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The overall objective of this investigation was to develop a robust technique to 

predict maize (Zea mays L.) grain yield that could be applied at a regional level using 

remote sensing with or without a simple crop growth simulation model. This study 

evaluated capabilities and limitations of the Moderate Resolution Imaging 

Spectroradiometer (MODIS) Vegetation Index 250-m and MODIS surface reflectance 

500-m products to track and retrieve information over maize fields. Results demonstrated 

the feasibility of using MODIS data to estimate maize green leaf area index (LAIg). 

Estimates of maize LAIg obtained from Wide Dynamic Range Vegetation Index using 

data retrieved from MODIS 250-m products (e.g. MOD13Q1) can be incorporated in 

crop simulation models to improve LAIg simulations by the Muchow-Sinclair-Bennet 

(MSB) model reducing the RMSE of LAIg simulations for all years of study under 

irrigation. However, more accurate estimates of LAIg did not necessarily imply better 

final yield (FY) predictions in the MSB maize model. The approach of incorporating 

better LAIg estimates into crop simulation models may not offer a panacea for problem 

solving; this approach is limited in its ability to simulate other factors influencing crop 

yields. On the other hand, the approach of relating key crop biophysical parameters at the 

optimum stage with maize grain final yields is a robust technique to early FY estimation 

over large areas. Results suggest that estimates of LAIg obtained during the mid-grain 



 

 

 

 

filling period can used to detect variability of maize grain yield and this technique offers 

a rapid and accurate (RMSE < 900 kg ha
-1

) method to detect FY at county level using 

MODIS 250-m products.  
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INTRODUCTION 

Accurate estimates of crop yield and production on regional and national scales 

are becoming increasingly important in developing countries and have sustained 

importance in developed countries. A challenging issue for the agricultural sector will be 

to supply food, fiber, and biofuel demands for a growing world population. The United 

States (U.S.) is the world leader in maize (Zea mays L.) biofuel production and the 

world’s largest producer and exporter of maize (FAO, 2008; FAO, 2010; USDA, 2010). 

The U.S. produces about 40 percent of the total world production followed by China and 

Europe which produce about 19 and 12 percent, respectively (USDA, 2010). Estimates 

suggest that at least 107 million tons of maize could be used in the United States for 

production of biofuels in 2009/2010, representing an increase of 13 million tons 

compared  to 2008/09 (FAO, 2010). Although less than 20 percent of the U.S. maize 

grain production is exported, world prices are largely established by the supply-and-

demand relationship in the U.S. market.  

More than 80 percent of the total U.S. maize production comes from the U.S. 

Corn Belt region so world maize trade and prices are affected by the production in this 

region. Iowa, Illinois, Nebraska, Minnesota, Indiana, and Ohio produce nearly 70 and 85 

percent of total U.S. maize grain production and Corn Belt region production, 

respectively (Figure 1; USDA-NASS, 2009). The total U.S. maize grain production has 

increased around 87 percent in the last 30 years according to the U.S. Department of 

Agriculture (USDA) Census of 2007 (USDA-NASS, 2009). According to USDA long-

term projections, the U.S. total maize production should be increased by 21 percent to 
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supply the demand for 2019/20. Therefore, assessment of maize growing conditions and 

accurate maize yield predictions in the U.S. Corn Belt are important issues in food prices, 

food security and for other crucial decisions affecting agricultural policy and trade.  

Yield forecasting around the world is done with crop simulation models, remote 

sensing, statistical techniques, scouting reports, and combinations of these methods. 

Scouting reports or sampling agricultural fields is a reliable way to estimate yield 

however this method is time-consuming, costly and does not allow yield estimates before 

harvest. In contrast, data obtained from remote sensing and crop simulation models allow 

government agencies, private industry, and researchers to estimate yield before harvest. 

Several studies have been conducted to predict crop yield at regional scales basically 

focusing on two approaches, remote sensing and a combination of remote sensing and 

crop simulation models.  

The first approach used to predict yield at the regional level relates vegetation 

indices (VI) with crop final yield (FY). Previous studies focused their analyses on 

basically two techniques. The first technique relates VI with final yield at a specific 

growth stage (e.g. vegetative and reproductive stages) during the growing season 

(Shanahan et al., 2001; Lobell et al., 2002; Martin et al., 2007). The second technique 

relates FY with cumulative values of VI (e.g. Normalized Difference Vegetation Index, 

NDVI) obtained during the entire growing season or during a specific period during the 

growing season such as the vegetative or reproductive stages (Labus et al., 2002; 

Mkhabela et al., 2005; Wall et al., 2008). These techniques require an adequate time 

series of remotely acquired imagery and involve correlating historical pixel-level imagery 
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values with historical regional values. For example, historical values of NDVI for a 

specific region are compared with current values of NDVI to detect NDVI anomalies or 

deviations from historical values and then the data are used to estimate yields (Kastens et 

al., 2005; Li et al, 2007).  

The second approach used to predict yield at the regional level is the integration 

of remote sensing data with crop growth models. This approach suggests the modification 

of model state variables such green leaf area index (LAIg) during the growing season with 

measurements obtained from remote sensing in order to correct simulated values of key 

crop biophysical parameters such as LAIg (Bouman, 1995; Moulin et al., 1998). Because 

LAIg constitutes a fundamental component of many crop simulation models, studies have 

proposed that more accurate estimates of LAIg could improve model final yield (FY) 

predictions (Doraiswamy et al., 2005; Moriondo et al., 2007; Fang et al., 2008).  

In spite of the fact that previous studies incorporating remote sensing data into 

crop models reported improvement in FY predictions; the successful application of this 

technique requires an understanding of limitations and potential capabilities of this 

approach. Most of the previous studies incorporating crop biophysical parameters such as 

LAIg into crop simulation models have been conducted at regional scales. Reported 

regional yields were compared with model predictions with and without LAIg 

incorporation in order to determine model FY prediction improvement. However, 

limitations and potential capabilities of the approach may not be detected at large scales 

and further assessment should be performed at field scales.  
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 On the other hand, remote sensing may provide temporal information of crop 

biophysical parameters that could be related with crop FY without the use of crop growth 

models. One limitation linking information retrieve from remote sensing with agricultural 

crops is the lack of understanding of agricultural crop dynamics. For example, a better 

understanding of how maize yield is formed and which crop biophysical parameter(s) is 

most involved in determining yield should allow improved the accuracy of agricultural 

crop monitoring and enhance FY estimates. In addition, comparison of historical VI with 

the current season values should be analyzed in conjunction with knowledge of 

agricultural crop dynamics. Under the assumption that a crop biophysical parameter (e.g. 

LAIg) is closely related with the VI during the growing season, the next step will be to 

determine how to analyze the information of VI retrieved from one year in light of 

previous or historical information. Due to agricultural crop dynamics, several questions 

require a better analysis including: What are the capabilities and limitations of the remote 

sensor in terms of spatial, spectral, and temporal resolution?, Does comparison of VI with 

information from previous years make sense?, How should valid comparisons be made in 

light of changes in management practice, such as hybrids and planting dates, soils, and 

environments?  

This study is based on improving the incorporation of crop biophysical 

parameters retrieved from remote sensing into crop simulation models and the approach 

of relating VI with FY. The overall objective of this investigation was to develop a robust 

technique to predict maize grain yield that could be applied at a regional level using 

remote sensing with or without a simple crop growth simulation model. The effort 

included a literature review related to maize grain yields to gain understanding of the key 
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processes of maize growth and development and limitations to FY. Three maize crop 

systems were evaluated under irrigated and rainfed conditions to identify the key crop 

biophysical parameters and the optimum development stage that can be related to maize 

grain yield. Final yields at the field level were estimated using two approaches. The first 

approach related the key crop biophysical parameters at the optimum development stage 

with maize grain yield using remote sensing data obtained from MODIS products. The 

second approach integrated LAIg into the Muchow-Sinclair-Bennet (MSB) maize model 

(Muchow et al, 1990) over irrigated maize fields from 2006 to 2009. This model has been 

used by U.S. government agencies and researchers to estimate maize yield at regional 

scales because it requires a few input parameters and it is responsive to soil and climatic 

factors (Reynolds, 2001; Doraiswamy et al., 2005). In addition, improvements in FY 

predictions were reported with the incorporation of LAIg during the growing season into 

the MSB maize model over regional scales (Doraiswamy et al., 2004; Doraiswamy et al., 

2005). This study also evaluated capabilities and limitations of the Moderate Resolution 

Imaging Spectroradiometer (MODIS) Vegetation Index (MOD13Q1) and MODIS 

surface reflectance (MOD09A1) products to track and retrieve information over a maize 

field based on a temporal resolution of 16 and 8 day composites and spatial resolution of 

250 and 500 meters, respectively. Finally, the best approach (or the combination of them) 

was validated with reported maize yields from several counties in the states of Nebraska, 

Iowa, and Illinois for 2006 and 2007. 
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Figure 1. Maize grain production by state as a percent of the total United States 
production. 
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CHAPTER 1 

 

AN EVALUATION OF MODIS 8 AND 16 DAY COMPOSITE 

PRODUCTS: IMPORTANCE OF DAY OF PIXEL COMPOSITE WHEN 

MONITORING AGRICULTURAL CROPS  

 

ABSTRACT 

 

 The seasonal patterns of green leaf area index (LAIg) can be used to relate crop 

condition, yield potential and to incorporate in crop simulation models in order to update 

simulated values of LAIg. This study focused on examining the potential capabilities and 

limitations of satellite data retrieved from MODIS 8 and 16 day composite products to 

track and retrieve LAIg data over maize (Zea mays L.) fields for crop simulation 

applications. Results clearly demonstrated the variability of pixel temporal resolution 

obtained from MODIS 8 and 16 day composite periods and the importance of day of 

pixel composite information from MODIS products for monitoring agricultural crops. 

Due to the maize LAIg dynamics and changes in MODIS pixel temporal resolution, the 

inclusion of day of pixel composite has important implications to retrieve and monitor 

agricultural crop dynamics. The results of this study showed that MODIS 250-m 

resolution provide more accurate estimates of maize LAIg during the entire growing 

season compared to MODIS 500-m resolution for crop simulation applications.  Based on 

the nine years of data used in this study, maize LAIg can be accurately estimated with 

root mean square error (RMSE) and coefficient of determination (R
2
) of 0.60 m

2
 m

-2
 and 

0.90, respectively, using a WDRVI linear model for data retrieved from the 250-m 

resolution product (MOD13Q1). Results indicated that the optimum MODIS composite 

product to monitor agricultural crops should be MODIS Vegetation Index 8 day 
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composite 250-m instead of the product of MODIS Vegetation Index 16 day composite 

250-m used by government agencies.  

Key words: MODIS, temporal resolution, vegetation indices, maize, green leaf area index 
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INTRODUCTION 

 Remote sensing has been used to estimate crop biophysical parameters (CBP) 

such as green leaf area (LAIg), canopy chlorophyll content, the fraction of the 

photosynthetically active radiation absorbed by the crop (ƒAPAR), biomass, vegetation 

cover and gross primary production using different vegetation indices (VI) (Hatfield et 

al., 2008). Most of the VI are combinations of reflectance in the visible or 

photosynthetically active radiation (400-700 nm), especially red reflectance (620-700 

nm), and near infrared (NIR; 700-1300 nm) reflectance. For instance, the most used VI in 

agricultural applications is the Normalized Difference Vegetation Index (NDVI) (Rouse 

et al., 1974). One limitation to retrieving CBP such as LAIg is the nonlinearity 

relationship of NDVI at medium to high densities of green biomass (LAIg > 2 m
2 

m
-2

). 

However, NDVI sensitivity could be improved with the Wide Dynamic Range 

Vegetation Index (WDRVI) (Gitelson, 2004). On the other hand, new approaches have 

been proposed using regions of the light spectrum that do not show saturation to different 

concentrations of pigments and green biomass such as red-edge and green regions 

(Buschman and Nagel, 1993; Gitelson et al., 1996; Gitelson et al., 2003). However, the 

main limitations to use specific spectral bands are the availability of these bands in 

satellite sensors as well as the spatial and temporal resolution and cost of images from 

satellite sensors with specific bands.  

 Data obtained from satellite products without the appropriate temporal and spatial 

resolution and processing could affect accuracy of data interpretation. Limitations to 

monitoring vegetation and/or retrieving CBP related with the satellite sensors include 



12 

 

 

 

temporal and spatial resolutions, low quality of the data due to appearance of clouds, low 

viewing angles, and poor geometry (Chen et al., 2002; Duchemin and Maisongrande, 

2002; Chen et al., 2003). For instance, Chen et al. (2003) showed that seasonal profiles of 

NDVI were mainly influenced by cloud contamination and atmosphere composition. The 

previous authors demonstrated that NDVI profiles without cloud contamination improved 

the detection of maximum value of maize LAIg reached around silking. In addition to 

atmospheric interference (e.g. clouds, haze, etc.), NDVI profiles also could be affected by 

contamination from surrounding areas due to spatial resolution. Studies have smoothed 

the data obtained from a VI such as NDVI over study areas to reduce effects of 

contaminated signals (Swets et al., 1999; Funk and Budde, 2009). An alternative to 

reduce or eliminate pixel contamination is the selection of finer spatial resolution. Data 

obtained from spatial resolution of 250-meter (m; about 6.25 ha) should allow the 

identification of pixels covered by specific crops compared with spatial resolution of 1 

kilometer (km; about 25 ha). Finally, the ability of obtaining frequent data of agricultural 

crops such as CBP is limited by the satellite temporal resolution. The estimation of CBP 

and the detection of developmental stages of agricultural crops have a relevant 

importance for government agencies, private industry, and researchers.  

 Satellite data obtained from Moderate Resolution Imaging Spectroradiometer 

(MODIS) products offers the advantage to acquire high quality data at consistent, spatial 

and temporal resolution derived daily, every 8 or 16 days for monitoring vegetation 

(Huete et al., 1999; Huete et al., 2002; Didan and Huete, 2006). One advantage using 

MODIS 8 and 16 day composite is that these products contains the best possible 

observation obtained during the period composite based on several parameters such as 
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low view angle, absence of clouds or clouds shadow and aerosols (Vermote and 

Kotchenova, 2008). MODIS 8 and 16 day composite period has been used in many 

agricultural applications; to develop land cover/land use (Lobell and Asner, 2004; Sedano 

et al, 2005; Lunneta et al., 2006;), monitor phenology (Zhang et al. 2003; Sakamoto et al., 

2005; Wardlow et al., 2006), and estimate CBP (Zhu et al., 2005; Chen et al., 2006; 

Rochdi and Fernandes, 2010). MODIS products have been used to estimate LAIg for crop 

modeling applications. For example, Fang et al. (2008) retrieved LAIg from MODIS leaf 

area index 8 day composite at 1000m product to incorporate into a maize crop simulation 

model. Doraiswamy et al. (2004) used data retrieved from MODIS surface reflectance 8 

day composite at 250m product to incorporate in a radiative transfer model to estimate 

LAIg during the growing season and then incorporate into a maize crop simulation model. 

Chen et al. (2006) evaluated the potential use of data retrieved from MODIS VI 250, 500 

and 1000m to track maize LAIg and phenology for crop modeling applications. However, 

an evaluation of temporal resolution of MODIS 8 and 16 day composite to monitor and 

estimate CBP such as maize LAIg has not been investigated to date.  

 Monitoring of maize LAIg requires a good understanding of LAIg changes 

according to the developmental stage or crop dynamics in order to evaluate potential 

capabilities and limitations of the satellite data retrieved from MODIS 8 and 16 day 

composite periods. A period of 8 and/or 16 days could represent significant changes in 

maize LAIg especially during vegetative stages. Consequently, the information included 

in some MODIS products of day of pixel composite (DOYCMP) is fundamental 

information to accurately monitor and estimate maize LAIg. This study evaluated data 

retrieved over maize fields from three MODIS products: MODIS Vegetation Index 16 
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day composite 250-m (MOD13Q1), MODIS surface reflectance 8 day composite 250-m 

(MOD09Q1), and MODIS surface reflectance 8 day composite 500-m (MOD09A1). The 

main objective of this study was to demonstrate the importance of the day of pixel 

composite information from MODIS products to monitor maize LAIg. This study 

investigated whether the temporal resolution from 8 and 16 day composite periods differs 

from 8 and 16 days, respectively, and its implications to monitoring maize LAIg.  

   

MATERIALS AND METHODS 

 

Field measurements  

This research used field data from the Carbon Sequestration Project at the 

University of Nebraska-Lincoln in the Agricultural Research and Development Center 

located in Saunders County, Nebraska, USA. Field data was collected over three large 

study sites with different cropping systems. Site 1 (41˚ 09’54.2”N, 96˚ 28’35.9”W, 

361m) was 48.7 ha planted in continuous maize from 2001 until 2009 and was irrigated. 

Site 2 (41˚ 09’53.5”N, 96˚ 28’12.3”W, 362m) was planted in maize-soybean rotation 

over an area of 52.4 ha under irrigation. Site 3 (41˚ 10’46.8”N, 96˚ 26’22.7”W, 362m) 

was 65.4 ha planted in maize-soybean rotation under rainfed conditions. The soils in the 

three sites are deep silty clay loams and consisting of four soil series: Yucan (fine-silty, 

mixed, superactive, mesic Mollic Hapludalfs), Tomek (fine, smectitic, mesic Pachic 

Argialbolls), Filbert (fine, smectitic, mesic Vertic Argialbolls), and Filmore (fine, 

smectitic, mesic Vertic Argialbolls). Nitrogen (N) was applied in one and three 

applications in rainfed (site 3) and irrigated sites (site 1 and 2), respectively, according to 
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guidelines recommended in Shapiro et al. (2001). This study used nine years of data 

(2001-2009) from site 1 and five years of data (2001, 2003, 2005, 2007, and 2009) from 

sites 2 and 3. Within each site, six plot areas (20 m x 20 m) were established and called 

intensive management zones (IMZs) for detailed process-level studies (details in Verma 

et al., 2005). Destructive samples consisting of 5 or more continuous plants were 

collected from a one meter linear row sections in the six IMZ for each site at 10 to 14 day 

intervals until maturity. Field measurements of total and green leaf areas harvested per 

plant (m
2
 plant

-1
) were measured with an area meter (Model LI-3100, LI-COR, Inc., 

Lincoln, NE). The total and LAIg were calculated using the plant population density 

(plants m
-2

) by: 

plant

_areatotal_leaf
lationplant_popu

total
LAI 

    

eq. 1 

plant

_areagreen_leaf
lationplant_popugLAI                                                  eq. 2 

 

LAItotal and LAIg were obtained by averaging all the six IMZ measurements at 

each site. MATLAB
®
 was used to estimate the daily values of the LAItotal and LAIg 

measurements using the cubic spline interpolation method.  

Remote sensing data 

A time series of MODIS Terra Vegetation Index 16-day composite 250-m 

(MOD13Q1), MODIS Surface Reflectance 8-day composite 250-m (MOD09Q1), and 

MODIS Surface Reflectance 8-day composite 500-m (MOD09A1) images were 

downloaded from National Aeronautic and Space Administration (NASA) Land Process 



16 

 

 

 

Distributed Active Archive Center (LPDAAC) 

(https://lpdaac.usgs.gov/lpdaac/get_data/data_pool) from April through October (of each 

growing season) for the study area (MODIS tile h10v04) from 2001 until 2009. All 

MODIS images were processed, reprojected, and converted to GeoTIFF format using the 

MODIS Reprojection Tool Version 4.0 (MRT) downloaded from LPAAC 

(https://lpdaac.usgs.gov/lpdaac/tools). MODIS images are labeled with the format 

“MOD13Q1.A2001129.h10v04.005.20070251153610.hdf” where MOD13Q1 is the 

product name, A2001129 year and day of year, h10v04 the tile, collection and 

20070251153610 the processing date and time for this image. The day of year (DOY) for 

each MODIS image represents the first day of the period of 8 and 16 day composite. The 

period of 8 or 16 days is used to select the best observation based on several parameters 

such as low view angle, absence of clouds or cloud shadows, and aerosols (Vermote and 

Kotchenova, 2008). The day during the period composite where the best observation is 

observed is called the day of pixel composite (DOYCMP). The information of DOYCMP 

is included in MOD09A1 and MOD13Q1 products but it is not available in the 

MOD09Q1 product. MOD09A1 provides surface reflectance in 7 bands (Band 1=620-

670nm; Band 2= 841-876nm; Band 3= 459-479nm; Band 4= 545-565nm; Band 5= 1230-

1250nm; Band 6= 1628-1652nm; Band 7= 2105-2155nm) with resolution of 500-m. 

MOD09Q1 provides reflectance values for band 1 and 2. MOD13Q1 included data for 

NDVI and Enhanced Vegetation Index (EVI), surface reflectance from band 1, 2, 3, and 7 

with a 250-m resolution. EVI was developed by the MODIS Land Discipline Group for 

use with MODIS data. This VI is a modified NDVI and has improved sensitivity to high 

biomass in comparison with NDVI (Huete et al., 2002).   

https://lpdaac.usgs.gov/lpdaac/get_data/data_pool
https://lpdaac.usgs.gov/lpdaac/tools
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Each study site was geolocated on each MOD13Q1 (Figure 1).  Information 

retrieved of NDVI and EVI from each pixel over the study sites was used to choose 

pixel(s) close to the center to avoid pixel contamination using data from 2001 until 2004. 

These pixels were located close to the center of the maize field and did not require the 

application of smoothing techniques. The temporal behavior of NDVI for each pixel in 

the study sites was evaluated to select pixels for analysis in this study (Appendixes 1, 2, 

and 3). The selected pixels for analysis in this study were pixel id 9, 10, and 17 on site 1; 

12, 13, 19, and 20 on site 2; and 31 and 35 on site 3 (Figure 1). Because the spatial 

resolution of MOD13Q1 and MOD09Q1 was similar (250-m), the locations of selected 

pixels from MOD13Q1 were also used to retrieve reflectance data from MOD09Q1 over 

the study sites. A similar technique was used to retrieve data from MOD09A1 (Figure 2). 

However the spatial resolution of 500-m did not allow the selection of a pixel without 

possible contamination (Appendix 4). The selected pixels were pixel id 2, 3, and 5 and 6 

for site 1, 2, and 3, respectively (Figure 2). Surface reflectance from band 1 and 2 were 

extracted from MOD09Q1 and MOD09A1 products and then, NDVI and WDRVI were 

calculated for the selected pixels in each study site from 2001 until 2009. EVI was 

calculated using the blue and red band for MOD09A1 and MOD09Q1from 2001 to 2004 

and from 2001 to 2009, respectively. The average of the DOYCMP, NDVI, and EVI data 

of the selected pixels was used for analysis in this study (2001-2009). Temporal 

behaviors of NDVI from each pixel over the study sites were visually evaluated to 

identify any differences in their behavior due to spatial resolution of 250 and 500-m. 

Because information of DOYCMP was not available in the MOD09Q1 product, the 
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temporal resolution of MODIS composite was only evaluated for MOD09A1 and 

MOD13Q1.  

Data of LAIg under rainfed and irrigated conditions from 2001 until 2004 was 

used to calibrate a model for LAIg estimation as a function of the selected VI using 

SigmaPlot®. Evaluated VI were NDVI, EVI and WDRVI (Table 1). The WDRVI was 

evaluated using two weighting coefficients. Gitelson (2004) showed that the weighting 

coefficient (α) increases correlations with vegetation fraction for wheat, maize and 

soybean canopies in the WDRVI. The weighting coefficient values proposed by Gitelson 

(2004) for maize were α=0.2 and 0.1. The model to estimate maize LAIg for each VI was 

validated with independent field data from 2005 until 2009 under rainfed and irrigated 

conditions.  

 

RESULTS AND DISCUSSION 

 

Temporal Resolution 

 Figure 3 shows the progress of maize LAIg as a function of DOY and the 

DOYCMP from MOD13Q1 and MOD09A1 represented by the vertical bars from 2001 

until 2003 on site 1 of this study. Dashed lines represent the first day of the period 

composite which corresponds to MODIS day of year (e.g. MOD13Q1.A2001145) for 16 

and 8 day period composites. The number of days between the vertical bars corresponds 

to MODIS temporal resolution for study site 1. Based on these results, the temporal 

resolution of MOD13Q1 and MOD09A1 changed between composite periods during the 

entire growing season. Observed temporal resolution of MOD09A1 and MOD13Q1 
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ranged from 1 to 14 days and from 2 to 28 days, respectively during the nine years of 

study. The temporal resolution of these two MODIS products was not equal to the period 

composite of 8 or 16 days as previous studies suggested (Chen et al., 2006; Wardlow et 

al., 2006; Wardlow 2007). In other words, MODIS 8 and 16 day composite do not 

provided data every 8 or 16 consecutive days. For example, the MOD13Q1 data retrieved 

on image DOY 209 and 225 were composed on day 223 and 225, respectively which 

represents two days apart between the images for site 1 in 2001 (Figure 3-a). A period of 

twenty five days apart occurred between the information retrieved on image DOY 161 

and 177 because the DOYCMP was on 161 and 186, respectively in 2001 (Figure 3-a). 

The temporal resolution from 2 consecutive periods composite could reach 15 and 30 

days if the DOYCMP is obtained during the first day of the composite and the following 

DOYCMP is obtained the last day of the period composite from MODIS 8 and 16 day, 

respectively. The cause of the variability of pixel temporal resolution of MODIS products 

is because each pixel contains the best possible observation during the length of the 

composite period (8 or 16 days). The procedure of pixel compositing has been well 

explained in MODIS references (Huete el al., 2002; Didan and Huete, 2006; Vermote and 

Kotchenova, 2008). In summary, the temporal resolution of MOD09A1 and MOD13Q1 

products is determined by the DOYCMP between two consecutive composite periods and 

typically varies for each pixel in the image.  

 The DOYCMP for composite period of 8 or 16 days in the field could represent 

significant changes in maize LAIg especially during vegetative stages. Maize LAIg 

dynamics change according to the crop development stage. During vegetative stages, 
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maize LAIg change rapidly especially after V6 until V12 which daily values (
     

    
) 

ranged from 0.20 to 0.14 m
2
 m

-2
 day

-1
 observed under irrigated (Figure 3) and rainfed 

conditions, respectively in the study sites. Figures 4-a and 5-a summarize the number of 

days from the first day of composite of MODIS 16 (MOD13Q1) and the 8 day composite 

(MOD09A1), respectively during nine growing seasons (2001 until 2009) at site 1. The 

results suggested that the DOYCMP could change from the first day of the composite 

period (DOY) without any predictable pattern.  This finding invalidates assumptions of 

previous studies that used the first, last, and mean day of the period composite in 

agricultural applications; other studies do not mention if the information of DOYCMP 

was included in their analyses. Wardlow et al. (2006) and Chen et al. (2006) assumed that 

NDVI values obtained from MOD13Q1 were always obtained from the final day of the 

period composite for phenology applications in agricultural crops. The previous authors 

based their assumption on the algorithm used to generate MODIS NDVI composites. 

However, this assumption should be avoided for agricultural applications due to crop 

dynamics or changes according to the crop development stage.  

 The range of variability spanned from 0 to 7 and 0 to 15 days from the first day of 

MODIS 8 and 16 day composite period (DOY). However, an increase in the number of 

days from the DOY of MODIS composite period does not necessarily represent a larger 

change in maize LAIg. For example, a difference of nine days from the DOY of MODIS 

composite period could represent changes in LAIg of 3.0 m
2 

m
-2

 during the vegetative 

stages while changes of LAIg could be lower than 1.00 m
2 

m
-2

 during reproductive stages 

(Figure 4-b). Similar results were observed for the eight day period composite where 
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changes in maize LAIg were larger during vegetative stages compare to reproductive 

stages. A difference of seven days from the DOY of MODIS composite period could 

represent changes in LAIg greater than 2.0 m
2 

m
-2

 during vegetative stages (Figure 5-b). 

These results highlight two important aspects that require consideration for application of 

MODIS composite products to agricultural crops such as maize: LAIg changes according 

to the development stage and MODIS temporal resolution changes between composite 

periods. Therefore, analysis over agricultural crops using MODIS composite (8 or 16 

days) should be done using information of DOYCMP.  

  Although the previous discussion might seem basic knowledge linking remote 

sensing information and agricultural crop biophysical measurements, a concern is raised 

because information of DOYCMP is included in some MODIS products (MOD09A1 and 

MOD13Q1 collection 5) while it is not readily available in other products such as 

MOD09Q1. MODIS VI 16 day composite has been used in many agricultural 

applications such as phenology detection; however, none of these studies mention the 

importance of a period of 16 days on agricultural crop dynamics especially during the 

vegetative stage. The temporal resolution of MODIS 16 day composite (MOD13Q1) 

could be a limitation to detect critical developmental stages of agricultural crops due to 

the period of time between observations that could reach 30 days as explained previously. 

MODIS 8 day composite period could reach a maximum of 15 days between 

observations that should provide an opportunity for better estimation of crop phenology 

measurements. On the other hand, a technique used to evaluate crop condition and yields 

compares NDVI values obtained during a current growing season with historical NDVI 

values for the same location or study site to detect anomalies or deviation from historical 
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NDVI values (Kastens et al., 2005; Li et al, 2007). Analysis comparing NDVI values 

obtained over a 16 day composite period during vegetative stages could cause confusion 

in data interpretation. For instance, NDVI values obtained from MODIS 16 day 

composite over site 1 on DOY 161 ranged from 0.31 to 0.85 during nine years in site 1. It 

is not difficult to hypothesize that any analysis without the inclusion of DOYCMP should 

cause erroneous data interpretation. Although this study does not pretend to analyze the 

techniques used to develop the MODIS NDVI time series use by the United State 

Department of Agriculture (USDA) Foreign Agriculture Service (FAS), a concern is raise 

because the product has been assembled using a 16 day compositing period. The results 

presented in this study clearly demonstrated the importance of DOYCMP on analysis 

over agricultural crops especially using MODIS 16 day composite period.  Based on this 

study, it is suggested that a product of MODIS NDVI using an 8 day compositing period 

be assembled for agricultural applications instead of the product of NDVI 250-m 16 day 

composite used by government agencies.  

 Spatial Resolution 

  Figure 6 summarizes the temporal values of NDVI obtained from MOD09Q1, 

MOD13Q1 and MOD09A1 as a function of DOY for selected pixels from site 1 from 

2001 until 2004. Based on these results, the temporal values of NDVI over maize 

changed with the spatial resolution of 250-m and 500-m. Lower values of NDVI were 

obtained from 500-m especially after NDVI reached a maximum value compared with 

values of NDVI obtained from 250-m . For example, NDVI values of 0.78 and 0.91 were 

obtained from 8 day composite period at 500 and 250m resolution, respectively on DOY 
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201 in 2001 (Figure 6-a). The irregular up and down behavior of the NDVI values was 

associated with the limitation of the 500-m resolution to locate pixels without information 

of surrounding areas or pixel contamination (Figure 2 and Appendix 4). In contrast, 

NDVI values obtained with MODIS 250-m resolution for 8 and 16 day composite period 

showed similar values during the growing season. Based on these results, data obtained 

from 500-m resolution should require a smoothing technique. In contrast, data obtained 

from MODIS 250-m resolution should not require a smoothing technique because this 

resolution allows the selection of pixels closer to the center of the field (pure maize 

pixels) or pixels without contamination.  

 Many studies have smoothed the data obtained from a VI such as NDVI over 

study areas to reduce effects of contaminated signals while maintaining seasonal 

characteristics of the original data set (Swets et al., 1999; Funk and Budde, 2009). Based 

on these results, the temporal behavior of NDVI-500m might be difficult to smooth out in 

order to obtain similar values of NDVI as retrieved from NDVI-250m over site 1 (Figures 

6-a, b, and c). Adequate spatial resolution should provide more accurate crop information 

such as identification of critical stages and estimation of CBP. Kastens et al. (2005) 

indicated that identification of image masks or pixels covered by crops rather than using 

all pixels in a scene as a way to successfully model and predict crop yields using remote 

sensing. The results of this study suggested that MODIS 250-m resolution should provide 

more accurate estimation of LAIg over maize as a result of less pixel contamination. 

These results contrast with results reported by Chen et al. (2006), who found no 

difference in NDVI and EVI values obtained from MODIS 250-m compared with 

MODIS 500-m resolution over maize fields. As will be discussed next, the previous 
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author did not find differences on data obtained from the two resolutions probably 

because information of DOYCMP was not included in the analysis. 

 Table 2 summarizes the results obtained from the relationship between NDVI, 

EVI, WDRVI and maize LAIg using the DOY and the DOYCMP from 2001 to 2004 

under irrigated and rainfed conditions. The results demonstrated an improvement in LAIg 

estimation with a reduction of the root mean square error (RMSE) and an increase of the 

coefficient of determination (R
2
) when the information of DOYCMP was included in the 

analysis. The RMSE of the relationship of VI with LAIg decreased more than two fold 

when DOYCMP data was incorporated using MODIS 16 day period composite. A lower 

improvement of the RMSE was obtained with the incorporation of data from DOYCMP 

using MODIS 8 day period composite 250 and 500-m. However, two main points should 

be discussed related with the improvement of the RMSE. First, as discussed previously, 

the temporal resolution between two consecutive periods of MODIS 8 and 16 day period 

composite could reach 15 and 30 days, respectively.  Consequently, the impact of the 

incorporation of DOYCMP depends on the temporal resolution or period of time between 

observation and changes according to the crop development stage. Second, the impact of 

the incorporation of DOYCMP also depends on the spatial resolution. A possible 

explanation for the lower impact of incorporation of DOYCMP for MODIS 8 day 

composite period was due to pixel contamination at 500-m resolution that might not have 

allowed accurate estimates of maize LAIg. The quantitative results confirmed the 

previous discussion about the importance of DOYCMP for retrieving maize LAIg using 

16 day composite. Results from this analysis clearly demonstrate the importance of using 

DOYCMP information to retrieve maize LAIg. These results can be used to explain 
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results presented in Chen et al. (2006) who reported that data obtained from MODIS 250-

m did not provid more accurate information over maize fields compared with MODIS 

500-m resolution. For example, results from this analysis showed similar RMSE and R
2
 

of maize LAIg estimation without the incorporation of DOYCMP data using 250 and 

500-m resolution. Subsequently, the data obtained from this analysis would not detect 

differences from data obtained from the two resolutions.  The results presented here 

clearly shows, contrary to results presented by Chen et al (2006), that MODIS 250-m 

resolution could provide more accurate estimates over agricultural crops compared with 

MODIS 500-m resolution for crop modeling applications.  

Estimation of maize green leaf area index (LAIg) 

 Figures 7, 8 and 9 present the relationship between NDVI, EVI, WDRVI α=0.1 and 

WDRVI α=0.2 and maize LAIg under rainfed and irrigated conditions from 2001 to 2004 

obtained from MODIS 250-m 8 and 16 day composite period and MODIS 500-m 8 day 

composite, respectively. Results support the nonlinear relationship between NDVI and 

LAIg found in previous studies (Maas, 1993; Myneni et al., 1997; Gitelson et al., 2003). 

NDVI remained nearly invariant changing from 0.84 to 0.86 while LAIg changed from 4 

to 6 m
2 

m
-2

. The best fit for NDVI and maize LAIg was obtained with exponential and 

logistic models for data retrieved from MODIS 250 and 500-m, respectively. In contrast, 

the relationship between EVI, WDRVI and LAIg showed more linearity during the entire 

growing season using MODIS 250-m 8 and 16 day composite period. For instance, the 

relationship between EVI and maize LAIg was quadratic for data retrieved from MODIS 

250-m 8 and 16 day composite (Figures 7 and 8). WDRVIα=0.1 and WDRVIα=0.2 showed a 
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linear relationship with maize LAIg for data retrieved from the three MODIS products 

although WDRVIα=0.2 showed a quadratic relationship with maize LAIg for data retrieved 

from MODIS 250-m 8 day composite. The sensitivity analysis performed on the previous 

discussed vegetation indices shows that NDVI exhibited high sensitivity at LAIg values 

lower than 3.00 m
2
 m

-2
 for data retrieved from MODIS 250 8 and 500-m 8 day composite 

(Figure 10). EVI and WDRVIα=0.2 showed comparable sensitivities to each other for data 

retrieved from MODIS 250-m 8 day composite while the sensitivity of WDRVIα=0.1 

remained constant along the entire range of LAIg for data retrieved from MODIS 250-m 8 

day composite (Figure 10-a). Results suggested that WDRVIα=0.1 and WDRVIα=0.2 

showed higher sensitivity for LAIg for values higher that 3.0 m
2
 m

-2
 while NDVI and EVI 

decreased their sensitivity at  LAIg values greater than 3.00 m
2
 m

-2
 for data retrieved from 

MODIS 250-m 16 day composite during 2001to 2009 (Figure 11). These results clearly 

showed that the sensitivity of NDVI is the best index for detecting changes in maize LAIg 

< 3.0 m
2 
m

-2
 but should not be used to detect changes in maize LAIg > 3.00 m

2 
m

-2
.  

 Table 3 summarizes the calibration for quadratic and linear models for EVI and 

WDRVI (α=0.1 and 0.2) for data obtained from MODIS 250-m 16 day composite and 

MODIS 500-m 8 day composite. A RMSE and R
2
 of 0.49, 0.53 and 0.58 m

2
 m

-2
  and 

0.94, 0.93, and 0.92 were obtained for WDRVIα=0.2 , WDRVIα=0.1 and EVI models, 

respectively under rainfed and irrigated conditions from 2001 to 2004 (n= 50) using data 

retrieved from MODIS 250-m 16 day composite period. Although the lowest RMSE and 

highest R
2
 were obtained with the WDRVIα=0.1 linear model followed by the WDRVIα=0.2 

, the RMSE for the EVI quadratic model was quite similar compared to WDRVI models. 
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In other words, the models developed using WDRVI (α= 0.1 and α=0.2) linear and 

quadratic EVI model could be used to estimate maize LAIg during the entire growing 

season. In contrast, the relationship between LAIg and EVI and WDRVI (α= 0.1 and 

α=0.2) showed larger RMSE and lower R
2
 for data obtained at 500-m resolution 

compared to results obtained from MODIS 250-m resolution (Table 3). These results 

were not surprising because temporal values of NDVI and EVI changed with spatial 

resolution due to pixel contamination as was discussed previously. Based on these results, 

more accurate estimates of maize LAIg could be obtained from the MOD13Q1 product. 

The results obtained from WDRVI (α= 0.1 and α=0.2) and EVI models showed 

acceptable results compared with estimates of LAIg reported by previous studies using 

MODIS products 250-m resolution. Doraiswamy et al. (2004) estimated maize LAI with 

a RMSE of 1.11 and 0.63 m
2
 m

-2
 using MODIS 250-m and field canopy reflectance, 

respectively. They attributed the difference in RMSE between field and satellite 

estimation to potential error associated with MODIS atmospheric correction. On the other 

hand, Zhu et al. (2005) reported a linear agreement in grass LAI estimation using EVI 

and NDVI retrieved from MODIS 250-m (R
2
=0.82 and 0.78, respectively). Neither of 

these previous studies explained if information on DOYCMP was included in their 

analyses. 

 Figure 12 summarizes the validation results of EVI and WDRVI (α= 0.1 and 

α=0.2) models for maize LAIg estimates under rainfed and irrigated conditions from 2005 

to 2009 (n=78) using MODIS VI 250-m 16 day composite period. The EVI quadratic, 

EVI, WDRVIα=0.1 and WDRVIα=0.2 linear model for maize LAIg estimates showed a 

RMSE of 0.61, 0.57, and 0.58 m
2 
m

-2
, respectively and accounted for nearly 90 percent of 
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maize LAIg variation. In contrast, higher RMSE and lower R
2
 were obtained for EVI and 

WDRVI (α= 0.1 and α=0.2) linear model for maize LAIg estimates using data retrieved 

from 500-m resolution (MOD09A1) (Figure 13). The RMSE was 0.80, 0.87, and 0.83 m
2 

m
-2

 for EVI, and WDRVIα=0.1 and WDRVIα=0.2 models over rainfed and irrigated 

conditions using data from MOD09A1. Validation results confirmed that more accurate 

estimates of maize LAIg can be obtained using data obtained from the 250-m resolution 

(MOD13Q1) compared to the 500-m resolution MODIS product (MOD09A1). Based on 

these results, estimates of maize LAIg might be monitored using 500-m resolution but 

with larger estimate errors of LAIg.  Incorporation of LAIg retrieved from MODIS 500-m 

resolution into crop models should add additional source of error rather than reduce 

uncertainties of simulated LAIg. 

 In summary, better calibration and validation results were obtained from data 

retrieved from the MODIS product with spatial resolution of 250-m (MOD13Q1) 

compared with 500-m resolution (MOD09A1). The limitation to retrieve a pixel from 

500-m without contamination of surrounding areas increased the error on maize LAIg 

estimates on the study sites. Results obtained during nine years of data showed that crop 

biophysical parameters such as maize LAIg can be monitored during the entire growing 

season with the EVI quadratic and  WDRVIα=0.2 and WDRVIα=0.1 linear models with data 

retrieved from MOD13Q1. MODIS products with 250-m should be used for agricultural 

applications such as estimates of LAIg for crop modeling applications. More frequent 

LAIg estimates can be obtained using MODIS 250-m 8 day period composite product 

(MOD09Q1); however, the information of the DOYCMP is needed for agricultural 

applications based in the results obtained in this study.  Including DOYCMP in the 
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MOD09Q1 product would dramatically enhance its utility in many agricultural 

applications. 

 

CONCLUSIONS 

 

 This study evaluated capabilities and limitations of three MODIS products 

(MOD13Q1, MOD09A1, and MOD09Q1) to track and estimate maize agronomic 

parameters such LAIg during the growing season. Results clearly demonstrated the 

variability of pixel temporal resolution obtained from MODIS 8 and 16 day composite 

periods and the importance of day of pixel composite information from MODIS products 

for monitoring agricultural crops. Due to the maize LAIg dynamics and changes in 

MODIS temporal resolution, the inclusion of DOYCMP has important implications to 

estimate and monitor agricultural crop dynamics. The results of this study showed that 

MODIS 250-m resolution provides more accurate estimates of maize LAIg compared to 

MODIS 500-m resolution.  Although results from this study suggested that MOD09Q1 

product could be the better product to monitor agricultural crops due to spatial resolution 

and temporal resolution, this product does not include information of DOYCMP 

(collection 5) which should be essential for agricultural applications.   

 Results suggested that crop biophysical parameters such as LAIg could be 

monitored during the entire growing season with data retrieved from MOD13Q1. Based 

on nine years of data used in this study, maize LAIg can be accurately estimated using a 

EVI quadratic and WDRVIα=0.2 and WDRVIα=0.1 linear models for data retrieved from the 
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250-m resolution product (MOD13Q1). An important result of this study is the ability to 

estimate maize LAIg without the use of radiative transfer models.   

 Based on this study, it is suggested that the assembly of a product of NDVI 250-m 

8 day composite would be useful for agricultural applications instead of the product of 

NDVI 250-m 16 day composite used by government agencies. A MODIS product of 

NDVI 250-m 8 day composite should allow regional and national government agencies to 

improve the accuracy of agricultural crop monitoring or comparison of NDVI values with 

historical or previous year values.  
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Table 1. Summary of selected vegetation indices. 

ρNIR= near infrared reflectance; ρred= red reflectance; ρblue= blue reflectance; α=weighting 

coefficient. 

Vegetation Index Equation Reference 

Normalized Difference 

Vegetation Index  

(NDVI) redNIR

redNIR








 

Rouse et al., 1974 

Enhanced Vegetation Index 

(EVI) blueredNIR

redNIR





5.761
5.2







 Huete et al., 2002 

Wide Dynamic Range 

Vegetation Index 

(WDRVI) 

      
                 

               
 

Gitelson, 2004 



 

 

 

 

3
6
 

Table 2. Impact of incorporation of day of year (DOY) and day of composite (DOYCMP) on 

estimated maize green leaf area index (LAIg). 

  MOD13Q1 MOD09A1 MOD09Q1 

    RMSE 

(m
2
m

-2
) 

CV 

(%) 
R

2 
RMSE 

(m
2
m

-2
) 

CV 

(%) 
R

2 
RMSE 

(m
2
m

-2
) 

CV 

(%) 
R

2 

NDVI 
DOY 1.22 38 0.67 1.01 28 0.73 0.71 21 0.87 

DOYCMP 0.49 14 0.94 0.82 22 0.81 0.50 14 0.93 

EVI 
DOY 1.28 39 0.63 1.22 34 0.60 0.80 23 0.84 

DOYCMP 0.59 17 0.91 0.80 22 0.82 0.56 15 0.92 

WDRVI 
DOY 1.23 38 0.66 1.01 28 0.73 0.73 23 0.87 

DOYCMP 0.53 15 0.93 0.84 23 0.80 0.93 16 0.51 

MOD13Q1=Moderate Resolution Imaging Spectroradiometer (MODIS) Terra Vegetation Index 16 day 

composite 250 meter resolution; MOD09A1= Moderate Resolution Imaging Spectroradiometer (MODIS) 

Terra Surface Reflectance 8 day composite 500 meter resolution; MOD09Q1 = Moderate Resolution 

Imaging Spectroradiometer (MODIS) Terra Surface Reflectance 8 day composite 250 meter resolution. 
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Table 3. Calibration equation for maize green leaf area (LAIg) estimation using EVI, 

WDRVIα=01 and WDRVIα=0.2 from MODIS data. 

MOD13Q1=Moderate Resolution Imaging Spectroradiometer (MODIS) Terra Vegetation 

Index 16 day composite 250 meter resolution; MOD09A1= Moderate Resolution Imaging 

Spectroradiometer (MODIS) Terra Surface Reflectance 8 day composite 500 meter 

resolution. 

 

 

 

 

 

 

 

Vegetation 

Index 
Model equation 

RMSE 

(m
2
 m

-2
) 

CV 

(%) 
R

2
 

MOD13Q1     

 EVI LAIg = -1.22+ 5.63* EVI + 4.19 *EVI
2
 0.58 0.16 0.92 

 WDRVI α=0.2 LAIg = 5.60*  WDRVI α=0.2+ 2.24 0.53 0.15 0.93 

 WDRVI α=0.1 LAIg = 3.94*  WDRVI α=0.1+ 5.82 0.49 0.14 0.94 

MOD09A1     

 EVI LAIg = 11.25*EVI -2.47 0.80 0.22 0.82 

 WDRVI α=0.2 LAIg = 5.80* WDRVI α=0.2+ 2.63 0.84 0.23 0.84 

 WDRVI α=0.1 LAIg = 5.81* WDRVI α=0.1 + 4.46 0.90 0.25 0.78 
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Figure 1. MODIS 250-m 16 day composite (MOD13Q1) pixel locations 

superimposed over study sites in Mead, Nebraska 
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Figure 2.  MODIS 500-m 8 day composite (MOD09A1) pixel locations 

superimposed over study sites in Mead, Nebraska. 
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Figure 3. Progress of green leaf area index (LAIg) as function of day of year (DOY)  and day of pixel composite for  

MODIS Vegetation Index 250 meters 16 days composite (MOD13Q1) 2001 (a) and 2003 (c) and MODIS Reflectance 

500 meters 8 days composite (MOD09A1) for 2001 (b) and 2003 (d). Dash lines correspond to MODIS first day of 

composite period. 
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Figure 4. (a) Number of days from the first day of composite period  

as a function of day of year (DOY) of MODIS 16 day composite 

(MOD13Q1) and (b) Changes in LAIg as a function of number of 

days from MODIS 16 day composite day obtained during nine 

growing season over site 1. 
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Figure 5. (a) Number of days from the first day of composite period as 
a function of day of year (DOY) of MODIS 8 day composite 

(MOD09A1) and (b) changes in LAIg as a function of number of days 

from MODIS 8 day composite day obtained during nine growing 

season over site 1. 
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Figure 6. Temporal values of NDVI obtained from MODIS 250-m 8 day 

composite (MOD09Q1), MODIS 250- m 16 day composite (MOD13Q1), and 

MODIS 500- m 8 day composite (MOD09A1) as function of day of year 

(DOY) for the selected pixels over maize field at site 1. 
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Figure 7. Relationships between the (a) Normalized Vegetation Index 

(NDVI), (b) Enhanced Vegetation Index (EVI), and Wide Dynamic Range 

Vegetation Index (WDRVI) with (c) α=0.2 and, (d) α=0.1 obtained from 

MODIS Surface Reflectance 250-m 8 day composite (MOD09Q1) as a 

function of green leaf area index (LAIg).  
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Figure 8. Relationships between the (a) Normalized Vegetation Index (NDVI), 

(b) Enhanced Vegetation Index (EVI), and Wide Dynamic Range Vegetation 

Index (WDRVI) with (c) α=0.2 and, (d) α=0.1 obtained from MODIS 

Vegetation Index 250-m 16 day composite (MOD13Q1) as a function of green 

leaf area index (LAIg). 
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Figure 9. Relationships between the (a) Normalized Vegetation Index (NDVI), 

(b) Enhanced Vegetation Index (EVI), and Wide Dynamic Range Vegetation 

Index (WDRVI) with (c) α=0.2 and, (d) α=0.1 obtained from MODIS Surface 

Reflectance 500-m 8 day composite (MOD09A1) as a function of green leaf 

area index (LAIg).  
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Figure 10. Sensitivity of NDVI, EVI, WDRVI with α= 0.1 and α= 0.2 to 

changes in maize green leaf area (LAIg) irrigated and rainfed conditions 

obtained from MODIS (a) 250-m 8 day composite and (b) 500-m 8 day 

composite from 2001 to 2004. Sensitivity is defined as the ratio of the 

derivative of the best fit function to the RMSE.  
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Figure 11 . Sensitivity of NDVI, EVI, WDRVI with α= 0.1 and α= 0.2 to 

changes in maize green leaf area (LAIg) irrigated and rainfed conditions 

obtained from MODIS 250-m 16 day composite (a) from 2001 to 2004 and (b) 

from 2005 to 2009. Sensitivity is defined as the ratio of the derivative of the 

best fit function to the RMSE. 
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(b) WDRVI=0.1 linear model
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(c) WDRVI=0.2 linear model
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Figure 12. Validation of the (a) Enhanced Vegetation Index (EVI), and Wide 

Dynamic Range Vegetation Index (WDRVI) with (b) α=0.1 and (c) α=0.2 

models for estimates of maize green leaf area index (LAIg) under irrigated and 

rainfed conditions during 2005 until 2009 using MODIS Vegetation Index 

250-m 16 day composite period (MOD13Q1). 
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Figure 13 Validation of the (a) Enhanced Vegetation Index (EVI), and Wide 

Dynamic Range Vegetation Index (WDRVI) with (b) α=0.1 and (c) α=0.2 models 

for estimates of maize green leaf area index (LAIg) under irrigated and rainfed 

conditions during 2005 until 2009 using MODIS Surface Reflectance 500-m 8 day 

composite (MOD009A1). 
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Appendix 1. Temporal profiles of NDVI for pixels retrieved from MODIS 

250-m 16 day composite (MOD13Q1) over site 1.
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Appendix 2. Temporal profiles of NDVI for pixels retrieved from MODIS 250-m 16 day composite 

(MOD13Q1) over site 2. 
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Appendix 3. Temporal profile of NDVI for pixels retrieved from MODIS 250-m 16 day composite 

period (MOD13Q1) over site 3. 
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Appendix 4. Temporal profiles of NDVI for pixels retrieved 

from MODIS 500-m 8 day composite (MOD09A1) over study 

sites. 
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CHAPTER 2 

 

SIMULATING GREEN LEAF AREA INDEX AND FINAL YIELD IN MAIZE 

USING A CROP SIMULATION MODEL WITH MODIS INPUT DATA 

 

 

ABSTRACT 

 Although crop simulation models are valuable tools to simulate optimal yields 

and yields under limiting conditions, studies have reported that inaccuracies in yield 

predictions were associated with uncertainties in input parameters relating to crop 

photosynthesis and leaf area index estimation. One approach to reduce uncertainties in 

simulated values from crop simulation models is the integration or incorporation of green 

leaf area index (LAIg) obtained through remote sensing during the growing season. The 

overall objective of this study was to evaluate the potential use of MODIS Vegetation 

Index 250-m product to improve LAIg simulations by the Muchow-Sinclair-Bennet maize 

model. Results from this study showed that estimates of LAIg obtained from Wide 

Dynamic Range VI using MODIS 250-m products allowed the improvement of LAIg 

simulations by the MSB model reducing the overall RMSE of LAIg from 0.90 to 0.52 m
2
 

m
-2

 for all years of study under irrigated conditions. An important result is that WDRVI 

could allow the incorporation of accurate estimates of LAIg from moderate to high values 

(LAIg > 3.00 m
2
 m

-2
) into crop simulation models. The final yield predictions by the 

MSB model were improved by 23 and 26 percent with estimates of LAIg obtained from 

MODIS 250-m 8 and 16 day composite under irrigated conditions, respectively.  

Key words: crop simulation models, maize, green leaf area index, RUE 
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INTRODUCTION 

 

Yield forecasting around the world is done with crop simulation models, remote 

sensing, statistical techniques, scouting reports, and combinations of these methods. 

Scouting reports or sampling of agricultural fields is a reliable way to estimate yield; 

however, the method is time-consuming and costly. In contrast, data obtained from 

remote sensing and crop simulation models allow government agencies, private sector 

parties, and researchers to estimate yield before harvest. Crop simulation models have 

been used to predict crop yields (Lal et al., 1993; Paz et al., 1998; Paz et al., 2001), 

impact of climate change (Tubiello et al, 1999; Tubiello et al., 2002; Weiss et al., 2003), 

and irrigation requirements (Hook, 1994; Guerra et al., 2004; Rinaldi et al., 2007) at 

different scales, from farm, to regional, to world levels. Although crop simulation models 

are valuable tools to simulate yields and yields under limiting factors, the amount of input 

data required and the spatial variation in model parameters can result in inaccurate 

predictions (Barnes et al., 1997; Batchelor et al, 2002).  

Studies have reported that inaccuracies in yield predictions were associated with 

uncertainties in input parameters relating to crop photosynthesis and leaf area estimation 

in crop simulation models such as CERES-Maize (Carberry et al., 1989; Carberry, 1991; 

Lizaso and Ritchie, 1997; Lizaso, 2003), WTGROWS (Aggarwal, 1995) and SUCROS 

(Launay and Guerif, 2005). Because green leaf area (LAIg) constitutes a fundamental 

component of many crop simulation models, a proposed approach to reduce uncertainties 

in crop simulation models is the integration or incorporation of crop parameters obtained 

through field observations or remote sensing during the growing season (Bouman, 1995; 
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Moulin et al., 1998; Leenhardt et al., 2006). This approach suggests that the modification 

of LAIg during the growing season with measurements obtained from remote sensing, to 

correct simulated values of LAIg, may improve future model predictions. Several studies 

have shown that the integration of LAIg retrieved from remote sensing, into crop 

simulation models can improve final yield (FY) predictions of cotton (Maas 1988, 1993; 

Ko et al., 2006), wheat (Prevot et al., 2003; Moriondo et al., 2007; Duchemin et al., 

2008), soybean (Seidl et al., 2004) and maize (Doraiswamy et al., 2004; Kiniry et al. 

2004; Fang et al., 2008).  

 Several studies reported FY improvement with the incorporation of LAIg retrieved 

from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Fang et al. 

(2008) retrieved LAIg from MODIS leaf area index 8 day composite at 1000m to 

incorporate into CERES-Maize. Doraiswamy et al. (2004) used data retrieved from 

MODIS surface reflectance 8 day composite at 250-m to incorporate in a radiative 

transfer model to estimate LAIg during the growing season and then incorporate into a 

maize crop simulation model. However, the successful application of this technique 

requires an understanding of the limitations and capabilities of MODIS products and on 

how well the vegetation index (VI) accurately tracks and/or estimates LAIg during the 

entire growing season. Data obtained from the MODIS Vegetation Index (VI) 250-m 

products provides an opportunity to acquire high quality data that can be used to estimate 

maize LAIg and incorporated into crop simulation model to improve LAIg simulations 

during the growing season. Results from Chapter 1 suggested that MODIS 250-meter (m) 

resolution products offer the opportunity to obtain more accurate estimates of maize LAIg 

during the entire growing season compared to 500-m resolution without the use of 
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radiative transfer models. The previous results (Chapter 1) demonstrated the importance 

of day of pixel composite (DOYCMP) included in some MODIS products for agricultural 

applications such as retrieving maize LAIg. Maize LAIg was accurately estimated 

(RMSE=0.60 m
2
 m

-2
) during the entire growing season using a Wide Dynamic Range 

Vegetation Index (WDRVI; Gitelson, 2004) linear model for data retrieved from MODIS 

250-m resolution (MOD13Q1). Limitations have been reported incorporating accurate 

values of LAIg into a crop simulation model due to limitations of the Normalized 

Difference Vegetation Index (NDVI) to accurately estimate LAIg at high values of LAIg 

(Hong et al., 2004; Rodriguez et al., 2004). One advantage of WDRVI is the capability to 

estimate LAIg from moderate to high values of LAIg (LAIg > 3.0 m
2 

m
-2

) where other 

vegetation indices show limitations such as the NDVI.  However, the performance of 

WDRVI for improving LAIg simulation in crop simulation models has not been 

investigated to date. 

 The goal of this study was to evaluate the potential use of MODIS 250-m 

products to incorporate estimates of LAIg into the maize model described by Muchow et 

al. (1990). This model (MSB) has been used by United States (U.S.) government 

agencies and U.S. government researchers to estimate maize yield at regional scales 

because it requires a minimum amount of input parameters and it is responsive to soil and 

climatic factors (Reynolds, 2001; Doraiswamy et al., 2005). The specific objectives of 

this study were (a) to evaluate the performance of WDRVI to improve LAIg simulations 

by the MSB model using data from MODIS 250-m and (b) to determine the improvement 

in FY predictions by incorporating LAIg into the MSB model.  
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MATERIALS AND METHODS 

Field measurements  

This research used field data from the Carbon Sequestration Project at the 

University of Nebraska-Lincoln collected at the Agricultural Research and Development 

Center located in Saunders County, Nebraska, USA. Field data were collected over two 

large study sites with different cropping systems. Site 1 (41˚ 09’54.2”N, 96˚ 28’35.9”W, 

361m) was 48.7 ha and was planted in continuous maize from 2001 until 2009 and was 

irrigated.  Site 3 was 65.4 ha planted in a maize-soybean rotation under rainfed 

conditions. The soils in the two sites are deep silty clay loams and consisting of four soil 

series: Yucan (fine-silty, mixed, superactive, mesic Mollic Hapludalfs), Tomek (fine, 

smectitic, mesic Pachic Argialbolls), Filbert (fine, smectitic, mesic Vertic Argialbolls), 

and Filmore (fine, smectitic, mesic Vertic Argialbolls). Irrigation schedules for site 1 

were determined based on crop water budget maintaining 50 percent moisture content in 

the soil. This study used nine years of data (2001-2009) from site 1 and three years of 

data (2001, 2003, and 2005) from site 3. Site 1 represented maize grown under optimal 

water and nutrient conditions while optimal nutrient conditions under rainfed conditions 

was represented by site 3. 

Within each site, six plot areas (20 m x 20 m) were established called intensive 

management zones (IMZs) for detailed process-level studies (details in Verma et al., 

2005). Destructive samples consisting of 5 or more continuous plants were collected from 

one meter linear row sections in the six IMZ for each site. Field measurements of  

development stage, plant population density (POP), LAItotal, LAIg, and total above-

ground biomass (AGB) were taken at 10 to 14 day intervals until maturity for site 1 
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(2001-2009) and site 3 (2001, 2003, and 2005). The total and green leaf area were 

measured with an area meter (model LI-3100, LI-COR, Inc., Lincoln, NE) and converted 

to LAIg using POP multiplied by the green leaf area per plant. All plant measurements 

were obtained by averaging all six IMZ measurements. Hand harvested yields were 

collected at each IMZ and averaged for each site-year. FY estimates were expressed on a 

grain dry matter basis per unit area in this study. MATLAB® was used to estimate the 

daily values of AGB and LAIg using the cubic spline interpolation method.  

Sensitivity analysis 

A local sensitivity analysis was performed to determine the influence of variation in 

inputs parameters on yields predicted by the MSB model. Wallach (2006) defines a 

parameter as numerical value that is not calculated by the model and is not a measured or 

observed input variable. Examples of input parameters are radiation use efficiency (RUE) 

and the canopy extinction coefficient (k) for maize. Monod et al., 2006 recommended the 

identification of key input parameters to estimate before performing the sensitivity 

analysis to avoid impractical results due to complexity and the large number of 

parameters included in some crop models. The first step in this sensitivity analysis was to 

define the parameters and input variables and their nominal values and uncertainty ranges 

(Table 1). The range of uncertainty of RUE and the canopy extinction coefficient (k) was 

set according to minimum and maximum values of RUE reported for maize summarized 

by Sinclair and Muchow (1999) and Hay and Porter (2006), respectively. The uncertainty 

values for plant population density (POP) and planting date (DOP), and total number of 

leaves per plant (J) were set based on maximum and minimum values observed during 
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the nine years of these experiments. The input parameter area of the largest leaf (AMAX) 

was varied in the range of ± 4 percent because AMAX was not measured in this study. A 

base output was set using the nominal values. For each combination of input parameters, 

a simulated maize yield output was obtained; all other parameters remained at their 

nominal values in a local sensitivity analysis. Monod et al. (2006) presents the basic 

approach to measure sensitivity from the relationship between a single input factor Z and 

a model output Ŷ. The goal was to identify which parameters had a small or large 

influence on the FY output. The Sensitivity index (SI) for the MSB model output (Ŷ) 

with respect to input variable (Z) was calculated as: 

SI=
Y     

MAX- 
Y     MIN 

Y    MAX 
                 eq. 2 

where ŶMAX and ŶMIN is the maximum and minimum of model yield output (Ŷ), 

respectively obtained for the evaluated input parameter (Z).  

Model evaluation 

 The MSB model is a simple mechanistic crop simulation model that simulates the 

major effects of temperature and solar radiation on maize growth, development, and yield 

(Muchow et al., 1990). The total above-ground biomass accumulation (AGB) is estimated 

as the product of RUE and the daily incident solar radiation and k. The fraction of 

intercepted solar radiation (fISR) is calculated from LAIg. FY is estimated multiplying 

the AGB accumulation by the harvest index. The model has been tested across different 

environments under non-stressed conditions to show that maize yields are limited by 

temperature and solar radiation across the different environments (Muchow et al, 1990).   
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 The MSB model was used to simulate maize yields from 2001 to 2009 and 2001, 

2003, and 2005 under irrigated and rainfed conditions, respectively. Weather files 

(maximum and minimum air temperature, precipitation, and incoming solar radiation) for 

the MSB model were constructed using data collected by an automated weather station 

(maintained by the High Plains Regional Climate Center, http://www.hprcc.unl.edu) 

located at the Agricultural Research and Development Center (ARDC) in Mead, 

Nebraska. The input parameters such as POP and DOP were set according to field 

observation while J and AMAX were set at the default values (18 and 750 cm
2
, 

respectively) during the experiment. The period from silking (R1) to physiological 

maturity (PM) was set to 1150˚Cd accumulated thermal time (ATT) in the MSB model as 

a default value; however, this ATT can vary between varieties. In this study, the MSB 

model was modified to simulate the duration of the period from silking (R1) to 

physiological maturity (PM) in agreement with field observations by increasing the ATT 

during grain filling periods.  

 A subroutine was modified to accept values of LAIg from external sources 

(remote sensing or field measurements) and incorporate them into the MSB model. This 

subroutine reads a file containing observed LAIg values, and if an observed value for this 

date was available, it replaced the simulated LAIg values. The replaced value of LAIg was 

used to predict the future evolution of LAIg.  

 As will be discussed later, the input parameter with the largest influence in FY 

was RUE. Values of RUE were calculated as the slope of the relationship between the 

accumulated intercepted photosynthetically active radiation (IPAR; MJ m
-2

 d
-1

) and AGB 

http://www.hprcc.unl.edu/
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(g m
-2

) from emergence to PM. RUE values based on IPAR were multiplied by 0.5 to 

covert to total solar radiation (SR) basis as explained in Sinclair and Muchow (1999). 

Evaluation of model predictions with green leaf area index (LAIg) modifications 

 The MSB model FY predictions were evaluated under two scenarios in order to 

determine if more accurate estimates of LAIg during the growing season improved FY 

predictions over irrigated and rainfed conditions. Field data from 2001 to 2005 and 2001 

and 2003 was used to evaluate the two scenarios under irrigated and rainfed conditions, 

respectively. Scenario 1 represented the model prediction without modifications (base 

scenario) under irrigated and rainfed conditions. Scenario 2 corresponded to the daily 

incorporation of LAIg from one week after emergence until close to physiological 

maturity. Outputs from scenario 2 represent FY with no error in LAIg model predictions.  

Incorporation of green leaf area index (LAIg) into the MSB using MODIS LAIg estimates 

 

 The final part of this study was to evaluate the performance of WDRVI to 

improve LAIg simulations by the MSB model with data obtained from MODIS 250-m 

over irrigated conditions from 2006 to 2009. A time series of MODIS Terra Vegetation 

Index 16-day composite 250-m (MOD13Q1) was downloaded from the National 

Aeronautic and Space Administration (NASA) Land Process Distributed Active Archive 

Center (LPDAAC) (https://lpdaac.usgs.gov/lpdaac/get_data/data_pool) from April 

through October (of each growing season) of the study area (MODIS tile h10v04). All 

MODIS images were processed, reprojected, and converted to GeoTIFF format using the 

MODIS Reprojection Tool Version 4.0 (MRT) downloaded from LPDAAC 

(https://lpdaac.usgs.gov/lpdaac/tools). Each study site was geolocated on each MODIS 

https://lpdaac.usgs.gov/lpdaac/get_data/data_pool
https://lpdaac.usgs.gov/lpdaac/tools


64 

 

 

 

image. The NDVI and day of pixel composite (DOYCMP) data were retrieved from the 

center pixels over the study sites. NDVI values obtained from the 16 day composite were 

interpolated to estimate NDVI values from the 8 day composite 250-m product. NDVI 

values over the study site were used to calculate WDRVI. Estimates of LAIg from 2006 

to 2009 were obtained from results presented in Chapter 1. Appendix 1 summarizes the 

estimates of maize LAIg obtained from WDRVI using MODIS data over site 1 from 2006 

to 2009. These estimates of maize LAIg were calculated using a linear model based on 

WDRVI calibrated using data from 2001 to 2004 under irrigated and rainfed conditions 

(details in Chapter 1). Estimates of LAIg obtained from WDRVI were incorporated into 

the MSB model every 8 and 16 days from day of year (DOY) 161 until 241, respectively 

from 2006 to 2009. The period of time from DOY 161 to 241 covered the rapid 

development of LAIg during vegetative stages until the late mid grain filling period 

during the years of study.  

 The MSB model LAIg simulations with the incorporation of LAIg using WDRVI 

estimates were compared with simulation of the original model to evaluate the 

performance of this VI. The root mean square error (RMSE) and relative RMSE 

(RRMSE) were used to determine the improvement of LAIg simulation by the MSB 

model with the incorporation of LAIg estimates obtained every 8 and 16 days using 

information of the day of pixel composite (DOYCMP) and the day of year (DOY) 

obtained from MODIS data.  
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RESULTS AND DISCUSSION 

Sensitivity analysis 

 Figure 1 a-f shows the average maize yields predicted by changing one model 

parameter at a time while holding the other parameters at their nominal values. 

Sensitivity indices of 0.47, 0.25, 0.17, 0.07, and 0.02 were obtained for the input 

parameters of RUE, k, POP, J, and AMAX, respectively. Results obtained from this 

analysis suggest that uncertainties in AMAX, DOP, and J had low influence on FY 

predictions. In contrast, yield responses were more sensitive to POP, k, and RUE. These 

results can be explained with the model structure in which FY is calculated as a linear 

increased in harvest index (HI) so HI is closely related with AGB accumulation. FY was 

more sensitive to the main parameters that influence AGB accumulation in the maize 

model such as RUE, k, and POP. For example, AGB accumulation was calculated as the 

fISR multiplied by RUE. Moreover, the fISR depends on LAIg and k; but LAIg is also a 

function of POP. In other words, input parameters that affected AGB accumulation 

should also affect final yield in the maize model. These results clearly showed that the 

input parameter with the largest influence in FY prediction over the ranges tested was 

RUE.   

 The concept of RUE has been used in many crop simulation models because it 

simplifies the complex processes of photosynthesis and respiration. RUE also has been 

reported as the input parameter with the largest influence in FY predictions in the 

AUSIM-Maize model (Birch, 1996). Consequently, more accurate estimates of RUE may 

improve FY predictions by the MSB model under irrigated and rainfed conditions. 
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Evaluation of model predictions with green leaf area index (LAIg) modifications using 

field measurements  

 Table 2 summarizes values of RUE measured during 2001 to 2005 and 2001, 

2003, and 2005 under irrigated and rainfed conditions, respectively. Values of RUE 

measured over irrigated conditions from 2001 to 2005 varied between years which 

represented a variability of ± 8 percent from the default value of 1.6 g AGB MJ
-1 

used in 

the MSB model (Table 2). The average value of RUE was 1.6 g AGB MJ
-1

 under 

irrigated conditions; it was similar to the default value used by the MSB model. In 

contrast, lower values of RUE were measured under rainfed conditions that represented a 

reduction of 20, 26, and 7 percent in RUE values measured under irrigated conditions 

during 2001, 2003, and 2005, respectively (Table 2). Based on these results, the value of 

RUE was modified to the average value of 1.30 g AGB MJ
-1

 under rainfed conditions 

while remained as the default value of 1.6 g AGB MJ
-1 

used in the MSB model under 

irrigated conditions for this study. These measured values of RUE were similar values of 

RUE reported by Sinclair and Muchow (1999) for maize grown under irrigated (1.6 g 

AGB MJ
-1

) and rainfed (1.2 g AGB MJ
-1

) conditions.    

 The MSB model predictions of LAIg and FY were compared with field 

measurements taken during the growing season over the study sites. Table 3 summarizes 

the FYmeasured and FYpredicted , RMSE and RMMSE obtained for overall FY and LAIg 

predictions obtained during 2001 until 2005 under irrigated (S1) and rainfed (S3) 

conditions. Scenario 1 represents the model with the base scenario. The MSB model 

underpredicted FY by 1936 and 1640 kg ha
-1

 for 2001 and 2002, respectively, while 

overpredicted FY by 1187 kg ha
-1

 for 2004 under irrigated conditions. These differences 
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represented an underprediction and overprediction of 16, 14 and 12 percent of FY for 

2001, 2002 and 2004, respectively, the largest differences obtained over the five years 

analysis, under irrigated and rainfed conditions by scenario 1. In contrast, the MSB model 

underpredicted FY by 9 and 3 percent for 2003 and 2005, respectively, under irrigated 

conditions. The RMSE of the LAIg simulations during the growing season ranged from a 

maximum and minimum of 1.13 to 0.38 m
2 

m
-2 

obtained during 2001 and 2005, 

respectively under irrigation conditions (Table 3). Results from 2005 showed lower 

differences of FY prediction (299 kg ha
-1

) and RMSE in LAIg (0.38 m
2 

m
-2

) simulations 

during the entire growing season under irrigated conditions. In addition, larger FY 

prediction differences (1936 kg ha
-1

) and LAIg RMSE (1.13 m
2 

m
-2

) were obtained from 

2001 results under irrigated conditions. These results suggested a possible association 

between FY predictions with the error in LAIg simulations. 

 The differences between FYmeasured - FYpredicted by the MSB model were less than 

140 kg ha
-1

 under rainfed conditions. In contrast to the results obtained under irrigated 

conditions, differences in FY and RMSE of LAIg simulations were not associated with 

inaccurate estimates of LAIg (Table 3). For example, results showed a RMSE of 0.79, 

1.40, and 0.89 m
2
 m

-2
 while differences between FYmeasured - FYpredicted were 18, 13, and 

132 kg ha
-1

 for 2001, 2003, and 2005, respectively. The overall results showed a RMSE 

and RRMSE of 77 kg ha
-1

 under rainfed conditions. As explained in the previous section, 

the input parameter with the largest influence in FY prediction was RUE based on the 

local sensitivity analysis results. Consequently, accurate values of input parameters in the 

MSB mode can make significant improvements in FY predictions under rainfed 

conditions. For example, the MSB model overpredicted FY by 15, 45, and 13 percent for 



68 

 

 

 

2001, 2003, and 2005, respectively, with the default value of RUE used by the model of 

1.6 g MJ
-1

. Results suggested that the modification of input parameters with largest 

influence in the MSB model should improve FY predictions by the MSB model under 

rainfed conditions.  

 Scenario 2 represents the incorporation of daily values of LAIg during the entire 

growing season with a RMSE of LAIg simulation close to zero. Results suggested an 

overall improvement in FY predictions with a considerably reduction in RMSE from 

1892 to 526 kg ha
-1 

and from 26 to 5 percent of the RMSE and RRMSE, respectively 

under irrigated conditions. The differences between FYmeasured - FYpredicted were reduced to 

less than 10 percent during the five years of study by the MSB model under irrigated 

conditions with accurate estimation of LAIg during the growing season. The differences 

between FYmeasured - FYpredicted ranged from 969 and 43 kg ha
-1

 for 2001 and 2003, 

respectively. In contrast, the overall results showed an increase in the differences between 

FYmeasured - FYpredicted by the MSB model under rainfed conditions. These results validate 

the previous discussion about the lack of association between RMSE of LAIg and 

differences of FY predictions under rainfed conditions. Accurate estimates of LAIg 

increased the FY predictions due to an increase in AGB accumulation under rainfed 

conditions. Although the overall results obtained from scenario 2 showed acceptable 

results with a RMSE of 803 kg ha
-1

 and a RRMSE of 11 percent under rainfed conditions, 

the approach of updating LAIg simulation could worsen FY predictions in the MSB 

model. Based on these results, more accurate simulations of LAIg by the MSB model 

could improve FY under irrigated conditions. These results were consistent with previous 
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studies that associated inaccuracies in FY with inaccuracies in LAIg predictions during 

the growing season (Aggarwal, 1995; Lizaso, 2003; Launay and Guerif, 2005).  

Evaluation of model predictions with incorporation of LAIg estimates obtained from 

WDRVI using MODIS 250-m data 

 

 Table 4 summarizes the RMSE and RRMSE for LAIg predicted by the MSB 

model with and without the incorporation of LAIg during the growing season from 2006 

to 2009 under irrigated conditions. The base model represents the MSB model LAIg 

simulations without LAIg incorporation. MODIS DOYCMP and MODIS DOY 

summarizes the simulation results with the incorporation of LAIg obtained from WDRVI 

using MODIS data with information of DOYCMP (MODIS DOYCMP) and DOY 

(MODIS DOY) every 8 and 16 day from day 161 to 241 during 2006 to 2009 under 

irrigated conditions. Results show that the incorporation of LAIg every 8 days improved 

LAIg predictions reducing the RMSE of LAIg during all years of study compare to LAIg 

prediction by the base model. For example, a maximum and minimum reduction of the 

RMSE from 0.95 to 0.32 and from 0.92 to 0.55 m
2
 m

-2
 were obtained for 2007 and 2008, 

respectively, under irrigated conditions. The incorporation of LAIg every 16 days also 

improved LAIg predictions into the MSB model reducing RMSE to less than 0.60 m
2
 m

-2
 

for all years. Estimates of LAIg obtained from WDRVI using data from MODIS 250-m 

every 8 and 16 days improved the model LAIg predictions during all years of study 

compared to LAIg prediction by the base model. The RMSE of LAIg was reduced from 

0.95 to 0.60 and from 0.92 to 0.68 m
2
 m

-2
 a maximum and minimum obtained with the 

incorporation of estimates of LAIg every 8 days on 2007 and 2008, respectively. The 

incorporation of LAIg estimates every 16 days also reduced the RMSE for all years 
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compared to LAIg prediction by the base model. The lower reduction in the RMSE of 

LAIg was obtained during 2008. The overall results obtained using WDRVI LAIg 

estimates were closer to field measurements (Figure 2-a). This result indicates the 

robustness of the WDRVI, which accurately estimates maize LAIg during the growing 

season. In contrast estimates of LAIg obtained from MODIS without the incorporation of 

DOYCMP or using DOY (MODIS DOY) could increase the RMSE of LAIg prediction 

(Figure 2-b). The RMSE of LAIg using MODIS DOY increased compare to the RMSE of 

LAIg using field measurements and MODIS DOYCMP (Table 4). The results were not 

surprising because information of DOYCMP has a relevant importance to the retrieval of 

LAIg especially during vegetative stages (Chapter 1). Estimates of LAIg obtained without 

information of DOYCMP are mostly overestimates during vegetative stages. For 

example, the estimate of LAIg was 3.24 m
2
 m

-2
 from information retrieved from MODIS 

DOY 161 in 2007; however, this estimate of LAIg corresponds to DOY 171 based on 

information of DOYCMP (Appendix 1). In other words, an overestimation of 

approximately 2.00 m
2
 m

-2
 was incorporated into the MSB model on DOY 161 when 

information of DOYCMP was not included (Figure 2-b). The simulations of LAIg were 

worse for all years of study when inaccurate information of LAIg was incorporated into 

the MSB model. The information of DOYCMP included in some MODIS products has 

important implications to the improvement of LAIg simulation by the MSB model.  Thus, 

the incorporation of estimates of LAIg obtained from WDRVI into the MSB model 

should allow improvements of LAIg simulations during the growing season if the 

information of DOYCMP is included. The next step that should be tested is whether or 

not more accurate simulation of LAIg could improve FY predictions in the MSB model. 
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 Table 5 summarizes the measured and predicted FY obtained from the MSB 

model by the base scenario and with the incorporation of estimates of LAIg obtained from 

WDRVI using MODIS data from day 161 to 241 during 2006 to 2009 under irrigated 

conditions. The MSB model overpredicted FY by 758 kg ha
-1

 for 2006 while it 

underpredicted FY by 1981, 544, and 980 kg ha
-1

 for 2007, 2008 and 2009, respectively. 

The FY prediction for 2006 increased from 11123 to 11918 and 11752 kg ha
-1

 with the 

incorporation of LAIg estimates obtained from MODIS 8 and 16 day composite, 

respectively. The result was not surprising because the MSB model overpredicted FY 

without modification (base scenario) for 2006. As previously explained, the MSB 

underestimated LAIg during the growing season. Consequently, more accurate 

simulations of LAIg should increased FY predictions due to an increase in AGB in the 

MBS model under irrigated conditions. On the other hand, the differences between 

FYmeasured - FYpredicted decreased for 2007, 2008, and 2009, with the incorporation of 

estimates of LAIg obtained from MODIS every 8 and 16 days. For example, differences 

between FYmeasured - FYpredicted were reduced from 1981 to 766 and 669 kg ha
-1

 with the 

incorporation of LAIg every 8 day obtained from field measurements and estimates from 

WDRVI, respectively, for 2007. The overall RMSE was reduced from 1200 to 919 and 

878 kg ha
-1 

with the incorporation of estimates of LAIg into the MSB obtained from 

MODIS DOYCMP model every 8 and 16 days, respectively. This is a moderate 

improvement of close to 25 percent with respect to the RMSE obtained by the base 

model. However, the overall results suggested that differences between FYmeasured - 

FYpredicted can be reduced with the incorporation of LAIg into the MSB model.   
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 Results obtained in this study were in agreement with studies that suggest 

incorporation of LAIg improved FY predictions in the MSB model (Doraiswamy et al., 

2004; Doraiswamy et al., 2005) and other crop simulation models (Hong et al., 2004; 

Fang et al., 2008). However, some inconsistent results have also been reported. For 

example, Kiniry et al. (2004) reported improvement in maize yield prediction 

incorporating fAPAR retrieved from remote sensing into ALMANAC model in three 

study sites; however the technique failed in one of the study sites. 

CONCLUSIONS 

 

 This study presented an approach to incorporate LAIg into a crop simulation 

model estimating maize LAIg from MODIS data without the use of radiative transfer 

models. Results from this study showed that estimates of LAIg obtained from WDRVI 

using MODIS 250-m products allowed the improvement of LAIg simulations by the MSB 

model reducing the RMSE of LAIg for all years of study under irrigated conditions. An 

important result is that WDRVI could allow the incorporation of accurate estimates of 

LAIg from moderate to high values (LAI > 3.00 m
2
 m

-2
) into crop simulation models. 

Results presented in this study indicated that inaccurate estimates of LAIg obtained from 

MODIS 8 and 16 day composite products without the incorporation of DOYCMP could 

affect the LAIg simulations by the MSB model. The FY predictions by the MSB model 

can be improved with estimates of LAIg obtained from MODIS 250-m 8 and 16 day 

composite under irrigated conditions.  
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Table 1. List of input parameters, nominal values and ranges of uncertainty of the 

MSB model. 

 
 

Parameter Unit 
Nominal 

value 
Range of 

uncertainty 
Variation 

step 

Radiation Use Efficiency (RUE) MJ m
-2

 day
-1 1.6 1.0 1.9 0.10 

Area of the largest leaf (AMAX) cm
2 750 720 780 2.0 

Total number of leaves per plant(J)  18.3 16 21 0.3 

Plant population density (POP) Plants m
-2 

8.1 5.0 8.2 0.10 

Extinction coefficient (k)  0.4 0.3 0.7 0.10 

Day of planting (DOP)  121 115 140 1 
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Table 2. Values of radiation use efficiency (RUE) of maize measured 

during the growing season over irrigated (S1) and rainfed (S3) 

conditions. 

  

Year 
 

Site 

RUE entire 

growing season 

(g AGB MJ
-1

ISR) 

2001 S1 1.73 

2002 S1 1.68 

2003 S1 1.47 

2004 S1 1.48 

2005 S1 1.50 

2001 S3 1.41 

2003 S3 1.09 

2005 S3 1.40 
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Table 3. Differences (Di) between observed (Yi) and predicted (Ŷ) final yields (FY) , 

root mean square error (RMSE) and relative RMSE (RRMSE) obtained for overall 

final yield (FY), and green leaf area (LAIg) predictions obtained from the evaluated 

scenarios under irrigated (S1) and rainfed (S3) conditions.  

  
Year 

 Scenario 1 Scenario 2 
Measured 

FY 
 

Predicted 

FY 
LAIg  

(m
2
 m

-2
) 

Predicted 

FY 
LAIg  

(m
2
 m

-2
) 

(kg ha
-1

) (kg ha
-1

) RMSE RRME (kg ha
-1

) RMSE RRME 

2001 S1 12381 10445 1.13 0.31 11412 0 0 

2002 S1 11615 9975 0.99 0.29 11073 0 0 

2003 S1 11693 10667 0.99 0.28 11736 0 0 

2004 S1 9986 11173 0.72 0.26 10260 0 0 

2005 S1 10193 9894 0.38 0.12 10467 0 0 

RMSE 1892  526 

 

RRMSE 0.26 0.05 

2001 S3 7250 7232 0.79 0.32 7844 0 0 

2003 S3 6523 6536 1.40 0.51 6694 0 0 

2005 S3 7690 7558 0.89 0.31 8936 0 0 

RMSE 77  803 

 

RRMSE 0.01 0.11 

 Scenario 1 = model prediction with the base scenario 

Scenario 2 = model prediction with incorporation of green leaf 

area during the entire growing season 
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Table 4. Root mean square error (RMSE) and relative RMSE (RRMSE) for green leaf area index (LAIg) predicted by the MSB 

model under irrigated conditions. 

Year 

LAIg (m
2
 m

-2
) 

Base Model 

Field Measurements MODIS DOYCMP MODIS DOY 

8 day 16 day 8 day 16 day 8 day 16 day 

RMSE RRMSE RMSE RRMSE RMSE RRMSE RMSE RRMSE RMSE RRMSE RMSE RRMSE RMSE RRMSE 

2006 0.76 0.24 0.38 0.12 0.42 0.13 0.46 0.14 0.55 0.17 0.70 0.22 0.77 0.24 

2007 0.95 0.25 0.32 0.08 0.44 0.12 0.60 0.16 0.63 0.17 0.82 0.22 0.78 0.21 

2008 0.92 0.26 0.55 0.16 0.59 0.17 0.68 0.19 0.72 0.21 0.98 0.28 0.91 0.26 

2009 0.97 0.28 0.36 0.10 0.52 0.15 0.63 0.18 0.59 0.17 0.83 0.24 0.63 0.18 
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Table 5. Differences (Di) between observed (Yi) and predicted (Ŷ) final yields 

(FY), root mean square error (RMSE) and relative RMSR (RRMSE) obtained for 

overall final yield (FY), and green leaf area (LAIg) predictions obtained from the 

maize model without modifications (base model) and the model with incorporation 

of LAIg obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) 

250-m 8 and 16 day composite over irrigated conditions (S1).  

 

  

Measured 

FY 

Predicted FY 

Year 

Base 

scenario 

MODIS 8 

day  

MODIS 16 

day  

  (kg ha
-1

)  (kg ha
-1

)  (kg ha
-1

)  (kg ha
-1

)  

2006 10364 11123 11918 11752 

2007 12915 10934 12246 11935 

2008 12667 12124 13206 12980 

2009 12430 11450 12905 12750 

 
RMSE  1200 919 878 

  RRMSE  0.10 0.08 0.08 
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Figure 1. Maize final yield (FY) variations in response to changes in input parameters of 

(a) radiation use efficiency (RUE), (b) area of the largest leaf (AMAX), (c) day of 

planting (DOP), (d) extinction coefficient (k), (e) plant population (POP), and (f) total 

leaves per plant (J). Dash lines correspond to simulated maize FY at nominal scenario. 
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Figure 2.  Green leaf area index (LAIg) simulated by the MSB model with the 

incorporation of field measurements (FM) and estimates of LAIg obtained 

from WDRVI using information of (a) the day of pixel composite 

(DOYCMP) and (b) the day of year (DOY) from MODIS products. 
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Year DOY DOYCMP 

Estimates of LAIg from 

MODIS 

      LAIg= 5.60*WDRVI + 2.24 

2006 S1 145 157 0.37 

 
161 172 3.56 

 
177 182 4.92 

 
193 207 4.93 

 
209 216 4.72 

 
225 226 5.24 

  241 241 3.59 

2007 S1 145 160 0.73 

 
161 171 3.24 

 
177 185 5.10 

 
193 194 5.42 

 
209 223 5.02 

 
225 228 5.00 

  241 242 4.30 

2008 S1 145 158 0.21 

 
161 172 2.35 

 
177 183 4.55 

 
193 199 5.23 

 
209 220 4.98 

 
225 234 4.65 

  241 244 4.29 

2009 S1 145 160 0.24 

 
161 171 1.79 

 
177 185 5.01 

 
193 194 5.77 

 
209 224 5.67 

 
225 226 5.53 

  241 242 4.91 

Appendix 1. Estimates of green leaf area index (LAIg) obtained from Moderate 

Resolution Imaging Spectroradiometer (MODIS) 250-m 16 day composite. 
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CHAPTER 3 

 ESTIMATING MAIZE GRAIN YIELD FROM CROP BIOPHYSICAL 

PARAMETERS USING WDRVI AND MODIS DATA 

ABSTRACT 

 

Assessment of maize growing conditions and accurate maize yield predictions are 

important issues regarding food prices, food security and crucial decisions affecting 

agricultural policy and trade. Remote sensing has made important contributions to 

monitor crop and estimate final yield over regional levels. This study based its analysis 

on maize yield formation, a key crop biophysical parameter, and optimum developmental 

stages during the growing season that can be used to monitor and detect variability of 

maize grain FY. The main objective of this study was to detect variability of maize grain 

yield using estimates of green leaf area index obtained from the Wide Dynamic Range 

Vegetation Index using data retrieved from Moderate Resolution Imaging 

Spectroradiometer (MODIS) Vegetation Index 250 meter 16 day composite (MOD13Q1) 

during the mid-grain filling period at county level. Estimates of green leaf area index 

obtained during the mid-grain filling period showed a strong correlation (R
2 

> 0.75) with 

maize grain final yield reported by the United State Department of Agriculture (USDA) 

National Agricultural Statistic Service (NASS) over selected counties in Nebraska, Iowa, 

and Illinois. The approach presented in this study provides a robust technique to early FY 

estimation because it is based on a key crop biophysical parameter at the optimum 

development stage closely related with maize FY. 

Key words: MODIS, green leaf area index, maize yield  
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INTRODUCTION 

 

Accurate estimates of crop yield on regional and national scales are becoming 

increasingly important in developing countries and have sustained importance in 

developed countries. Although less than 20 percent of the United States (U.S.) maize 

production is exported, world prices are largely established by the supply-and-demand 

relationship in the U.S. market. More than 80 percent of the total U.S. maize production 

comes from the U.S. Corn Belt region. Iowa, Illinois, Nebraska, Minnesota, Indiana, and 

Ohio produce nearly 70 and 85 percent of total U.S. maize grain production and Corn 

Belt region production, respectively (Figure 1; USDA-NASS, 2009). Therefore, 

assessment of maize growing conditions and accurate maize yield predictions in the U.S. 

Corn Belt are important issues relating to food prices, food security and crucial decisions 

affecting agricultural policy and trade.  

Previous remote sensing studies conducted to estimate final yield (FY) focused   

on basically three techniques. The first technique relates accumulated values of 

vegetation index (VI) obtained during the entire growing season or during a specific 

period during the growing season such as the vegetative or reproductive stages with FY. 

Tucker et al. (1980) first identified a relationship between wheat grain yields with 

accumulated values of the normalized difference vegetation index (NDVI) obtained 

around the time of maximum green leaf biomass. Rassmussen (1992) reported a 

relationship between accumulated NDVI and millet yield but only during reproductive 

stages. The authors attributed the lack of association between yield and accumulated 

NDVI to the quality of imagery used in the study. Mkhabela et al. (2005) related maize 
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grain yield with cumulative average values of NDVI obtained over two months before 

harvest. The previous authors reported limitations of this technique for regions with high 

annual precipitation because values of NDVI remained high throughout the growing 

season. The second technique used to estimate FY related historical values of NDVI for a 

specific region with current values of NDVI to detect NDVI anomalies or deviations 

from historical values using multivariate regression and neural network techniques 

(Kastens et al., 2005; Li et al, 2007). This technique is also used to monitor crop 

conditions using NDVI obtained from MODIS 250 meters 16 day composite period by 

the U.S. Department of Agriculture (USDA; http://www.pecad.fas.usda.gov/glam.cfm). 

A limitation in this approach was related to the number of time series of satellite data 

required for a successful analysis. For example, Katens et al. (2005) suggested that eleven 

years of historical data were not enough to develop a robust linear model to estimate crop 

yields.  Although many studies have been conducted to estimate FY using the two 

techniques discussed previously, the main limitation is that they have a strong empirical 

character. The third technique used related VI with FY at a specific development stage 

(e.g. vegetative and reproductive stages) during the growing season. For example, maize 

FY have been related with the (NDVI) and/or Green NDVI (GNDVI) between V8 to V12 

development stages (Teal et al., 2006; Martin, et al., 2007; Solari et al., 2008) while other 

studies have reported close relationships between maize FY and NDVI and GNDVI 

during the reproductive stages (Shanahan et al., 2001; Elwadie et al., 2005). The main 

limitation of using this technique is the lack of clarity in relating crop biophysical 

parameters at the optimum developmental stage with FY.  A better understanding of how 

maize is formed and which crop biophysical parameter(s) (CBP) is most involved in 

http://www.pecad.fas.usda.gov/glam.cfm
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determining yield should improve the accuracy of agricultural crop monitoring and 

enhance FY estimates.  

  This study is based on information about maize yield formation, key CBP, and 

optimum developmental stages during the growing season that can be used to monitor 

and detect variability of maize grain FY. Information about maize crop growth and 

development grown under optimum conditions mostly depends on the amount of 

absorbed photosynthetically active radiation (APAR; MJ m
-2

), the efficiency of 

conversion of APAR to dry matter or radiation use efficiency (RUE; g MJ
-1

), and the 

partitioning of the dry matter to the grain. It is assumed that all the dry matter is allocated 

to the maize grain during reproductive stages (Below et al., 1981; Cliquet et al., 1990) so 

FY depends in part on the ability of the plant to allocate dry matter to the grain. Studies 

suggested that higher yields of maize hybrids planted in North America are closely 

related with the ability of the plant to increase the dry matter accumulation during the 

grain filling period. Lee and Tollenar (2007) attributed the increase in dry matter 

accumulation in new maize hybrids to the increase in light interception, the light 

utilization due to canopy architecture, the duration of green leaf area (“visual stay-

green”) and smaller decline in photosynthetic capacity (“functional stay-green”) resulting 

in an increase of RUE. This attribute allows an increase of dry matter accumulation 

during the grain filling period increasing FY in the new hybrids (Tollenar and Aguilera, 

1992; Rajcan and Tollenar, 1999a; Tollenar et al., 2004).  

Conditions which adversely affect maize crop growth and development could 

result in a reduction of key crop biophysical parameters such as green leaf or 
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photosynthetically active biomass. Consequently, key CBP at critical development stage 

can be used to relate with maize grain FY. The main objective of this study was to 

identify a key CBP that can be retrieved at an optimum development stage using 

Moderate Resolution Imaging Spectroradiometer (MODIS) data to estimate maize yields 

at regional levels.  

MATERIAL AND METHODS 

Relationship between maize grain final yield and crop biophysical parameters at field 

scale 

This research used field data from the Carbon Sequestration Project at the 

University of Nebraska-Lincoln, Agricultural Research and Development Center located 

in Saunders County, Nebraska, USA. Field data were collected over three large study 

sites with different cropping systems. Site 1 (41˚ 09’54.2”N, 96˚ 28’35.9”W, 361m) was 

48.7 ha planted in continuous maize from 2001 until 2008 and was irrigated. Site 2 (41˚ 

09’53.5”N, 96˚ 28’12.3”W, 362m) was planted in maize-soybean rotation over an area of 

52.4 ha under irrigation. Site 3 (41˚ 10’46.8”N, 96˚ 26’22.7”W, 362m) was 65.4 ha 

planted in maize-soybean rotation under rainfed conditions. The soils in the three sites are 

deep silty clay loams and consisting of four soil series: Yucan (fine-silty, mixed, 

superactive, mesic Mollic Hapludalfs), Tomek (fine, smectitic, mesic Pachic Argialbolls), 

Filbert (fine, smectitic, mesic Vertic Argialbolls), and Filmore (fine, smectitic, mesic 

Vertic Argialbolls). Nitrogen (N) was applied in one and three applications in rainfed 

(site 3) and irrigated sites (site 1 and 2), respectively, according to guidelines 

recommended in Shapiro et al. (2001). This study used eight years of data (2001-2008) 
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from site 1 and four years of data (2001, 2003, 2005, and 2007) from sites 2 and 3. 

Within each site, six plot areas (20 m x 20 m) were established and called intensive 

management zones (IMZs) for detailed process-level studies (details in Verma et al., 

2005). Destructive samples consisting of 5 or more continuous plants were collected from 

a one meter linear row sections in the six IMZ for each site at 10 to 14 day intervals until 

maturity. Field measurements of growth stage, plant population density (POP) and plant 

height were taken on 10 to 14 day intervals until maturity. Plants were dissected into 

green leaves, dead leaves, stems, and reproductive organs. The reproductive organs 

included the tassel, grain, cob, and husk. Field measurements of total and green leaf areas 

harvested per plant (m
2
 plant

-1
) were measured with an area meter (Model LI-3100, LI-

COR, Inc., Lincoln, NE). The total and LAIg were calculated using the plant population 

density (plants m
-2

) by: 

 

plant

_areatotal_leaf
lationplant_popu

total
LAI 

   

eq. 1 

plant

_areagreen_leaf
lationplant_popugLAI                                      eq. 2 

All plant parts were dried at 70˚C to constant weight and weighed to calculate the 

total above-ground biomass (AGB), green leaf biomass (LBg), stem biomass (SB), and 

reproductive biomass (RB). Values of field plant measurements were obtained by 

averaging all six IMZ measurements for each site and each sampling date. MATLAB
®

 

was used to estimate the daily values of field measurements using the cubic spline 

interpolation method. Hand harvest yield were collected in each IMZ and averaged for 
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each site-year. FY estimates were expressed on a grain dry matter basis per unit area in 

this study. 

This study related CBP with maize grain FY during four periods during the 

growing season. The four periods were selected based on previous studies relating maize 

FY with VI using remote sensing and previous studies evaluating maize FY of new and 

old maize hybrids. Two periods selected during vegetative stages were V7 to V9 and V10 

to V12. These two periods have been related with maize grain FY by previous studies 

using remote sensing (Teal et al., 2006; Martin et al., 2007; Solari et al., 2008). The third 

period was between tasseling and silking (VT- R1). Baez et al. (2005) related variability 

of maize grain FY with maximum values of LAIg (LAIgmax). Based on field 

measurements and observations obtained from this study, maize LAIgmax were reached 

between tasseling and silking (VT- R1). The fourth period evaluated in this study was the 

period between R3 and R4 that represents the mid-grain filling period. This mid-grain 

filling period may be important because the duration of LAIg  during reproductive stages 

has been associated with cumulative photosynthesis, imbalance of supply and demand of 

dry matter (source: sink ratio), accumulation of dry matter, and RUE in maize (Tollenar 

and Aguilera, 1992; Rajcan and Tollenar, 1999b; Tollenar et al., 2004). In addition, 

Shanahan et al. (2001) reported high correlations between maize grain FY and VI during 

the mid-grain filling period. Linear correlation analysis was used to determine the 

relationship between LAIg and maize grain FY for each period.  
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Relationship between maize grain final yield and green leaf area index at regional scale 

The study area was selected based on the importance to the total U.S. maize grain 

production (Figure 1). The states of IA, IL, and NE produced about 48 and 58 percent of 

total U.S. maize grain production and the U.S. Corn Belt region production, respectively 

(USDA-NASS, 2009). Geospatial data from the states of NE, IA, and IL including county 

boundaries, average annual precipitation, and cropland layers developed by the United 

State Department of Agriculture (USDA) National Agricultural Statistic Service (NASS) 

were downloaded from http://datagateway.nrcs.usda.gov/. The USDA-NASS cropland 

data layer contains crop specific (e.g. corn, soybean, rice and cotton) digital data layers 

for some states including the states of NE, IA and IL. NE irrigated land coverage was 

acquired from the University of Nebraska-Lincoln 

(http://www.snr.unl.edu/data/geographygis/NebrGISwater.asp). County level yield 

estimates and crop progress and condition reported (CPCR) were downloaded from 

NASS for the years 2006 and 2007 for the states of IL, IA, and NE. The CPCR for IA and 

IL contained weekly information about maize progress by districts while NE reported the 

maize progress for the entire state. The selected counties for the states of NE, IA, and IL 

were summarized in Figures 2, 3, and 4, respectively. These counties were selected based 

on variability of yields reported by NASS during the years 2006 and 2007. Furthermore, 

the selected counties also varied in mean annual precipitation. Each selected county was 

associated with the district (IL and IA) or the state (NE) to retrieve information on the 

dates of silking, dough and dent stage. This information was used to estimate the mid-

grain filling period over the selected counties in each state. The estimated the mid-grain 

http://datagateway.nrcs.usda.gov/
http://www.snr.unl.edu/data/geographygis/NebrGISwater.asp
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filling period information was used to select satellite images covering this period of time 

over the selected counties.  

MODIS VI 250-m 16-day composite (MOD13Q1) images were downloaded from 

the National Aeronautic and Space Administration (NASA) Land Process Distributed 

Active Archive Center (LPDAAC) (https://lpdaac.usgs.gov/lpdaac/get_data/data_pool 

corresponding to the period around mid-grain filling period for Nebraska (NE), Iowa 

(IA), and Illinois (IL) and during the entire growing season over selected counties in NE 

and IA during 2006 until 2007. The state of NE was covered by one tile (h10v04) while 

IL and IA were covered by two, (h10v05 and h11v04) and three (h10v05, h11v04, and 

h11v05) tiles, respectively. All MODIS images were processed, reprojected, and 

converted to GeoTIFF format using the MODIS Reprojection Tool Version 4.0 (MRT) 

downloaded from LPAAC (https://lpdaac.usgs.gov/lpdaac/tools).  

MODIS images corresponding to parts of the states of IL and IA (tiles h10v05, 

h11v04, and h11v05 and tiles h10v04 and h11v04, respectively) were jointed using the 

mosaic tool available in ERDAS IMAGINE®. Areas planted in maize were retrieved 

from the USDA-NASS crop data layer for NE, IA, and IL during 2006 and 2007. 

Information of NDVI and the day of pixel composite (DOYCMP) data over areas planted 

in maize were obtained for each selected county using the mask tool that retrieved only 

the selected information. Estimates of LAIg over areas planted in maize were obtained 

using the linear model calibrated and validated using field data from 2001 until 2005 and 

2006 until 2009, respectively, under rainfed and irrigated conditions (Chapter 1).  

                          eq. 3 

https://lpdaac.usgs.gov/lpdaac/get_data/data_pool
https://lpdaac.usgs.gov/lpdaac/tools
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NDVI values over areas planted in maize for selected counties in the states of NE, 

IA, and IL were used to calculate the Wide Dynamic Range Vegetation Index (WDRVI: 

Gitelson, 2004) with the weighting coefficient α = 0.2 using the equation presented by 

Viña and Gitelson (2005): 

      
 α          α    

 α         α   
           eq. 4 

 NASS FY over NE was broken down by irrigated and rainfed crops. The NE 

irrigated land coverage was used to locate pixels over rainfed and irrigated areas. The 

location of rainfed and irrigated maize fields was limited by the coverage of NE irrigated 

land that did not include all the counties and by the number of pixels over small rainfed 

areas. A time series of MODIS VI 250-m 16-day composite (from DOY 129 to 273) was 

used to estimate LAIg profiles over NE calculated by eq. (3). LAIg profiles as a function 

of DOY were estimated using the averages of LAIg and DOYCMP from selected pixels 

over nine counties that were irrigated (Scotts Bluff, Banner, Kimball, Chase, Perkins, 

Hitchcock, Nuckolls, Kearney, and Phelps) and two counties that were rainfed (Furnas 

and Perkins) during the growing season of 2006. Estimates of maize LAIg profiles were 

used to detect differences in LAIg during reproductive stages and then, related with FY 

under irrigation and rainfed conditions reported by USDA-NASS for 2006. LAIg 

estimates during the mid-grain filling period for counties in IA and IL included all pixels 

over maize planted areas. 
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RESULTS AND DISCUSSION 

Relationship between maize grain final yield and crop biophysical parameters at field 

scale 

Table 1 summarizes the relationship between CBP and maize grain FY yield 

under rainfed and irrigated conditions. The data included eight (2001-2008) and four 

(2001, 2003, 2005, and 2007) growing seasons under irrigated and rainfed conditions, 

respectively, and represented conditions of maize with no nitrogen limitations grown 

under irrigated and rainfed conditions in Mead, Nebraska. The results obtained from this 

analysis suggested that LAIg and maize grain FY were correlated after VT but the 

stronger correlation was obtained during the mid grain filling period or R3- R4 under 

rainfed and irrigated conditions. Moreover, results also suggested that the correlation 

between LBg, SB, RB, and AGB and maize grain FY increases with progress of 

development stages showing a correlation greater than 80 percent at R3-R4. Results 

suggested that the correlation between CBP and FY decreases after R4 although the 

correlation between AGB increases after R4. These results were not surprising because 

they were related with basic information of how maize FY formed. In maize all dry 

matter is allocated to grain during reproductive stages. Consequently, relationships 

between CBP and maize FY increase with progress of developmental stages reaching a 

maximum during reproductive stages. The high correlation between SB and LBg and 

maize FY could be explained with their functions during reproductive stages. The stem 

and green leaves act as source components for grains during reproductive stages. Results 

suggested that measurements of LAIg obtained during the mid grain filling period R3-R4 
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was the CBP closely related with maize FY. The next step should examine if differences 

between maize FY can be inferred from the patterns of LAIg during reproductive stages. 

 Measured LAIg profiles with time (DOY: day of year) from irrigated (S1and S2) 

and rainfed (S3) maize fields are summarized in Figure 5 for the  2001, 2003, 2005, and  

2007 growing seasons at Mead, NE. Values of LAIg were similar until DOY 187 despite 

different POP under irrigated and rainfed conditions. However, after DOY 190 

differences in LAIg were observed under both irrigated and rainfed conditions. The data 

shows the variability of LAIg after it reached its maximum value or during the grain 

filling period. For example, values of LAIg reached a maximum of 6.0 and 4.0 m
2
 m

-2
 

under irrigated and rainfed conditions during 2001. A rapid decrease in LAIg was 

observed during 2003 under rainfed conditions compared with LAIg during 2001 and 

2005. In fact, a 12 percent reduction in FY was observed for 2003 compared with FY in 

2001 and 2005 under rainfed conditions. However, measured LAIgmax values were close 

to 4.0 m
2
 m

-2
 during the four growing seasons under rainfed conditions. This suggests 

that the duration of LAIg during reproductive stages should be closely related with 

variability of maize grain FY. On the other hand, LAIg values were quite similar under 

irrigated conditions, although LAIgmax varied between years. For example, values of 

LAIgmax ranged 6.0 to 5.0 m
2 

m
-2

 a maximum and minimum value observed during 2001 

and 2005 while FY varied from 12400 to 10200 kg ha
-1

, respectively, under irrigated 

conditions. Based on field observations, variability of LAIg under irrigated and rainfed 

conditions should be detected between LAImax and/or during reproductive stages and not 

during vegetative stages. Moreover, differences of maize LAIg lower than 0.2 m
2 

m
-2

 

probably could be difficult to detect using remote sensing data due to the level of 
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accuracy of the VI use to retrieve data from the satellite sensor. Measured maize grain FY 

was 15 and 12 percent higher in S2 compared to S1 during 2003 and 2005, respectively; 

however, differences in LAIg profiles showed quite similar values in reproductive stages 

although the sites differed in the duration of LAIg after DOY 255. The results obtained 

from this study validate the hypothesis of this study that proposed that variability of 

maize grain FY can be related with LAIg measurements obtained during the grain filling 

period. The next step that should be to test whether or not estimates of LAIg profiles 

obtained from MODIS VI 250-m (MOD13Q1) can be used to retrieve information about 

crop conditions and yield estimates at the county level. 

Relationship between maize grain final yield and green leaf area index at regional scale 

 Figure 6 summarizes the average of LAIg estimates as a function of day of year 

(DOY) over maize fields during 2006 in nine counties that were irrigated (Scotts Bluff, 

Banner, Kimball, Chase, Perkins, Hitchcock, Nuckolls, Kearney, and Phelps) and two 

counties that were rainfed (Furnas and Perkins) during the growing season of 2006. The 

data suggested that estimated values of LAIg were quite similar during vegetative stages 

over study areas until they reached their maximum values around DOY 200. Differences 

of LAIg were observed during the reproductive stages. For example, the value of LAIgmax 

was 3.50 m
2
 m

-2
 for Banner County while the estimate of LAIg during the mid-grain 

filling period was 2.60 m
2
 m

-2
 in 2006 (Figure 6-a). A lower reduction in LAIg was 

observed for Scotts Bluff and Kimball counties. Estimates of LAIgmax were 3.80 and 3.76 

m
2
 m

-2
 while estimates of LAIg during the mid grain filling period were 3.30 m

2
 m

-2
 for 

Scotts Bluff and Kimball counties in 2006 (Figure 6-a). Lower maize grain FY reported 
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for Banner County was 10 percent lower compared with maize FY reported for Scotts 

Bluff and Kimball counties. A similar result was observed for Nuckolls County for which 

estimates of LAIg suggested a rapid decrease or low duration of LAIg after it reached a 

maximum value around DOY 180 and 200 (Figure 6-c). In fact, lower maize grain FY 

was reported for Nuckolls County compared with Phelps and Kearney counties in 2006.  

On the other hand, estimates of LAIg showed low duration of LAIg during the 

reproductive stages over rainfed conditions. The data shows more duration of LAIg over 

Furnas rainfed maize fields compared with Perkins rainfed maize fields although similar 

values of LAIgmax were observed for these locations. A 25 percent reduction in maize 

grain FY was reported in Perkins County compared to Furnas County in 2006 under 

rainfed conditions. In fact, CPCR reported precipitation below the normal for all districts 

and maize had reached the dent stage earlier than previous years. Low precipitation and 

soil moisture might explain the low duration of LAIg over Perkins and Furnas rainfed 

maize fields.  

 These results were in agreement with field observations that suggested that LAIg 

profiles during reproductive stages can be used to detect variability in maize grain FY. 

The results validated previous studies that suggested a close relationship between maize 

grain FY due to duration of green leaf area with the ability of the plant to increase the dry 

matter accumulation during the grain filling period at field level (Tollenar and Aguilera, 

1992; Rajcan and Tollenar, 1999a; Tollenar et al., 2004). An important result is that 

estimates of LAIg using WDRVI and MODIS data during the growing season can be used 

to obtain information of the crop condition. It is not difficult to relate the duration of 

LAIg with more light absorption and increase in dry matter accumulation during 
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reproductive stages. Therefore, estimates of LAIg profiles during reproductive stages 

using remote sensing can be used to monitor and estimate potential maize grain FY over 

large regions.  

 Previous studies (Teal et al., 2006; Martin, et al., 2007; Solari et al., 2008) related 

maize FY with VI and/or LAIg during vegetative stages (e.g. V10-V12); however, results 

obtained from this study did not show a strong relation with LAIg during vegetative 

stages. Most of the previous studies that reported correlation between VI and/or LAIg and 

FY during vegetative stages related chlorophyll meter readings with VI. The lack of 

association between VI and FY during reproductive stages was mainly due to limitations 

of the sensor used. In contrast, previous studies that reported association between VI and 

FY during reproductive stages have been done using satellite sensors and evaluating 

nearly the entire growing season (Shanahan et al., 2001; Mkhabela et al., 2005; Baez et 

al., 2005). The results obtained from this study could be used to explain results presented 

by Mkhabela et al (2005) and Shanahan et al. (2005). Although the previous authors 

related normalized vegetation index (NDVI) and green NDVI with maize grain FY under 

different nitrogen treatments, both VI have been related with LAIg.   

 Figure 7 presents the relationship between average estimates of maize LAIg during 

the mid-grain filling period and NASS maize grain FY reported for selected counties in 

Nebraska, Iowa, and Illinois during 2006 and 2007. These results showed linear 

relationships (R
2 

> 0.70) between maize grain FY and average estimates of LAIg. There 

was more variability in maize FY and LAIg over NE compared with IA and IL. Lower 

maize yields were reported for Perkins, Hitchcock, and Webster Counties in 2006 under 
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rainfed conditions. As discussed previously, below normal precipitation was reported in 

2006 in most of NE districts for the period from April 1 until August 20 where ninety 

percent of maize had reached dough stage (R4).  

 On the other hand, estimates of LAIg obtained during the mid-grain filling period 

showed a strong correlation (R
2
=0.86) with maize grain FY reported by NASS over study 

sites in IA. Estimates of LAIg were not related with reported NASS FY in 2006 and 2007 

over Monona, Ida, and Des Moines counties in Iowa, respectively. Reported NASS FY 

was 6860 kg ha
-1

 while the estimate of LAIg was 3.70 m
2
 m

-2
 for Monona County in 

2006. In contrast, the average estimate of LAIg over Des Moines County was 4.22 m
2
 m

-2
 

while the reported NASS FY was 12459 kg ha
-1

 in 2007. Based on the results obtained 

from Figure 7, maize grain FY about 12000 and 7000 kg ha
-1

 should be associated with 

average estimates of LAIg closed to 5.0 and 3.0 m
2
 m

-2
, respectively.  

 Results obtained over IL showed more scatter. The overall results between 

estimates of LAIg during the mid-grain filling period and reported NASS FY showed a 

RMSE of 874 kg ha
-1

(Figure 7-c). It was obvious that variability in maize FY did not 

depend only on the duration of LAIg during the reproductive stages. Several factors 

should affect the partitioning of the dry matter to the grain such as environmental and 

management conditions. However, LAIg plays an important role during the entire 

growing season and it has a significant importance during the grain filling period.  

 These results suggest that the development of a yield model based estimate of LAIg 

during the mid-grain filling period needs to be calibrated for specific regions. Although 

this study did not compare differences in maize LAIg profiles over NE, IA, and IL, 
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differences in maize LAIg profiles should be expected due to differences in POP, hybrids, 

management, and environmental conditions. Most of the maize planted in NE is grown 

under irrigated conditions compared to the rainfed environment for maize grown in IA 

and IL (USDA-NASS, 2009). Subsequently, the amount and distribution of the 

precipitation could cause that value of LAIg during the mid grain filling period to change 

from region to region. The approach presented in this study should be enhanced with the 

development of critical values of LAIg during the mid-grain filling period for specific 

regions.   

 The approach presented in this study has several limitations such as quality of the 

satellite image and crop layer, limitations of temporal and spatial resolution of the 

satellite image, and crop yield limitations that could not be detected by LAIg. For 

example, this approach cannot account for other factors that could affect maize yield 

during the grain filling period such as diseases and extreme weather conditions. In 

addition, one limitation in retrieving accurate estimates of maize LAIg depends on the 

ability of the VI to accurately track and/or estimate LAI during the entire growing season 

especially during the period mid-grain filling period where values of LAIg could range 

from moderate to high (LAIg > 2 m
2 

m
-2

). Finer spatial resolution would allow the 

selection of pixels nearly covered by crops to reduce pixel contamination to more 

accurately estimate CBP such as LAIg. MODIS 250-m resolution can provide more 

accurate estimates of maize LAIg during the entire growing season compared to MODIS 

500-m resolution products (Chapter 1). The identification of maize mid-grain filling 

periods over areas could be another limitation. For example, this study estimated the mid-

grain filling period using data available in the CPCP. However, the CPCP for Iowa and 
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Illinois included detailed information of the progress of maize by districts while the 

CPCP for Nebraska presented an estimate for the entire state. Despite these limitations, 

this approach should provide a robust technique for early estimation of maize grain FY 

because it is based on a LAIg (a key CBP) at an optimum development stage closely 

related with maize FY.  Maize yield estimates made during the mid grain filling period 

might allow state agencies to improve accuracy of regional yield estimates.  

 

CONCLUSIONS 

 The approach presented in this study shows that maize grain FY can be closely 

related with the ability of the plant to maintain green leaf area during the grain filling 

period. Consequently, estimates of LAIg obtained during the mid-grain filling period can 

be used to detect variability of maize grain FY at county levels. This approach should be 

a robust technique for early maize grain FY estimation because it is based on a key crop 

biophysical parameter at the optimum development stage closely related with maize FY. 

Maize yield estimates made during the mid-grain filling period should allow state 

agencies to improve accuracy of regional yield estimates. The technique of relating LAIg 

with maize FY could be improved by developing critical values of LAIg during the mid-

grain filling period for specific regions that can be used to detect areas of potential high 

or low yields. 
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Table 1. Relationships between crop biophysical parameters and maize grain final yield 

under irrigated and rainfed conditions. 

Crop 

Biophysical  

Parameter 

Correlation coefficient values (R) 

Development stage  

V7-V9 V10-V12 VT-R1 R3-R4 R5 

LAIg 0.27 0.61 0.84 0.94 0.61 

LBg 0.20 0.60 0.76 0.90 0.65 

SB 0.12 0.39 0.83 0.86 0.75 

TDM 0.17 0.49 0.82 0.92 0.95 

RB - - 0.16 0.59 0.45 
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Figure 1. Maize grain production by state as a percent of the total United States 

production.  

 



 

 

 

 

1
0
7
 

 

Figure 2. Location of the selected counties in Nebraska for maize final yield estimation. 
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Figure 3. Location of the selected counties in Iowa for maize final yield estimation. 
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Figure 4. Location of the selected counties in Illinois for maize final yield estimation. 
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Figure 5. Measured green leaf area index (LAIg) profiles as a function of 

day of year (DOY) under irrigated (S1 and S2) and rainfed (S3) conditions 

during (a) 2001, (b) 2003, (c) 2005, and (d) 2007. 
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Figure 6. Estimates of average LAIg profiles over maize grown in Nebraska for (a) 

Scotts Bluff, Banner, and Kimball, (b) Chase, Perkins, and Hitchcock, (c) Nuckolls, 

Kearney, and Phelps counties under irrigated conditions and for (d) Perkins and 

Furnas counties under irrigated and rainfed conditions over during 2006. 
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Figure 7. Relationships between green leaf area index and maize grain final yield 

(FY) reported by the National Agricultural Statistics Service (NASS) over study 

sites in (a) Nebraska, (b) Iowa, and (c) Illinois during 2006 and 2007. 
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SUMMARY 

 

 The main limitation to retrieving useful information regarding yield predictions 

for agricultural crops is the lack of understanding of how crops change according to 

developmental stage or crop dynamics in order to evaluate potential capabilities and 

limitations of satellite data. The feasibility of using remote sensing data from MODIS 

products to measure crop biophysical parameters such as maize LAIg requires a good 

understanding of techniques used to assemble the satellite data in terms of temporal 

resolution.  An important result from this study is the importance of day of pixel 

composite information from MODIS products for monitoring agricultural crops. Due to 

the maize LAIg dynamics and changes in MODIS temporal resolution, the inclusion of 

DOYCMP has important implications for estimating and monitoring agricultural crop 

dynamics. The results of this study showed that MODIS 250-m resolution provides more 

accurate estimates of maize LAIg compared to MODIS 500-m resolution. An important 

result of this study is demonstrating the ability to estimate maize LAIg without the use of 

radiative transfer models.   

 Estimates of maize LAIg obtained from Wide Dynamic Range Vegetation Index 

using data retrieved from MODIS VI 250-m 16 day composite (MOD13Q1) can be 

incorporated in crop simulation models to predict maize final yields over large regions 

such as a county. Results from this study showed that the incorporation of LAIg obtained 

from MODIS products allowed the improvement of LAIg simulations by the Muchow-

Sinclair-Bennett maize model reducing the RMSE of LAIg for all years of study under 

irrigated conditions. An important result is that WDRVI could allow the incorporation of 

accurate estimates of LAIg from moderate to high values (LAI > 3.00 m
2
 m

-2
) into crop 
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simulation models. Results presented in this study suggested that inaccurate estimates of 

LAIg obtained from MODIS 8 and 16 day composite products without the incorporation 

of DOYCMP could affect the LAIg simulations by the MSB model. The overall FY 

predictions by the MSB model were improved by 23 and 26 percent with estimates of 

LAIg obtained from MODIS 250-m 8 and 16 day composite under irrigated conditions, 

respectively. However, more accurate estimates of LAIg did not necessarily imply better 

final yield (FY) predictions in the maize model for all years of study. The approach of 

incorporating LAIg into crop simulation models may not offer a panacea for problem 

solving; this approach is limited in its ability to simulate other factors influencing crop 

yields.  

The approach of relating a key crop biophysical parameter at the optimum stage 

with maize grain final yields is a robust technique for early estimation of maize grain FY 

over large areas such as a county. Results suggested that estimates of LAIg obtained 

during the mid-grain filling period can used to detect variability of maize grain yield at 

county levels. Estimates of green leaf area index obtained during the mid-grain filling 

period showed a strong correlation (R
2 

> 0.75 and RMSE < 900 kg ha
-1

) with maize grain 

final yield reported by the United State Department of Agriculture (USDA) National 

Agricultural Statistic Service (NASS) over selected counties in Nebraska, Iowa, and 

Illinois. The approach presented in this study provides a robust technique to early FY 

estimation because it is based on a key crop biophysical parameter at the optimum 

development stage closely related with maize FY. This technique offers a rapid way to 

detect variability of FY at county level using MODIS 250-m products. The technique to 

relate LAIg with maize FY could be improved by developing critical values of LAIg 
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during the mid-grain filling period for specific regions that can be used to detect areas of 

potential high or low yields. 
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