
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Industrial and Management Systems 
Engineering -- Dissertations and Student 
Research 

Industrial and Management Systems 
Engineering 

12-2010 

Estimation of Mechanical Properties of Soft Tissue Subjected to Estimation of Mechanical Properties of Soft Tissue Subjected to 

Dynamic Impact Dynamic Impact 

Mohamed R.S Amar 
University of Nebraska at Lincoln, m_ammar_82@yahoo.com 

Follow this and additional works at: https://digitalcommons.unl.edu/imsediss 

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons 

Amar, Mohamed R.S, "Estimation of Mechanical Properties of Soft Tissue Subjected to Dynamic Impact" 
(2010). Industrial and Management Systems Engineering -- Dissertations and Student Research. 8. 
https://digitalcommons.unl.edu/imsediss/8 

This Article is brought to you for free and open access by the Industrial and Management Systems Engineering at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Industrial and Management 
Systems Engineering -- Dissertations and Student Research by an authorized administrator of 
DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/imsediss
https://digitalcommons.unl.edu/imsediss
https://digitalcommons.unl.edu/imsediss
https://digitalcommons.unl.edu/imse
https://digitalcommons.unl.edu/imse
https://digitalcommons.unl.edu/imsediss?utm_source=digitalcommons.unl.edu%2Fimsediss%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=digitalcommons.unl.edu%2Fimsediss%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/imsediss/8?utm_source=digitalcommons.unl.edu%2Fimsediss%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages


Estimation of Mechanical Properties of Soft Tissue Subjected to Dynamic Impact 

 

 

By  

 

 

Mohamed R.S Amar 

 

 

 

A THESIS 

 

 

  

Presented to the Faculty of  

The Graduate College at the University of Nebraska  

In Partial Fulfillment of Requirements  

For the Degree of Master of Science  

 

Major: Industrial and Management Systems Engineering  

 

Under the supervision of Professor David Cochran 

 

Lincoln, Nebraska  

December, 2010 

 

 

 



ESTIMATION OF MECHANICAL PROPERTIES OF SOFT TISSUE SUBJECTED TO 

DYNAMIC IMPACT 

Mohamed R Amar, M.S. 

University of Nebraska, 2010 

Advisor: David Cochran 

          This study attempted to estimate the damping properties of human tissue by using 

spring and damper system as a model.  Data of impacting human tissue at the deltoid area 

was used to obtain a continuous, second order system to represent the mass-spring-

damper system.  A discrete ARMA(2,1)  model was fitted using the data obtained from 

experiments in which the deceleration of a pendulum impacting human shoulders in the 

area of the deltoid muscle was measured.  The data of the deceleration was integrated 

twice to obtain estimates of displacement. The integration was done until the maximum 

displacement occurred at zero velocity.   

             An ARMA (2, 1) model was then fitted on the displacement data using the Data-

Dependent-System (DDS) technique.  The results were then converted to a continuous 

second order autoregressive model A(2) using the concept of Green’s Function and the 

auto covariance.  Utilizing the principles of a mass-spring-damper system enabled the 

estimation of the spring constant (K) and damper constant (C) for each trail of the 

experiment.  

           Estimates for both constants were found to be highly correlated with the mass of 

the impacting pendulum.  Explanations for this string relationship were investigated.  
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CHAPTER 1 INTRODUCTION 

 

1.1 Introduction  

How people interact with their environment is a topical issue and one of increasing 

importance. One form of physical interaction which is understood poorly, even by 

professionals, is concerned with human tissue response to stimuli of impact.  This is 

important, for instance, when determining how human tissue acts when subjected to 

impacts.  Understanding how human tissue responds to impact stimuli in terms of 

biomechanical stand point would provide a great knowledge of how to treat the effects 

resulting from impacts human tissue which occurs in many different sectors ranging from 

industry to healthcare and sports. 

There is a little knowledge about the effect of stimuli resulting from impact on human 

tissue.  In spite of the fact that the impact on human tissue is witnessed in a wide range of 

industries, healthcare treatment, and sports.  The effect of impact on human tissue is still 

to be addressed in order to extract scientific knowledge that can participate in finding a 

good recipe of remedy the negative effects and to take necessary precautions to avoid 

undesirable outcomes.  

 This study was dedicated to extract damping properties of human tissue.  The focus was 

on extracting spring and damper constants of the system presumed to represent human 

tissue. 
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Data of impacting human tissue at the deltoid area has been used to obtain a continuous 

second order system which represents Mass-spring-damper system. 

 

A Discrete model ARMA(2, 1) was fitted on the data obtained from experiments in 

which the discrete data of deceleration of a pendulum hit of human shoulder.  The data of 

the deceleration was integrated twice to obtain the data of the displacement.  The 

integration was done until the maximum displacement is occurred (velocity = 0).   

ARMA (2, 1) was fitted on the displacement data using DDS (Data-Dependent-System) 

technique.  This was converted to a continuous second order autoregressive model A(2) 

with using the concept of Green’s Function and the auto covariance.  A(2) can be used to 

obtain the physical characteristics of data extracted from the experiments.  

 

The external pendulum force can be represented by Z (t) which causes the displacement 

obtained X (t) by integrating the experimental deceleration twice.  The elastic resistance 

of human shoulder is represented by the term �������.  And the damping characteristics 

can be represented by the term2
�� ����� . 

 

Utilizing the principles of a mass-spring-damper system enabled the estimation of the 

spring constant (K) and damper constant (C) for each trail of the experiment.  Correlation 

and stepwise regression analyses were used to study the trends of the numerical estimates 

obtained of damping characteristics K and C. 
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1.2     History of the research on this topic  

 

Application of Mass-Spring-Damper on human structure is a new topic and the problems 

in practice have recently emerged, there are not many publications available.  The human 

body acts as a mass-spring-damper system was also noted by many investigators, 

however, very few studies have attempted to extract such model and physics from a data 

derived from experiments on human body.  

 

1.4 Pertinent past research 

A study conducted by (Luciana, 2006) in which they tried to relate Mass-Spring-Damper 

System to human body by conducting a simulation.  Their results were somewhat general 

that said this system can be applied on human body but numerical results were not 

provided. 

 

In another study, the human body was treated as a combination of Mass-Spring-Damper 

System. Again, numerical values were not collected. ( Ji and Bell, 2008). 
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 

 

2.1   Summary of the previous research 

 

Subjects were exposed to minor impacts to the deltoid area of the shoulder administered 

by a pendulum specifically designed for this research.  Energy, Velocity, and size of the 

striking object were the independent variables.  The general experimental design was 3 x 

3 x 3 factorial where design with gender and subject nested under gender included as 

blocking factors. Energy of the impact had 3 levels, Velocity of the impact had 3 levels, 

and size of the impacting object had 3 levels.  The physical characteristics of each impact 

were recorded and the perception of the severity of the impact was collected.  The 

physical measurements consisted of Force vs. time and Acceleration vs. time recordings 

were taken simultaneously as the pendulum impacted the subject.  The pendulum position 

during impact (measured at 0.01 second of the impact time) was derived from the 

Acceleration vs. time data.( Alkhaledi, 2010). 

 

Energy, Velocity, and Mass might all be considered the independent variables in this 

study but Energy, Velocity, and Mass cannot be independently assigned values.  Once 

two of them were assigned a value, the third was determined.   In this research Energy 

and Velocity were treated as the independent variables and Mass was determined to 

accommodate those values. ( Alkhaledi, 2010). 
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Energy (E) was set at the 3 levels of 0.75, 1.125, and 1.5 joules. Velocity (V) was set at 

the 3 levels of 1.25, 1.5, and 1.75 m/s. These were consistent with those levels 

investigated by Wiley (2007).  To achieve the desired Energy and Velocity levels, Mass 

(M) was adjusted.  This required 9 levels of Mass.  The impacting objects were wooden 

balls mounted on the front of the pendulum and had the 3 levels of 0.0254, 0.0318, and 

0.0381 meter in diameter. ( Alkhaledi, 2010). 

 

The controlled variables were: location of impact on the shoulder, room temperature, and 

relative humidity.  The deltoid muscles was chosen because it is not socially sensitive 

area to uncover and show during testing, it is easy to access and conduct testing on it and 

since this study was concerned about impact testing, the deltoid has a relatively uniform 

skin, muscle and bone tissues.  Location of impact was controlled by selecting one 

location for the impact area on each shoulder and marking it with a ball point pen.  

Subjects were asked to maintain the mark between sessions.  Room temperature and 

humidity were controlled by doing all the experiments in the same location. ( Alkhaledi, 

2010). 

 

The subjects used in this research were recruited from a pool of volunteers from the 

University of Nebraska- Lincoln and the general population of Lincoln, Nebraska.   A 

random sample of five males and five females subjects were recruited. The Subject’s ages 

ranged from 21 to 35 years old.  
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The apparatus consisted of a data collection system, a pendulum with specifically 

designed weights, a load cell, an accelerometer. ( Alkhaledi, 2010). 

 

2.2    Modeling Methodology 

 

Figure 2.1: Mass-Spring-Damper System  

 

Mass-Spring-Damper system showed in figure 2.1 is assumed by this research to 

represent human tissue.  This system has a resistance against the movement.  This 

resistance is represented by both spring resistance and damper resistance.  Spring 

resistance is measured by the spring constant K and damper resistance is measured by the 

damper constant C.  

 

To acquire these coefficients a recorded data of acceleration obtained when a pendulum 

hits the deltoid.  Deltoid muscle is the muscle forming the rounded contour of the 

shoulder.  This data was mathematically integrated twice in favor of obtaining the data of 

deformation.  The deformation data indicates how the Mass-Spring-Damper system 

reacted when the movement occurred.   A discreet model of ARMA was applied to this 

discreet data and later was converted to a continuous model A(n) which represents a 
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second order differential equation system that is considered as Mass-Spring-Damper 

system. 

 

 The second order differential equation model of Mass-Spring-Damper was analyzed to 

obtain the natural frequency and the damping ratio.   

 

2.3     Discrete second order autoregressive model ARMA(Pandit and Wu, 1983). 

 

  Mathematically, ARMA discrete model has the following general form (Pandit and Wu, 

1983) 

     �=   �� ��� � �� ��� � � � �� ���� �  � � �� ��� � � � �����—���           (1) 

Where ��� =  response discrepancy from the overall mean of all observations of sample points 

at time     

            t ( i=1,2,……..,n), �� = autoregressive coefficient of lag i (lag being the number of observation interval from 

the  

          present observation towards the past observations),  ��� = disturbance or shock at time t-j (j=1, 2,…..,m), ��= moving average coefficient of lag j. 

Equation (1) is denoted by autoregressive moving average model (ARMA) or order n, n-

1; i.e. ARMA (n, n-1). 
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The � is the white noise represented by the properties  

E(�) = 0,     E(���� )�� � � 

                                                    �� ! "0         $ % 01         $ ! 0'                                                 (2)                                         

Where E is the expectation operator and �� is the Kronecker delta. 

          Equation (1) can also be considered as the representation of a system governed 

with an nth order stochastic differential equation, with a white noise forcing function, 

sampled at uniform interval ∆. Then the characteristic roots of the difference equation 

model defined by  

     

  �1 � ��  ( �  ��   (� � � �  �� (� � = �1 � )�(��1 � )� (� … �1 � )� ( �         (3) 

Where  

B= backshift operator (� ! ���. 

2.4    Second order autoregressive moving average model discrete ARMA(2,1) 

 

This model which later will be used to obtain the variables �� which denotes the 

corresponding natural frequency and ζ which denotes the corresponding damping ratio. 

The formula of ARMA (2, 1) can be written where n=2  

                                      �  ��� ���� � �� ���� !  � � �� ���                             (4)  

And for the autoregressive part  

                              �1 � ��  ( �  ��   (� � = �1 � )�(��1 � )� (�                           (5) 

That is, )�+)�  = ��   
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 )�)�  = ���   
Where )� and )�   are the characteristic roots of the second order linear difference 

equation) given by 

                                                    )� � ��  ) � ��  ! 0 

                                    )�, )� = 
�� (��  + ,�� � 4��                                                (6) 

The variables can be obtained using DDS technique. 

 

2.5     The concept of the Green’s function 

 

The difference equation model are characterized by Green’s Function (impulse response 

function).  (Pandit and Wu, 1983) 

The Green’s Function  can be obtained for ARMA(2,1) by two methods; implicit and 

explicit. 

The implicit method: �  ��� ��� � �� ��� !  � � �� ���  

                                    �1 � ��  ( �  ��   (� � � = �1 � ��(� �                                (7) 

the formula of the Green’s Function is  obtained for the AR (1) and then we compare the 

coefficients � !  ∑ /�0�12 ��� ! �∑ /�0�12 (� ) � 

Substituting this in Eq (7),  �1 � ��  ( �  ��   (� � �∑ /�0�12 (� ) � = �1 � ��(� � 

Since �’s are orthogonal, this gives the operator identity  
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 �1 � ��  ( �  ��   (� � (/2 � /�( � /�(�+……) 3 �1 � (�� 

If the coefficients of equal powers of B  are equated 

0: /2 ! 1 

1: /� � ��  !  ��� 4 /� ! ��  � �� 

2: /� � ��  /� � ��  ! 0 4 /� ! ��� � ��  �� � ��   
And /� ! ��  /��� � ��  /���,          j ≥ 3 

That is, 

                                �1 � ��  ( � ��  (�) /� = 0     j ≥ 2                                             (8) 

In fact, it is more interesting in obtaining the explicit formula of the Green’s Function, 

which will be used later on.  

 

The explicit method: �1 � ��  ( �  ��   (� � = �1 � )�(��1 � )� (� �  ��� ��� � �� ��� !  � � �� ��� �1 � ��  ( �  ��   (� � � = �1 � ��(� � 

� ! �1 � ��(��1 � ��  ( �  ��   (� � �       
Using the concept of partial fractions,  

� !  6�1 � ��)� ��1 � )� )� � . 1�1 � )�(� � �1 � ��)���1 � )� )� � . 1�1 � )�(�8 � 

!  9�)� � ����)� � )� � . 1�1 � )�(� � �)� � ����)� � )� � . 1�1 � )�(�: � 
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 /� ! ; 9�)� � ����)� � )� � . )�� � �)� � ����)� � )� � . )�� : ���0
�12  

Let  

<� ! �)� � ����)� � )� � 

<� ! �)� � ����)� � )� � 

Then 

                                                     /� ! <� . )�� � <� . )��                                                (9) 

In general formula of ARMA(n, n-1), the Green’s Function can be written  /� ! <� . )�� � <� . )�� � � � <� . )��  

Where distinct)��’s can be calculated using 

                                       <� ! =>��?�=>��@A?�=>��BA@���A��?∏ �=>�=D? �DE?DF>                                           (10) 

 

2.6     Auto covariance function of ARMA (2, 1) 

 

To obtain the expression for G� the Green’s Function obtained Eq. (9) is used /� ! <� . )�� � <� . )��  

Hence,  G� ! H������ 

G� ! H IJ; /���K0
�12 L J; /��������0

�12 LM 
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 G� ! J; /���/�0
�12 L � � 

G� ! � � ;N<� . )���� � <� . )����O�0
�12 <� . )�� � <� . )�� � 

G� ! � � ;P<�� . )��)��� � <�� . )��)��� � <� <�. )��)�� �)�� � )���Q0
�12  

G� ! � � R <���1 � )��� . )�� � <���1 � )��� . )�� � <� <��1 � )�)� �)�� � )���S 

G� ! � � T <���1 � )���  � <� <��1 � )�)��U . )�� � � � T <���1 � )��� � <� <��1 � )�)��U . )�� 

Where 

<� ! �)� � ����)� � )� � 

<� ! �)� � ����)� � )� � 

                                            G� ! V� )�� � V� . )��                                                      (11) 

Where  

V� ! � �<� T <��1 � )���  �  <��1 � )�)��U 

V� ! � �<� T <��1 � )���  �  <��1 � )�)��U 

In particular, 

                                                  G2 ! V� � V�                                                          (12) 
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2.7     Second order autoregressive continuous system A(2) 

 

To formulate a continuous time second order autoregressive system, the start is with the 

homogeneous part. 

                                �W� � X�W � X2����� ! 0                                                       (13) 

Where X� ! 2
�� X2 ! ��� 

Where  

��� ! YZ 


 ! [2√YZ 

Where K is the spring constant and C is the damping constant of the second order system 

of damped spring mass system. 

The A (2) system equation is obtained by introducing the forcing function Z (t) as 

                                �W� � X�W � X2����� ! Z���                                                   (14) E_Z���` ! 0 E_Z���Z�� � a�` ! σb�δ�u� 

Z (t) is defined by a covariance function with the Dirac delta δ�u�. The property of Dirac 

delta is used to transmit from the discrete to the continuous system. 
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2.8    Dirac delta function and its properties 

δ�u� "! ∞,          u ! 00,          u % 0 ' 
And                                                        d δ�u�e�e Va ! 1 

Also,           d f�� � a�∞�0 δ�u�Va ! f��� ! d f�a�δ�t � u�Va∞�0                             (15)       

This function, called unit impulse, has played an important role in the analysis of physical 

systems since its use by Dirac in his work on quantum mechanics. Delta function has a 

relation with unit step function  

h��� " 0,       � i 0  1,    � j 0 ' 
The derivative of the unit step function is zero everywhere except at t=0, where it 

approaches infinity because of a discontinuity.  The Dirac delta function is also zero 

everywhere except at t= 0, where it approaches infinity.  Hence, the delta function can be 

considered as the derivative of the unit function, that is, 

 

δ�u� ! ddu  h��� 

the integral of the step function is also defined as  

 

l��� ! m h�a�
�0 Va ! " 0,         � i 01,         � j 0     ' 

 

This function is referred to as a ‘unit ramp.’ This is a continuous function, and it is easy 

to see that further integral of the unit ramp will also be continuous. 
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2.9    The Green’s Function of the A(2) system 

The non-homogeneous formula can be written  

           �W� � X�W � X2����� ! Z��� 

It can be rewritten  

                                                           ���� ! �W� � X�W � X2��� Z��� 

                                                             ���� ! d /�n�∞2 Z�� � n�dv 

                                             ���� ! d /�� � n��0 Z�n�dv                                   (16) 

For any continuous time forcing functionZ�n�. 

Using the concept of delta function that the Green’s Function  /��� is defined by 

equivalent relations 

                                       �W� � X�W � X2�/��� ! δ�t�                                         (17) 

/��� ! m /�n�∞

2 δ�� � n�dv 

The non-homogeneous equation (17) can be solved by reducing it to a homogeneous 

equation with initial conditions.  The initial conditions can be obtained by considering the 

continuity behavior of  /��� and its derivative from equation (17).  Since the delta 

function input is zero up to time t=0, /p ��� ! /��� ! 1         � i 0  
At t = 0, /pp ���, the second derivative of /���, contains the same discontinuity as that of a 

delta function. Therefore,  /p ���, which is the integral of  /pp ���, contains the same 

discontinuity as that of the integral of the delta function , which is a unit step function.   

Hence, 
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 /p �0� ! 1 

Similarly, /���,  the integral of  /p ���, behaves at t = 0 like the integral of the step fnction 

, which is the ramp r(t). Therefore, like r(t), /��� is continuous at t = 0 and hence 

 /�0� ! 0 

Thus, the non-homogeneous equation (17) is equivalent to the homogeneous equation  

                                           �W� � X�W � X2����� ! Z���                                         (18) 

With initial conditions  

 /�0� ! 0,     /p �0� ! 1 

Since the solution of the homogeneous equation is  

 /��� ! q�rs?� � q�rs@� 
Where  �W� � X�W � X2� ! �W � t���W � t�� ! 0 

That is,  

                    t�, t� ! �� (�X� + ,X�� � 4X2 =����
 + ,
� � 1                          (19) 

Substituting the initial conditions,  q� � q� ! 0 q�t� � q�t� ! 1 

and this gives  
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                                          /��� ! u rs?��rs@�v?�v@         � j 00                   w�xyl z{hy'                                   (20) 

 

2.10 Auto covariance of the A(2) 

Substituting /��� in Eq.(16),  

m yv? � yv@t� � t�


�0 Z�n�dv 

and the covariance function of the A(2) can be obtained 

 

G�h� ! �|� m /�n�/�n � h�Vn0
2  

G�h� ! }~@�v?v@�v?@�v@�@ �t�yv? � t�yv@) 

G�0� ! � �|�2t�t��t� � t�� ! � �|�4
��� 

 

2.11   Obtaining the continuous model A(2) from  the discrete model ARMA(2,1) 

 

At the sampled points s = K∆, k = 1,2,…….., the auto covariance  G�h� equals 

                                                              G� ! G�$∆� 

                                                                   ! }~@�v?v@�v?@�v@�@ �t�yv?�∆ � t�yv@�∆) 

                                                                   ! V� )�� � V� . )�� 

Where 
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 V� !  �|�2t��t�� � t���  

V� ! �|�2t��t�� � t���  

)� ! yv?∆ )� ! yv@∆ 

Hence, 

t� ! 1∆ ln )� 

t� ! 1∆ ln )� 

When �� � 4�� j 0 


 ! � _ln�����`�_ln�����`� � 4 Rcosh�� T ��2,���US� 

�� ! 1∆ �_ln�����`�4 � Rcosh�� T ��2,���US�
 

When �� � 4�� i 0 


 ! � _ln�����`�_ln�����`� � 4 Rcos�� T ��2,���US� 
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 �� ! 1∆ �_ln�����`�4 � Rcos�� T ��2,���US�
 

In case of �� � 4�� i 0 the transformation of the parameters is nonunique because they 

involve the cos��that has multiple values.  Therefore, to obtain the parameters the 

following is followed. 

� ! � ln�����2∆  

� ! � ln�����2∆ ,���� � 4�� � 6 2�� � �1������� � 1���2�1 � ���� � ���1 � ������ � 1���8 

�� ! ,��� � �� 


 ! ��� 

 

2.12   Mass-spring-damper system analysis 

By Newton’s law we get the equation of the motion  

f��� � $���� � q V����V� ! Z V�����V��  

Or V�����V�� � [Z V����V� � YZ ���� ! f���Z  

Let  

��� ! YZ 


 ! [2√YZ 
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 �� is called the natural frequency and 
  the damping ration of the spring –mass-damper 

system. It can be rewritten  the equation like  

 V�����V�� � 2
�� V����V� � ������� ! f���Z  

This equation represents the forced vibration of a one-degree-of-freedom system 

subjected to the forcing functionf���. 

 

Using the Green’s function obtained from A(2) allows us to solve the non-homogeneous 

equation with an arbitrary forcing function by expressing the solution as a convolution.  

The solution of the general second order non-homogeneous equation can be expressed as  

 

���� ! m yv? � yv@t� � t� .0
2 1Z f�� � n�Vn 

when 
���� ! δ���,we have ���� ! /��� by the property of the delta function. 

In our case, the importance is obtaining the system variables ��and 
  and then the 

constant of the spring and the damper. This can be done by utilizing the analysis obtained 

from the continuous model A (2). 

 

Obtaining a continuous model such as A(2) from the data by conditional regression  has 

been used in many studies (Pandit and Wu, 1983).   And there are many examples of 

physical systems for which the A (2) model can be conjectured considering the physics of 

a system.   One such example is the Brownian motion of a particle suspended in a fluid.   
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This particle is constantly bombarded by the molecules in the liquid and traverses a path 

known as the Brownian motion, which can be represented by the A (2) system (Pandit 

and  Wu 1983).  The ‘purely random’ force due to the fluctuations in the number of 

molecular collisions can be represented by Z (t), which is the forcing function causing the 

Brownian displacement X (t).   The frictional forces opposing the motion are proportional 

to the velocity and can be represented as a damping force by the term2
�� ����� .   

Similarly, the elastic forces acting on the particle and proportional to the displacement are 

represented by the term�������.  

 

Another example (Pandit, 2001), however, occurs in electrical circuits.  The thermal 

motion of the electrons produces fluctuations n the current and voltage that are called 

‘thermal noise.’  This thermal noise can be very closely represented by Z (t).  When such 

a noise passes through a circuit containing a resistance, a capacitance, and an inductance, 

the output fluctuations can be represented by an A(2) system.  Also, (Pandit 1985) stated 

in a paper that the DDS analysis of the voltage and current signal can be related to the 

characteristics of the power supply and the physics of the electro discharge phenomena. 

 

Consequently, our assumption has a high level of reliability and viability to obtain the 

estimates of physical-mechanical characteristics of human tissue which would reveal 

hidden facts that can be used in the sector of ergonomics to make industries safer and 

more reliable. 
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2.13 The assumptions of this research  

The estimation methodology used in this research functions under a number of 

assumptions. 

•   The first is that there is a valid deformation curve. The deformation curve is 

used to extract the variables of spring and damper constants.  In order to get a 

valid deformation curve a further set of assumptions was made.    

• The first was that the impacted material is homogenous. 

• The reaction duo to the impact is the same throughout its depth.   

• The impacted material must be stationary. 

• It is assumed that the impacted tissue is healthy and the subject has the same 

health condition in all trails.  

• The impacted material has the same consistency for each trial.   

• The impacted material was of sufficient thickness that the penetration of the 

pendulum is constrained only by that material.  

•  The modeling methodology functions under the assumptions that the model used 

which consists of a parallel set of one damper and one spring is appropriate .  
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CHAPTER 3 STATEMENT OF THE PROBLEM 

 

This research utilized data collected where humans were impacted with different energies 

and velocities.  A continuous second order system that represents Mass-spring-damper 

system by fitting a discrete model ARMA(2,1) was applied to the data obtained from 

experiments in which the a discrete data of deceleration of a pendulum was recorded as it 

hit a human shoulder.  The data of the deceleration was integrated twice to obtain the data 

of the displacement.  The integration was done until the maximum displacement occurred 

(velocity = 0).  The ARMA (2, 1) model was fitted using the displacement data using the 

DDS (Data-Dependent-System) technique.  It was then converted to a continuous second 

order autoregressive model A(2) using the concept of Green’s Function and the auto 

covariance.  The A(2) model was used to obtain the physical characteristics of data 

extracted from the experiments. (Pandit 1985). 

 

OBJECTIVES: 

1 - Estimate the dampening constants for the deltoid area of human subjects based on impact 

to that area of the human body. 

2 - Estimate the average, range, variance, and approximate distributions the estimates of 

those constants.   

3 - Investigate the effects of different energies, velocities, and masses of the impacting 

objects on the estimates of those constants. 

4 - Investigate the effects of differing body compositions on the estimates of those constants. 
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5 – Evaluate the possible causes of the relationships between the estimates and the physical 

characteristics of  the impacts. 
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CHAPTER 4 METHOD 

 

4.1   Data used  

The data used in this research was derived from research conducted at the Department of 

Industrial and Management Systems Engineering at the University of Nebraska-Lincoln 

by a Ph.D. student ,( Alkhaledi, 2010), that was presented in the background above. 

 

In this research ninety trails have been analyzed.  Nine combinations of energy and velocity 

for ten subjects were used.  The mass was determined for each trail according to the set of 

Energy and Velocity.  The acceleration data during the impact was used.  A discreet data of 

the displacement could be obtained by integrating the data of the acceleration two times.  

Once, the data of the displacement was obtained, extracting the damping characteristics 

could be done by using the method explained in the background above.  

 

It was assumed that the external pendulum force can be represented by Z (t) which causes 

the displacement obtained X (t) by integrating the experimental deceleration twice.  The 

elastic   resistance of human shoulder is represented by the term�������.  And the damping 

characteristics can be represented by the term2
�� ����� .   Moreover, the composition of the 

tissue of the shoulder was assumed to be homogenous. 

 

4.2 Summary of the procedures 

1- Data of acceleration obtained by the previous research was integrated twice in order 

to obtain the displacement data.  The integration process was done utilizing the 
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concept that the integration represents the area under the curve.   Integrating the 

acceleration curve resulted in a velocity curve.  Once the velocity curve was 

obtained, the concept of the area under the curve was repeated in order to obtain the 

displacement curve. 

2- The principles of time series analysis were applied to the displacement data in order 

to obtain a discrete second order autoregressive model.  This was done by running 

the data of displacement in the DDS program by which the variables of a discrete 

second order autoregressive model were obtained - ARMA (2.1). 

3- The discrete second order autoregressive model was converted into a continuous 

second order autoregressive model A(2).  This was done by using the assumption of 

equal auto covariance, and the concept of the Green’s Function.   As a result, a 

continuous second order autoregressive model was obtained.   

4-  When A(2) was obtained the principles of Mass-spring-damper system analysis can 

be applied. Consequently, physical characteristics of both damping ratio and natural 

frequency were acquired. The breakup of the damping ratio and natural frequency is 

the spring constant K and the damper constant C. 

5- For each set of Energy, velocity, and mass the spring constant and damper constant 

were estimated. 

6- Trends of these variables were studied under different levels of external impact 

stimuli.  These external stimuli were the Energy of the impact, Velocity of the 

impact and the mass of the impacting pendulum.  

7- Correlation analysis was done for the whole data of the estimate.  
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8- Correlation analysis was repeated for the average of the estimate. 

9- Regression analysis was done to find significant variables of estimate of spring 

constant, damper constant. 
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CHAPTER 5 RESULTS 

 

5.1 Estimates 

Estimates of K and C were made for 9 trials for 10 individual subjects giving 90 data points.  

The individual estimates grouped by trial number are contained in Tables 5.1 through 5.9.  

 

Table 5.1: K and C estimates from Trail Number 7 data. 

  

 

 

Table 5.2: K and C estimates from Trail Number 8 

 

Trail  
Subject 

No 
Energy  Velocity  Mass  

Spring constant 

K 

Damper Constant 

C  

8 1 0.75 1.5 0.489 11.613 1.239 

8 2 0.75 1.5 0.489 11.684 1.044 

8 3 0.75 1.5 0.489 12.555 0.373 

8 4 0.75 1.5 0.489 11.583 1.313 

8 5 0.75 1.5 0.489 11.623 1.164 

8 6 0.75 1.5 0.489 11.987 0.710 

8 7 0.75 1.5 0.489 11.606 1.251 

8 8 0.75 1.5 0.489 11.593 1.485 

8 9 0.75 1.5 0.489 11.728 0.978 

8 10 0.75 1.5 0.489 12.622 0.332 

 

 

Trail  
Subject 

No 
Energy  Velocity  Mass  

Spring constant 

K 

Damper Constant 

C  

7 1 0.75 1.25 0.667 15.597 1.662 

7 2 0.75 1.25 0.667 15.606 1.753 

7 3 0.75 1.25 0.667 15.628 1.677 

7 4 0.75 1.25 0.667 16.196 1.666 

7 5 0.75 1.25 0.667 15.611 1.810 

7 6 0.75 1.25 0.667 16.725 0.591 

7 7 0.75 1.25 0.667 16.892 0.508 

7 8 0.75 1.25 0.667 16.183 0.909 

7 9 0.75 1.25 0.667 15.626 1.873 

7 10 0.75 1.25 0.667 15.689 1.470 
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Table 5.3: K and C estimates from Trail Number 9 

 

Trail  
Subject 

No 
Energy  Velocity  Mass  

Spring constant 

K 

Damper Constant 

C  

9 1 0.75 1.75 0.375 8.918 0.855 

9 2 0.75 1.75 0.375 8.832 0.898 

9 3 0.75 1.75 0.375 9.862 0.142 

9 4 0.75 1.75 0.375 9.959 1.086 

9 5 0.75 1.75 0.375 9.661 0.217 

9 6 0.75 1.75 0.375 9.788 1.003 

9 7 0.75 1.75 0.375 9.135 1.553 

9 8 0.75 1.75 0.375 9.227 1.642 

9 9 0.75 1.75 0.375 9.736 0.202 

9 10 0.75 1.75 0.375 9.016 1.434 

 

 

Table 5.4: K and C estimates from Trail Number 16 

 

Trail  
Subject 

No 
Energy  Velocity  Mass  

Spring constant 

K 

Damper Constant 

C  

16 1 1.125 1.25 1 23.650 2.837 

16 2 1.125 1.25 1 23.728 2.356 

16 3 1.125 1.25 1 24.197 3.961 

16 4 1.125 1.25 1 23.638 2.746 

16 5 1.125 1.25 1 23.654 3.004 

16 6 1.125 1.25 1 24.009 1.839 

16 7 1.125 1.25 1 23.695 2.437 

16 8 1.125 1.25 1 23.639 2.876 

16 9 1.125 1.25 1 23.631 2.749 

16 10 1.125 1.25 1 23.682 2.497 
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Table 5.5: K and C estimates from Trail Number 17 

 

Trail  
Subject 

No 
Energy  Velocity  Mass  

Spring constant 

K 

Damper Constant 

C  

17 1 1.125 1.5 0.734 18.213 0.910 

17 2 1.125 1.5 0.734 17.853 1.172 

17 3 1.125 1.5 0.734 17.583 2.664 

17 4 1.125 1.5 0.734 18.498 1.123 

17 5 1.125 1.5 0.734 17.445 1.715 

17 6 1.125 1.5 0.734 18.438 0.736 

17 7 1.125 1.5 0.734 18.256 0.888 

17 8 1.125 1.5 0.734 19.422 4.029 

17 9 1.125 1.5 0.734 17.482 1.633 

17 10 1.125 1.5 0.734 17.487 1.609 

 

Table 5.6: K and C estimates from Trail Number 1 

 

Trail  
Subject 

No 
Energy  Velocity  Mass  

Spring constant 

K 

Damper Constant 

C  

18 1 1.125 1.75 0.562 15.291 0.343 

18 2 1.125 1.75 0.562 13.374 1.279 

18 3 1.125 1.75 0.562 13.321 1.332 

18 4 1.125 1.75 0.562 13.592 2.208 

18 5 1.125 1.75 0.562 13.662 0.915 

18 6 1.125 1.75 0.562 14.407 0.430 

18 7 1.125 1.75 0.562 13.434 1.177 

18 8 1.125 1.75 0.562 15.129 0.121 

18 9 1.125 1.75 0.562 13.374 1.279 

18 10 1.125 1.75 0.562 13.337 1.727 

 

Table 5.7: K and C estimates from Trail Number 25 

 

Trail 
Subject 

No 
Energy  Velocity  Mass  

Spring constant 

K 

Damper Constant 

C  

25 1 1.5 1.25 1.333 31.550 3.435 

25 2 1.5 1.25 1.333 31.560 3.361 

25 3 1.5 1.25 1.333 31.644 3.130 

25 4 1.5 1.25 1.333 31.510 3.779 

25 5 1.5 1.25 1.333 31.498 3.698 

25 6 1.5 1.25 1.333 32.172 2.909 

25 7 1.5 1.25 1.333 31.518 3.583 

25 8 1.5 1.25 1.333 31.779 4.626 

25 9 1.5 1.25 1.333 31.504 3.767 

25 10 1.5 1.25 1.333 31.579 3.280 
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Table 5.8: K and C estimates from Trail Number 26 

 

Trail  
Subject 

No 
Energy  Velocity  Mass  

Spring constant 

K 

Damper Constant 

C  

26 1 1.5 1.5 0.979 23.434 1.973 

26 2 1.5 1.5 0.979 23.560 3.361 

26 3 1.5 1.5 0.979 23.389 2.055 

26 4 1.5 1.5 0.979 23.164 2.695 

26 5 1.5 1.5 0.979 23.195 2.479 

26 6 1.5 1.5 0.979 23.164 2.767 

26 7 1.5 1.5 0.979 23.477 1.917 

26 8 1.5 1.5 0.979 23.765 1.607 

26 9 1.5 1.5 0.979 23.296 2.179 

26 10 1.5 1.5 0.979 24.483 1.902 

 

Table 5.9: K and C estimates from Trail Number 27 

 

Trail  
Subject 

No 
Energy  Velocity  Mass  

Spring constant 

K 

Damper Constant 

C  

27 1 1.5 1.75 0.75 18.313 1.197 

27 2 1.5 1.75 0.75 19.554 3.968 

27 3 1.5 1.75 0.75 18.313 1.013 

27 4 1.5 1.75 0.75 18.383 3.197 

27 5 1.5 1.75 0.75 17.950 1.131 

27 6 1.5 1.75 0.75 18.427 1.041 

27 7 1.5 1.75 0.75 17.194 1.814 

27 8 1.5 1.75 0.75 17.756 2.250 

27 9 1.5 1.75 0.75 17.230 1.504 

27 10 1.5 1.75 0.75 18.310 1.130 

 

 

Overall the estimated values of the spring constant, K, vary from 8.832 to 32.172 with a 

range equal 23.339 for the 90 trails.  Damper constant, C, values fluctuate from 0.121 to 

4.626 with a range equal 4.500 for the 90 trails. 

 

5.2    Average, Standard Deviation, and Range by trail 

The averages, range, standard deviation of the estimates for K and C for each trail are given 

in the Tables 5.10 and 5.11.  
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Table 5.10: Average data with regard to Spring Constant K 

 

Trail  Energy  Velocity  Mass  
Average of   

Spring constant K 
Std Dev K Range K 

7 0.75 1.25 0.666 15.975 0.497 1.294 

8 0.75 1.5 0.489 11.859 0.402 1.038 

9 0.75 1.75 0.375 9.413 0.429 1.126 

16 1.125 1.25 1.000 23.75 0.192 0.565 

17 1.125 1.5 0.734 18.068 1.977 1.977 

18 1.125 1.75 0.562 13.892 0.765 1.970 

25 1.5 1.25 1.333 31.631 0.208 0.673 

26 1.5 1.5 0.979 23.493 0.3968 1.319 

27 1.5 1.75 0.750 18.143 0.677 2.360 

 

Table 5.11: Average data with regard to Damper Constant C 

 

Trail  Energy  Velocity  Mass  

Average of 

Damper Constant 

C  

Std Dev C Range C 

7 0.75 1.25 0.666 1.392 0.519 1.364 

8 0.75 1.5 0.489 0.989 0.395 1.152 

9 0.75 1.75 0.375 0.903 0.561 1.943 

16 1.125 1.25 1.000 2.730 0.547 3.105 

17 1.125 1.5 0.734 1.648 1.009 3.292 

18 1.125 1.75 0.562 1.081 0.645 2.086 

25 1.5 1.25 1.333 3.557 0.470 1.716 

26 1.5 1.5 0.979 2.293 0.526 1.753 

27 1.5 1.75 0.750 1.825 1.021 2.955 

 

The K values averaged over subjects for each trial varied from 9.413 to 31.631 with a range 

of 22.217 as compared to that of the individual values of 23.339.   

The C values averaged over subjects for each trial varied from 0.903 to 3.557 with a range 

of 2.6535 as compared to that of the individual values of 4.626.   

 



33 

 

Note that the range for the average of the trial estimates for K is not considerably less than 

the overall range for the individual values.  It is different for C where the range for the 

averages is almost half that of the individual values. 

 

5.3     Correlation Analyses 

The correlation values for K and C for all of the data are contained in Tables 5.12 and 5.13.  

Additionally, the absolute values are graphed in descending values in Figures 5.1 and 5.2. 

For all variables considered statistically significant with K, correlations values ranged from 

+ 0.997 for Mass down to - 0.024 for Skin Fold thickness.  Meanwhile, Mass was the only 

one variable deemed statistically significant with C and its correlation is + 0.787. 

 

Table 5.12: Correlation(Row data) with Spring Constant K 

 

Variable  
Correlation  with Spring 

Constant K  

 P-Value 

Mass  0.997 0.000 

Mass Seq 0.980 0.000 

Energy * Mass  0.959 0.000 

Velocity * Mass  0.933 0.000 

Energy* Mass *Velocity  0.866 0.000 

Energy  0.752 0.000 

Energy Seq  0.748 0.000 

Velocity - 0.625 0.000 

Velocity Seq  - 0.620 0.000 

Energy * Velocity  0.369 0.000 

 Skin Fold - 0.024 0.818 

Skin Fold+ Muscle Thickness - 0.015 0.887 

Muscle Thickness  - 0.010 0.912 

 

 



 

 

Figure 5.1:  Absolute values of the Correlation values for the Spring Constants K using 

Table 5.13: Correlation (Row data) with Damper Constant C

 

Variable  

Mass  

Mass Sq 

Energy * Mass  

Velocity * Mass  

Energy* Mass *Velocity 

Energy  

Energy Seq  

Velocity 

Velocity Seq  

Energy * Velocity 

Skin Fold+ Muscle Thickness

Muscle Thickness 

 Skin Fold 
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0.8

0.9

1

Spring Constant K Correlation  

Figure 5.1:  Absolute values of the Correlation values for the Spring Constants K using 

all of the data 

Correlation (Row data) with Damper Constant C 

Correlation with Damper 

Constant C  

0.787 

0.785 

 0.751 

 0.720 

Energy* Mass *Velocity  0.665 

0.567 

0.565 

- 0.500 

- 0.493 

Energy * Velocity  0.258 

Skin Fold+ Muscle Thickness 0.079 

Muscle Thickness  0.073 

0.072 

Spring Constant K Correlation  
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Figure 5.1:  Absolute values of the Correlation values for the Spring Constants K using 

P-Value 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.014 

0.458 

0.490 

0.496 



 

 

Figure 5.2: Absolute values of the Correlation values for the C using all of the data.

The correlation process was repeated for the averages of the constant

5.10 and 5.11. 

Table 5.14: Correlation (Average data) with Spring Constant K

 

Variable 

Mass Seq

Energy * Mass 

Velocity * Mass 

Energy 

Energy Seq 

Velocity

Velocity Seq 

Energy * Velocity 

 Velocity*Energy  

 Skin Fold

Muscle Thickness 

Skin Fold+ Muscle Thickness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Damper Constant C Correlatin  

Figure 5.2: Absolute values of the Correlation values for the C using all of the data.

 

correlation process was repeated for the averages of the constant estimates

Table 5.14: Correlation (Average data) with Spring Constant K 

Variable  Correlation with The Constant K 

Mass  0.999 

Mass Seq 0.983 

Energy * Mass  0.962 

Velocity * Mass  0.935 

Energy  0.754 

Energy Seq  0.750 

Velocity - 0.626 

Velocity Seq  - 0.622 

Energy * Velocity  0.370 

Velocity*Energy   0.370 

Skin Fold - 0.191 

Muscle Thickness  - 0.176 

Skin Fold+ Muscle Thickness - 0.137 

Damper Constant C Correlatin  

35 

 

Figure 5.2: Absolute values of the Correlation values for the C using all of the data. 

estimates from Tables 

Constant K  



 

Figure 5.3: Absolute values of Correlation (Average data) with Spring Constant K

Table 5.15: Correlation (Average data) with Damper Constant C

 

Variable 

Mass

Mass Sq

Energy * Mass

Velocity * Mass

Energy

Energy Sq

Velocity

Velocity Sq

Skin Fold

Skin Fold+ Muscle Thickness

Energy * Velocity

Velocity*Energy

Muscle Thickness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Spring Constant K Correlation  

 

Absolute values of Correlation (Average data) with Spring Constant K

 

Table 5.15: Correlation (Average data) with Damper Constant C 

Variable  

 

Correlation with Damper Constant 

C 

  

Mass 0.985 

Mass Sq 0.983 

Energy * Mass 0.940 

Velocity * Mass 0.902 

Energy 0.710 

Energy Sq 0.708 

Velocity - 0.626 

Velocity Sq - 0.618 

Skin Fold 0.456 

Skin Fold+ Muscle Thickness 0.366 

Energy * Velocity 0.323 

Velocity*Energy 0.323 

Muscle Thickness 0.283 

 

 

Average Spring Constant K Correlation  

36 

 

Absolute values of Correlation (Average data) with Spring Constant K 

Correlation with Damper Constant 

Average Spring Constant K Correlation  



 

Figure 5.4: Absolute values of Correlation (Average data)
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Figure 5.4: Absolute values of Correlation (Average data) with Damper Constant C
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Figure 5.6: Depiction the relation between C and Mass 

 

5.4   Stepwise regression 

In addition to correlation analysis, a step-wise analysis has been conducted. Table 5.16 

contains the variables available for inclusion in the stepwise analyses.  Variables that were 

significant in both spring constant and Damper constant are contained in Table 5.17. Table 

5.18 presents the variables included with the model R square values.  
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Table 5.16:  A list of variables available for inclusion in the stepwise regression procedure. 

Variables Available 

Energy 

Velocity 

Mass 

Skin Fold Thickness 

Muscle Thickness 

Skin Fold + Muscle Thickness 

Velocity Square 

Mass Square 

Energy * Velocity 

Energy * Mass 

Velocity * Mass 

Energy Square 

 

Table 5.17: Stepwise regression results of spring and Damper Constants. 

 

 

Model 

 

 

 

Regression of the Constant K Regression of  the Constant C 

 

Variables 

Entered 

Variables Not 

Entered 

Variables 

Entered 

Variables Not Entered 

1 Mass Mass Sq Mass Mass Sq 

2 Skin Fold 

Thickness 
Energy * Mass 

 
Energy * Mass 

  Velocity * Mass  Velocity * Mass 

  Energy  Energy 

  Energy Sq  Energy Sq 

  Velocity  Velocity 

  Velocity Sq  Velocity Sq 

  Energy * Velocity  Energy * Velocity 

  Velocity*Energy  Velocity*Energy 

  Muscle Thickness  Skin Fold Thickness 

  Skin Fold+ Muscle 

Thickness 

 
Muscle Thickness 
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Table 5.18: Variables included with the model R square values 

Model Summary 

Spring Constant K Damper Constant C 

Model R   Square Model R Square 

1 Mass 0.994 1 Mass 0.619 

2 Skin Fold Thick 0.991   

 

 

Twelve variables were available for inclusion in the step-wise analysis.  Mass was 

significant in both spring and damper constant.  Additionally, skin fold thickness was 

statistically significant in spring constant, K, which can be justified by the elasticity human 

skin has Daly (1982).  As a result, when skin thickness increases it is expected to see an 

increase in spring constant.  Step-wise analysis confirmed that Mass found to be statistically 

significant in both spring constant and damper constant.  

The regression equations are:  

 

K = + 0.695 + 23.21 Mass +  0.0028 SFT,    R^2 = 0.99    

C = - 0.444 + 2.962 Mass,                              R^2 = 0.97 
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CHAPTER 6 DISCUSSION 

 

The discussion chapter examines the estimates obtained, the variances of those estimates, 

the ranges of those estimates, the resulting correlation values, and the resulting regression 

relationships.  This is followed by an examination of the results concerning what was 

expected and what was not expected with an effort to explain the possible reasons for the 

unexpected very high correlation values and subsequent regression analyses associated 

the estimated values of K and C and the mass of the pendulum. 

 

6.1 Spring Constant – K  

The estimates of K had an average of 18.470 with a variance of 42.872 and a range of 

23.339 for all 90 estimates obtained.  The values ranged from 8.833 to 32.172.  This 

represents a ratio of 3.64 or a greater than threefold difference in estimates that are 

supposed to be estimating the same parameter, K, for the same material. 

 

When the estimated values for K were averaged for each trial those averages had a range 

of 22.218.  These averages ranged from 9.414 to 31.632.  This represents a ratio of 3.36 

which is still greater than a threefold difference and does not represent much difference 

from the values obtained for the individual values.  The mass for the individual trials 

were all different so trial and mass in this analysis are representing the same thing. 

 

The very wide range of the 90 estimates and the very wide range of the trial averages of 

these estimates are a concern.  Supposedly, these estimates should be estimating the same 
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parameter.   The relationships between the estimates and the physical variables involved 

in the experimentation were examined.  Mass was the variable with the highest 

correlation with K (0.997) and all of the five highest correlation values had mass as a 

component.  When a stepwise regression was conducted, mass was the only variable 

included in the final model.  Therefore, for this experimentation, the estimates were 

highly dependent on the mass of the impacting pendulum.  This is problematic and the 

possible reasons for its occurrence are examined in more detail later in this chapter. 

 

6.2 Damper Constant – C  

The estimates of C had an average of 1.824 with a variance of 1.120 and a range of 4.504 

for all 90 estimates obtained.  The values ranged from .0122 to 4.626.  This represents a 

ratio of 37.90 or a greater than thirty fold difference in estimates that are supposed to be 

estimating the same parameter, C, for the same material. 

 

When the estimated values for C were averaged for each trial those averages had a range 

of 2.653.  These averages ranged from 0.904 to 3.557.  This represents a ratio of 3.936 

which is still greater than a threefold difference but not the extreme of 37.91. 

 

The very wide range of the 90 estimates and the very wide range of the trial averages of 

these estimates are of concern.  Once again, supposedly, these estimates should be 

estimating the same parameter.   The relationships between the estimates and the physical 

variables involved in the 
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experimentation were examined.  Mass was the variable with the highest correlation with 

C (0.787) and all of the five highest correlation values had mass as a component.  When a 

stepwise regression was conducted, mass was the only variable included in the final 

model.  Therefore, for this experimentation, the estimates were highly dependent on the 

mass of the impacting pendulum.  As was the case with K, this is problematic and the 

possible reasons for its occurrence are examined in more detail later in this chapter. 

 

The estimates of K and C, which represent the elastic resistance of the tissue, were found 

to be in agreement of the literature (Maurel et al., 1998).  Maurel studied the mechanical 

properties of human tissues and the relationship between stress and strain is depicted in 

Figure 6.1.  This curve can be divided into three stages.  In the first stage (I), at low 

strain, collagen fiber response can be neglected and the elastin fibers are responsible for 

the skin stretching and the relation between stress-strain is approximately linear and the 

angle is very low.  This implies that the elastic resistance is low when the stress applied is 

low.  

 

Figure 6.1 Stress-strain diagram for skin showing the different stages (Maurel et al., 1998) 
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In the second stage, (II), a gradual straightening of undulated collagen fibers causes an 

increase in skin tissue stiffness.  Collagen fibers are the main components of the skin and 

they are strong and stiff.  There is an intimate connection between the various skin layers.  

Collagen fibers are the major components of the dermis (77% of the fat-free dry weight) 

and form an irregular network of wavy coiled fibers which run parallel with the human 

skin surface (Finlay, 1969). 

 

Collagen fibers have high strength (tensile strength of 1.5-3.5 Mega Pascal), low 

extensibility (rupture at strains in the order of 5-6%), and high stiffness (Young�s 

modulus approximately 0.1 Giga Pascal (Manschot, 1985) to 1 Giga Pascal in the linear 

region (Maurel et al., 1998). 

 

In the third stage (III), collagen fibers are straight and are at high levels of strain.  The 

stress-strain relationship becomes linear again but with an angle is very steep.  This 

means that elastic resistance of the skin is very high when the applied stress is high.  In 

this investigation of both K and C, it was found that these estimates have a strong 

positive correlation with mass.  It was found that the correlation between mass and k was 

0.992 with P-value approaching zero and 0.787 with P-value is almost zero with C.  

Because these estimates represent the elastic properties of the tissue it means that when 

mass increases the elastic resistance increases.  When the findings of Maurel et.al.  are 

examined, stress can be broken up into its initial component which is (Force /Area).  Area 
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is a fixed variable in our estimate and the force can be represented by mass (F= m*a, 

Newton’s law).  As a result, it can be said that when mass increases, the elastic resistance 

increases and this was what the analysis of the estimate confirmed.    

 

In phase (I) as shown in Figure 6.1, skin demonstrates elastic behavior, while in phase 

(II) and (III) skin shows visco-elastic behavior.  It seems that when the mass is relatively 

small the tissue demonstrates elastic behavior in which the spring constant takes most of 

the responsibility protecting the inner tissue.  And with larger masses it appears that the 

tissue shows visco-elastic behavior which may mean that a combination of the spring and 

the damper is resisting the impact.  It seems reasonable that the estimates of K and C are 

explaining logically the finding found by Maurel et.al. 

 

6.3 Analyses  

The methods of analysis used to analyze the data obtained were – correlation analysis and 

stepwise regression.  It was found that mass’s relationships with both estimated values of 

spring and damper constants are very linear as is depicted in Figures 5.5 and 5.6.  As mass 

increased, the spring constant increased.  The same was true for the damper constant.  The 

graphs show that Mass and the spring constant have an almost a perfect linear relationship 

(R= 0.999).   This is also true for the damper constants (R= 0.985).  This might imply that 

the tissue is increasing its elastic resistance to counter the stimuli caused by the increases in 

the mass of the impacting object.  It is possible that the system of the underlying tissues 



46 

 

might change their characteristics in order to absorb as much energy as it can to prevent 

more penetration into the tissue to avoid damage.   

 

Correlation analysis showed that both the spring constant, K, and the Damper constant, 

C, were highly correlated with Mass.  Stepwise regression showed that Mass was found 

to be a statistically significant predictor of both spring constant and damper constant.  

These results imply that mass is the most important variable affecting damping 

characteristics. 

 

From Tables 5.12, 5.13 and 5.14 it is apparent that no personal factors (Skin- Fold, Muscle, 

and the Skin-Fold plus Muscle) were statistically significant for the correlation analyses, and 

the stepwise regression analyses.  It was expected that these characteristics would affect the 

estimates.   Therefore, these results might imply that the human tissues in the area tested 

might have similar damping characteristics regardless of the thickness of the skin or the 

muscle layers.  

 

6.4 Rationale 

It is apparent that for this data the mass of the impacting object affects damping 

characteristics of the tissue.   

Mathematically, mass, energy, and velocity are components that represent the kinetic energy 

of the impacting object such that once two of the three are set, the other is determined.  The 

experimental data used to estimate the constants had different levels of energy, velocity and 
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mass.  The mathematical relationship is that the kinetic energy of a moving object is equal to 

the mass times the velocity squared.  For each trial mass was adjusted to achieve specified 

levels of energy and velocity.  In the estimating process mass was the dominant factor.  

Energy and Velocity were highly correlated with the estimates of C and K but were 

secondary to Mass such that the models arrived at using stepwise regression, only Mass was 

included.  Mass was utilized directly in the modeling process.  Energy and Velocity were 

included indirectly as they would influence the characteristics of the acceleration curve and 

therefore the deformation curve.  Increasing the mass may cause the tissues to alter their 

damping characteristics.  From the estimates obtained, it appears that the limits of this 

change of dampening characteristics was not reached.  

 

The estimation methodology used in this research functions under a number of assumptions.  

The first is that there is a valid deformation curve.  The deformation curve is used to extract 

the variables of spring and damper constants.  In order to get a valid deformation curve a 

further set of assumptions was made.   The first was that the impacted material is 

homogenous and the reaction duo to the impact is the same throughout its depth.  Moreover, 

the impacted material must be stationary.   Also, it is assumed that the impacted tissue is 

healthy and the subject has the same health condition in all trails.  The second assumption 

was that the impacted material have the same consistency for each trial.  The third 

assumption was that the impacted material was of sufficient thickness that the penetration of 

the pendulum is constrained only by that material.  This is assumption is aimed to eliminate 

the possibility of a wall effect.   Additionally, the modeling methodology functions under 
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the assumptions that the model used which consists of a parallel set of one damper and one 

spring is appropriate and a strategy of converting the discreet model to a continuous model 

using equal covariance is valid.   

 

The estimates obtained have a wide range that is highly associated with mass.  This may 

indicate that one or more of the assumptions given above are not met.  Likely reasons for 

this are: 

• Experimental method 

o Subject anticipation 

o Involuntary muscle contraction 

• Modeling 

o Infinite material/Wall effect 

o Equal covariance 

o Appropriate model 

 

6.4.1 Subject Anticipation.  It is possible that the subjects anticipated the impact differently 

for different pendulum masses.  The experimental methodology was such that the subjects 

observed the mass changes for each trial.  As a result, the subjects may have anticipated a 

stronger impact when the mass was increased and therefore might have allowed them to 

unconsciously tense their muscle in the impact area.  It is reasonable to expect higher 

resistance which translates to higher estimates of the spring constant and the damper 

constant for a more flexed or rigid muscle.  Therefore, when the mass of the impacting 

object increases the subject’s anticipation of the impact might unconsciously increase the 
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stiffness of the muscle in the impacted area resulting in less deformation and therefore less 

estimated displacement. 

 

6.4.2 Involuntary Muscle Contraction.  The only active action a muscle can perform is to 

contract and shorten its length.  Muscle fibers are enervated by motor nerves emanating 

from the spinal cord.   Muscles can be enervated at a conscious level or on a reflex level.  

Reflexes require a minimum of two neurons, sensory neuron (input) and a motor neuron 

(output).   Sensory neuron are sensitive to a wide variety of stimuli.  Once stimulated, they 

send a signal toward the central nerves system (Robert. 2003).  The sensory neuron synapses 

with a motor neuron which innervates the effecter tissue which could contract the muscle 

fibers.  (Sanders and McCormick, 1993 , Jensen and Murray,2003). 

 

 Spinal reflexes happen very quickly.  This is because they involve a few number of neurons 

and because the electrical signal is not required to travel to the brain and back.  Spinal 

reflexes only go to the spinal cord and back.  This is a much shorter distance and faster than 

traveling to the brain (Jensen and Murray,2003 , Winter, Sharon,2003).  Additionally there 

is no brain processing time.    

Therefore, it is possible that the larger the mass of the impacting pendulum the more 

reflexive action of the muscle to the impact.  As a result, the relationship between the mass 

of the pendulum and the estimated constants might be attributed to this muscle reflex 

property which causes the muscle contract unconsciously and be more rigid resulting in an 
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increase its resistance and therefore the estimates of the spring constant and damper 

constant. 

 

6.4.3 Wall Effect.  The experimentation used to estimate the spring and dampening 

constants used live human subjects.  The thickness of the skin and muscle of these subjects 

varied from 0.5 to 1.4 mm and 2.2 to 4.9 mm respectively.  This was supported by bone – a 

fairly rigid material.  The estimating process assumes a homogenous material of sufficient 

depth without obstruction.( Fujii, Y. (2005 and Luciana,2006).  Therefore, the amount of 

material impacted and the rigid backing may have affected the resulting estimates.  

Increasing the mass might make it more likely that the rigid bone backing would affect the 

estimates in such a way that the values increased as mass increased.  The reasoning on this is 

that the limited depth of the elastic material and the presence of bone as a support material 

would cause the pendulum to penetrate less than would be expected with an increase in 

mass.  It is not that the penetration was less, it is that the penetration was less than would be 

expected with an increase in mass.   It can be that when the pendulum is confronted by a 

solid bone, the kinetic energy would be transferred to the bone, or even the whole body of 

the subject.  

 

6.4.4 Equal Auto Covariance.  A basic assumption of the modeling process used here is 

that the discreet second order autoregressive model and the continuous second order 

autoregressive which represents mass-spring-damper system have equal covariance.  It can 

be that converting the discreet second order model into a continuous second order model of 
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the displacement data based on the assumption of equal covariance could be a reason for 

having a wide range of estimates with high correlations with mass.  It was stated in the 

literature concerning the use of this model that the estimates obtained should be used with 

caution and should be used to conceive trends and behaviors (Pandit and Wu 2001). 

 

6.4.5 Appropriate Modeling.  It was assumed that human tissue is similar to the system of 

one damper and one spring in parallel.  It could be that the system hypothesized is not 

appropriate.  It could be just a spring, just a damper, or a combination of a set of dampers 

and springs.  Also, a complex combination of springs and dampers might represent the tissue 

better than the system used.  Using a complicated model would require the development of a 

methodology different from the one used in this research. It might require a tissue to be 

subjected to more complicated testes.  Therefore, it is possible that the model of a single 

spring and a single damper is not appropriate. 
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CHAPTER 7 SUMMARY AND CONCLUSIONS  

 

7.1   Summary 

    This research has been conducted to study and estimate the damping characteristics of 

human soft tissue.  Reviewing the available literature revealed that there is a little 

knowledge regarding damping characteristics of human tissue.  

 

     This research utilized data collected where human deltoid muscles were impacted with 

different energies and velocities.  Different energy and velocity combinations were in 

part achieved by varying the mass of the pendulum.   A continuous second order system 

that represents Mass-spring-damper systems by fitting a discrete model ARMA(2,1) was 

applied to the data obtained from experiments in which the a discrete data of the 

deceleration of a pendulum was recorded as it impacted a human shoulder.  The data of 

the deceleration recorded was integrated twice to obtain the data estimates of the 

displacement.  The integration was done until the maximum displacement occurred 

(velocity = 0).  The discreet ARMA (2, 1) model was fitted using the displacement data 

and using the DDS (Data-Dependent-System) technique.  It was then converted to a 

continuous second order autoregressive model A(2) using the concept of Green’s 

Function and the auto covariance.  The A(2) model was used to obtain the physical 

characteristics of data extracted from the experiments. (Pandit 1985). 
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   The continuous second order model obtained considered as mass-spring-damper system 

to represent the resistance the tissue makes when subjected to an impact. (Pandit 1985).  

   The external pendulum force can be represented by Z(t) which causes the displacement 

obtained X(t) by integrating the experimental deceleration twice.  The elastic resistance 

of human tissue is represented by the term �������.  And the damping characteristics can 

be represented by the term2
�� ����� .  

 

   Utilizing the principles of a mass-spring-damper system enabled the estimation of the 

spring constant (K) and damper constant (C) for each trail of the experiment.  Correlation 

and stepwise regression analysis were used to study the trends of the numerical estimates 

obtained of damping characteristics K and C. 

 

7.2   Conclusions 

Estimated constants for C and K varied from 0.903 to 3.557 and 9.413 to 31.631 

respectively.   

No past estimates for C and K were found in the literature so it is impossible to determine 

if these estimates are reasonable or not. 

The estimates varied very widely which is concerning.  The possible reasons for these 

large variations were explored in the preceding section.  Any of them individually, or in 

combination, may be responsible for this wide variation. 

The mass of the impacting object was the dominant variable in determining the estimates 

of the spring and dampening constants. 
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The methodology utilized to estimate the constants did not consider either the size or 

shape of the impacting object.  This may be a serious shortcoming of the methodology. 

 

Estimating the dampening constants of human tissue is problematic.  Humans are not 

homogenous – they differ in composition.  They are alive and react in ways that might 

affect the results.  In this experimentation, the subjects might have moved, anticipated the 

impact, or had a reflex action that changed the resulting data collected.  Any of these 

could affect the resulting estimates.  Furthermore, the depth of the tissue and the fact that 

it is backed by rigid material, bone, would affect the estimates and would affect those 

situations involving the most deformation or penetration.   Finally, the tissues impacted 

were composed of two layers that were not consistent in thickness from subject to 

subject.  This research essentially assumed homogenous material. 
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CHAPTER 8 LIMITATIONS AND FUTURE STUDY 

 

8.1 LIMITATIONS 

 It was of the importance to study the effect of the size of the impacting head but due to 

the use of only one ball size, size was not taken into account.  Also, the size of the 

impacting object was not included in the model and the size can be studied by repeating 

the analysis using the same model.  This is one of the limitations in this research.  Also, 

the levels of energies and velocities used were restricted to a narrow range.  Moreover, 

the impacting spot was fixed in one area.  There could be different results since the tissue 

might be different.  Additionally, due to the use of live subjects this research encountered 

problems that might have affected the results.  For instance, subjects must have 

anticipated the impact, had unconscious reflex, and moved.  For this reason, these 

difficulties had made the research limited to human reaction which might have interfered 

in the results. Finally, it was of the interest to study the effect of the shape of the 

impacting object but it was not addressed in this research. 

 

8.2 FUTURE STUDY 

Future studies ought to address the limitations explained above.  However, relationships 

between damping characteristics and clinical needs should be studied.  In addition, it is 

highly recommended  a future study using different set of spring and damper.  For 

instance, a series set of spring and damper or a combination of more than one spring 

and/or one damper.   
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  Furthermore, it is recommended the effect of the size of the impacting object be 

investigated.  One way to do this is by repeating the method of analyses using data 

derived from different ball size.  Also, it is recommended to address the effect of the 

shape of the impacting object. 

 

In addition, it is recommended to study these estimate before the point of zero velocity.  

This would be lucrative and gives more understanding to what affect these estimates.  

 

Finally, more studies, better guidelines and safety precautions can add important 

knowledge to have a safer work place and more comfortable work environment for 

workers.  And also additional studies would be key of ergonomists and scientists 

developments and to better understand of damping characteristics of human tissue. 
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