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Strain-induced distortion of the bulk bands of gadolinium

Carlo Waldfried, D. N. McIlroy, C. W. Hutchings, and P. A. Dowben
Department of Physics & Astronomy and the Center for Materials Research and Analysis, Behlen Laboratory of Physics, University of

Nebraska–Lincoln, Lincoln, Nebraska 68588-0111
~Received 28 June 1996!

Thin films of gadolinium, approximately 8 ML thick, have been grown on the corrugated~112! surface of
molybdenum and the electronic structure has been investigated with angle-resolved photoelectron spectros-
copy. The unfavorable lattice match between the ‘‘steplike’’ Mo~112! substrate and the preferred hexagonally
ordered Gd film results in an incommensurate Gd structure that appears to be ordered, but strained along the
direction of the corrugations. The hexagonal Gd lattice is expanded by more than 20% along the ‘‘step’’ lines
of the substrate, as determined from the reduced Brillouin-zone size along theGSM high-symmetry line and
low-energy electron diffraction. The induced strain substantially alters the conventional Gd 5d/6s bulk bands
to exhibit a dispersion opposite to that of the relaxed Gd~0001! structure. Dislocations destroy the long-range
crystallographic order in the direction orthogonal to the corrugations, which results in the localization of the
bands along theGTK symmetry line.@S0163-1829~96!00848-X#

The modification of crystalline films of 3d transition met-
als in terms of lattice expansions, or contractions, can sig-
nificantly alter the electronic structure.1,2 Some calculations
exist for the strained electronic structure of the rare earths@in
particular, of Pr~Ref. 3!#. Nonetheless, only a few experi-
mental studies have been performed as a result of the con-
siderable difficulties in preparing strained, crystalline
films.4,5 Small amounts of strain are obtained for ultrathin
films of Gd~0001! grown on W~110!,6 but only few differ-
ences were observed in the electronic structure which could
be attributed to strain.4

The experimental band structure of hexagonal closed-
packed Gd has been studied extensively.4,5,7–12 The bulk
band structure resembles Stoner-like behavior,8,13,14 while
the surface exhibits a temperature-dependent electronic
structure similar to a rigid-band system.14 The valence-
and/or conduction-band electrons are itinerant and are be-
lieved to mediate the magnetic exchange coupling of the
large local moments of the half-filled 4f core levels
(4 f 75d16s2).15 The magnetic coupling to the nearby atoms
is established by partial polarization of the 5d/6s valence
and/or conduction electrons~indirect coupling!. Strain is cer-
tainly expected to alter the band structure of the valence and
conduction electrons, which will consequently have pro-
nounced effects on the magnetic properties. The effect of
strain on the electronic structure of Gd is therefore of funda-
mental interest. In this paper we will discuss the modified
valence-band electronic structure of strained thin Gd films
~8–10 ML!, which were obtained by growing Gd on a cor-
rugated Mo~112! substrate~with the atomic distance perpen-
dicular to the Mo furrow direction of 4.45 Å!. The experi-
mental band structure was mapped using angle resolved
ultraviolet photoemission spectroscopy and the structural
analysis was undertaken with low-energy electron diffraction
~LEED!.

The photoemission experiments were carried out in a
UHV chamber equipped with a hemispherical electron en-
ergy analyzer with an angular acceptance of61°.16 The light
was dispersed with a 6-m toroidal grating monochromator at

the Synchrotron Radiation Center in Stoughton, Wisconsin.
The combined energy resolution was;150 meV. The
sample temperature was monitored with a Re/W 5–26 %
thermocouple with an accuracy of65 K. All photoemission
spectra shown in this paper have been acquired atT'150 K
with a photon energy of 35 eV at an incident angle of 45°.

Thin Gd films of 20–25 Å were grown at approximately
150 K on a Mo~112! crystal by slow thermal deposition. The
chamber pressure during deposition was less than 1.5310210

Torr, while the base pressure was in the 9310211 Torr range.
The Gd film thickness was monitored with a quartz-crystal
oscillator that was calibrated by monitoring the attenuation
of the molybdenum 4p core-level signal and the increased
signal of the Gd 4f core levels. The as grown films were
subsequently annealed at approximately 500 K for 5 min to
maximize structural order, as indicated by the development
of the bulk band dispersion and LEED.

Low-temperature annealing~T,500 K! of the as-
deposited Gd films gives an imperfect~131! LEED pattern
@Fig. 1~b!#. The well-ordered Gd films grown on Mo~112!
exhibit a streaked hexagonal LEED pattern, where the
streaks are oriented perpendicular to the substrate ‘‘step’’
lines @Fig. 1~a!#. This indicates that the Gd films order in a
hexagonal structure along the corrugation lines. The streaks
imply that misfit dislocations form perpendicular to the
‘‘step’’ direction and propagate to the surface of the 8–10-
ML-thick Gd films. The ordering of the Gd films is associ-
ated with a narrowing of the surface state linewidth, as well
as the formation of the Gd 5d/6s bulk bands.

Both the strain and the misfit dislocations within the thin
Gd films with hexagonal order are manifest in the band dis-
persion of the 5d/6s bulk bands. Figure 2 shows two sets of
valence-band photoemission spectra that were acquired for
various points along the high-symmetry linesGSM ~top!
and GTK ~bottom! of the surface Brillouin zone of the
strained Gd film. The normal-emission spectra are composed
of the Gd 4f core level at a binding energy of 8.4 eV, the Gd
5d/6s bulk bands at;1.8 eV below EF and the Gd
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5dz22r2 surface state at;0.2-eV binding energy. At normal
emission the valence-band spectrum of the strained Gd film
closely resembles the photoemission spectrum of the un-
strained Gd~0001!,4,7–12with the exception of the markedly
broader surface state9,11 ~FWHMGd/Mo~112!'1.3 eV,
FWHMGd~0001!'0.2 eV!. A well-defined very intense surface
state is characteristic of the clean hexagonal ordered
Gd~0001! surface.4,9,11 The broadening and suppression of
the surface state of the strained Gd films may be indicative of
several things: hybridization of the surface state with the
bulk bands,17 imperfect surface order, or an alteration of the
symmetry of the surface, relative to the unstrained Gd~0001!.

Both the 5d/6s bulk bands and the surface state of the
dislocated and strained Gd films exhibit pronounced band
dispersion~bandwidth:DEbulk'0.8 eV,DEsurface'0.25 eV!
along theGSM direction ~parallel to the substrate corruga-
tions! of the SBZ@Fig. 2~a!#. In contrast, the Gd 5d/6s va-
lence bands are completely dispersionless along theGTK
high-symmetry line~orthogonal to the substrate corruga-
tions!. The absence of the dispersion along theGTK direc-
tion, coupled with the lack of changes in the intensities with
emission angle@Fig. 2~b!# indicates that the film has no long-
range order perpendicular to the substrate corrugations. This
is consistent with the formation of dislocations perpendicular
to the corrugations, as indicated by the streaks in the LEED
pattern.

The effects of strain within the thin Gd films is clearly

FIG. 1. The LEED pictures of a 25-Å-thick Gd film grown on
Mo~112! and annealed at 650 K~a! and 480 K ~b!, which were
acquired with electron energies of 44.6 and 58.0 eV, respectively.
The LEED pattern~a! implies a hexagonal ordered structure with
the surface Brillouin zone displayed in panel~c!. The streaks are in
the direction perpendicular to the substrate corrugations.

FIG. 2. The emission angle-dependent photoemission spectra of
a 25-Å Gd film grown on Mo~112! along theGSM ~top! and
GTK ~bottom! high-symmetry directions of the surface Brillouin
zone. The spectra were acquired at 150 K with a photon energy of
35 eV.

FIG. 3. ~a! The band dispersion of strained Gd film along the
GSM direction of the Brillouin zone. The figure was constructed
from data acquired from films of 20-Å nominal thickness which
were annealed to 495 K~j!, 508 K ~d! and 521 K~m!, as well as
a 25-Å film annealed at 508 K~.!. ~b! The experimental band
dispersion of an ordered Gd~0001! film grown on W~110! along
GSM of the surface Brillouin zone. The data was reduced from
Refs. 4 and 11.
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reflected in the reduced Brillouin-zone size of the Gd/
Mo~112! films as compared to unstrained Gd~0001!. The
band dispersion along theGSM high-symmetry line of the
strained Gd films are displayed Fig. 3~a!. For comparison the
band dispersion of unstrained Gd~0001! is presented in Fig.
3~b!. Based on the dispersion of the strained Gd films in Fig.
3~a!, we have determined the zone edgeM̄ to be at 0.77 Å21,
which is smaller than that of unstrained Gd~0001!
~Ḡ2M̄51.0 Å21!.4,5,11,12 This implies a relaxation of the
hexagonal Gd structure along the substrate corrugation lines
of more than 20%. This yields a relationship between the
lattice vectors of Gd and Mo of 2:3~aMo52.73 Å and
aGd54.09 Å!. A lattice vector relationship ofn:1 has been
observed for overlayers of Mg,18 Cs,19 and Na~Ref. 20! on
the Mo~112! surface; therefore the above relationship is not
without precedence.

The differences between the band structure of the strained
Gd film and the unstrained Gd~0001! along theGSM direc-
tion of the SBZ are dramatic. The Gd surface state of the
strained film disperses away from the Fermi level in a fash-
ion similar to that of the surface state of well-ordered un-
strained Gd films. The 5d/6s bulk bands of the strained Gd
films, however, disperse downward~to higher binding en-
ergy with increasing wave vector!, which is in the opposite
direction of their counterparts in unstrained epitaxial Gd
films,7–12 which disperse upwards towards the Fermi level
along GSM direction @Fig. 3~b!#. In addition, there are at
least two bulk bands for the Gd/Mo~112! films. At least one
band is located at approximately 1.8 eV belowEF at Ḡ and
disperses downwards to higher binding energies away from
the zone center. Two bulk bands are observed beginning ap-
proximately half way across the Brillouin zone. At theM̄
point these two bands are separated by;0.8 eV, where the
lower band is at a binding energy of 2.6 eV.

Although the symmetry of the two bulk bands of the
strained Gd films are even with respect to the mirror plane,
as is the case for unstrained Gd~0001!, the orbital symmetry
of these two strained Gd 5d,6s bulk bands may still be dif-
ferent from that of the unstrained Gd~0001!. There are sev-
eral possible origins for the observed band structure of the
strained Gd films:~i! The two bands may be composed of
spin minority and spin majority bands, which are of
5dz22r2 character, similar to the Gd~0001!. Unlike the
Gd~0001!, however, two strained Gd bands may degenerate
at the Brillouin-zone center and exhibit exchange splitting

only near the zone edge, possibly due to altered magnetic
ordering or reduced symmetry.~ii ! The increased atomic
spacing in the strained Gd may favor the wave function over-
lap of Gd 5dxz,yz or 5dx22y2 orbitals, rather than the Gd
5dz22r2. This would suggest an assignment of the two bulk
bands in the strained Gd valence band as the 5dxz and 5dyz ,
and/or 5dx22y2 bands, which may form a bonding-
antibonding pair. One band (5dx22y2) may not be easily ob-
served atḠ because of symmetry selection rules.~iii ! The
expanded Gd lattice may result in a more atomiclike valence-
band structure, with a splitting of the bands into mainly 6s
and 5d character near the zone edge. Our suggestions, how-
ever, leave the questions about the origin of the modified
band structure of the strained Gd films unanswered. Theo-
retical band structures, which are lacking at this point, are
needed for strained layers of Gd. We expect that the strain
modified band structure may reflect changes in the magnetic
properties. If theory is to be believed, these strained and
expanded lattice films will remain ferromagnetically ordered
as predicted by calculations by Erikssonet al.22 and Harmon
et al.,21 rather than changing to antiferromagnetic ordering.

In conclusion we have investigated the electronic and
structural properties of strained Gd films, as grown on the
corrugated Mo~112! substrate. The Gd films are ordered and
strained along the substrate corrugation lines, but have high
densities of dislocations perpendicular to the corrugation di-
rection, which in turn breaks down the long-range order in
this direction. The strain is reflected by a hexagonal Gd
structure that is expanded by at least 20% in the direction
along the ‘‘steps.’’ As a consequence of strain, the Gd 5d/6s
bulk bands disperse in the opposite direction of those of the
unstrained Gd~0001!. At least one band is located 1.8 eV
belowEF at Ḡ and uniaxially disperses alongGSM towards
higher binding energy. Two bulk bands are observed in the
vicinity of the M̄ with a maximum energy splitting of;0.8
eV. The strained Gd films exhibit anisotropies in the band
structure and in the long-range order. We do not, as yet,
know how strain will affect the magnetic ordering, or how
the strain and misfit dislocations will influence the Curie or
Neèl temperature of the Gd films, but these are issues of
great interest.

This work was supported by NSF through grant Nos.
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carried out at the Synchrotron Radiation Center which is also
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