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      One of the main goals of precision agriculture (PA) is to define spatial variability in 

soil properties within an agricultural field to make decisions that can maximize 

profitability and reduce negative environmental impact. Various soil sensor systems have 

been developed over the years to map soil properties on-the-go. In this study, an 

Integrated Soil Mapping System (ISMS) was developed to predict soil water content, soil 

organic matter, and soil mechanical resistance on-the-go using a capacitance moisture 

sensor, an optical sensor, and a load cell sensor respectively. These sensors were mounted 

on the ISMS for acquiring three different data layers at the same time. Each sensor was 

calibrated under laboratory conditions and the ISMS was also tested in fields. For 

example, volumetric soil water content estimated from the two-sided capacitance 

moisture sensor was compared with volumetric water content measured by the oven-

drying method which produced R
2 

= 0.94 in laboratory conditions with a standard error of 

0.017 cm
3
/cm

3
. Soil index calculated as the sum of individual soil reflectance 

measurements by the optical sensor in red (660 nm) and blue (480 nm) parts of the 

spectrum predicted soil organic matter with R
2
 = 0.73 and with standard error of 0.47 

OM%. The load cell sensor was tested by applying different loads on the hitch for 

simulating field conditions and measuring value of known weights with an R
2
 = 0.99 and 

standard error of 0.032 kN. Then ISMS was tested in field conditions for mapping the 

three data layers simultaneously. High sampling density data collected by the ISMS was 



 

 

 

compared with data collected at the same time using conventional laboratory methods by 

developing the maps of soil properties and R
2
 of 0.74, 0.67 and 0.28 were obtained for 

the moisture, optical and load cell sensors, respectively when regressed with standard 

laboratory methods.  
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1. INTRODUCTION 

Precision agriculture (PA) involves information-based agricultural production 

management to obtain economic, agronomic, and environmental benefits. Maximum 

returns to growers are provided with optimum inputs for each specific location by 

studying in-field variability of soil and crop properties. PA can have a vital role in 

resource conservation and in reducing the harmful effects of conventional agricultural 

methods on the environment. For example, over application of fertilizers is responsible 

for polluting underground water, which can be significantly reduced by employing site-

specific application of inputs. By using geo-referenced information of variability of soil 

and crop parameters, controllers for fertilizers, pesticides and herbicides can be employed 

to adjust input rates as required for each individual location in the field (Bongiovanni  

and Lowenberg-DeBoer, 2004). This process is called site-specific crop management 

(SSCM), which can be divided into the following components illustrated in Figure 1-1: 1) 

geo-referenced collection of data for soil or crop parameters; 2) analysis of data 

statistically and using geographic information systems (GIS) to provide thematic soil 

maps derived from maps of different soil-related parameters; 3) decision-making process 

to identify optimal treatments; 4) yield mapping to allow for comparison of the results of 

SSCM with those of traditional techniques of agriculture. 

Collection of data from agricultural fields is a primary requirement of SSCM and many 

research groups throughout the world focus on development of new techniques for data 

acquisition (Adamchuk et al., 2004a). This research was based on on-the-go mapping of 

soil properties by integrating several sensors in a one mobile unit.  
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Figure 1-1: Precision Agriculture basic processes. 

 

1.1. Problem statement 

Data collection in PA is a crucial step, because the quality of the data collected is a 

necessary step toward successful adoption of SSCM. The conventional method of data 

collection for soil properties consists of taking soil cores from the field and sending the 

cores for lab analysis. Besides being very time consuming, labor demanding and 

expensive, this method does not produce true maps of soil properties, because sparsely 

populated sample points are not sufficient to identify the significant part of spatial 

variability in the field. As properties of soil can influence plant growth, it is helpful to 

map them with high resolution. The introduction of different types of on-the-go soil 

sensors in recent years combined with global navigation satellite system (GNSS) 

receivers allow fields to be mapped with high density of measurements. Although on-the-

go mapping of soil properties can reduce the resources employed in conventional 

methods of sampling the soils, it is still expensive for a grower to map all influential soil 

properties in the field because of high initial cost of the sensor systems and software. In 

Courtesy: http://www.uovs.ac.za/ 

http://www.uovs.ac.za/
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addition to the added expense, other negative impacts are the intensive use of heavy 

machinery and more passes through agricultural land that causes soil structure 

degradation and an eventual increase of soil compaction. A promising solution for all 

these problems is to combine several sensors simultaneously into one system/platform 

(Swinton and Lowenberg-DeBoer, 1998). In this study, an Integrated Soil Mapping 

System (ISMS) was developed to combine three different soil sensors together to 

measure soil moisture content, soil organic matter and soil mechanical resistance in a 

single pass through the field. A capacitance-based soil water content sensor was used to 

detect the dielectric constant of the soil, and that data was used to predict the volumetric 

and gravimetric water content of soil. To predict soil organic matter content two optical 

sensors were used which measured the soil reflectance at two different wavelengths i.e. 

visible (Amber, 505±10 nm) and near-infrared (880±15 nm). Another similar sensor had 

both wavelengths in visible region, red (660±10 nm) and blue (480±10 nm). A 

capacitance-type load cell was developed to measure the force on a chisel driven through 

the soil while traveling in field as an indicator of soil mechanical resistance.  

1.2. Objectives 

 

The objectives of this study were to develop and evaluate an Integrated Soil 

Measuring System (ISMS) to simultaneously map soil water content, soil organic matter 

content, and soil mechanical resistance. In particular, the tasks were: 1) to design and test 

a load cell sensor to measure an implement pull force, 2) to adopt an optical sensor for 

mapping subsurface soil reflectance, and 3) to optimize capacitance-type sensor design to 

measure dielectric soil properties. 
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2. LITERATURE REVIEW 

2.1. Sensor systems 

Soils are very complex systems due to the significant temporal and spatial variability of 

physical, chemical and biological properties within a production field (McBratney and 

Pringle, 1997). Soils influence the growth of plants by providing nutrients, water and 

physical support. Spatial variability of soil properties is measured to optimize the use of 

agricultural chemicals, water and energy. Characterization of the spatial variability is 

highly influenced by the density of sampling. Traditional, grid-based sampling is 

expensive and time consuming limiting the collection of a high density of measurements 

which makes it difficult to accurately determine the within field variability of influential 

soil properties. On-the-go soil sensors have been developed in recent years (Adamchuk et 

al., 2004a) as an alternative to improve sampling density as compared to grid sampling 

(Adamchuk et al., 2004b).  

Economic feasibility of site-specific-crop-management based on on-the-go data has been 

demonstrated.  For example, a $15 to $35 per hectare economic advantage was recorded 

by variable rate management of nitrogen following management zones (Ostergaard, 

1997). Although economic benefits can be seen, still on-the-go mapping of soil properties 

is expensive to adopt by most farmers, resulting in slow adoption due to high initial cost 

(Kitchen et al., 2002). Sensor integration is one of the methods recommended to lower 

the expense of data collection (Swinton et al., 1998). Integrating several soil sensors on 

one platform to measure the most important soil properties simultaneously can help in 
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lowering the cost by saving energy, time and labor. More significantly, the complex 

behavior of soil can be better studied by getting different signals from different sensors in 

soil at the same time (Yurui et al., 2008).  

2.2. Soil organic matter (SOM) 

Soil organic matter is considered an important indicator of soil quality (Reeves, 1997). 

Information about the spatial variability of SOM within a field is required for site-

specific management of fertilizers and herbicides (Roberts et al., 2010). Surface soil color 

can be used to predict SOM content (Schulze et al., 1993). Previously, SOM was 

predicted using soil color based on Munsell color charts (Alexander, 1969). Remote 

sensing is a technique used to correlate SOM with soil color data obtained by aerial and 

satellite imagery (Frazier et al., 1997), which has limitations due to crop residue and 

weather interference. 

Diffuse reflectance spectroscopy (DRS) provides an alternative to conventional methods 

and bare soil imagery to predict SOM. Light of certain wavelengths is used to illuminate 

the soil to be tested, and the amount of energy absorbed depends on soil attributes, while 

the reflected energy is used to measure the constituents of the soil responsible for 

absorption of energy. Soil organic matter is one of the important attributes which affects 

the soil color and further its spectral reflectance properties (Krishnan et al., 1980). 

Diffuse reflectance spectroscopy is a rapid, non-destructive, less expensive method as 

compared to conventional laboratory methods of predicting SOM. Quite a few studies 

have been completed to develop on-the-go spectrophotometers for the prediction of 

SOM.  
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 Shonk et al. (1991) developed a real-time shank-mounted sensor emitting light in the 

range of 560 nm to 700 nm with a peak value at 660 nm and used it to map fields for 

SOM. Sudduth and Hummel (1993) tested a NIR portable spectrophotometer with a 

sensing range from 1650 nm to 2650 nm with the bandwidth of 55 nm in the laboratory 

and field on Illinois soils which yielded r
2
 values of 0.89 with standard error of prediction 

(SEP) of 0.40% in lab with large errors during field tests. Shibusawa et al. (1999) also 

developed an on-line spectrophotometer for sensing soil moisture, pH, apparent electrical 

conductivity (ECa) and SOM of soils with wavelengths in the range of 400-1700 nm and 

obtained an r
2 

value of 0.87 for a linear regression between a predicted and actual SOM. 

Christy (2008) tested the feasibility of near-infrared spectroscopy (NIRS) and presented 

an on-the-go spectrophotometer for in-situ measurement of reflectance spectra. 

Spectrophotometer data and soil samples from eight fields in central Kansas were used. 

The best validation results were obtained for SOM, with a root-mean-square error 

(RMSE) of 0.52% and a coefficient of determination (R
2
) of 0.67.  

2.3. Soil water content 

Knowledge of the spatial variability of surface and sub-surface water content is essential 

in agricultural, environmental, soil physics, and ground water hydrology studies 

especially while studying infiltration, runoff and evapotranspiration (Weihermüller et al., 

2007). Information on the spatial variability of soil water content can provide important 

knowledge in the prediction of infiltration and surface runoff (Merz and Bárdossy, 1998; 

Pauwels et al., 2001), crop yield and flood control (Schlesinger et al., 1990), and meso-

scale transpiration loss (Wood,1997). Vehicle traffic and tillage in the presence of the 
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high soil moisture contents can produce undesirable effects such as high compaction 

levels and degradation of soil structure (Hamza and Anderson, 2005; Topp, 1993).  

Soil water content (SWC) can be measured using three different methods: 1) laboratory 

analysis of soil cores taken from field; 2) point measurements in situ; and 2) on-the-go 

sensing. Laboratory analysis involves the determination of the soil sample weight before 

and after water evaporation through the oven drying method (Topp, 1993), which is time 

consuming and labor intensive. Time-domain reflectrometry (TDR), neutron probes, 

gypsum blocks and gamma-ray attenuation are all examples of sensing techniques 

adopted for point methods (Topp, 1993). Point-based measurements become expensive 

when the SWC of a large number of locations must be monitored.  

The most promising method to map large fields for SWC is on-the-go sensing in which 

geo-referenced data are collected while moving across a landscape (Adamchuk et al., 

2004b). Several on-the-go soil moisture sensors have been developed based either on 

radiometric or electrical principles. Near infrared absorbance spectroscopy is based on 

the capacity of water to absorb light energy at certain bands of the spectrum (Norris, 

1964). A VIS/NIR spectrophotometer was tested by Mouazen et al. (2005) to develop a 

sensor for on-the- go measurement of soil water content by detecting light reflectance. 

The spectrophotometer was calibrated by comparing NIR spectra with gravimetric 

moisture, and acceptable results were obtained. Nuclear magnetic resonance is a 

technique which depends on the interaction between hydrogen
 
nuclear magnetic moments 

and a magnetic field. It has been used to develop an instrument that can be mounted on a 

tractor (Paetzold et al., 1985), which had a relatively high power requirement. 
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A promising technique of capacitance-based sensors was explored by some researchers. 

Dean et al. (1987) developed a capacitance-based sensor operating at 150 MHz. A similar 

sensor was evaluated dynamically by Whalley et al. (1992) using speeds typical of those 

found during seed planting, which was found to be sensitive to fluctuations in soil bulk 

density as well as SWC. Lui et al. (1996) and later Andrade-Sanchez et al. (2007) 

evaluated a dielectric-based moisture sensor under dynamic conditions by incorporating it 

into a nylon block that was attached to an instrumented tine. A series of studies 

demonstrated that salinity, texture, and temperature also affected sensor measurements. A 

similar capacitance-type sensor was evaluated more recently by Adamchuk et al. (2009), 

who concluded that their sensor was able to produce high resolution SWC data with 

relatively low standard error (0.027 g/g or 0.039 ml/ml). Soil bulk density was also 

predicted in that study by measuring resistance of soil to penetration simultaneously with 

moisture content data.   

2.4. Soil compaction 

Soil compaction is defined as “the process by which the soil grains are rearranged to 

decrease void space, bringing particles into closer contact with one another hence 

increasing bulk density”(SSSA,1996). Heavy agricultural farm machinery used in 

modern farm operations, working with soil at excessive soil moisture content and, animal 

trampling have been considered the main factors responsible for soil compaction (Hamza 

and Anderson 2005). The primary effect of high soil compaction is hindrance to plant 

root growth. Soil compaction can lead to poor soil structure; a decrease in water holding 

capacity, and a poor supply of nutrients to plants which results in a decreased crop yield. 
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Increased soil compaction can also cause soil erosion and surface runoff of soil (Fleige 

and Horn, 2000). Measurement of soil compaction levels in agricultural fields has been 

performed to aid in avoiding these harmful effects, preserving soil structure in field areas 

without compaction related limitations. Also, soil compaction data have been used to 

determine variable-depth tillage, which could successfully save fuel while fracturing soil 

layers compacted sufficiently to not impede plant root penetration. Using soil compaction 

data Gorucu et al. (2001) found that 75% of tested fields required shallower depth tillage 

than the recommended uniform tillage depth and also achieved 42.8% energy savings and 

28.4% fuel savings with variable depth tillage as compared to uniform-depth tillage. 

Measuring soil cone indexs with a cone penetrometer (ASAE, 2004) at different points 

throughout a field is considered a standard method to estimate spatial variability of soil 

compaction in the field. However, using a cone penetrometer is an expensive and time 

consuming method to get an accurate representation of soil compaction of the field due to 

poor sampling density. Automation of a cone penetrometer has been explored to reduce 

cost while achieving higher sampling density. A tractor-mounted, automated soil 

penetrometer–shearometer unit was designed and developed for the purpose of obtaining 

simultaneous in-situ measurements of soil penetration resistance and shear stress (Boon 

et al., 2005). They found significant correlations of soil moisture content with soil 

penetration resistance and shear stress. 

On-the-go soil sensors for measuring soil compaction indirectly by measuring other 

behavioral soil properties have been explored. Mechanical, pneumatic and acoustic 

methods have been used to measure soil compaction on-the-go (Adamchuk et al., 2004a). 
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Several researchers have tested mechanical sensors which measure soil compaction 

indirectly by through the soil resistance to the penetration of a mechanical sensor. 

Hemmat et al. (2008) reviewed the studies on the use of mechanical sensors in measuring 

soil compaction and classified them on the basis of their measurement concepts.  

2.5.  Sensor fusion 

As the three soil properties reviewed above have been mapped using one of the sensor 

approaches described, it was noted that virtually none of existent sensor systems could 

become a universal predictor for that particular soil property. Thus, it was noted that soil 

series and water content have a significant effect on the relationship between soil 

reflectance and SOM. On the other hand, the relationship between capacitor sensor 

voltage output and soil water content was not the same for different soil types and for 

soils with different SOM. Finally, the cone index or any other measures of soil 

mechanical resistance have been drastically affected by SWC as moist soils significantly 

reduce soil strength. 

Therefore, an idea of merging three instruments (e.g., optical reflectance, capacitance and 

mechanical resistance sensors) in a single unit for on-the-go mapping has an appeal to be 

applicable in a wider range of soil conditions than any of the components independently. 

With an adequate calibration process such a tool could be used to construct high-density 

thematic soil maps that reveal spatial distribution of critical soil characteristics. 
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3. MATERIAL AND METHODS 

 

3.1. Sensors system development 

The Integrated Soil Mapping System (ISMS) (Figure 3-1) was constructed as a pull-type 

platform, which can be attached to a pickup truck. A linear hydraulic actuator (Veris Inc., 

Salina, KS) was installed to raise and lower the system which was operated by the driver. 

The hydraulic pump for the linear actuator was driven by a DC motor powered by the 

electrical system of the pickup.  

 

 

Figure 3-1: ISMS components 

A coulter-knife assembly (Model no. 2995, Yetter Manufacturing Co., Colchester, IL), 

shown in Figures 3-2 and 3-3, was mounted on the ISMS to hold the optical and moisture 

Load cell sensor 

 

Capacitance soil 

moisture sensor 

Optical sensor 

Hydraulic piston 

cylinder 

 

GNSS receiver 

stand 
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sensors and to drive them through the soil at adjustable depths. A bracket was designed 

and welded behind the anhydrous knife to hold both sensors in place. The function of the 

50.8 cm diameter coulter was to cut crop residues left on field surface. 

 

Figure 3-2: Coulter-knife assembly used to hold sensors. 

 

 

Figure 3-3: Bracket welded to fertilizer knife with the optical sensor and moisture 

sensor bolted to the bracket. 

The overall width of the knife and bracket, 21 mm (about 13/16 in.) which was kept as 

small as possible to minimize soil disturbance. The knife with both sensors was mounted 

Coulter  

Fertilizer knife 

Mounting with an 

adjustable depth 

mechanism 

Mounting 

position of 

the knife  

Moisture sensor 

Bracket 

Optical sensor 
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immediately behind the coulter. A portable 12 VDC rechargeable battery was used to 

supply power to the optical sensor and the moisture sensor which required regulated 

voltages of 12 V DC and 5V DC respectively. A voltage regulator (Model no. 

QA1107518, Semiconductor Circuits, Inc., Atkinson, NH) was used to convert 12 V DC 

to 5 V DC for the moisture sensor. The analog signal from the capacitance moisture 

sensor was converted into a digital signal by an A/D convertor (ADI XL-05 8100-0121, 

Crossbow Technology Inc., Milpitas, CA). A baud rate convertor (232BRC, B&B 

Electronics Mfg. Co., Inc. Ottawa, IL) was used to convert the baud rate of the optical 

sensor into a conventional rate acceptable by a typical PC interface. All the components 

of the electrical circuit of the ISMS are shown in Figure 3-4. 

3.1.1. Capacitance based sensor  

The principle involved in capacitance sensors was based on measuring the dielectric 

constant of the medium present in an electric field produced by a capacitor consisting of 

two electrodes. Dielectric constants for dry soil, air and water are 3 to 5, 1, and 80, 

respectively. Therefore, the dielectric constant of mixture of soil, water and air was 

mostly dominated by SWC.  The capacitance (C) can be estimated as: 

d

A
C r




4
                                (3.1) 

where, A is the surface area of the metal electrodes, d is the distance of separation of the 

capacitor plates, and εr is the dielectric constant of soil. Because A and d were constant, C 

changes were proportional to the variation of the εr, which represented the variation of 

the SWC. 
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Figure 3-4: Components of the electric circuit of the ISMS. 

 

Two designs of capacitance-based moisture sensors were used to predict the soil moisture 

content during laboratory test. The electronic components of both designs were built by 

Retrokool Inc. (Berkley, CA). The electrodes and their installations were different 

between the two sensors, but in both cases were inserted into a 19 mm (0.75 in.) thick 

Teflon plate (Figure 3.5). One of the designs had only one sensing surface while in the 
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second design, metal electrodes passed all the way through the Teflon plate making both 

surfaces sensitive to SWC.  

 

 

Figure 3-5: Two-sided and one-sided capacitance sensor design.  

Both types of design were tested under similar laboratory conditions. Linear regression 

was used to determine calibration equations to predict volumetric and gravimetric water 

content: 

                   (3.2) 

                  (3.3)  

where w is the gravimetric water content (g/g), θ is the volumetric water content 

(cm
3
/cm

3
), a1, a2 are intercepts and b1, b2 are slopes, Vair is the voltage output by the 

sensor while the sensor is in air, and V is the output when the sensor is in a measured 

soil.  
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3.1.2. Optical sensor  

 The optical sensor manufactured by Holland Scientific, Inc. (Lincoln, NE) was evaluated 

in this study to predict soil organic matter (SOM). The principle of this sensor was based 

on the fact that SOM can be predicted by calibrating the sensor with soil color. Soil 

reflectance measurements were taken by two different sensors, which differed only by the 

wavelengths at which they acquired soil reflectance; otherwise both sensors were similar 

with respect to design and dimensions. For the NIR/Amber sensor, wavelengths within 

the visible and NIR regions were 505±10 nm (amber) and 880±15 nm respectively. These 

two wavelengths were chosen to maximize the difference in the magnitudes at the 

wavelengths while both being wavelengths were mostly on linear portion of soil 

reflectance curve. The other sensor determined soil reflectance from two wavelengths in 

visible region (red at 660 nm and blue at 480 nm). The compact design of the optical 

sensor made it possible to move it through the groove made by a narrow knife assembly 

through the soil. The orientation of the sensor relative to the soil surface scene was 

vertical so the sapphire window used as an interface was perpendicular to the ground 

surface and parallel to the side walls of the groove in soil. By having the sensor in a 

vertical position in the soil there was no interference from crop residue on the soil surface 

and also this resulted in a relatively low soil disturbance. As the LEDs illuminated the 

soil surface, the reflected part of the energy was measured by a photodiode, and 

converted into soil reflectance values at both wavelengths separately (Figure 3-6). The 

supply voltage required for this sensor was 12 VDC and the sensor collected data at 1 Hz. 

The raw soil reflectance measurements were used to calculate several different indices 

that included their difference, sum, and ratio. Other indices calculated were the 



17 

 

 

Normalized Difference Soil Index (NDSI) and the inverse of NDSI, which represents the 

average soil reflectance normalized by the reflectance spectrum‟s slope. 

 

Figure 3-6: Top view of working process of optical sensor (NIR/Amber) moving 

through soil. 

 

After acquiring the reflectance of soil samples in the laboratory or in the field, the 

different indices calculated to regress against measured SOM were: 1) difference (NIR-

Amber or Red-Blue), 2) sum (NIR+Amber or Red+Blue), 3) ratio (NIR/Amber or 

Red/Blue), 4) NDSI [(NIR-Amber)/(NIR+Amber) or (Red-Blue)/(Red+Blue)], and 5) 

inverse NDSI. Sum of individual reflectance values was calculated to see how the 

average of individual values correlated with SOM. Difference was calculated to see the 

relation of slope of soil reflectance curve with the SOM. NDSI is a difference of 

individual values normalized by average of individual values which was calculated to 

look how the slope of curve was different when normalized by average. Similarly average 

of individual values normalized by slope was calculated by inverse of NDSI.  

Groove in soil Amber LED 

Soil surface 

Detector 
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3.1.3. Load cell sensor  

The load cell sensor (Figure 3-7) was designed to measure the mechanical resistance of 

the soil to horizontal penetration by a knife. As the knife was pulled through the soil, the 

resistance of the soil to penetration was measured by a capacitor-based compression-type 

USB load cell (PUF-10K-050-S, Loadstar sensors, Inc., Fremont, CA). Pull force was 

converted into compression force around the pivot point P (figure 3-8). One end of the 

load cell sensor was inserted in the standard receiver hitch (size 2 X 2 in.) found on most 

full-size pickup trucks and the ISMS was connected to the standard 2 in. hitch-ball. 

 

 

Figure 3-7: Pull sensor capable of measuring force required to pull any system 

behind the hitch. 

  

Mechanical stop  

Load cell 

Direction of vehicle 

Pivot point, P 
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Figure 3-8: Free body diagram of Load cell sensor. 

Based on the design, the tongue which is free to rotate around the pivot point, P (figure 3-

8) pressed on the load cell button with the force, F produced and the magnitude of that 

force is measured by equation 3.6a and 3.6b.  

                                           (3.6 a) 

                                      (3.6 b) 

The load cell used in this design had capacity of 10,000 lbs, which was chosen by 

assuming that the maximum cutting force required per unit area of soil as 5 MN/m
2
. The 

surface area of the front face of the cutting knife was measured as 0.0048 m
2
, which 

produced a maximum force of 24,000 N (5,400 lbs) on the knife. Therefore, force F on 
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the load cell sensor as calculated by equation 3.6 was 25,250 N (5,681.2 lbs). To allow 

for a factor of safety and some dynamic effects, a load cell of 10K lbs capacity was 

chosen. 
 
 

For this calculation, it was assumed that the pull force exerted by cart is acting at the 

center of hitch-ball in the horizontal direction, which was not always true in dynamic 

conditions. The point of application of the force determines the length of the lever arm 

(lever arm = 101 mm from the center of hitch-ball). Therefore the actual point at which 

the force is acting can increase or decrease the length of the lever arm. Variations of the 

length of the lever arm depended upon on the angle of tilt of the drawbar. Even though 

the angle of tilt is small in real situation, it can be a source of error, which was accounted 

for through laboratory calibration. For illustration of error due to angle of tilt, error was 

calculated when the force was acting at a 5° angle to the horizontal direction.  

Decrease/increase in length of arm, can be calculated using trigonometry. For an angle of 

5°, decrease/increase was found out to be 2.21 mm, which causes error of 2.2% in force 

measurement and this error can be minimized by maximizing the length of arm while 

designing the load cell sensor. 

3.1.4. Data acquisition system  

 

The data acquisition software for the ISMS was developed using Lab-VIEW software 

(National Instruments Corporation, Austin, TX). The program was built to acquire geo-

referenced data from the optical, moisture, and load cell sensors at the same time. As it 

stated earlier, moisture sensor analog voltage output was converted into digital data by an 
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A/D converter mounted on the system. Digital data output from the three sensors and 

geographic location were logged at 1 Hz in a tab delimited text file. The GNSS receiver, 

optical sensor, and A/D converter were connected to a USB serial port hub through RS-

232 cables, which transmitted data to a laptop computer in the pickup. The load cell 

sensor included a digital USB load cell and was directly connected to the laptop through 

a separate USB cable. The maximum sampling frequencies of the A/D converter, optical 

sensor, and load cell sensor were approximately 20 Hz, 1 Hz and 80 Hz, respectively 

when data were acquired directly from these sensors without any filtering. Average 

values were calculated by the program for all three sensors to log data at the same 

frequency rate as the GNSS receiver (i.e. 1 Hz). The data flow implemented in the 

software is shown in Figure-3-9. After the start of the program, COM ports for all sensors 

were recognized by the program and then a dialog box appeared for selecting the file to 

which data was to be logged. After that continuous data acquisition was executed. Before 

the load cell virtual instrument (VI) started acquiring data, another dialogue box appeared 

with an option to tare the load cell. Geographic data and averaged data from the rest of 

the sensors were logged into a text file. This process continued until stopped by the user. 

Finally, when the program was stopped, the ports were closed and the log file was 

finalized. The front panel of the software developed is shown in Figure 3-10. 
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Figure 3-9: Flow of data in Lab VIEW program for the ISMS. 
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Figure 3-10: Front panel diagram of the ISMS data acquisition software. 

 

 

3.2. Sensor system evaluation 

 

3.2.1.  Laboratory evaluation 

3.2.1.1. Capacitance-based soil moisture sensor 

Soil samples from 14 different fields were collected representing eastern Nebraska soils. 

The soil samples were analyzed in commercial laboratories, as shown in Table 3-1. The 

one-sided sensing and two-sided sensing capacitance-based moisture content sensors 

were used to acquire capacitance-related voltage values at different moisture contents in 

the range up to saturation for all samples. The moisture content sensor was placed on the 
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top of a 2-3 cm soil layer with defined moisture content and then a similar soil layer was 

added on the top of the sensor. The soil and the sensor combination were then compacted 

using a weight of 490 N every time, as shown in Figure 3-1. 

Table 3-1: Soil organic matter and soil texture for 14 soils samples. 

 Soil ID 
 Measured 

OM (%) 

Particle size distribution, % 

 Texture class Sand Silt Clay 

1 2.63 14 54 31 Silty Clay Loam 

2 2.77 19 63 18 Silt Loam 

3 3.07 16 58 25 Silt Loam 

4 2.97 15 56 28 Silty Clay Loam 

5 1.61 15 44 41 Silty Clay 

6 2.61 13 51 36 Silty Clay Loam 

7 3.83 15 61 24 Silt Loam 

8 1.33 78 12 9 Loamy Sand 

9 1.37 76 14 9 Sandy Loam 

10 2.97 54 28 18 Sandy Loam 

11 2.57 29 55 15 Loam 

12 2.48 28 50 22 Silt Loam 

13 1.46 72 21 8 Sandy Loam 

14 0.99 87 7 6 Loamy sand 

 

 

Figure 3-11: Laboratory setup for the moisture sensor calibration. 
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After acquiring the voltage signal from the capacitance-based sensor, a soil core of 

known total volume (vb) was taken from the wooden board and was weighed before the 

core was dried in an oven for 24 h at 105˚ C. The mass of water evaporated (ww) from 

soil core was calculated by again weighing the dried core. Then gravimetric (w) and 

volumetric (θ) water content were calculated as follows: 

         (3.7) 

Where wt is the mass of total soil core before drying and ws is the mass of solids after it 

was dried in oven. 

          (3.8) 

Where vw is the volume of water present in soil and vb is the bulk volume of soil after 

testing. 

3.2.1.2. Optical sensor 

A NIR/Amber optical sensor was used in preliminary tests run at an agricultural field 

near Mead, NE and another optical sensor (Red/Blue) was tested in laboratory conditions 

and in the rest of the experiments in this research. Thirteen samples shown in Table 3-1 

(except Soil 1) were used for calibration of the second optical sensors. It was found from 

preliminary experiments that the optical sensor was very procedure sensitive, so the 

sensor was placed at a fixed position and three sub-samples from each soil were placed 

one-at-a-time on the sensor sapphire window. The sub-samples were prepared at three 
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different moisture contents. Three moisture contents chosen for these sub-samples were 

gravimetric water content of each soil at field capacity, half of value calculated at field 

capacity and air dried sample. The targeted and measured values of gravimetric water 

content are shown in table 3-2.  

Table 3-2: Targeted and actuals moisture contents for all samples for 13 soils used 

for calibration of the Red/Blue optical sensor. 

Soil id Gravimetric water content, w (g/g) 

Sub sample 1 Sub sample 2 Sub sample 3 

measured targeted measured targeted measured 

2 0.009 0.100 0.087 0.200 0.169 

3 0.011 0.100 0.088 0.200 0.155 

4 0.012 0.125 0.122 0.250 0.219 

5 0.018 0.130 0.127 0.260 0.251 

6 0.015 0.125 0.120 0.250 0.225 

7 0.010 0.100 0.084 0.200 0.187 

8 0.003 0.045 0.032 0.090 0.069 

9 0.004 0.070 0.046 0.140 0.117 

10 0.007 0.070 0.048 0.140 0.120 

12 0.009 0.080 0.077 0.160 0.143 

13 0.009 0.100 0.085 0.200 0.186 

14 0.003 0.070 0.041 0.140 0.112 

15 0.002 0.045 0.042 0.090 0.071 

Gravimetric water content at field capacity for each soil was calculated by Adamchuk et 

al. (2005), using the following formula:  

)1(65.2 vSaturated

vfield
g







                      (3.9) 

where vfield  is the field capacity volumetric water content and vSaturated  is the 

volumetric water content of saturated soil. Optical soil reflectance was logged averaging 

data every 10 s using a Lab-VIEW routine. Raw values were logged during the laboratory 
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test in the blue and red regions of the electromagnetic spectrum for all three sub samples 

from 13 different soils; and different soil indices were calculated to perform regression 

with measured SOM.  

3.2.1.3. Load cell sensor    

The load cell sensor was calibrated under laboratory conditions by applying known loads. 

Thus, when the sensor was mounted vertically, standard weights were hung from the 

hitch with increment of 0.22 kN (50 lbs) and the output value was logged. Three trials 

were run for this experiment. The calibration setup is shown in Figure 3-12. To simulate 

field conditions, weights were hung from the same hitch which was mounted on the 

ISMS to pull behind any pickup during field mapping. 

 

Figure 3-12: Load cell sensor calibration in laboratory. 

 

Load cell sensor 

assembly 

Applied load 
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3.2.2. Field test 

The ISMS was tested in field conditions by pulling it behind a pickup truck (Figure 3-1). 

Preliminary tests were run at Field 1.10, Agricultural Research and Development Center 

(ARDC), University of Nebraska-Lincoln near Mead, Nebraska (study area 1). The soil 

series map and aerial image of the field are shown in Figure 3-13.  

 

Figure 3-13: Soil series map and aerial imagery of Field 1.10 mapped by ISMS at 

study area 1. (Courtesy: NRCS Data Gateway). 

The system was operated parallel to the established rows. It was observed that clay soils 

occasionally stuck on the sapphire window of the optical sensor (NIR & Amber) while 

mapping the field. Therefore to fully test the optical sensor again, three separate passes 

were made acquiring data for the optical sensor in Field 1.14. Parallel passes were made 

in such a way so that ISMS was exposed to maximum variability in organic matter. At 

same time, fifteen soil samples were collected along the three passes. Cores were 

collected within a 3 m radius of each sampling locations. Two sub samples were obtained 

from each of the fifteen sampling locations. One sub sample was used to obtain optical 

http://datagateway.nrcs.usda.gov/


29 

 

 

reflectance values of the soil with the same optical sensor in laboratory and the other sub 

sample was sent to a commercial laboratory (Agsource Harris laboratories, Lincoln, NE) 

for determination of soil organic matter.  

To further test the ISMS in field conditions, the system was run in another field in 

Merrick County near Clarks, Nebraska. The field was mapped with the ISMS operating 

all three sensors. Unfortunately, field conditions during this mapping operation were not 

suitable for ISMS evaluation. There was relatively low variation in SOM and absolutely 

no changes in SWC, which were required for the field test. Therefore variation in 

moisture content was created by irrigating the middle part of a site in another corn field at 

South Central Agricultural Laboratory (SCAL), Clay Center, Nebraska (study area 2).  

 

Figure 3-14: Mapping pattern of 10 passes and 24 sampling points at study area 2. 

 

The ISMS was run in every row collecting data in ten different passes along the moisture 

variation (dry-wet-dry). Soil cores and cone index measurements using cone 

penetrometer (Spectrum Technologies., Inc. Plainfield, IL) were taken at the same time to 

compare sensor performance with laboratory results. Eight points were chosen along 

transects approximately 400 m long and three samples were taken at all eight points 

Sampling points 

between passes 

Passes 
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between 1
st
 & 2

nd
, 5

th
 & 6

th
 and 9

th
 &10

th
 passes (Figure 3-14). Three replications were 

measured of cone index at all twenty four sampling locations. The average speed at 

which the system was operated in the field was 7-10 km/h. Data were logged at a 

sampling rate of 1 Hz, travelling approximately 2-3 m for one sample. All laboratory and 

field experiment tests with information of the sensors tested in each test have been 

summarized in Table 3-3. 

Table 3-3: Description of various laboratory and field experiments done in this 

research. 

Test Location Date Sensors tested Comparison 

data 

Conditions 

1 Laboratory 02/06/2010 Both moisture 

sensors 

Oven-dried 

w and θ  

N/A 

2 Laboratory 10/07/2010 Load cell sensor Known 

weight 

N/A 

3 Laboratory 10/30/2010 Optical (Red & 

Blue) 

SOM N/A 

4 ARDC 

1.10 

04/29/2010 Two-sided moisture 

sensor, optical (NIR 

& Red), load cell  

N/A Corn residue, 

entire field 

5 ARDC 

1.14 

04/29/2010 Optical (NIR & 

Red) 

SOM Soybean 

residue, 3 

transects, 

planted field 

6 Merrick 10/19/2010 Two-sided moisture 

sensor, optical (Red 

& Blue), load cell  

N/A Corn residue, 

section of the 

field, low 

variation  

7 SCAL 11/10/2010 Two-sided moisture 

sensor, optical (Red 

& Blue), load cell  

Oven–dried 

w, Cone 

index 

Corn residue, 

10 transects 
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4. RESULTS AND DISCUSSION 

 

4.1. Capacitance based sensor 

Based on laboratory results, both types of capacitance based sensors predicted both 

gravimetric and volumetric water content reasonably well. The one-sided sensor showed 

linear response through the entire range of soil moisture, while the two-sided sensor had a 

non-linear response in the wet range. Linearization of the voltage values obtained from 

the sensor was conducted before running the linear regression with measured water 

content. Each voltage measurement was subtracted from the voltage output when the 

sensor was in air, and the natural logarithm was taken for each difference. Figures 4-1 

and 4-2 show the response of both sensors to gravimetric and volumetric moisture 

contents measured by the oven-drying method. Prediction equations developed to predict 

water content corresponding to each sensor are also shown on the graphs. Non-linear 

regression was run for the two-sided sensor (Figure 4-2), since the sensor output was 

constant in wet soils. Thus, the two-sided sensor output in air was 2.53 V. The output 

decreased with an increase in moisture content until 1.60 V, which corresponded to 0.15 

g/g gravimetric water content and 0.24 ml/ml volumetric water content. It was suspected 

that the electrodes of two-sided sensor when placed horizontally between soil layers 

could not be surrounded by a homogeneously wet soil. Thus, due to the load on the soil, 

water could be squeezed out of the soil on the upper sensing side of the metal electrodes 

which was a reason for the constant output of the two-side sensor in the wetter range but 

the sensitive side of the one sided sensor was facing downward and might not have been 

affected significantly by external load.  
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Figure 4-1: Comparisons of one-sided sensor output and oven drying measurements 

of (a) volumetric and (b) gravimetric water content 

 

(a) 

(b) 
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Figure 4-2: Comparisons of two-sided sensor output with oven drying 

measurements of (a) volumetric and (b) gravimetric water content. 

(a) 

(b) 
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During the SCAL field test, the ISMS was moved from the southern end to the northern 

end of the field through varying conditions of moisture content the sensor output 

responded in a similar trend, as shown in Figure 4-3. Three gravimetric water content 

measurements at eight sampling locations are also shown on the same graph. Figure 4-4 

illustrates the linear regression between eight average laboratory measurements and 10-

12 corresponding sensor outputs obtained from 20-30 m long sections of the transects 

corresponding to laboratory measurements. Average values at eight sampling locations of 

both methods resulted in a linear regression with R
2
 = 0.74 and error bars in same graph 

shows that the standard deviation corresponding to both methods. 

 

Figure 4-3: Two-sided capacitance sensor output at field SCAL, Clay Center, 

Nebraska compared with laboratory measurements. 
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Figure 4-4: Linear regression between average sensor outputs and corresponding 

gravimetric water content measurements of data collected at SCAL. Error bars 

indicate standard deviation of each averaged value.  

 

4.2. Optical sensor 

 

Figure 4-5 and Table 4-1 show the results of linear regression of different soil index 

values with measured SOM. Based on results, it was found that the difference and the 

sum of individual soil reflectance and their difference predicted soil OM reasonably well 

with an R
2
 of 0.77 and 0.75 respectively.   

Table 4-1: Formulae and linear regression results of different soil indices against 

measured SOM for optical sensor (Red & Blue). 

index Red blue sum difference ratio NDSI In. NDSI 

Formula R B (R + B) (R – B) (R/B) (diff./sum) (Sum/diff.) 

R2 0.75 0.69 0.73 0.77 0.39 0.39 0.39 

SE (OM %) 0.45 0.5 0.47 0.43 0.70 0.70 0.70 
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Figure 4-5: Laboratory calibration results for optical sensor (red & blue). 

 

As listed in Table 3.3, during the ARDC 1.14 field test, three passes were made with the 

NIR/Amber sensor and 15 samples were taken between the three passes. The locations of 

three passes in the field and results are shown in Figure 4-6 and Figure 4-7. SOM at 15 

sampling locations is also shown in Figure 4-7.  During the passes, measured soil organic 

matter values tended to first decrease and then increase to the maximum value. A similar 

trend was found in the values of index sum (NIR + Amber) logged by the sensor. Linear 

regression was run between SOM and value of soil index sum (NIR + Amber) measured 

by the sensor for fifteen sampling locations. A comparison of both methods is shown in 

Figure 4-8. 
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Figure 4-6: Three passes to compare soil organic matter with optical sensor 

(NIR/Amber) output at field ARDC 1.14. 

 

 

Figure 4-7: comparison of optical sensor (NIR+ Amber) output with measured soil 

organic matter at field ARDC 1.14, Mead, Nebraska. 
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Figure 4-8: Comparison of optical sensor (NIR/Amber) output with soil organic 

matter (Laboratory) for 15 samples taken from field ARDC 1.14, Mead, Nebraska. 

 

Table 4-2 summarized the performance of each index. Neither of the indices was superior 

to either of two individual wavelength reflectance measurements. The standard error of 

SOM measurements was once again about 0.5%.  

Table 4-2: Formulae and Linear regression results of different soil indices for sensor 

(NIR/Amber) against measured SOM of 15 samples from field ARDC 1.14. 

index Amber NIR sum difference ratio NDSI in. NDSI 

Formula V N (V + N) (V - N) (V / N) (diff./sum) (sum/diff.) 

R2 0.68 0.61 0.67 0.68 0.59 0.59 0.57 

Std. Error 0.50 0.55 0.50 0.50 0.56 0.56 0.58 

 

 

4.3. Load cell sensor 
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Figure 4-9 illustrates the results of the load cell calibration test. With 0.031 kN standard 

error the regression equation produced 1.04 slope. The difference could originate from a 

small change of load application force placement on the ball. Laboratory results show 

that sensor was very accurate and sensor output was recorded as 96% of the input load. 

 

Figure 4-9 : Laboratory calibration results for load cell sensor assembly. 

The possible sources of other 4% error could be change in length of lever arm with angle 

of tilt, for example decrease in arm length is calculated when force is acting at an angle of 

5° to the horizontal in materials methods section. At an angle of 5° to horizontal, 

increase/decrease in arm length was found to be 2.21 mm which caused error of 2.2% in 

force measurement. The load cell itself was also calibrated by the manufacturer (Loadstar 

Sensors, Inc. Fremont, CA) with the input loads up to 45 kN, which suggest a slope of 

0.99 at the lower end of their calibration curve. Average sensor output values of passes 

made during the SCAL field test and cone index values obtained are shown in Figure 4-
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10. As many factors can affect highly variable soil mechanical resistance matched data 

did not always represent the same soil. That is why the relationship shown in Figure 4-11 

between cone penetrometer index values and the closest load sensor measurements did 

not indicate a strong correlation. Another possible cause of the relatively weak 

correlation was that the ISMS did not have sufficient downward pressure when operated 

in dry conditions, which caused the moisture and optical sensor to rise slightly. This 

problem could have been easily overcome with a set of adds-on weights. 

 

Figure 4-10 : comparison of cone index measurements and load cell sensor output at 

SCAL, Clay Center, Nebraska. 
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Figure 4-11 : Average and standard deviations for load cell sensor and cone index 

measurements. 

 

4.4. Soil mapping and sensor fusion 

 

To illustrate simultaneous operation of all sensor components, Figure 4-12 to 4-15 show 

thematic maps of individual sensor measurements. Since the accuracy of these maps was 

jeopardized by the relative position of the sensor in the row during mapping, no 

quantitative analysis among different data layers could be performed. However, it 

appears that there is a corresponding trend between soil mechanical resistance and soil 

water content, which also may relate to field elevation (Figure 4-14). Optical reflectance 

data (NIR + Amber, Figure 4-15) also reveals potential difference in SOM affiliated with 

different soil types (Figure 3-13).  
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Figure 4-12 : Map of mechanical resistance of soil produced from data collected by 

the ISMS at Field 1.10, Mead, Nebraska. 

 

 

Figure 4-13 : Map of moisture content of soil produced from data collected by the 

ISMS at Field 1.10, Mead, Nebraska. 
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Figure 4-14 : Map of elevation of field at Field 1.10, Mead, Nebraska. 

 

 

Figure 4-15 : Map of soil index sum produced from data collected by optical sensor 

(NIR/Amber) mounted on the ISMS at Field 1.10, Mead, Nebraska. 
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Theoretically, simultaneous data collected from different sensors can be used to predict 

soil properties with better precision. As soil bulk density can be influenced by soil water 

content and soil mechanical resistance to penetration, combining information from the 

capacitance-based moisture senor and the load cell should allow the prediction of soil 

compaction near the soil surface. Similarly, as soil reflectance can be affected by SOM as 

well as by SWC, combining the optical and capacitance-based moisture sensors should 

yield better prediction of SOM under variable moisture conditions. Therefore, the next 

step of this research is to conduct more comprehensive field studies with extensive spatial 

variability of soil compaction as well as water and organic matter contents. 
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5. CONCLUSIONS 

 

An Integrated Soil mapping System (ISMS) was developed and tested to measure soil 

moisture content, soil organic matter, and soil mechanical resistance on-the-go. A 

capacitance moisture sensor, optical sensor, and load cell sensor were evaluated and 

mounted on a platform for acquiring three different data layers simultaneously. Each 

sensor was calibrated under laboratory conditions and the ISMS was also tested under 

field conditions. Both the one-sided and two-sided moisture content sensors could 

reasonable well predict volumetric and gravimetric soil moisture content. Volumetric 

water content estimated from the two-sided and one-sided sensors was compared with 

volumetric moisture content measured by the oven-drying method which resulted in an 

R
2 

value of 0.94 for both sensors in laboratory conditions with a standard error of 0.017 

cm
3
/cm

3
 and 0.030 cm

3
/cm

3
 respectively. Soil index was calculated as the plain sum of 

individual soil reflectance measurements by the optical sensor in red (660 nm) and blue 

(480 nm) regions predicted the soil organic matter with R
2
 value of 0.73 with standard 

error of 0.47 OM%. Linear regression of sensor output values and known weights had an 

R
2
 value of 0.99 and standard error of 0.032 kN.   The load cell sensor was able to predict 

hard surfaces in a field with the same standard deviation as a cone penetrometer with R
2 

of 0.28 between the average sensor readings and cone index measured by cone 

penetrometer. ISMS was also successfully tested in a field for mapping soil water 

content, soil optical reflectance and soil resistance to penetration simultaneously with 

high sampling density. Future work is needed to study add-on value of using multiple 

sensors on the same platform is needed. Based on the results of this research more 
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relatively accurate high-density thematic soil maps are feasible to characterize spatial 

variability in SWC, SOM and soil compaction. All these data layers can be used to 

improve the decision making process and enhance sustainability and profitability of a 

crop production system. 
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APPENDIX A 

Engineering Drawings of Load cell sensor assembly: 
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APPENDIX B 

Engineering Drawings of bracket to hold optical and moisture sensor: 
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APPENDIX B 

Engineering drawings of bracket for optical sensor: 
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APPENDIX C 

Engineering drawings of Two-side sensing capacitance based moisture sensor and 

Bracket designed to hold this sensor: 
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APPENDIX D 

Block diagram of data acquisition program 
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Column headers of log file 
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For “GPVTG” data 

 

For “default” condition  
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Sub vi logging data from GNSS receiver, optical sensor, A/D convertor, load cell to 

text file 

 

 

 

 

 

 

 

 

Flush buffer” and “close log file” functions 
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APPENDIX E 

Laboratory experiment data 

Table E-1: Laboratory calibration data of Capacitance based moisture sensors. 

 

  Oven drying method sensor output 

soil id 
θm 

measured 
θv 

measured 
Bulk 

Density 
Two-sided 

sensor 
single-side 

sensor 

  g/g m3/m3 Mg/m3 mV mV 

1 0.09 0.13 1.37 2319.48 2847.78 

1 0.20 0.22 1.09 1876.31 2656.44 

1 0.03 0.05 1.51 2437.61 2885.35 

1 0.26 0.34 1.32 1174.55 2232.86 

2 0.04 0.06 1.40 2443.22 2903.37 

2 0.22 0.35 1.56 1264.81 2546.05 

2 0.08 0.10 1.26 2366.00 2894.61 

2 0.16 0.20 1.22 1819.12 2729.19 

2 0.03 0.04 1.39 2476.78 2916.92 

2 0.24 0.41 1.68 1194.95 2389.49 

3 0.17 0.21 1.27 1789.22 2763.04 

3 0.22 0.32 1.45 1401.69 2638.86 

3 0.10 0.13 1.30 2259.05 - 

3 0.21 0.24 1.30 1601.21 2612.90 

3 0.05 0.06 1.31 2425.14 2903.25 

3 0.27 0.44 1.62 1157.99 1860.07 

4 0.16 0.22 1.37 1765.29 2722.00 

4 0.26 0.38 1.47 1186.16 2011.32 

4 0.12 0.20 1.67 2163.83 2825.36 

4 0.20 0.23 1.17 1629.60 2699.28 

4 0.05 0.07 1.34 2437.18 2898.23 

4 0.24 0.40 1.67 1210.77 2368.91 

5 0.17 0.18 1.03 1730.83 2810.45 

5 0.24 0.23 0.95 1240.05 2465.67 

5 0.10 0.13 1.29 2305.24 2852.47 

5 0.17 0.20 1.21 1981.70 2830.93 

6 0.12 0.15 1.25 2209.83 2840.17 

6 0.18 0.25 1.42 1585.14 2748.12 

6 0.08 0.12 1.39 2356.47 2925.09 

6 0.19 0.20 1.07 1768.42 2681.71 

6 0.06 0.08 1.42 2436.20 2895.35 

6 0.32 0.49 1.52 1157.16 1632.34 

7 0.12 0.15 1.28 2273.01 2821.84 

7 0.27 0.42 1.57 1176.46 2327.09 
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7 0.10 0.11 1.13 2346.75 2864.63 

7 0.24 0.31 1.30 1510.27 2588.03 

7 0.07 0.08 1.25 2414.93 2897.30 

7 0.27 0.43 1.58 1177.10 2133.20 

8 0.07 0.12 1.69 2253.57 2855.43 

8 0.11 0.25 2.17 1519.48 2647.42 

8 0.02 0.03 1.62 2458.95 2922.48 

8 0.12 0.27 2.24 1713.59 2715.73 

8 0.01 0.02 1.72 2480.19 2919.22 

8 0.10 0.18 1.82 1856.17 2777.83 

9 0.07 0.09 1.44 2290.99 2866.77 

9 0.13 0.24 1.84 1592.44 2710.93 

9 0.03 0.05 1.59 2443.06 2894.17 

9 0.14 0.26 1.87 1819.91 2712.48 

9 0.02 0.04 1.53 2487.53 2924.47 

9 0.14 0.25 1.82 1417.95 2635.85 

10 0.13 0.19 1.50 1970.25 - 

10 0.19 0.36 1.93 1202.02 - 

10 0.03 0.05 1.54 2452.24 2921.20 

10 0.18 0.35 1.92 1195.85 2268.09 

10 0.02 0.03 1.62 2484.33 2926.40 

10 0.21 0.37 1.72 1196.91 2329.53 

11 0.11 0.12 1.13 2159.18 2814.41 

11 0.21 0.33 1.60 1370.06 2658.49 

11 0.06 0.09 1.48 2393.14 2863.80 

11 0.20 0.27 1.38 1557.52 2528.35 

11 0.03 0.04 1.28 2464.64 2919.24 

11 0.25 0.41 1.63 1183.83 2252.68 

12 0.10 0.13 1.35 2241.84 2832.24 

12 0.18 0.26 1.49 1653.23 2760.45 

12 0.07 0.09 1.40 2360.11 2891.37 

12 0.16 0.25 1.50 1794.38 2703.92 

12 0.04 0.05 1.41 2450.73 2903.64 

12 0.24 0.40 1.68 1178.11 2149.79 

13 0.05 0.06 1.22 2400.58 2894.21 

13 0.15 0.27 1.73 1688.65 2746.47 

13 0.03 0.06 1.71 2442.44 2899.05 

13 0.13 0.20 1.70 2002.70 2774.51 

13 0.01 0.02 1.58 2493.66 2932.22 

13 0.16 0.29 1.79 1495.71 2633.11 

14 0.03 0.04 1.53 2439.58 2902.32 

14 0.11 0.20 1.74 1501.72 2742.29 

14 0.04 0.07 1.88 2368.95 2886.58 

14 0.09 0.15 1.74 2180.74 2813.87 

14 0.01 0.01 1.73 2489.88 2927.28 

14 0.11 0.23 2.00 1673.40 2777.08 
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Table E-2: Load cell calibration data (lab experiment) 

weight 
Applied Trial 1 Trial 2 Trial 3 

Lbs mLbs mLbs mLbs 

0 421.0 326.2 -645.4 

50 43714.1 40910.4 51214.3 

100 81491.6 79681.4 91972.5 

150 124662.4 129049.0 142281.3 

200 175497.9 173271.6 187953.1 

250 218836.6 233849.1 237628.3 

300 267304.2 262063.3 277794.2 

350 323226.0 321761.3 322099.6 

400 363862.9 350770.1 368190.9 

450 405370.6 385921.8 422566.1 

500 447490.6 466738.6 460868.0 

550 490914.2 517067.4 502978.7 

600 537060.6 553356.5 547730.7 

650 585615.0 599546.9 606926.4 

700 626489.8 625666.0 641477.2 

750 712497.6 696544.8 701147.2 

800 734503.2 717729.5 726404.3 

850 777090.2 779481.7 777776.5 

900 806962.1 801374.5 819026.8 
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Table E-3: Load cell calibration data (from manufacturer) 

Applied 
weight 

 load cell 
output 

lbs lbs 

0.0 -0.3 

1245.9 1274.9 

2498.9 2520.8 

3752.3 3757.8 

4998.3 5005.1 

6251.2 6265.4 

7498.8 7526.4 

8750.2 8781.6 

10000.9 10011.1 
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Table E-4: Laboratory calibration data of (NIR/Amber) optical sensor 

   Trial 1 

soil id Measured OM Grav.WC(w) NIR Amber 

  g/g g/g     

1 1.70 0.17 0.56 0.14 

2 1.90 0.21 0.59 0.15 

3 2.60 0.25 0.45 0.13 

4 2.90 0.24 0.40 0.12 

5 1.30 0.15 0.75 0.15 

6 1.00 0.10 0.97 0.20 

7 3.00 0.23 0.50 0.14 

8 2.10 0.23 0.55 0.14 

9 1.60 0.19 0.50 0.12 

10 3.10 0.28 0.55 0.15 

11 0.80 0.06 0.97 0.23 

12 0.90 0.08 0.96 0.23 

13 1.40 0.17 0.42 0.12 

14 3.20 0.26 0.43 0.14 

15 1.20 0.14 0.68 0.15 
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Table E-4 (continues): Laboratory calibration data of VISNIR (NIR/Amber) optical 

sensor 

Trial 2 Trial 3 

NIR Amber NIR Amber 

        

0.55 0.16 0.57 0.16 

0.49 0.17 0.59 0.17 

0.55 0.15 0.55 0.16 

0.48 0.14 0.50 0.14 

0.74 0.17 0.67 0.17 

0.97 0.20 0.96 0.24 

0.52 0.12 0.52 0.17 

0.54 0.16 0.42 0.15 

0.73 0.17 0.58 0.19 

0.36 0.14 0.28 0.13 

0.97 0.21 0.96 0.27 

0.92 0.23 0.96 0.23 

0.41 0.13 0.59 0.16 

0.40 0.13 0.54 0.13 

0.72 0.18 0.73 0.18 
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TableE-5: Laboratory calibration data of optical sensor with wavelengths in visible 

region (Red/Blue). 

   trial 1 trial 2 

soil id Grav.WC(w) SOM red blue red blue 

2a 0.01 2.77 0.599 0.193 0.631 0.366 

2b 0.09 2.77 0.705 0.391 0.586 0.331 

2c 0.17 2.77 0.365 0.193 0.392 0.236 

3a 0.01 3.07 0.614 0.409 0.609 0.367 

3b 0.09 3.07 0.687 0.37 0.702 0.377 

3c 0.16 3.07 0.416 0.218 0.375 0.218 

4a 0.01 2.97 0.791 0.464 0.602 0.37 

4b 0.12 2.97 0.538 0.282 0.551 0.302 

4c 0.22 2.97 0.349 0.204 0.318 0.184 

5a 0.02 1.61 1.094 0.632 0.693 0.464 

5b 0.13 1.61 0.786 0.415 0.737 0.374 

5c 0.25 1.61 0.463 0.258 0.462 0.257 

6a 0.02 2.61 0.591 0.352 0.541 0.304 

6b 0.12 2.61 0.582 0.31 0.562 0.297 

6c 0.22 2.61 0.328 0.173 0.305 0.171 

7a 0.01 3.83 0.492 0.314 0.516 0.328 

7b 0.08 3.83 0.597 0.341 0.534 0.301 

7c 0.19 3.83 0.301 0.186 0.21 0.162 

8a 0.00 1.33 0.809 0.472 1.081 0.61 

8b 0.03 1.33 0.755 0.416 0.72 0.391 

8c 0.07 1.33 0.444 0.254 0.47 0.261 

9a 0.00 1.37 1.054 0.6 1.035 0.609 

9b 0.05 1.37 0.691 0.369 0.695 0.377 

9c 0.12 1.37 0.369 0.198 0.377 0.224 

10a 0.01 2.97 0.577 0.361 0.762 0.432 

10b 0.05 2.97 0.747 0.431 0.766 0.429 

10c 0.12 2.97 0.323 0.188 0.333 0.188 

12a 0.01 2.57 0.934 0.567 0.673 0.404 

12b 0.08 2.57 0.661 0.36 0.69 0.393 

12c 0.14 2.57 0.419 0.223 0.358 0.209 

13a 0.01 2.48 0.636 0.344 0.545 0.318 

13b 0.09 2.48 0.661 0.357 0.67 0.368 

13c 0.19 2.48 0.36 0.218 0.331 0.191 

14a 0.00 1.46 0.9553 0.556 0.96 0.548 

14b 0.04 1.46 0.763 0.415 0.778 0.428 

14c 0.11 1.46 0.445 0.235 0.434 0.227 
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15a 0.00 0.99 0.917 0.56 0.953 0.548 

15b 0.04 0.99 0.618 0.336 0.594 0.314 

15c 0.07 0.99 0.434 0.24 0.53 0.285 
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Table E-6: Locations and Moisture content measurement data by oven drying 

method from cores collected from field near Clay Center, NE 

Longitude  Latitude theta-m theta -v 

-98.12971 40.57910 0.18 0.22 

-98.12973 40.57910 0.15 0.19 

-98.12977 40.57910 0.18 0.22 

-98.12971 40.57946 0.22 0.22 

-98.12974 40.57946 0.20 0.25 

-98.12977 40.57946 0.21 0.27 

-98.12971 40.57979 0.23 0.30 

-98.12974 40.57979 0.25 0.33 

-98.12977 40.57979 0.24 0.29 

-98.12971 40.58016 0.23 0.24 

-98.12974 40.58016 0.22 0.28 

-98.12977 40.58016 0.22 0.25 

-98.12970 40.58056 0.26 0.26 

-98.12973 40.58056 0.26 0.31 

-98.12977 40.58056 0.24 0.31 

-98.12970 40.58099 0.25 0.22 

-98.12974 40.58100 0.23 0.31 

-98.12977 40.58100 0.29 0.28 

-98.12971 40.58155 0.21 0.29 

-98.12974 40.58155 0.20 0.25 

-98.12977 40.58155 0.21 0.27 

-98.12970 40.58196 0.20 0.20 

-98.12974 40.58195 0.18 0.23 

-98.12978 40.58196 0.16 0.20 
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Table E-7: Three cone index measurements for each sampling location reported in 

table 6 and corresponding northing of each location 

northing cone index 

4492398.837 - 

4492398.837 6425 

4492398.837 3721 

4492398.923 3300 

4492398.923 4564 

4492398.923 5407 

4492399.052 4669 

4492399.052 4564 

4492399.052 4810 

4492439.158 3686 

4492439.158 2492 

4492439.158 2492 

4492439.072 4143 

4492439.072 4143 

4492439.072 2282 

4492439.244 2282 

4492439.244 2282 

4492439.244 4669 

4492475.903 4740 

4492475.903 3019 

4492475.903 3054 

4492475.86 3265 

4492475.86 3265 

4492475.86 3265 

4492475.86 3651 

4492475.86 4002 

4492475.86 3851 

4492516.318 2247 

4492516.318 1264 

4492516.318 4002 

4492516.297 1474 

4492516.297 2808 

4492516.297 1158 

4492516.267 3581 

4492516.267 1896 

4492516.267 1825 
 

northing cone index 

4492560.378 1825 

4492560.378 2485 

4492560.378 3215 

4492560.335 3405 

4492560.335 3581 

4492560.335 2808 

4492560.249 4213 

4492560.249 2563 

4492560.249 2422 

4492608.948 5424 

4492608.948 3511 

4492608.948 3756 

4492609.120 1966 

4492609.120 3792 

4492609.120 3792 

4492609.207 2492 

4492609.207 2282 

4492609.207 1650 

4492670.226 4002 

4492670.226 4002 

4492670.226 3440 

4492670.269 4072 

4492670.269 2598 

4492670.269 3335 

4492670.355 2212 

4492670.355 1931 

4492670.355 1966 

4492715.802 6284 

4492715.802 2844 

4492715.802 4775 

4492715.630 5968 

4492715.630 3932 

4492715.630 6214 

4492715.651 6039 

4492715.651 1264 

4492715.651 3220 
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