of R&f.in

more symmetric forms. Parity-projected FRM'’s, denoted by

Ji . . .
where—j<k,m<j. These have well-known representations Rkm({2), were defined in Ref5] as follows:

in terms of trigonometric, hypergeometric, or Jacobi polyno- i+ o Kpoj

mial functions of 8 [1]. For physical problems having defi- Rim(£2) =R () + (= 1) Rien(£2), @

nite parity (or exchange symmetry, e.g., in the case of two- , , _

electron wave functions the so-called parity-projected Rlm(2)=—i[RL, (Q)— (- D*Rl()], k>0. (2)
FRM’s or Wigner functions are convenient. These functions L .

are symmetrized with respect to the fitkl or second(m) HO\'/vever., it is more conven!ent for our present purposes to
lower index. The symmetrized combinations of Wigner func-define slightly different matrices, denoted BY2(Q), hav-
tions were introduced for the first time by Faf®] in his  ing a unified form for both+ and — cases(corresponding,
analysis of real representations for finite rotation matricestespectively, to,=0,1):

The usefulness of parity-projected Wigner functions in
many-body problems was demonstrated by Bhatia and ;) Ook\. i

Temkin [3], who analyzed the angular dependence of two- Rme(Q):(l_ 7>[R]km(QH(_l)kﬂpRﬁm(m]'
electron wave functions. Various authors have used slightly ®)
different phase and normalization conventions for such

parity-projected functiongsee, e.g., Ref§3—6]). Recently, ~Wherek=\,. In Egs.(47) and(48) of Ref.[5], the FRM's
Matveenko[6] derived a new analytic expression for parity- Rkm({2) are presented as expansions on “minimal” bipolar
projected combinations of Wignet'(8) matrices as a fac- harmonics(MBH) depending on two noncolinear unit vec-
torized product of two matrices, one of which is defined intors,n andn’:

terms of (renormalizefl associated Legendre polynomials,

and the other is the inverse of a similarly defined matrix. In Yim(n,n")={Y;-s(M&Y(n")}jm, 4
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J. Ya, denotes the spherical harmonic, and allows us to introduce a unified basis set of parity-projected

standard definitions of angular-momentum techniques ar®BH's,

used[1]. The unit vecton is directed along the axis of the
“old” (fixed) frameK; n’ lies in thezx plane ofK; and 6 is

the angle between andn’(0< §<r). Thus, the three real
parameters of the rotatiof) (such as, e.g., the Euler angles

for the Wigner representation of the FRMn our approach

are determined by angular coordinates of vectoandn’ in

the “new” (rotated frameK'. Moreover, in Ref[5] differ-

ent sets of MBH,
yjsm(n,n’) and {[nX n’]®yf,1(n,n’)}jm,

enter the expansion d®."(Q) and Rl (Q), respectively.

The identity[see Eq.(B.6) of Ref.[7]]

, , _.\/ j+1
{InxnJ@ Vi mnlin=1 \ G573y 2 — 251 1)
X{Yj_s(M®Ygy1(N)}jm,
5

S)‘P(n n')= {YJ s(n)®Ys+)\ (n’ )}Jm

= azﬁ C}Ts a s+)\pBijs a(n)Yer)\pﬁ(n/)r

(6)

for both cases, i.eA,=0 (or+) and\,=1 (or—), where
the C32, 5 denote Clebsch-Gordan coefficients.

Using definitions in Eqs(3) and(6), Eqgs.(47) and(48) of
Ref. [5] for the FRM'sRL-(Q) may be written in the fol-
lowing compact form in terms de”F’(Q) andysxp(n n'):

k—)\
41
Rign(Q)= E AP CIX (coso)YiRa(nin),
(sing)k =0
(7
wherek=\, and the factoA is given by

A()\p) 2(k)l A

Il

(2k—1)N

whereAlr?'= 8o,, and where the (M2~ "p(cosa) are Gegen-

bauer polynomials with negative upper indi¢&s.

It is important to note that the set of (2 1) MBH’s in
Eq. (6) with \;=0,1 ands=0, ... j —\, form a basis set of
irreducible tensors with integer rank5,7] and that Eq(7) is
an example of an expansion in this bgd€$ Fora,=0, the
MBH's in Eq. (6) are polar tensors, while for,=1 they are
axial tensorgpseudotensoysin the terminology of Ref[6],
Rm(ﬂ) with A,=0 (A\,=1) is said to have “normal”
(*abnormal”) parity. Equation(7) is the simplest form of
the invariant representations for FRM's derived in Héf.

In what follows, we analyze the algebraic properties of the
representatioi7) and utilize it for various special choices of

the parametep.

Il. FACTORIZED FORM OF d !

The right-hand side of E(7) is the product of two ma-

(k+s+>\p—1)!\/ (NI —s=A)!(2) —
sl(j+k)

H(j—K)! (2] —2s+ 1) (2s+ 2N+ 1)I1

Smax
%) Cenay (sing)k & > ALCIIY (cosh)

Vin(~6,0;0,0, ®

wheresy,=min(k—\,, j—m) and the parity-projected com-
bination of d’ matrices is defined by EqJ), taking into
account the relatiomR] tm(0,0,0)=d}(6). The MBH on the
right-hand side of Eq(8) may be calculated explicitly as

4wyjs§1p( —,0;0,0 = \4m(2s+2\,+1)

XC}TS m sH\p Oijs m(_ 010)

_rp)
=Bl P’ (cosh). (9)

Here73m J(cosé) is an associated Legendre polynondial,

trices: one of them, involving Gegenbauer polynomials, hagvhich _IS related to a Gegenbauer polynomial with positive
(lower left) triangular form; the other one has matrix ele- upper index by the identity

ments which are components of a MBlf. Eq. (6)] with
indicess and m. Although for an arbitrary parametér the

factorized form of the FRM is rather complicated, it is pos-

sible to find a simple factorized form for the Wigne#( 3)
matrix by considering thé€auxiliary) rotation fromK to K’
described by the Euler angles=y=0, B=#6. For such a
rotation, Eq.(7) reduces to

P(cosh)=(2a— 1! (—sin)*C M2 *(cosh),

a=0.

The coefficiemBg;ﬁ) in Eq. (9) is defined by

022103-2
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sm

(j—s+m)!

SI(j+ A (2] — 1)

\/(25+2)\p+1)!!(j—s—)\p)!(Zj—Zs—l—l)!!(j—m)!(j+m)!

(10

For the simplest presentation of results, it is convenient t@n j. Indeed, both indicegands enter Eq.(14) only in the

introduce the renormalized matrﬁ{ﬁﬁ(a), where

combination {—s), which determines the dimensions of the

matrices entering Eq(12). These dimensions areand |

m—k

N (j+m)!(j—m)!/sin0
G =N (001 |2
Substituting Eq(11) into Eq.(8), the matrixd is obtained as
the product of two triangular matrices,

aj)\p( 0) — C(jv)\p)( 0) . P(J‘J\p)( 0)’

drece). (1)

+1 forA,=1 andA,=0, respectively. As a consequence of
the independence of the matrix elementsjpthe matrices
CU+1Ap) and PUT1A) [and obviously thedl "1 s(B) func-

tions| can be calculated by simply adding one additional

(lowes) row to CU*) and one additionathighes} row to
PU-2)  as we illustrate in the example below, in which we

present explicit forms for the matric&{*» and PU-*p) for

12

where the matrix elements of the lower left triangular matrix

j=<3. The results fon,=1 are

C and the upper left triangular matriX are defined by c1)(g) 0 16
—cosf 1)’
- K—Ap)!(k+s—1)!
(J.hp) :( P ~(1/2)—k
Cks (0) (S_)\p)! (2k_1)| ~k-s (COS@), (13) 1
. —cosé 1 0
G/ gy (2m)!(j—s)! L (12)+m c@h(g)= , (A7)
Pom " (0)= i Ci=s-m+x (COSO) 1
sm (M=Ap)I(j=s+m+A,)] p 703 co$h+1) —2cosf 1
—2\™ mte(j—s)! o
:<sin9) (j—s+m+)\p)!PJ‘5”p(Cosa)’ 1) cosf 1
(14 Pet(0)= o)’ (18)
where in these equations,<k,m,s<j, andcgdkp)(e)zl.
Equations(11)—(14) are the principal result of this paper. 1
We note the surprisingly simple form and the intrinsic beauty Z(S cogf—1) 2cosf 1
of this new factorized form fod!: matrix elements of both PG g) = (19)
triangular matrices are well-known classic@egenbauer cosé 1 o]’
polynomials in co® with rational coefficients; diagonal ele- 1 0 0

ments ofCli*») and PU-*») are equal to unity, i.e.,

UM (g)=pU»

m j—m+>\p

Note that matrix elements a&-*» and Pl-*») do not de-

(0)=1.

and we recall from Eq(15) that the diagonal elements are

(19

unity, so that the X 1 matricesC*Y and P(:b are trivially

unity. As noted above, we see that>! and P?>% are the

upper left and lower left parts of the matric€®? and

pend on the value df rather, only their dimension depends P, respectively. The result fgr=3\,=0 is

C(3,0)( )=

1 0
—cos ¢ 1
1
E(cos20+1) —2cos 0 1

cos 6 3
2 (cos?0+3) Z(3cos20+1)

022103-3
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cos 8

3
(5 cos?6—3) 705 cos’9—1) 3 cos b 1

1 :
P(3’0)(0)= 5(3 00320—1) 2 cos 1 -0
cos 1 _ 0 -0
1 0 : 0 : 0 (21)

The marked internal 2 and 3x3 matrices in these equa- provides the standard definition for rotation matri¢é$),
tions are the results foy=1, A\,=0 andj=2, A,=0, re- while Ref.[6] considers the rotation of the body-fixed frame

spectively. We observe tha 9= 2D andpit 5 P21, (because it is convenient for the three-body problefne
relation between our matricecﬁr:,pm( #) and the slightly dif-
IV. RELATION TO THE RESULT OF MATVEENKO p i
ferent matricest’® (6) of Ref.[6] is
Matveenko’s derivatiorj6] of a factorized form for the
parity-projected combinations af (8) matrices exploits a _ 1+ 8
nontrivial technique of hyperspherical harmonics in terms of A (@) =(—1)retm [ —2DdP (). (26)
. m’'m m’m
Jacobi vectorX andx of the three-body problem. In order to 1+ 50 m’

establish the connection of these res{litbwith our results

presented above, let us consider the transformation of thgaking account of this relation, E¢23) for A »,=0 and for
MBH in Eqg. (6) under the auxiliary rotatio2=(0,6,0) ~ \ =1 coincides with the basic Eq&6) and(29) of Ref.[6].

from the frameK to K’, , the same type of rotation as
considered in Eq(8). Under this rotation, the irreducible
tensor in Eq(6) is transformed using the parity-projectdd V. APPLICATION TO INVERSION OF A MATRIX
matrix according to the relation COMPOSED OF CLASSICAL POLYNOMIALS
s+Ap From Egs.(12) and(23), it follows that there must exist

Ye(—9,0;0,0 = 2 ys"p 0,0:0, O)de( 9). (220 appropriate algebraic formulas for explicitly inverting a tri-
Yim angular matrix composed of Gegenba(mrassociated Leg-
) ) _ o ) endrg polynomials. Indeed, such formulas can be derived
This equation may be written as a matrix identity from Eq.(7) by considering a zero rotatiof} = (0,0,0). On
B(j,)\p)(_ 0)= B(j,xp)(a) -dire(6), (23) the one han'd, we must ha%m(O)z Sk.m» but, on the other
- hand, the direct use of E§7) gives
where matrix elements of the upper left triangular matrix

BU (- 0) are defined above by E¢9) and coincide with Smax
matrix elements oPU*¢)(6) [which are defined by Eq14)]  RI*e(0) - E AP 1Dk (Cosg)yjsr);]p(oyo;gyo),
up to numerical coefficients: (sm 0)" s P o7
2
(.M p) _ryp
Bem 7 (— 0)=B P’Pi" {(cosh). (24

) i) ) ] wherek=\ . Calculating the MBH on the right-hand side
The lower left triangular matriB"*¢’( ) is defined by an ¢ Eq. (27) explicitly [cf. Eq. (9)], we arrive at the identity

interchange of the rows @U*0)(— 6), namely (for both\,=0 and 1)
Bl (0)=BI2, o(=0). (25 (k+s—1)!
S, m—ZkE ———— M2 K(cosh)c DM (cosh).

Thus, both matrice8!™*0)(—6) and BU*0)(g) are com- (s+m)!

posed of associated Legendre polynomials equivalently, (28
of Gegenbauer polynomials with positive half-integer upper

indices. Equation(23) is equivalent to Eqs26) and(29) of e believe Eq(28) to be a new result. Equatiof28) can
Ref.[6]. The main difference between E@3) and the result  5iso be written in the matrix form

in Eq. (12) is that the calculation of the/*r matrix as the
solution of the matrix equatiof23) requires the inversion of
the matrixBU*p)(9). Note that there are some evident dif-
ferences in the notation between the results in this paper and _
those of Ref[6]. These differences stem from the fact thatwherel is the diagonal unit matrix, and the mate%*»)( 9)
we consider the rotation of the coordinate fratbecause it is defined by an interchange of the rowsR-*e)(6),

|:C(J,>\p)(9).E(J,>\p)(9)l (29

022103-4
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pUM)(gy=pUro) (g (12) and establishes the connection of our result with that of
—Ssm J—S+)\pm ) Ref [6]

Noting the fact that if the product of two matrices is the unit

matrix I, then these matrices are commuting, we obtain from VI. CONCLUSIONS

Eg. (29) one additional interesting relatidef. Eq. (12)]:
_ _ Invariant representations of FRM[§] [such as, e.g., Eq.
1= PU)()-CUM(0), (30 (7)] are powerful tools of angular-momentum algebra. Uti-
lizing these results for special Euler rotations, we have found

wherel is the "quasidiagonal” unit matrix in this paper a simple form for the parity-projected Wigner

o o0 ... o0 1 d’*» matrices as the product of two triangular matrices. Both
matrices are presented here explicitly in terms of well-known
0 0 e 1 0 classical polynomials. The use of Eq$2)—(14) in problems

e having definite parityx , is much more convenient than the
standard representation fo matrices in terms of Jacobi
1 o ... O 0 . , .
polynomials or hypergeometric functiorjd]. Indeed, for

Matrix identities(12), (29), and(30) allow us to write the ~ fixedj and\, according to Eq(12) one needs to calculate

chain of equalities only (j—Ap)(j—\p+1) different Gegenbauer polynomials
instead ofj (2] +1) different Jacobi or hypergeometric poly-
di*e( @) -dire(g)=CUMp). plirp). Cli-rp). plishp) nomials. Furthermore, Eq12) is especially convenient for
numerical evaluation of*r matrices having different ranks

=CUMp)|. PUAp) = CUp). plirp) =1 i, because, as mentioned above, matrix elemen@ afd P

(31)  do not depend ojy and hence the matrices fpr=j+ 1 may
0 i\ B o ) employ results calculated fgrwithout recalculation. Con-
Thus, we have proved thelt*r(6)-d'*»(6) =1. This identity cerning applications of the present results in analyses of
can be proved also using unitarity properties of Wigner func'many-body problems, we note that the anglen Eq. (7) is
tions. It is important that Eq30) can be used to control the 4, arpitrary parameter, which may be considered, e.g., as the
accuracy of numerical calculations of matrig&s»)(6) and angle between a Jacobi vector péiandx of the three-body
cU)(9). Namely, if the calculated matrix product on the problem[6], choosingn andn’ as the corresponding unit
right-hand side of Eq(30) differs from the exact matrix, 5 ~ . . .
= vectors X and x. In this case the set of parity-projected

then one loses precision in one’s calculations. o . : ; : ;
The identity (29) demonstrates the unexpected fact that.'vIBH sin Eq. 6),i.e,a baS|s_ set of |rredu0|b_le tensors with
teger rankj, may be useful in the construction of a conve-

i . _dn

fco(rl,%frf(?gg:;?rorpggrl%)f(k)(n; SSZ)e?o(r)fo?gg:onggl:eeé pLzlygg(rﬂsl%ient angular basis for the three-body problem similar to the
n : noo. . -egen three-body angular basis discussed in RéjJ.

polynomialg, the explicit form of the inverse matrix exists,

again in terms of Gegenbauer polynomials whose upper i We note finally that both our results here and those in Ref.
dices have the opposite sign to those of the iniiznin- n[6] are applicable for integgr which is the most important

verted matrix. In particular, we hav case for a number of applications. Invariant representations
erne atrnix. in particuiar, we have for FRM’s for half-integerj may also be derived using the

(\p) formal similarity of vectors to spinors with rank 1/2, thereby
[B(i,xp)(g)]*lzLC(liZ):T (cosh). (32) generalizing the results of Rgf5]. Based on such a gener-
- ms (sing)™ M=S7%p alization, the factorized form af’ matrices can be derived

) for half-integerj also and will be published elsewhere.
Thus, matrix elements of the matfiBU*0)(6)]~* coincide

with matrix elements ofC [cf. Eqs._(13) and (32)] up to
some coefficients. Using Eq&4) and (32), the expression ACKNOWLEDGMENTS
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