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Abstract 

Design and Analysis of Blast Induced Traumatic Brain Injury Mechanism Using a 

Surrogate Headform: Instrumentation and Outcomes 

Eyitejumade A. Sogbesan, M.S. 

University of Nebraska, 2011 

Advisor: Carl A. Nelson 

Brain injury cases in military personnel exposed to improvised explosive devices 

(IED) in combat have been on the rise. In Iraq and Afghanistan improved helmets and 

body armor are not enough protection against blast wave threats.  The United States 

military are sponsoring researchers and scientists around the globe to find the 

associations between pressure waves and traumatic brain injury (TBI).  

Lack of accurate data and blast wave exposure information in returning soldiers 

has slowed the innovation needed to effectively diagnose TBI and other related brain 

injury as a result of pressure waves. More detailed data will be required to gain a better 

understanding of the mechanisms responsible for blast-induced TBI and to design and 

develop a more effective head protection system. 

Understanding the impacts of blast wave in the brain could lead to understanding 

the best form of protection the head needs in such a scenario.  Developing an accurate 

model suitable for the simulation of the mechanical behavior of the human brain under 

blast loading conditions could lead to significant advances. 



This thesis introduces a research study on blast waves, the development of a 

realistic surrogate human head and brain, the data acquisition system which include the 

instruments needed to correctly identify and measure the attenuation of the pressure/blast 

waves in the head/brain and the analysis of the data acquired. 

In designing the experiments, the RED Head (Realistic Explosive Dummy 

Headform) was fixed with strain gauges on the exterior to check for stress waves in the 

surrogate skull, and with a fiber optic sensor inside the brain for pressure measurement. 

Making use of a shock tube facility, there were 11 shots fired at different breech 

pressures, the lowest using a 0.01-inch Mylar® burst membrane and the highest using ten 

0.01-inch Mylar® burst membranes. The results were then tabulated and presented; the 

aim is to study the propagation of blast waves and their attenuation within the 

experimental headform with a simulated brain. 
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Chapter 1: Introduction 

1.1: INTRODUCTION 

High pressure blast waves can cause significant damage to organs of military 

personnel exposed to improvised explosive devices (IED) [1, 2]. Not until recent times 

have the brain been the focus of research related to blast wave injuries, because mortality 

rates were on the increase and brain injury was somewhat secondary. Today, the precise 

mechanisms for brain injury from blast/pressure waves still remain a mystery. One thing 

that is certain is that improved helmets and body armor protect our soldiers from 

shrapnel, bullets and fragments but not blast waves, so what otherwise could have been a 

result of many deaths are now reduced to brain injury cases only [3]. About 65% of war 

veterans wounded in action in both Afghanistan and Iraq are affected by injuries from 

improvised explosive devices and between 10 and 20% of Iraq war veterans have 

suffered from some sort of head trauma from blast/pressure waves [2]. 

Sponsored by the Army Research office, scientists around the world are busy 

trying to find the associations between pressure waves and traumatic brain injury (TBI). 

Researchers and scientists at Livermore National Laboratory used simulations to study 

the effects of blast on the deformation of the skull and are using the same technology to 

investigate the mechanisms of TBI as a result of blast waves [3]. 



17 
 

Direct recording of pressure waves inside the brain during exposure has not been 

recorded previously, but Chavko et al. measured pressure waves inside the brain of a rat 

using fiber optic sensors, one of the sensors this research used[2].  

To gain a better understanding of the mechanisms responsible for blast-induced 

TBI and to design and develop a more effective head protection system, we would 

require more detailed data describing typical blast events and their effects on soldiers. 

Sensors currently in use by the military to measure blast waves are large, heavy and 

sometime unreliable because of their placement around the helmet [4]. Human cadavers 

or animal test subjects have proven unreliable [6]. So there is no real blast data within the 

brain available from the war zone to correlate with TBI data.  One of the questions built 

into the experiment design is to distinguish the differences between blast wave trauma 

and impact trauma. The thesis will be taking a look at some of the experiments designed 

to simulate a blast wave comparative to the one given off from an IED, with special 

emphasis on interaction with a head model.  

1.2: MOTIVATION 

There have been limitations in getting an accurate measurement on an injured 

soldier that has just been exposed to a blast wave; however, researchers for years have 

used cadavers and animals instrumented for experimentation. Cadavers have limited 

duration of viability, they cannot typically be used multiple times, and there are 

differences from body to body; hence it is extremely difficult to achieve reliable 

comparison of data. Animal testing such as in rats [2] has proven useful, but testing in 

humans, pigs and other mammals have proven difficult [6]. 
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Understanding the impacts of blast wave in the brain could lead to understanding 

the best form of protection the head needs in such a scenario.  Developing an accurate 

mathematical model suitable for the simulation of the mechanical behavior of the human 

brain under blast loading conditions could lead to significant advances. These new 

discoveries could revolutionize the way we look at soldier safety and future combat 

protection. It could also introduce new knowledge in fluid mechanics and biomaterials. It 

will broaden existing research into brain trauma conditions under blast loading, which 

will improve tremendously current treatment decisions for basic brain-related problems 

such as TBI and PTSD experienced by returning combat troops [6]. 

1.3: OBJECTIVE 

Due to the unpredictable nature of pressure waves in the human head, it is 

imperative that a stable and accurate system be put in place to understand this 

phenomenon. All gas dynamic conditions vary through a blast wave, and most have role 

in target loading, so it is important to have some sort of reliable way to measure blast and 

its impact. Blast gauge measurements are vulnerable to wide ranging interference effects, 

most of which are inherently severe in blast environments, especially from temperature, 

shock/vibration, casing stress, etc. [7]. That is why the design and analysis of the data 

must be done in the most acceptable environment. The design of the experiments, data 

acquisition and instrument selection has to be optimal in the most extreme condition.  

The main objective of this research is to evaluate the propagation effects of 

pressure/blast waves in the brain. The goal is to investigate the effects of pressure/blast 

waves, particularly those typical of IEDs, on the human brain and the effects of the waves 
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on potential causes of TBI. The intent is to analyze the results in predicting mild TBI as a 

function of incident blast. 

 A sub-objective is to design and select the best instrument and data acquisition 

system that is capable of taking accurate measurements under such conditions and to 

design the experiments that satisfy the main objective. 

1.4: THESIS ORGANIZATION 

The thesis is organized in such a way as to highlight our current and ongoing 

work on the project, and future work will also be discussed at the end of the report. The 

results from different experiments and calibration tests will be included. 

The first part of the thesis takes a look at the various literature detailing the causes 

and effects of TBI, the dangers of improvised explosive devices, and description of 

shockwaves and how they propagate. The history of head protection and current scientific 

breakthroughs in soldier protection are also presented. 

The second part takes a look at my contributions to surrogate brain material 

selection and design of the RED Head (realistic explosive dummy head) system. The 

selection of instruments and their calibration forms the later part of the research. The 

corresponding results, data and plots make up the third part of the research with 

conclusions and discussion on the project finalizing the thesis. 
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Chapter 2: Literature Review 

2.1: TBI 

Traumatic Brain Injury (TBI) can be the result of a direct blow or jolt to the head, 

and also by advancing pressure waves and direct impulses or impact. It is also called 

intracranial injury. TBI is a major health concern worldwide, especially in infant death 

and disability [8]. It can cause functional changes with consequences as varied as 

aggressive social behavior, impaired thinking, language, learning, emotions, behavior, 

sensation, and neuro-degenerative diseases such as epilepsy, Alzheimer's disease, 

Parkinson's disease, and other brain disorders that become more prevalent with age [9, 

 

Figure 2.1: Causes of TBI- A diagram of the forces on 

the brain in a coup-contrecoup injury (Patrick J. Lynch, 

medical illustrator; C. Carl Jaffe, MD, 

cardiologist. http://creativecommons.org/licenses/by/2.5/) 

http://creativecommons.org/licenses/by/2.5/
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10]. Brain trauma causes secondary injury, in addition to the damage caused at the 

moment of injury, within minutes and days after the initial event. These alterations 

in cerebral blood flow and/or pressure buildup within the skull can which contribute 

substantially to the damage from the initial injury [11].  

The major leading causes of TBI are falls, which account for about 28% of cases, motor 

vehicle-traffic crashes (20%) being struck by/against a heavy object (19%) and assaults 

(11%) [8]. 

  According to the Brain Injury Association, every 23 seconds, one person in the 

US sustains TBI and an estimated 3.17 million Americans currently live with disabilities 

resulting from TBI. Out of the 1.4 million Americans who sustain head injuries each 

year, more than 50,000 people die as a result of Traumatic Brain Injury [8]. 

High-pressure waves (blast) as a result of improvised explosive devices from 

terror attacks account for the majority of combat injuries, both from Afghanistan and Iraq 

[12].  

These pressure waves could produce human brain damage.  

2.2: IEDs 

IEDs can penetrate even highly protected structures, including sophisticated battle 

tanks and heavily armored vehicles. Some IEDs utilize very heavy artilleries and 

explosive devices, which are often buried below a dirt surface and are activated via 

remote control. IEDs usually combine the effects of blast, fragmentation and armor 
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penetration, through the use of shaped charge liners. Camouflaged explosives can also 

serve as roadside bombs. These devices are remote controlled, triggered by infra-red, 

pressure bars or trip wires and are aimed to delay or disrupt enemy forces in their 

movement into a secured area [12]. 

Blast injury as a result of terrorist attacks or military conflict has increasingly 

become a worldwide concern [13]. 

 

Figure 2.2: An image of 500lbs bomb rigged as Improvised Explosive Device 

(IED). Source: Globalsecurity.com 

(http://www.globalsecurity.org/military/intro/images/ied-iraq_500lbs-

bomb_2004120107a_hr.jpg) 

 

http://www.globalsecurity.org/military/intro/images/ied-iraq_500lbs-bomb_2004120107a_hr.jpg
http://www.globalsecurity.org/military/intro/images/ied-iraq_500lbs-bomb_2004120107a_hr.jpg
http://www.globalsecurity.org/military/intro/images/ied-iraq_500lbs-bomb_2004120107a_hr.jpg
http://www.globalsecurity.org/military/intro/images/ied-iraq_500lbs-bomb_2004120107a_hr.jpg
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2.3: SHOCKWAVE 

This is an exothermic supersonic blast accelerating through a medium that 

eventually drives a pressure wave propagating directly in front of it. Blast is the process 

by which “energy of an explosion source that is propagated into its surrounding 

environment then interacts, loads and damages materials, structures and systems” 

Shockwaves develop as a result of pressure build up in compressible flow or as a way to 

balancing a forced pressure mismatch in the system [7]. 

When a shockwave is generated, there are nearly discontinuous changes in the 

total pressure, density, and particle speed across the shock front [14]. 

The shock wave we are working with is assumed to be planar and fully developed 

from the origin till it exits the tube, covering the entire 9” square shocktube. 

2.4: BLAST INJURY 

The damage potential of an explosive blast depends on three main factors: the 

force exerted on the target, the duration of the applied force and the ability of the target to 

withstand the effects of the blast wave [16].  

Blast injury is divided into three main categories. Primary blast injury is as a 

result of the over-pressurization wave from the explosion. The injury is caused by 

pressure differentials at density interfaces such as air-fluid contact. The tympanic 

membrane is the most frequently injured structure in primary blast injury, followed by the 
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lungs, colon, and small bowel [1, 13]. For soldiers with body protection, few report injury 

caused to gas-containing organs such as lungs [7]. 

Secondary blast injury occurs when objects in the blast area become projectiles 

capable of inflicting both blunt and penetrating injury, while tertiary injury results from a 

powerful blast wind that seems to throw the patient away from the blast epicenter with 

sufficient force to cause traumatic impacts with nearby objects [13].  

Bochicchio et al. [13] evaluated the epidemiology of blast injury in a domestic 

non-terroristic scenario. Their data were analyzed retrospectively on patients admitted 

with different types of blast injury over a 10-year period at a busy urban trauma center. 

Injuries were classified by etiology of explosion and anatomical location.  

 

Etiology Number of Patients 

Private dwelling explosion 31 (35%) 

Industrial pressure blast 20 (22%) 

Industrial gas explosion 16 (18%) 

Military training explosion 15 (17%) 

Home explosive device 8 (9%) 

Fireworks explosion 1 (1%) 

Table 2.4.1: Etiology of Blast Injury [13] 
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Eighty-nine cases of blast injury were identified in 57,392 patients (0.2%) treated over 

the study period. The majority of patients were male (78%) with a mean age of 40 +/- 17 

years. The mean Injury Severity Score was 13 +/- 11 with an admission Trauma and 

Injury Severity Score of 0.9 +/- 0.2 and Revised Trauma Score of 7.5 +/- 0.8. The mean 

intensive care unit and hospital length of stay was 2 +/- 7 days and 4.6 +/- 10 days, 

respectively, with an overall mortality rate of 4.5 per cent [13]. 

 

Historically, TBI has been associated with secondary or tertiary blast injury; 

Bochicchio et al. [13] suggested that the central nervous system may be significantly 

affected by primary blast injury. The report highlighted that domestic blast injury occurs 

only on a smaller scale on a regular basis within the United States, and that non-terrorist 

sources of blast injury such as from explosions involving natural gas, industrial plant 

accidents, legal and illegal fireworks, mining and demolitions work, and homemade 

explosives for personal or criminal use are a small fish in the pond when compared to 

numbers from the war front [13].  

Types of Injury Number 

Cerebral contusion 13 

Subdural hematoma 8 

Diffuse axonal injury 4 

Subarachnoid hemorrhage 3 

Intracerebral hemorrhage 3 

Epidural hematoma 3 

Intraventricular hemorrhage 2 

Table 2.4.2: Type of Traumatic Brain Injury [13] 
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Whether delayed or immediate, the effects of primary blast injury on air-filled 

organs include pulmonary contusion and hemorrhage as well as gastro-intestinal tract 

injury or perforation. It has also been observed to cause significant damage to 

sensorineural pathways as well as the inner ear [13].  

A review of soldiers injured in conflict in Lebanon [13] reported that nearly one 

third of 17 blast-injured patients were diagnosed with diffuse brain injury. 52 percent of 

critically injured patients of the Madrid bombings of March 11, 2004 were diagnosed 

with head injuries, and 13.5 percent of surviving victims of the Oklahoma City bombing 

in 1995 also sustained some sort of head injury [13].  

Prior studies have clearly demonstrated that even mild TBI may lead to cognitive 

 

Figure 2.3: A blast explosion (Source: 

http://www.newscientist.com/blog/invention/20

07/07/blast-wave-protection.html) 
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and emotional impairment requiring treatment, but study results suggested that TBI 

induced by blast injury is a dynamic process that continues to evolve well after the time 

of injury: “Thirty per cent of 665 patients from Yugoslavia sustaining blast injury 

reported subjective neurological or psychological symptoms after injury, and war 

veterans exposed to blast injury in the remote past have been shown to demonstrate 

persistent electroencephalographic changes consistent with TBI.” These findings suggest 

that blast may produce subtle brain injury, which is not immediately obvious on clinical 

presentation but may lead to cognitive deficits post injury [13]. 

 

2.5: HEAD PROTECTION 

Protective helmets protect the wearer‟s head by absorbing mechanical energy and 

protecting against penetration. Anatomical helmets adapted to the inner head structure 

were first invented by neurosurgeons at the end of the 20th century. The first military use 

of helmet was around 950 A.D. Today, military helmets are made of ballistic 

materials such as Kevlar, which have excellent bullet and fragment stopping capabilities 

and also offer non-ballistic protection against other forms of trauma and shock waves.  

“The M1 helmet is a combat helmet used by the American military from World 

War II until it was replaced by the PASGT helmet beginning in 1985”[17].  

Personnel Armor System for Ground Troops (PASGT) was developed in 1975 

and it‟s a combat helmet and ballistic vest used from around 1983 until 2003 by the 

American military. “The shell is made from 29 layers of Kevlar consisting of a 
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ballistic aramid fabric treated with a phenolic resin system and it offers protection 

against shrapnel and ballistic threats”. It meets the Department of Defense test method 

standards for armor and helmet (MIL-STD-662 F). It weighs between 3.1 pounds and 4.2 

pounds [17]. 

“The lightweight helmet” is the replacement for the PASGT combat helmet. It is 

identical in shape to the PASGT and heavier than the advanced combat helmet (ACH), a 

Kevlar® type protective helmet and its larger size also offers more protection, it is also 

lighter than the PASGT. The Marines started using it around 2004 and it completely 

replaced the PASGT in 2009 [17]. 

“The Modular Integrated Communications Helmet (MICH), commonly known as 

the Advanced Combat Helmet (ACH), was developed by the United States Army Soldier 

Systems Center to be the next generation of protective combat helmets for use by 

the United States Army.
 
The difference between MICH and ACH are the communications 

components which ACH lacks” [17].The current form of military helmet system has 

provided the desired protection to US troops. However, there is still a critical need to 

drastically mitigate traumatic brain injury among surviving soldiers wounded during 

combat operations, especially in Iraq and Afghanistan [18].  
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2.6: OTHER RESEARCH WORK 

Coordinated experiments and numerical simulations investigated the pressure 

field surrounding a head with a helmet subjected to a blast wave typical of injurious but 

non-lethal threats. Mott et al. [19] conducted experiments with C4 explosive charges 

ranging from 0.75 kg to 5 kg, and two anthropomorphic test mannequins (Hybrid III) 

located 3 m from the explosive. Pressure sensors were mounted at selected locations 

around each the free-field and the mannequin's head. The blast and ground reflection 

were numerically modeled and the results used as a boundary condition for a three-

dimensional unsteady simulation of the head-helmet complex subjected to a blast wave. 

The helmet showed good protection against primary blast injury both in simulations and 

experiments. However, the pressure waves entering the gap between the helmet and the 

 

Figure 2.4: Advanced Combat 

Helmet (Source: www. fy-

composites.com) 
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head were congregating on the side and the back of the head and the measurement at 

those points acted as if they were unprotected surfaces subjected to blast waves [19]. 

 

In a similar experiment, Livermore National Laboratory with the aid of 

sophisticated computerized hydrodynamic codes is helping researchers understand the 

mechanisms of TBI [3]. They simulated a military helmet under blast conditions, and 

noted how the shockwave was able to wash under the helmet through the gap created by 

the web suspension which is essential for ballistic protection. This under wash effect 

 

Figure 2.5: Livermore Lab simulations of a blast-induced traumatic brain 

injury, a 2.3-kilogram spherical charge of C4 high explosive is located 4.6 meters 

from a simplified head consisting of a skull, cerebrospinal fluid, and brain tissue 

[3].  
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focuses the blast wave, causing pressure under the helmet to exceed that on the outside 

[3]. This is due to a combination of the increased projected helmet area blocking the 

shock and having foam padding between the helmet and the head, something that does 

not exist at the ear location [19]. 

 

Figure 2.6: Pressure contours show the effect of a front-

facing blast at various times after detonating 1.5 kg of C4 

explosives from a distance of three meters. Black 

represents 1.0 atmosphere of pressure, and red indicates 

pressures over 3.5 atmospheres. Credit: NRL's Laboratory 

for Computational Physics and Fluid Dynamics. 
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Other TBI simulation at Livermore unexpectedly revealed that the skull flexes 

when exposed to a nonlethal blast wave, even one generating pressures as low as 1 

atmosphere (or 100 kilopascals) above ambient pressure. In fact, even without direct head 

impact, nonlethal blasts induce enough skull flexure to generate some potential brain 

damage [3]. 

The numerical simulation used to describe and explain the pressure and flow-field 

around the head and helmet of a soldier exposed to a blast wave is the compressible Euler 

equations with species transport [19]: 

  

  
                                                                       (Equation 1)                                                             

   

  
                                                      (Equation 2)                

  

  
                                                       (Equation 3)               

   

  
                                                            (Equation 4)                 

where   is the total density of the mixture,    is the bulk velocity, E is the total energy, P 

is the thermodynamic pressure,    is the concentration of species k, and    is the 

chemical source for species k. 
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Total enthalpy is: 

E = ∑   
 
           

 

 
      

(Equation 5) 

where the species enthalpy,       are computed from 6
th

-order polynomial curve fits. 

 

 

 

Figure 2.7: Simulations show that the older suspension-type helmet amplifies the 

blast pressure under the helmet, increasing the pressure extremes in the brain [3]. 
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The Mach number of a shockwave is the ratio of its inertia to compressibility. It is 

the non-dimensional factor governing resistance due to longitudinal (compression) wave 

formation that is the ratio of the speed of flow (v) to the speed of sound in a fluid (c).  

                                                                 (Equation 6) 

 

Shock waves are generally formed in the shock tube when a fluid is heated so 

rapidly that the leading edge of its expansion travels at or above the speed of sound in the 

fluid. “Roughly spherical shock waves form when bombs, fireworks, and other 

 

Figure 2.8: In simulations of a blast such as from an improvised explosive device, 

an unprotected skull ripples where the pressure inside the skull is highest, just as pie 

dough is deformed under a rolling pin [3]. 
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pyrotechnic devices explode. A bolt of lightning generates a cylindrical shockwave 

centered on the bolt's path” [22]. 

The formula to compute Mach number in a supersonic compressible flow is 

derived from the Rayleigh supersonic Pitot equation: 

            √((
  

 
)   ) (  

 

   )
   

                                      (Equation 7) 

where: 

 M is Mach number 

    is impact pressure measured behind a normal shock and 

P is static pressure. 

Impact pressure is the difference between Pitot pressure (also known as stagnation 

pressure or total pressure) and static pressure. Generally, M for shockwaves is greater 

than 1 but not more than 5. 

The general wave speed calculation for a solid could be employed for our experiment as: 

c = √
 

 
      (Equation 8) 

where  K = bulk or shear modulus 

 ρ = density 
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Chapter 3: RED Head Development 

3.1: THE HUMAN BRAIN 

The most important part of the human head is the brain. It is the center of the 

nervous system and an extraordinary and complex organ. Its full characteristics are still 

not well understood, despite increased knowledge and breakthroughs in the neurosciences 

[20]. The brain controls the other organ systems of the body, either by activating muscles 

or by causing secretion of chemicals such as hormones, but it is also an electrochemical 

and mechanical device [20]. It receives nervous signals from the senses, and responds 

  

Figure 3.1: The major areas of the brain have one or more 

specific functions (A.D.A.M. Medical Illustration Team: 

Meredith Nienkamp, M.S.M.I., Dan Johnson, M.S.M.I., Lisa 

Higginbotham, M.S.M.I) 
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with signals that cause physical activity. The brain creates heat and chemical waste that 

are removed by a subsystem of drainage vessels [20].  

The cerebrospinal fluid acts as a damping system. Layers of hair and skin over the 

skull also act as insulation from the effects of the sun and weather. The neck muscles 

complement the damping system, protecting against shocks and accelerations [20].  

 

The human head is composed of biological materials, each with their own 

mechanical properties such as elastic modulus, density, shear modulus, Poisson's ratio 

and magnetic permeability. Inside the head there is a delicate mechanical equilibrium 

involving pressure. This equilibrium can be disturbed by electromagnetic or mechanical 

waves. High frequency electromagnetic waves can cause perturbations in brain function. 

Tissues can also be affected by the accelerations and decelerations that make up 

mechanical waves [20]. 

Units Mass Density 

(kg/cm
3
) 

Modulus of  

Elasticity (Pa) 

Poisson's 

Ratio 

Shear 

Modulus (Pa) 

Brain 1.05 2295 0.4 981 

Cerebrospinal 

Fluid 

1.00 2207 0.4 20 

Blood 1.02 2236 0.4 20 

Bone 1.33 9415 x 10
6
 0.2 3432 x 10

6
 

Skin 1.03 1961 0.4 1961 

Table 3.1.1: Mechanical properties of various parts of the human head [20] 



38 
 

3.2: RED HEAD 

The Realistic Explosive Dummy (RED) Head is a surrogate human head form 

with simulated skull, skin and brain. It utilizes standard neck components from both the 

Hybrid 2 and Hybrid 3 Anthropomorphic Test Dummies (ATD) [21]. 

ATDs have been used for many years by the military, aerospace and automotive 

industries to assess and standardize safer protection systems [22]. In particular, the 

automotive industry over the years began research into creating the HYBRID system that 

seeks to replicate the physical properties of an adult human. The HYBRID system is an 

ATD developed by General Motors in 1971, when they decided to standardized the 

existing crash test dummies at the time “VIP-50” and “Sierra Stan” by combining their 

best features (hence the name hybrid) to model an average male in height, mass, and 

proportion. 

 

Other ATDs developed for crash testing include: Side Impact Dummy (SID), Biofidelic 

Side Impact Dummy (BIOSID), and European Side Impact Dummy (EUROSID 1), and 

Description Dimensions 

Neck 3.4 lbs 

Head 10 lbs 

Head Circumference 22.5 inches 

Head Width 6.1 inches 

Head Length 7.7 inches 

Head Height 7.7 inches 

Table 3.2.1: Dimensions of the RED Head 
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US Air Force‟s Advanced Dynamic Anthropomorphic Manikin (ADAM) [22]. Manikin 

for Assessing Blast Incapacitation and Lethality (MABIL) was an ATD that was used to 

asses blast threats, especially in air-containing organs [23, 24]. 

The RED Head consists of a skull assembly with an opening for the brain and 

cerebrospinal fluid, and is attached to a base plate which is part of the neck assembly. 

Table 3.2.1 represents the standard dimensions and weight of the RED Head. The head 

length and height are 7.7 inches while the width is 6.1 inches.  

 

 

 Figure 3.2: 

3D-CAD Design of RED Head.  

Figure 3.3: Red Head skull assembly 
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The neck and head assembly weighs about 13 pounds combined, while the head 

circumference is 22.5 inches. The head consists of a polyurethane skull and a 

polydimethylsiloxane (PDMS) skin. The head has a stainless steel base plate which 

contains a silicone rubber gasket. It is attached to a flexible neck structure that can 

simulate the movement of the neck in response to loading.  

3.3: MATERIAL MODELING 

The most important materials to model were the brain and the cerebrospinal fluid 

(CSF).  Though it is important to represent all the different types of tissues found in the 

head, it is not a feasible feat to replicate all of them separately, even though they might 

have a non-negligible effect on blast wave transmission through the head [25]. The aim is 

to be as close as possible to the mechanical properties of the brain so as to provide an 

averaged brain response to blast loading. There are variations in parameter values when it 

comes to the mechanical properties of the human brain, depending on which author one is 

considering: there are some differences in the values provided (compare Tables 3.1.1 and 

3.3.1) but the effect of this uncertainty on the work presented in this thesis is acceptable.  

 Density 

(g/cc) 

Initial Bulk 

Modulus 

(GPa) 

Poisson’s 

Ratio 

Yield 

Stress 

(MPa) 

Strain to 

Failure 

(%) 

Fracture 

Stress 

(MPa) 

Skull 1.412 4.82 0.22 95 0.8 77.5 

Brain 1.04 2.37 0.49 -- -- -- 

Table 3.3.1: Material properties for the human skull and brain [29] 
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In doing this, we have to take a look at the properties of the brain tissue, the 

cerebrospinal fluid (CSF) and the skull in general. Many potential surrogate material 

properties were tested, and a few were found to be close to the brain, but some of these 

materials were not very stable in their properties over time [26]. Many researchers have 

modeled the CSF as an incompressible fluid and the brain parenchyma as a sponge of 

visco-elastic material [27]. Water was used to model the CSF because of its composition 

[28]. 

 

Several materials including gelatin, toothpaste, custard powder and silicone gels 

were made and analyzed [26]. Step response analysis, rheometric analysis, and dynamic 

mechanical analysis (DMA) tests were performed to match up with existing data 

available for brain matter. The gelatins and silicone gels were closer in properties than 

any other material to the brain matter, and the silicone gels were much more stable than 

the water-based gels (gelatin).  

A thinner-type additive gel was mixed with the silicone gels in order to match the 

dynamic modulus values to those of human brain matter [26]. This material developed in-

house, forms the basis for our brain surrogate for testing. 

 Short-term 

Shear Modulus 

Go (kPa) 

Long-term 

Shear Modulus 

G (kPa) 

Decay Constant 

 (sec
-1

) 

White Matter 41.0 7.8 700 

Gray Matter 34.0 6.4 700 

Table 3.3.2: Material properties for the human brain [29] 
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Figure 3.4: The Realistic 

Explosive Dummy (RED) Head, 

with left, right and back views. 
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Chapter 4: Instrumentation 

4.1: INSTRUMENT SELECTION 

As stated in chapters 2 and 3, trying to design an instrument or a data acquisition 

system needed to measure blast wave mechanisms in the head requires special handling 

and sensors small and sensitive enough to interpret the pressure waves received without 

distortion or any interference on the part of the sensor‟s geometry to the wave pattern. 

This system and design process relies on some instrument knowledge but also 

necessitates further investigation on current technology through review of existing 

literature. The experiment in itself is constrained, because of the environment in which it 

has to be performed with no flexibility in compromising the size of the sensors to use or 

the parameters that need to be measured. This process requires an understanding of 

available instruments, knowledge of the requirements of the signal to be measured, 

knowledge of the capability of the instruments, and a means for making an instrument 

 

Figure 4.1: The schematic for the experiment set up, showing the data acquisition 

system. 
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selection [30]. With all this in mind, optimal sensors and data acquisition system were 

selected suitable to process the shockwave reading and measurement. 

4.2: PVDF SENSORS 

Size was the first constraint concerning the sensors. They should be inserted into 

the brain surrogate and also positioned on the outside of the skull assembly of the RED 

Head in order to measure intracranial pressure and surface strain. The ideal sensor should 

be small in size and have negligible effect on what is being measured. The first sensor 

considered was a piezoelectric sensor referred to in this report as a PVDF sensor.  

In 1969, Kawai [31] discovered strong piezoelectricity in polyvinyl fluoride 

(PVF) and polyvinylidene fluoride (PVDF) polymers, which become strongly 

ferroelectric after having been subjected to the effects of both mechanical stretching and 

the application of an electrical field [31, 32]. The polarization in the material generates 

the electric field, which then be used to transform the mechanical energy into electrical 

energy. 

 

Figure 4.2: A Piezotech® PVDF 

piezoelectric sensor (Source: 

Piezotech S.A.S) 
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This sensor has been used in the past for shockwave measurements where it was 

exposed to very quickly rising high pressures up to 25GPa with a rise time of a few 

nanoseconds [33]. Although relatively thin, piezoelectric sensors were not ideal for 

insertion in the brain surrogate, firstly, because of their size and secondly because of their 

high noise ratio and the hysteresis in the signal [34]. 

4.3: STRAIN GAUGES 

The second sensor considered was a strain gauge, to measure the strain induced 

by possible skull flexure. A strain gauge measures the change in electrical resistance of 

an object that has been subjected to applied stress. A change in resistance occurs when 

applied stress on the gauge in the direction of the orientation of the „zigzag-like‟ 

conductive strip results in much higher strain over the effective length of the conductor 

 

Figure 4.3: A 350-ohm strain gauge quarter bridge 

wiring (Source: http://www.allaboutcircuits.com) 

 



46 
 

[35]. This resistance change is measured using a Wheatstone bridge. A Wheatstone 

bridge consists of 4 resistors in two circuit branches and is easy to build.  

For our experiment we purchased a readymade bridge completion module (BCM) 

from Vishay® (MR1-350-130) so as to save time and avoid unnecessary lead wire errors 

and noise pick up, that are some of the common errors associated with handmade circuit 

production. The BCM was arranged with a 350-ohm quarter-bridge strain gauge input, 

having an excitation of up to 25 V but with a recommended range of 0.5 to 18 V, with an 

excitation voltage setting of 5 V. The Wheatstone bridge used in most strain gauge 

measurement circuits usually consists of the gauges for actively measuring the strains and 

the precision resistors incorporated in the measuring instrument for completing the 

circuit. A more symmetrical, balanced lead-wire system between the strain gauge circuit 

 

Figure 4.3.1: Strain gauge attachments on the skull of the RED Head 
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and the instrumentation is better achieved when the bridge circuit is completed at the 

gauge site (near the headform in this case) [36].  

For our experiment, we chose a high resistance grid strain gauge with a 

Constantan foil in combination with a tough, flexible, polyimide backing, with strain 

range of ±3% and a temperature range of –100° to +350°F. The gauge was applied onto 

the skull carefully with “M-Bond 200” adhesive, a cyanoacrylate strain gauge bond, 

which is widely used to produce creep free and fatigue resistance bonding.  

 

The strain gauge was powered by a Tektronix® PWS2185 power supply system 

and an AMETEK® Signal Recovery 5186 differential amplifier that multiplies the 

difference between inputs A and B by a gain factor of 10. The junction box allows the 

inputs into the differential amplifiers appear seamless and less cumbersome. 

 

 

 

Gauge 

Length 

Overall 

Length 

Grid 

Width 

Overall 

Width 

Matrix 

Length 

Matrix 

Width 

Resistance 

(Ohms) 

0.062 in 0.114 in 0.062 in 0.062 in 0.26 in 0.15 in 350 ± 

0.15% 

Table 4.1.1: Strain gauge dimensions (Source: Vishay® Micro-Measurements) 
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A junction box that houses the lead-wire system, the bridge completion modules 

(BCM) with power supply for excitation of the strain gauges was designed and 

constructed. Figures 4.3.1 and 4.3.2 shows the CAD design and the fabricated junction 

box with all the other materials assembled inside. 

 

  

 

Figure 4.3.3: Junction box for the strain gauge with 

the bridge completion modules (BCM) in place. 
Figure 4.3.2: CAD Design of 

the strain gauge Junction box. 
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4.4: MICRO ELECTRO-MECHANICAL SYSTEMS (MEMS) ACCELEROMETERS 

An accelerometer is a device that measures proper or physical acceleration, the 

acceleration experienced relative to a free-fall, or inertial, observer who is momentarily at 

rest relative to the object being measured [37]. 

By measuring the amount of static acceleration due to gravity, we can find out the 

angle the RED HEAD is tilted at with respect to the earth, and by sensing the amount of 

dynamic acceleration, we can analyze the way the RED HEAD is moving. The need to 

decouple the inertial forces happening within the brain and the head is the actual reason 

we needed to use an accelerometer. 

To detect magnitude and direction of the acceleration as a vector quantity, single 

and multi-axis models can be used to sense orientation, acceleration, vibration shock, and 

falling [38]. In theory, an accelerometer works as a damped mass on a spring. When the 

 

Figure 4.4: MEMS accelerometer 
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accelerometer experiences acceleration, the mass is displaced so that the spring is able to 

accelerate the mass at the same rate as the casing. The displacement is then measured to 

give the acceleration [38].  

Some of the simplest micro electro-mechanical systems (MEMS) devices of 

modern times are accelerometers, consisting of little more than a cantilever with a proof 

mass. Damping results from the residual gas sealed in the device. As long as the Q-factor 

is not too low, damping does not result in a lower sensitivity [38, 39]. Q factor “is a 

dimensionless parameter that compares the time constant for decay of 

an oscillating physical system's amplitude to its oscillation period” and it compares the 

frequency at which a system oscillates to the rate at which it dissipates energy [39].  

In an example of a damped mass-spring system, the Q factor is the effect of 

drag or viscous damping, where the damping force or drag force is proportional to 

velocity.  

Mathematically it is written as: 

Q = 
   

 
                                         (Equation 9) 

and defined by: 

Fdamping = − Dv                                        (Equation 10) 

where M is the mass, k is the spring constant, D is the damping coefficient, and v is the 

velocity [39]. 
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For our experiment we chose a Dytran® 3224A Ultra Miniature Tear Drop 

Accelerometer because of its miniature design, weighing only 0.2 grams, and its IEPE 

output. IEPE is the acronym for “Integrated Electronics Piezo-Electric” and defines a 

class of accelerometer with low impedance output and built-in electronics that works on a 

two-wire constant current supply with a voltage output on a DC voltage bias. IEPE two-

wire accelerometers are easy to install, have a wide frequency response, can run over 

long cable lengths and are relatively cheap to purchase. The IEPE technology has 

generally replaced most 3-wire accelerometers and is broadly used for most applications 

except for specialist applications such as zero-Hz accelerometers, high-temperature 

applications or 4-20mA accelerometers used in the process industries [40]. 

The accelerometer is a digital type with a capacitive silicon micro machined 

sensing element that serves as the small cantilever. The cantilever is located inside the 

cavity of a small silicon block. The elastic property of silicon is the basis of the 

acceleration sensing. Other reason we chose this type are the axis type, sensitivity, 

bandwidth and maximum swing. 

4.5: FIBER OPTIC SENSOR 

With a diameter of only 125 μm, the FISO® Technologies FOP-F125 is perhaps 

the smallest pressure sensor commercially available. This ultra-miniature sensor is 

manufactured directly at the tip of the optical fiber, and the all-glass sensor is fully 

biocompatible [2]. The size and mounting flexibility of the sensor provides the capability 

to embed the sensor within our surrogate brain. The sensor allows in-situ measurements 

at locations unreachable to many standard pressure sensors and eliminates the artifacts 
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due to material contact that may be encountered with laterally mounted sensors such as a 

PVDF that has to be properly orientated to get good and useful pressure measurements 

[41].  

Orientation of the fiber optic sensor has no bearing on the pressure measurement to be 

taken, as in the case of its placement within the brain surrogate, only the sensor position 

is needed to detect the wave propagation within the material. 

The sensors‟ high measurement resolution and precision, combined with a fast 

reading rate, are important characteristics when attempting to detect very quick and 

subtle pressure variations as with blast wave mechanics. It allows a clear definition of 

complex pressure waveforms, such as those generated within the event(s) producing brain 

injury. Its long term reliability and low drift value make it the best sensor available for 

implantable equipment, such as intra-cranial, intravascular and intrauterine pressure 

monitoring devices [41]. 

The optical nature of the sensor makes it immune to electromagnetic field or 

radiofrequency interferences [41]. They have also been demonstrated to function inside a 

 

Figure 4.5: FISO® fiber optic sensor 
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liquid, which is extremely useful in detecting pressure attenuation in cerebrospinal fluid 

(CSF) [42]. 

4.5.1: FABRY-PÉROT FIBER OPTIC GAUGES 

  FISO® Technologies‟ fiber optic gauges are based on the Fabry-Pérot 

interferometer (FPI). An FPI consists of two mirrors facing each other. The space 

separating the mirrors is called the cavity length. Light reflected from the FPI is 

wavelength-modulated in exact accordance with the cavity length [41, 43].  

From Figure 4.5.1, the Fabry-Pérot cavity contains mirrors on the tips of the two 

multimode optical fibers inserted inside a micro-capillary. During its application, the 

strain transferred from the specimen to the gauge can be deduced from the difference in 

the cavity-length; the strain is calculated according to the following equation: 

Strain = ΔLCavity/LGauge                                                        (Equation 11) 

where ΔLCavity is the variation of the cavity length and LGauge is the gauge length, i.e. the 

distance separating the spots where the optical fibers are welded to the micro-capillary 

[41].  

 

Figure 4.5.1: Non-compensated pressure gauge [41] 
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It is important to note that the “long-term reliability of the gauge length is 

guaranteed by the quartz-to-quartz welding method which avoids any creep” [41]. The 

sensing part of the gauge is located within the gauge length area and the sensitivity of the 

gauge has been determined during manufacture by varying the gauge length, which is 

also defined as the scale factor. The FISO® Veloce signal conditioner can measure and 

interpret the cavity length with a resolution of 5 nm [41].  

The cavity length of FISO®‟s fiber optic sensors and the pressure measurement 

data taken by it are “insensitive to any pulling or manipulation of the incoming fiber” 

because the incoming optical fiber which brings light to the gauge is mechanically 

decoupled from the sensor‟s sensitive optical fibers [41].  

Sensor FISO PVDF 

Size 125μm 1mm 

Material Fiber optic Polymer 

Hysteresis No Yes 

Wavelength modulated Yes No 

Sensitivity  High Low 

Noise Low High 

Output Voltage Electric Charge 

Accuracy High Low 

Temperature range >> 90° 90° 

Measurement Local, directional Uni-axial 

Geometry Small, and round Bulky 

Table 4.5.1: Fiber optic gauge vs. PVDF gauge 
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4.6: DATA ACQUISITION SYSTEM 

This section is divided into two parts, namely, software and hardware. The 

software programs used are Matlab® (matrix laboratory), a numerical computing 

environment and programming language that allows matrix manipulations, plotting of 

functions and data, and implementation of algorithms, and National Instruments 

LabVIEW® RT server and LabVIEW® 2009. Fig. 4.6 shows a sample of the program 

written in Matlab® specifically for interpretation and analysis of the data retrieved from 

the data acquisition software. 

LabVIEW® is a platform and development environment for visual programming 

language. It is a data flow/graphical programming language and also referred to as G. 

Working with LabView® makes it easier to create a data acquisition application 

graphically with virtual instruments (VI). This VIs are dragged and dropped on to the 

 

Figure 4.6: A screen capture of the Matlab® software used 

in data processing. 
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front panel of the software to form a system of block diagrams connected with drawing 

wires that can be then be executed. 

The reason why we chose to go with a LabVIEW® Real Time OS as an 

alternative to Microsoft® Windows-based systems is because a real-time software 

architecture is useful for time-critical applications requiring deterministic loop rates and 

headless operation, especially as in blast wave attenuation detection since the whole 

process happens in such a short amount of time. Real-time operating systems help to 

prioritize tasks so that the most critical task always takes control of the processor when 

needed. With this feature, an application can run with predictable results and reduce jitter 

[44]. 

4.6.1: HARDWARE 

The Veloce system is a high speed and universal fiber optic signal conditioner 

that can be used to measure relative strain, temperature, force and load, and pressure in 

difficult locations that may be unreachable with other measuring instruments. The 

conditioner has a sampling rate of 200 kHz and is best suited for applications that require 

dynamic readings and fast response time [41]. 

The other hardware specifically selected as part of the data acquisition system is 

the National Instruments PXI platform. PCI eXtensions for Instrumentation (PXI) is a 

modular instrumentation platform originally introduced in 1997 by National Instruments, 

Inc.  It is designed for measurement and automation applications that require high 

performance and a rugged industrial form factor. PXI has many applications including 
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test and measurement, and data acquisition which are the main reasons we chose to go 

with this kind of hardware. 

The PXI system has three other components, and as shown in Figure 4.6.1, they 

are the chassis, system controller and peripheral modules. 

The main reason we chose this system is because it has PCI Multifunction Data 

Acquisition (DAQ) boards that can capture data at up to 250 kS/s, with 4 analog output 

channels and up to 32 analog input channels, and with the help of LabVIEW® Real-Time 

the data are buffered locally and can be written directly to an on-board hard drive, 

without any interference or any control from an outside source.  The two DAQs used are 

NI PCI-6220.  The chassis of the PXI system is very rugged and it allows for multiple 

PXI system configurations to meet our data acquisition needs. 

 

Figure 4.6.1: Standard 8-slot PXI chassis containing an 

embedded system controller and seven peripheral modules [44] 
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The embedded controllers eliminate the need for an external PC; therefore they 

serve as a complete system contained within the PXI chassis. There was also no need to 

plug extra peripherals into this unit because the embedded controllers come with standard 

features such as an integrated CPU, hard drive, RAM, Ethernet, USB, and other 

peripherals, as well as LabVIEW® Real-Time OS and all Microsoft Windows device 

drivers already installed. 

We were able to control The PXI system from a standalone desktop computer 

running Microsoft® Windows OS through a software- and driver-transparent link. 

During boot-up, the computer recognizes all peripheral modules in the PXI system as PCI 

boards, and you can then work with these devices through the controller [44]. 

4.6.2: PRINCIPLE OF THE VELOCE SIGNAL CONDITIONER 

A light signal from the gauge is fed as input into the optical demodulator. The 

analog output signal of the demodulator Out1 is then converted to digital signal by the 

analog-to-digital converter at a sampling rate of 200 kHz. The digital output signal Out2 

is then passed to the digital signal processor (DSP). The digital output signal Out3 is then 

converted back again to analog signal by the digital-to-analog converter and then send to 

the analog output [41]. 

The signal coming out of the optical demodulator, Out1, is a sinusoidal function of the 

time-dependent cavity length of the gauge, given mathematically as:  

Out1 (t) = A x sin [2π x LCavity (t) / VSF]                                             (Equation 12) 
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where A is the amplitude of the signal or the A factor and VSF is the Veloce Scale Factor 

and ranges from 420 nm to 430 nm. Both A and VSF are constants which are 

characteristics of the conditioner.  1 mV at the analog output always corresponds to 2 nm 

of gauge cavity length [41].  

 

The gauge cavity length LCavity can be read by the conditioner between l3 µm to 

19 µm, or 13000 nm to 19000 nm. Beyond this range, the amplitude of the signal (the A 

factor) becomes too small to get an accurate calculations [41].  

Equation (11) shows that the maximum frequency of Out1 is proportional to the 

rate of change of the cavity length. The maximum change of the cavity length between 

the two samples of the A/D converter cannot exceed one half of the VSF, that is, 200 nm 

per sampling interval [41]. The frequency bandwidth of the Veloce signal conditioner is 

mostly limited by the incoming signal, but, for small signals of maximum excursion that 

is lower than VSF/2, the signal bandwidth is limited to the Nyquist stability criterion of 

half of the sampling rate of the Veloce system (i.e. 100 kHz) [41, 45].  

 

 

Figure 4.6.2: Schematic of the operation of the Veloce [41] 
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4.6.3: RELATIVE CONDITIONER VERSUS ABSOLUTE CONDITIONER 

One of the reasons why we chose the FISO® fiber-optic conditioner is because it 

is an absolute measurement conditioner as opposed to relative measurement conditioners. 

In an absolute conditioner the measurement from the data readings are absolute or true 

measurement values of the physical stimulus (pressure, etc.) while the data readings of a 

relative measurement conditioner are values relative to an initial or referenced value of 

the physical stimulus [41]. One important thing to note is that, there is no loss of the true 

reference (or initial state) of the sensors when the conditioner is turned OFF or reset. 

Figure 4.6.3 shows the advantages of using a relative measurement conditioner. 

The first graph of the figure shows the absolute or true values versus time measured by an 

absolute measurement conditioner. The second graph of the figure or example 1 shows 

the values measured using a relative measurement conditioner started at an initial time t0 

(i.e. t0 is the time at which the conditioner is tuned on or is reset). The graph in example 2 

is the same as example 1 except that the measurements are started at a different initial 

time t0. In both examples 1 and 2 the measured values are relative to the initial value of 

the transducer at time t0 but because the initial state of the transducer is different at these 

two times, the relative value will be different [41].  
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The relative value is expressed mathematically as:  

εr (t) = ε (t) - ε (t0)                                                        (Equation 13) 

where: εr (t) is the relative value as function of time 

  ε (t) is the absolute or true value as function of time  

ε (t0) is the absolute or true value at time t0 

 

Figure 4.6.3: Schematic explanation of relative measurement conditioners 

[41]. 
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4.7: CALIBRATION 

For the purpose of maintaining and ensuring accuracy of data, the instruments 

including the sensors have to be calibrated. According to Dahlberg [46] calibration is a 

process that provides information so that adequate adjustments can be made if required 

on a test or the transducer [46]. Two fiber optic sensors; FISO® 1010032208 and FISO® 

1010032209 were picked from the lot of 10. Three experiments were designed for the 

calibration test. Specimen preparation as shown in Figure 4.7.2 was designed and 

fabricated to be used for the experiments. The first one was a static test with the MTS 

machine, where a set of loads was applied gradually to the Jell-O specimen with the 

sensors inserted into the Jell-O and the result compared with the standardized results 

from the manufacturer. The results from the static tests were unreliable, the error ranges 

were so high from the manufacturer‟s figures and with no direct interpretation, and this is 

due to the fact that the sensors were more of a dynamic sensor than static. 
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Figure 4.7.2: Calibration test with the 

pressure sensor embedded in a Jell-O 

material. 

 

Figure 4.7.1: Kolsky bar test set up 

 

Figure 4.7: The MTS machine 
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The second one was the Kolsky pressure bar test, where measured pressure from 

the test was compared with the manufacturer‟s figures shown below in Tables 4.7.1 and 

4.7.2; a total of two tests were conducted using two equal elastic bars with the sensors 

inserted in a gel medium between their ends so as to generate an elastic (pressure) wave 

through a shock from one of the ends, which travels along the bars. 

 

The result as shown in Figure 4.7.3 is a comparison of the fiber optic sensor in the 

specimen and the output strain gauge. The results were converted to pressure based on 

the following known mathematical equation: 

Pressure (psi) Cavity Length 

(nm) 

Measured 

Pressure (psi) 

Error (%) 

15 18231.4 14.35 0.43 

105 16672.9 105.52 -0.35 

135 16167.6 135.08 -0.05 

Table 4.7.2: Calibration report of FISO® 1010032208 fiber optic 

sensor with gauge factor 6011710 and sensitivity of 17.10nm/psi 

Pressure (psi) Cavity Length 

(nm) 

Measured 

Pressure (psi) 

Error (%) 

15 18268 14.49 0.34 

105 16691.4 105.51 -0.34 

135 16180.7 134.99 0 

Table 4.7.1: Calibration report of FISO® 1010032209 fiber optic 

sensor with gauge factor 6011732 and sensitivity of 17.32nm/psi 
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Resultpsi= AnalogmV*Scale Factorpsi/mV + Offsetpsi          (Equation 14)  

where AnalogmV  = the pressure reading in millivolts, Scale Factorpsi/mV = 0.030006 x 10
3
, 

and Offsetpsi is a constant and equal to -0.0564. These values are independent and vary 

with each sensor. Note that 1 psi = 6.895 kPa. 

It could be noted from the plot that the fiber optic sensor maxed out at 1000 kPa and we 

were able to verify that with the manufacturer‟s proportionality constant. 

 

The accuracy of the FISO® sensors claimed by the manufacturer is given in 

Tables 4.7.1 and 4.7.2.  To verify the level of trust in these sensor readings in a less 

controlled environment more characteristic of our shock system, comparative readings 

were taken using a Kolsky bar apparatus, using strain gauges on the bars to compare 

against the FISO® readings.  The average percentage error from the Kolsky bar 

 

Figure 4.7.3: Kolsky bar test plot 
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calibration was calculated based on peak values in Figure 4.7.3. It should be noted that 

the error from 0 to 1 ms is a bit stable but that value begins to deviate as the duration 

prolongs from 1.5 ms to 3 ms, making the FISO® sensors to drift and hence the 

measurements become error prone. The FISO® sensors can be trusted for accurate 

reading within about 1-2 ms time frame after which there is a gradual voltage drop and 

the measurements become suspect due to the high error rate. The average percentage 

error was picked from several pressure values from the set prior to 3 ms and the 

percentage error calculated for each time domain and then an average percentage error of 

the entire system was calculated (see Table 4.7.3).  

 

The third set up, as shown in Figure 4.7.4, is the cylinder shock-tube test, using a 

small polycarbonate cylinder, filled with silicone gel and with a cross-section area 1/10 of 

the shock tube area, with the sensors embedded.  

 

 

 Peak 1 Peak 2 Peak 3 

FISO 400 kPa 1.4 ms 800 kPa 2 ms 820 kPa 2.85 ms 

OUTPUT 580 kPa 1.4 ms 915 kPa 2.3 ms 610 kPa 3.1 ms 

ERROR/Δt -0.31 0 -0.12 0.3 ms 0.34 -0.25 ms 

Table 4.7.3: Error table from the Kolsky bar test - FISO® vs. output bar 

gauge 
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To create the cylinder, the thickness was calculated to have similar flexural 

stiffness to skull, using real properties from the human skull, which from literature has 

different values based on the part of the skull that is been examined but with an average 

Young‟s modulus E of 5370N/mm2 and diameter of 150mm, and compared to that of an 

Amorphous polycarbonate material that serves as the cylinder material and is given as 

follows: 
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)            (Equation 15)    
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)      (Equation 18)              

 Young’s 

Modulus (E) 

Diameter (d) Thickness (t) 

Skull 5370N/mm
2
 150mm 6.9mm 

Cylinder (Amorphous Polycarbonate) 2380N/mm
2
 22.8mm  

Table 4.7.4: Mechanical properties comparison for cylinder test design 
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                                                    (Equation 19)  

 

  We also made sure that the strain gauge was working and performed some basic 

bending tests to make sure the junction box was responding. We also calibrated the 

bridge completion modules (BCMs) individually to make sure that the amount of 

electricity put in is what we are outputting. 

Figure 4.7.4: Polycarbonate cylinder test plot. 
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Calibration of the data acquisition system helps to assess the sources of 

measurement error. It also helps in the selection process of the most appropriate 

instrument to use. A quality control strategy was formulated to ensure that only properly 

calibrated instruments and sensors will be used during the tests and that all measurement 

errors are identified, quantified, and compensated for [47].  

 

 

  

 

Figure 4.7.5: CAD Design of the cylinder. 
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As shown in Figure 4.7.6, to calibrate the BCMs (E), we attached a strain gauge 

to an aluminum rod, and connected it to the signal conditioner (D) and then to the input 

of the junction box (A). A power supply (B), not lower than 5 V and not exceeding 12 V 

was then used to power the junction box (A) and ultimately the BCMs (E).  

When the aluminum undergoes a specified deformation, the DAQ (C) displays the 

corresponding action graphically. These results are then checked mathematically and 

compared to the measured signal. 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.7.6: The setup for calibrating the bridge completion modules 

(BCM). 

A 

B 

C 

D 

E 



71 
 

Chapter 5: Results and Analysis 

5.1: INITIAL TEST 

Two initial shock tests were performed with the RED Head. Each test had the 

FISO® pressure gauges inserted into the surrogate brain. The aim of the test was to find 

the overpressure in the brain with or without the PDMS skin on the RED Head. 

At approximately the same breech pressure, the overpressure in the RED Head 

with skin was 48.92kPa and 41.74kPa with no skin.  Because the PDMS skin was not 

properly laminated to the skull, a pressure buildup was noticed in the “With Skin” 

experiment confirming earlier report(s) on pressure build-ups in and around the head with 

 

Figure 5.1: RED Head blast test with Skin and No Skin results comparison  (16) 



72 
 

the presence of a helmet [48]. However, more tests need to be done to confirm this 

phenomenon. The secondary overpressure in the “No Skin” test was 27.69KPa and 

23.61kPa “With Skin.” Due to the skin delamination, future experiments were modeled 

along the “No Skin” RED Head test design to make measurements more repeatable. 

5.2: TEST/EXPERIMENT DESIGN 

The RED Head was prepared with a surrogate brain, and instrumented as 

previously described. The aim of the test is to study the propagation of blast wave and its 

attenuation along the experimental headform and in the simulated brain. The brain is 

simulated with a silicone gel, the CSF is not simulated in this experiment due to the like 

hood of formation of vapor bubbles because of the low vapor pressure or cavitation that 

can be experienced in water in tight cylindrical tube, and the meninges, a membrane that 

envelopes the brain, is simulated in its place by a polyethylene plastic bag. 

Since attenuation is an exponential function of the path length of the blast waves 

through the brain simulant, we hope to see a gradual loss in intensity of the pressure/blast 

waves as they propagate through the skull, the meninges and into the simulated brain, and 

as attenuation affects the propagation of the pressure waves, we hope to see a reduction in 

amplitude in the pressure wave profile. 

The experimental approach is divided into two parts; the first part is the test for 

the propagation of blast waves through the surrogate headform only, where we hope to 

see the strain on the surface of the headform, and the second part is the test for the 
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propagation of blast wave through the headform into the brain simulant, where we hope 

to characterize pressure waves inside the surrogate brain.  

The schematic of the experimental approach is shown in Figure 4.1 and the 

arrangement of sensors inside the headform is shown below in Figure 5.2. The sensors 

are carefully placed and marked on the base plate before insertion, and an existing hole 

was placed on the base plate. The surrogate brain had dummy sensors place in them while 

curing so as to allow the placement of the fiber optic sensors later. From Figure 5.3 the 

FISO® sensor is placed 3 inches inside the surrogate brain from the bottom plate of the 

RED Head, while the RED Head is placed 5 inches away from the exit of the shock tube 

and is well bolted down to the neck assembly, which in turn is bolted down to the RED 

Head stand. 

 

 

Figure 5.2: Placement of the FISO® Sensor 

1 2 3 4 
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  There are ten strain gauges and they are arranged as shown in Figure 5.2.1. 

Gauges 1, 2, 10 and 8 are arranged laterally while 3, 4, 5, 6, 7 are arranged vertically. 

Gauge 9 is attached opposite of gauge 1 and laterally inside the skull around the 

curvature. 

 

5.3: METHODS  

The setup of the experiment consists of (a) the shockwave generator/shock tube, 

(b) the instrumented headform with four FISO® pressure sensors and ten strain gauges 

arranged as shown in Figures 5.2.1 and 5.3 respectively. There is also a ninth strain gauge 

(number 9) inside the skull cavity adjacent to gauge number 1. The configuration of the 

gauges within the headform and the simulant is to allow us to detect the gradual 

propagation of the pressure waves through the headform and into/through the brain 

simulant. The positioning is purposefully based on earlier modeling by Ganpule [48] that 

predicts the most optimal positon to place the gauges.  

 

Figure 5.2.1: Arrangement of the strain gauges on the RED Head 
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The positon of the headform in relation to the shockwave generator is shown in 

Figure 5.3. The blast will emanate from the shockwave generator when the membrane in 

the shock tube (Figure 5.3.3) that separates a high pressure “driving” gas from ambient 

“driven” gas ruptures, causing a temperature and pressure increase in the tube, and 

ultimately generating a shockwave that moves through the tube and to the headform 

which is at the outflow end of the tube. The pressure is controlled and achieved through 

the adjustable volume breech and the membrane holder by varying the membrane 

(MYLAR®) thicknesses and quantities to obtain different blast amplitudes.  

 

Figure 5.3: RED Head setup and positioning. 

Neck 

Assembly 

Base Plate 

Shock 

tube 
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When the blast hits the headform, the measurement is made possible by the use of 

the FISO® fiber optic sensors and the strain gauges. The data acquisition setup is shown 

in Figures 5.3. and 5.3.2.  It comprises (a) a National Instruments PXI, (b) a FISO® 

Veloce signal conditioner for the FISO® sensors, (c) a signal charge amplifier for the 

strain gauges, and (d) a computer system with independent display unit. The computer 

system runs LabVIEW 2009 programming software that controls the entire data 

acquisition system setup and displays the captured data in graphical form. The PXI, 

however, is a standalone data acquisition unit running a LabVIEW Real-Time OS.  

 

The experiment includes 11 shots ranging from the lowest membrane thickness of 

0.01 inches to the highest of 0.1 inches to produce a breech pressure between 92 PSI and 

 

Figure 5.3.1: Part of the data acquisition system set up for the 

strain gages, this include the junction box, signal amplifiers, 

power supply and a DAQ. 
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1219 PSI. Tests of burst pressures of 500 to 600 PSI and those above 1000 PSI were 

repeated for comparison.   

The shock tube is prepared, the nitrogen driver gas is pumped into the shocktube 

breech, and a pressure P1 builds up and is held back by the membrane with thickness t in 

the upstream. After the membrane ruptures, a shock with speed U1 develops and flows 

through the shock front towards the downstream and emerges as U2. After the RED Head 

experiences shock, a back flow or rarefaction wave (Prandtl-Meyer expansion wave) 

moving in the same direction as the shock is then observed with speed Ub, the contact 

front (the boundary between the driver and the driven gases) follows the shock wave; the 

resulting measurement is then recorded on the PXI. 

Ub = U1 – U2             (Equation 120) 

 

Figure 5.3.2: Set up of the data acquisition system, with 

(a) PXI, (b) signal conditioners, and (c) display unit 

 

A 

C 

B 
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The Rankine-Hugoniot Equations
1
 explain the fluid conditions in both the upstream and 

downstream regions of a shocktube [14].  

 

                                                           
1
 See Appendix A2 

 

 

 

 

Figure 5.3.3: The shockwave generator (Source: Aaron Holmberg, 

http://engineering.unl.edu/research/traumamechanics/) 

Shock tube Membrane 

Holder 

Adjustable 

Volume Breech 

 

Figure 5.3.4: The ideal shocktube, showing the types of waves present after the 

membrane ruptures 

http://engineering.unl.edu/research/traumamechanics/


79 
 

5.4: RESULTS, PLOTS AND TABLES  

This section highlights the results from the experiment. The graphs are presented in the order of lowest and highest 

Mylar® membrane thickness. The membrane thickness determines the breech pressure, and the intensity of each blast wave. 

The graphs are the observation made during the experiment and explained in the discussions section below. 

 

 

 

 

 

 

 

 

Breech Barrel  

End 

Config.  

Breech 

sensor 

range 

(psi) 

Breech 

Length 

(in) 

Membrane 

Thickness 

(in) 

Driver 

Gas 

Temperature 

(F) 

Baro. 

Pressure 

(kPa) 

Relative 

Humidity 

(%) 

Burst 

Pressure 

(psi) 

4" Dia. 9" Sq. Head 500 11.625 1x0.01 Nitrogen 74.06 983.73 29.6 91.51 

4" Dia. 9" Sq. Head 500 11.625 3x0.01 Nitrogen 74.13 983.9 28.56 314.05 

4" Dia. 9" Sq. Head 500 11.625 5x0.010 Nitrogen 74.79 985.5 28.49 528.36 

4" Dia. 9" Sq. Head 500 11.625 5x0.01 Nitrogen 74.42 984.42 26.4 501.55 

4" Dia. 9" Sq. Head 1000 11.625 5x0.01 Nitrogen 74.86 984.01 25.53 545.72 

4" Dia. 9" Sq. Head 1000 11.625 5x0.01 Nitrogen 74.51 983.98 25.07 600.48 

4" Dia. 9" Sq. Head 1000 11.625 5x0.01 Nitrogen 74.45 983.91 24.48 590.84 

4" Dia. 9" Sq. Head 1000 11.625 7x0.01 Nitrogen 74.67 984.61 24.72 835.82 

4" Dia. 9" Sq. Head 1000 11.625 8x0.01 Nitrogen 74.38 984.47 24.58 965.57 

4" Dia. 9" Sq. Head 3000 11.625 10x0.01 Nitrogen 75.23 983.84 25.33 1212.67 

4" Dia. 9" Sq. Head 3000 11.625 10x0.01 Nitrogen 74.9 983.9 25.1 1218.73 

Table 5.4.1: Shock Tube configuration results 

 

7
9 
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Figure 5.4.1: Blast test #1 (lowest) with pressure measurements 

 

 

Figure 5.4.2: FISO® sensors 1 and 2 measurements from blast test #1. 
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Figure 5.4.3: FISO sensors 3 and 4 measurements from blast test #1. 

 

Figure 5.4.4: Blast test #1 (lowest) with lateral hoop strain readings  
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Figure 5.4.5: Blast test #1 (lowest) with vertical strain measurements  

 

Figure 5.4.6: Blast test #10 (highest) with pressure measurements 
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Figure 5.4.7: FISO® sensors 1 and 2 measurements from blast test #10. 

 

 

Figure 5.4.8: FISO® sensors 3 and 4 measurements from blast test #10. 
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Figure 5.4.9: Blast test #10 (highest) with lateral hoop strain readings  

 

 

Figure 5.4.10: Blast test #10 (highest) with vertical strain measurements  
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5.5: DISCUSSIONS  

Figures 5.4.1 to 5.4.4 shows the lowest blast level of breech pressures available 

using 1 by 0.01 Mylar® membrane from the experiment at 91.5 psi, while Figures 5.4.5 

to 5.4.9 shows the highest blast level of breech pressure using 10 by 0.01 Mylar® 

membranes available at over 1200 psi. 

From blast test # 1, the peak pressures for the FISO® sensors were noticed at 

0.039 ms with sensor # 1 at 45.91 kPa, sensor #2 at 35.66 and sensor #3 at 17.71 kPa. 

The highest peak for sensor #4 was not noticed until 0.048 ms at 10.93 kPa. 

From blast test # 10, the peak pressures for the FISO® sensors were noticed at 

0.093 ms with sensor # 1 at 130.71 kPa, sensor #2 at 154.15 and 52.32 kPa. 

 

Figure 5.5: Quarter-Bridge Circuit with one strain 

gauge and three fixed resistors. (Source: 

http://cnx.org/content/m13779/latest/Graphic3.png) 

VEX 
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The strain measurements from the plots have been converted from voltage to 

micro-strain (με) for clarity.  

For the conversion, the quarter bridge equations were used to derive a formula for the 

value of strain: 

      *
  

     
 

  

     
+        (Equation 21) 
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Substituting Equation 26 back into Equation 28, 

    
     

           
     (Equation 29) 

where,   = strain 

    = Output voltage 

    = Excitation voltage 

   = Gauge factor 

    = Resistance change 

R = R1, R2, R3 = Fixed resistors 

R4 = Strain gauge 

With a gauge factor of 2 and an excitation voltage of 5V we can find the change 

in R, using the strain gauge resistance value of 350 Ohms.  

The strain measurement from blast test #1 increased significantly on blast test # 

10, measuring peak to peak there was an increase of 5000µε, pressure measurements 

from both blast #1 and #10 shows a sharp rise with a full pressure peak profile due to the 

shock wave and then a trailing edge decline in the amplitude due from the expansion 

waves.  
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Lateral hoop strain measurement on the skull of the RED Head shows a deflection 

in the inside strain gauge #9 when compared to front outside strain gauge #1, even on 

both blast tests #1 and #10. The vertical strain measurement, when compared in both tests 

shows lots of strain activity as the wave propagates through the RED Head with strain 

gauge #6 with the highest peak of -1600 µε, followed by strain gauges #5 and #7. 

Examining the data set thoroughly reveals that FISO® sensor #4 shows a sharp 

decline at the same time domain when the other sensors are experiencing an increase in 

amplitude (see Table 5.6.1 and 5.6.3). 

The jump noticed in FISO® sensor #2 in blast test #10 could be as a result of a 

diffraction effect. This phenomenon occurs when there is a bending in the wave as a 

result of an obstacle or an interference with a refracted wave. 

In terms of the order of amplitudes, all the blast tests follows the same pattern, but 

with different peak pressure. There was some sort of delay for strain gauge #1 as it rises 

and falls very quickly and remained at par with strain gauge #5 while its amplitude 

decreases due to interference to indicate a zero displacement. 

 From Figure 5.4.2 the baseline noise for the FISO® sensors is estimated to be 

about 5 kPa and the corresponding peak stands at about 45 kPa; therefore the signal to 

noise ratio is approximately 9. The noise level in other measurements using the same 

hardware settings is not expected to differ significantly from this baseline value. For the 

strain gauges, the baseline noise is estimated to be about 2000 µε as shown in Figure 

5.4.5. 
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The readings from the sensors can be attributed to the planar shock wave and the 

refracted shockwave being out of phase, in some cases, allowing the wave crests to align 

with the wave troughs, as it propagates through the RED Head and into the surrogate 

brain. The normal shock as it moves from the origin becomes oblique as it touches the 

RED Head and began to refract into the silicone gel, and the wave will focus around the 

center of the gel such as light will in an optical convergence, and in essence cause more 

pressure build-up. 

It should be noted that the intensity of the wave form in the direction of the shock 

as it propagates in the shock direction was consistent in both the FISO® pressure sensors 

and strain gauge readings. Therefore at a distance r from the membrane, the power P of 

the shock passes through an area 4πr
2
 - the surface area of the RED Head with radius r. 

I = P/A = P/ 4πr
2    

(Equation 30) 

The intensity of the pressure blast, an exponential function of the path length, 

gradually depletes as it propagates from the membrane source to the RED Head. As the 

shock wave propagates towards the RED Head, the inside strain gauge records the 

bending due to the shock front as it moves along the shock path, sending the head into a 

backward jolt, and there is a reflection of the shock wave towards the source, and the 

shock front diffracted around the RED Head, allowing a gradual permeation into the skull 

and ultimately the brain, and a large pressure build-up inside the RED Head as noticed in 

the measurements. 
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The tests should normally show a gradual decrease of the amplitude as it 

propagates towards the back, but a pressure build-up near the middle of the brain. 

Blast waves from the shock tube are estimated to travel at several hundred m/s. 

Wave speed in the surrogate brain can be determined by the gel‟s compressibility and 

density. Since waves in solids propagate longitudinally and transversely, one can 

approximately predict the wave speed of longitudinal waves moving through the skull 

simulant and into the brain simulant medium, as well as shear waves which may 

propagate around the skull from front to back [50]. 
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Chapter 6: Conclusions 

6.1: CONCLUSIONS  

Traumatic brain injury (TBI) as a result of improvised explosive devices (IED) is 

on the rise in the military, and improved understanding of the phenomena involved would 

lead to new advances in soldier safety. That is why this research was undertaken. The aim 

of this research is to select the most optimal instrument and sensors to understand the 

effects of blast waves on the head. This requires some knowledge of basic principles of 

these instruments and a broader knowledge in general about what to measure and how to 

accomplish the measurements. 

The long-term goal is to determine how shockwaves attenuate as they propagate 

into the head and in particular the brain. This thesis has taken a step forward in designing 

instrumentation for a surrogate headform and brain simulant that has similar mechanical 

properties as those found in a human head. Some of the best instruments and sensors in 

the industry today were selected to enable us to determine pressure variations and other 

phenomena in the headform. 

The work involved the design of the RED Head, including material selection for 

the tissue surrogates, and focusing especially on instrument and sensors selection and 

design, calibration of the data acquisition system, experiment design and data analysis. 

Calibrating the instruments enabled us to understand how each of the sensors 

behaves. Limitations on the time duration in which the FISO® sensor gives reliable data 

were determined. We were also able to determine bounds on the noise level of each 
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sensor, their limitations and characteristics. Having a good understanding of their 

behavior will lessen the effort needed to re-calibrate and will serve as a valuable 

information resource for continuing with this research. 

A Matlab® code for post-processing was generated to handle the large amount of 

data obtained in shocktube experiments. The LabVIEW® code and interfaces between 

the data acquisition system to read, write and store the data was also generated.  

The sensors and strain gauges were fitted on the RED Head appropriately to 

obtain the desired measurements; all design work and calibration were carried out with 

adherence to accepted practices. The set-up and operation of the shocktube was done with 

safety in mind. Instrumenting the headform with fiber optic sensors and strain gauges 

enables determination of the pressure profiles experienced in the RED Head. 

The results show that there is significant pressure buildup in the human brain, 

centered near the middle, and that the shockwave, though planar at the time of impact 

becomes non-planar at the time of entry and propagation into the skull. The shockwave 

develops into a uniform profile as it travels from the burst location downstream toward 

the headform, and its amplitude decreases as it travels through the headform due to 

energy dissipation. Significant damage can be done within a few milliseconds, even if 

unnoticed to the observer. 
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6.2: FUTURE WORK 

There are a number of ways in which the RED Head could be improved and these 

are discussed as follows.  

The PDMS skin should be completely laminated to the skull in future experiments 

and the eye cavity filled with a similar surrogate. This would improve fidelity by 

avoiding skin delamination and accounting for more feature detail. 

The RED Head experiences complex stimuli including acceleration effects, wave 

dispersion and scattering; the experiments should be refined in the future to account for 

more of these factors, for example, by adding more pressure sensors strategically 

throughout the surrogate brain to detect the pressure variation present and by including 

accelerometers on the skull surface. Results captured with high-speed cameras could also 

be used to correlate accelerometer and strain gauge measurements. 

 More precise positioning of the FISO® sensors would enable us to understand the 

wave speed in the gel medium. Future work should accommodate this. A probe sensor on 

the front of the RED Head could also be employed to identify the amplitude of the 

incident wave hitting the head. 

Effectively simulating the CSF with water or other fluid media would improve 

fidelity with respect to interface effects (scattering, reflection etc.). To avoid cavitation 

issues, distilled water could be used as it eliminates impurities (dissolved gases). 
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A shock tube bigger than the current 9” square barrel needs to be used for future 

tests, as it would allow the RED Head to be placed inside the tube and along the path of 

the shockwave rather than outside the path of the uniform shock wave where the pressure 

profile is more difficult to ascertain. 

Future experiments may also explore the effects of target geometry. The effects of 

oblique blast wave around a spherical object could be investigated to determine the 

characteristics of this wave pattern as it propagates. 

Geometry is also thought to be important for shock effects on protective 

equipment. Current Kevlar® helmets are good ballistic protective devices but not against 

blast wave threats.  New kinds of head protection system that are able to offer protection 

not just to the upper part of the skull but the entire head and are able to prevent or 

diminish penetration of the blast wave should be developed. 

 The work presented in this thesis represents a significant step forward in the 

pursuit of the long-term research goals and may eventually lead to technological 

developments relevant to soldier protection. 
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Appendix 

A1: Matlab® CODES 

load 'E:\FIZO3\FIZO1004.txt' 
load 'E:\Strain.txt' 
x=FIZO1004(:,1); 
y=FIZO1004(:,2); 
x1=Strain(:,1) 
y2=Strain(:,2) 
plot(x,y); 
Offset=-0.0564; 
ScaleFactor= 0.030006*10^3; 
result1= y*ScaleFactor + Offset; 
result2= result1*6.895 
plot(x1,y2) 

End 

 
load 'C:\Documents and Settings\temp\Desktop\fizo.txt' 
load 'C:\Documents and Settings\temp\Desktop\output.txt' 
xf=-0.0006634; 
xop=-0.000447; 
c=5000; 
icr=fizo(2,2)-fizo(1,2)%Time increment 
nsf=(xf-fizo(1,2))/icr+1;%number of points left out on fizo data 
n=round(nsf) 
fizo=fizo(n-c:end,1);%new fizo data increased by c number of data 

that will be on the left side of the plot; 
nso=(xop-output(1,2))/icr+1;%number of points left out on output 

data 
m=round(nso) 
output=output(m-c:end,1);%new output data increased by d number 

of data that will be on the left side of the plot 
[li c]=size(fizo); 
[lo co]=size(output); 
tfz=-c*icr:icr:(li-c-1)*icr; 
tout=-c*icr:icr:(lo-c-1)*icr; 
plot(tfz,fizo,tout,output) 

End 
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A2: RANKINE-HUGONIOT EQUATIONS 

 Assuming a one-dimensional steady flow through a fixed normal shock wave, 

passing from upstream (section 1) towards the downstream (section 2) as shown in Figure 

5.3.4:  

Continuity:   1U1 = 2U2 = G = constant 

Momentum:  P1 – P2 = 2U2
2

 - 1U1
2
 

Energy:   h1 + 1/2 U1
2 

= h2 + 1/2 U2
2 
= h0 = constant 

Perfect gas:  P1/1T1 = P2/2T2 

Constant Cp:  h = CpT;  k = constant 

where 

 = fluid mass density, [kg/m
3
] 

U = fluid velocity, [m/s] 

P = fluid pressure, [Pa] 

 h = specific enthalpy of the fluid 
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