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Abstract 
We propose a shape optimization method over a fixed grid. 
Nodes at the intersection with the fixed grid lines track the do-
main’s boundary. These “floating” boundary nodes are the 
only ones that can move/appear/disappear in the optimiza-
tion process. The element-free Galerkin (EFG) method, used 
for the analysis problem, provides a simple way to create these 
nodes. The fixed grid (FG) defines integration cells for EFG 
method. We project the physical domain onto the FG and nu-
merical integration is performed over partially cut cells. The 
integration procedure converges quadratically. The perfor-
mance of the method is shown with examples from shape op-
timization of thermal systems involving large shape changes 
between iterations. The method is applicable, without change, 
to shape optimization problems in elasticity, etc. and appears 
to eliminate non-differentiability of the objective noticed in fi-
nite element method (FEM)-based fictitious domain shape op-
timization methods. We give arguments to support this state-
ment. A mathematical proof is needed.

Keywords: fictitious domain, element-free Galerkin, mesh-free 
methods, shape optimization, thermal fins, fixed grid

1 Introduction

Solving shape-optimization problems with the classi-
cal boundary variation technique requires the change of 
position for the discretization nodes. If the finite element 
method (FEM) is used in this context, the need of remesh-
ing after large shape-changes that lead to mesh distortion 
increases the computational cost, and data transfer from 
the old to the new mesh introduces errors. Excessive dis-
tortion of the finite element mesh introduces numerical er-
rors that rend the optimization iterations unreliable. Mesh-
free methods have been applied to shape optimization 
problems to eliminate the need for remeshing (e.g., Grinde-
anu et al. 1999; Bobaru 2001; Bobaru and Mukherjee 2002; 
Kim et al. 2002; Bobaru and Rachakonda 2004a). In Bobaru 

and Rachakonda (2004a), some limitations still exist for 
very large shape changes: nodes have to be arranged in col-
umns for vertical shape changes to avoid the material over-
lap, and when the shape changes are too large, regions of 
very low node density may appear. In this situation, repo-
sitioning and insertion of new nodes is needed.

Fictitious domain methods also avoid remeshing. Some 
recent results on the application of fictitious domain meth-
ods to shape optimization problems are published in 
Haslinger and Mäkinen (2003), Haslinger et al. (2001a), 
Haslinger et al. (2001b). In these works, the FEM is used 
and one major problem is that the objective function can 
loose differentiability, as noted in Haslinger and Mäkinen 
(2003) pp. 187–189. In this case, special optimization algo-
rithms for non-smooth optimization have to be used, re-
sulting in a computational cost penalty. A combination of 
the fictitious domain method and moving mesh method in 
the FEM context is reported in Mäkinen et al. (2000), and 
the non-smooth objective function and locking effects ob-
served in fixed mesh methods are apparently eliminated. 
Some of the advantages of the fictitious domain method, 
however, are lost as remeshing at the boundary becomes 
complex, and the discrete state equations must be formed 
in each iteration. Another approach to eliminating the non-
smoothness of the objective function in the fictitious do-
main methods has been recently proposed as a geome-
try projection method on a regular finite element grid in 
Norato et al. (2004). The non-smoothness of the objective 
function is avoided using a problem-dependent mollifica-
tion method. 

In the fictitious domain method for shape optimization, 
computations are carried out in a fixed, auxiliary domain, 
Ω, of a simple shape that embeds the physical domain, 
ω, of the structure under analysis (see e.g., chapter 6 in 
Haslinger and Mäkinen 2003). Material projection methods 
(e.g., Garcia-Ruiz and Steven 1999; Norato et al. 2004) are 
special versions of the fictitious domain method in which 
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a material measure specifies the distribution of solid and 
void subregions in Ω. 

The method we propose here originated in the master’s 
thesis of Rachakonda (2003) and can be thought of as a ma-
terial projection method as the physical domain, ω, is pro-
jected over a fictitious domain, Ω, and shape changes take 
place over a fixed-grid covering the fictitious domain (see 
Figure 1.) The boundary of ω is moving over the fixed grid. 
Discretization nodes on the moving boundary are the only 
nodes that “float” during the shape optimization process. 
With the EFG, these floating nodes can be inserted, elim-
inated, or simply change position with ease. The floating 
nodes do not require any change in the integration of the 
weak forms as the EFG background integration cells are 
not changed and are defined by the fixed grid. This process 
is completely different from remeshing used in the FEM, as in 
the FEM, one has to introduce new elements, and therefore, 
new integration points near the domain’s boundary, and 
no simple algorithms for this local remeshing are available. 
Therefore, the critical feature of the proposed method is 
the use of a mesh-free algorithm as the solver for the anal-
ysis problem, as the EFG method allows for easy insertion/
deletion/change in position of nodes on the boundary. In 
this fixed-grid EFG or E(FG)2 method for shape optimiza-
tion, no special algorithm is required for adding the float-
ing boundary nodes to the fixed grid nodes in the solution 
of the analysis problem. Recall that in a mesh-free solu-
tion, the integration cells are used for the purpose of inte-
gration only; they do not participate in the construction of 
the shape functions which are built in terms of the nodes 
(e.g., Belytschko et al. 1996). The integration cells that fall 
outside the physical domain, ω, are simply discarded from 
the integration of the weak form. Some cells are partially 
cut by the domain’s boundary, and for these cells, we only 
use the Gauss integration points that fall inside ω. We con-
duct a convergence study of this procedure, and observe 
numerically, quadratic convergence in terms of spacing 
between the grid nodes. By adding the floating boundary 
nodes to the fixed grid nodes inside the domain, ω, when 
building the approximation, we insure a smooth represen-
tation of the geometry and the tools for “mesh fitting” used 
in Mäkinen et al. (2000) with the FEM are not necessary. 
The E(FG)2 method we propose here also appears to elim-
inate the problem of the objective function non-differen-
tiability shown to exist in finite element solutions of shape  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

optimization problems solved by the fictitious domain 
method (e.g., pp. 187–189 in Haslinger and Mäkinen 2003).
We claim that the reasons for this important property, for 
which a mathematical proof is still needed, are two:

1. The use of the floating points in the mesh-free approxi-
mation over the fixed grid and the integration scheme 
over the fixed cells;

2. The mesh-free shape functions create a “diffuse” 
(smooth) approximation which is not linked to integra-
tion cells or elements.

Recall that the precursor to the EFG method was named 
the “diffuse-element method” by Nayroles et al. (1992). 
Also, in the E(FG)2 shape optimization method we intro-
duce here, the need for a mollification procedure, as used 
in Norato et al. (2004), at the boundary of the physical do-
main is not needed. 

Various ways of parameterizing the boundary of the do-
main ω can be selected with the E(FG)2, including implicit 
representations (e.g., Turk and O’Brien 2002) for a general 
shape optimization problem. In this study, however, we 
test the new method on examples in which the designable 
boundary is described by a set of control points (design 
variables) which are interpolated with a shape-preserv-
ing Akima spline function. Intersections of this spline func-
tion with the fixed grid create the boundary floating nodes 
used in the solution. The shape optimization problems we 
can treat with the E(FG)2 can have any type of boundary 
conditions imposed on the designable boundary. We also 
note that as fixed nodes and Gauss integration points fall-
ing outside ω are left out from the computation, when the 
shape changes result in a reduction of area (volume) of ω, 
important computational savings are made.

The examples we treat in detail concern the optimal 
shape design of thermal fins as this is a perfect benchmark 
for testing the ability of an optimal shape design algorithm 
to dealing with large shape changes (e.g. Bobaru and Ra-
chakonda 2004a,b). The shape-optimization algorithms de-
veloped here are by no means restricted to heat-transfer 
problems, as they can be applied without change to exam-
ples in elasticity, etc. 

There are several aspects in which the present method 
shows advantages compared to previous results: 

– Due to the “diffuse” mesh-free approximation and to 
the flexibility (in inserting/eliminating nodes on the 
boundary of the domain) offered by the EFG mesh-free 
method, the non-differentiability of the objective func-
tion noticed in fictitious domain FEM-based solutions 
(see page 188 in Haslinger and Mäkinen 2003) appears 
to be eliminated. A mathematical proof of this conjec-
ture is still needed. 

– Complex schemes for local remeshing next to the bound-
ary used in some FEM treatments of fictitious-domain 
shape optimization are no longer needed. 

– The computation time is reduced when compared to a mov-
ing grid method as fewer nodes participate in the compu-
tation if the required shape changes shrink the domain. 

Figure 1. A schematic representation for shape changes in the 
fixed-grid EFG method for shape optimization. In real situa-
tions, the grid is much finer and the number of floating bound-
ary nodes is just a fraction from the total number of discretiza-
tion nodes. 
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– We can now relax bounds on the design variables, which 
needed to be imposed, to prevent extreme changes in 
node density developed during shape changes in the 
moving grid approach. 

– Randomly placed nodes can now be used, as the fixed 
grid, with the mesh-free solution. In the moving grid 
mesh-free shape optimization (Bobaru and Rachakonda 
2004a,b), nodes had to be organized in columns for ver-
tical shape changes.

2 E(FG)2: the EFG-fixed-grid shape optimization method

In this section, we describe the essence of the proposed 
method. At every step of the iterative, gradient-based, 
shape optimization process, we determine new values for 
the design variables that define the new position of the 
boundary, and we perform a geometry projection to de-
termine the discretization nodes and the Gauss integra-
tion points that fall inside the current physical domain. The 
mesh-free solution is built using the fixed nodes inside the 
domain and the “floating” nodes on the moving boundary. 
Any method for computing shape sensitivities (direct dif-
ferentiation, adjoint system, finite differences) can be asso-
ciated with this method. 

2.1 Boundary motion and new-node introduction 

The idea for the fixed-grid shape optimization with 
the EFG method is described in Figure 1. A fixed grid of 
nodes and integration cells occupy a regular domain, Ω. 
The physical domain, ω, is projected onto Ω, and the grid 
nodes and Gauss points that fall inside ω participate in 
the computations. In addition to the grid nodes inside 
the domain, floating nodes are defined on the boundary of 
the domain ω, for example, at the intersection with the 
grid lines. The mesh-free solution procedure allows us-
ing these floating points together with the grid nodes 
without any special treatment. When a shape change is 
generated by a modification of shape design variable val-
ues, a new location of the boundary is determined, and a 
new set of floating nodes is formed. This set is added to 
the set of fixed grid nodes that fall inside the domain, ω, 
to participate in the discretization of the analysis prob-
lem. We note that the process described above is different 
from fitting the mesh to the boundary, via a remeshing 
procedure used in Mäkinen et al. (2000). In our method, 
no new “elements” or integration cells are created. We 
do not have to create new Gauss integration points be-
cause, in the mesh-free EFG method, the nodes are not 
connected to the integration cells: the approximation is 
separated from the integration, unlike the case of finite 
elements. We perform Gaussian integration of the weak 
form of the analysis problem using the cells defined by 
the fixed grid. For partially cut cells, we only use the 
Gauss points that fall inside the domain, as explained in 
Section 2.3 below. 

2.2 EFG approximation for the heat transfer equations 

The element-free Galerkin (EFG) (Belytschko et al. 1994) 
method is an improved version of the diffuse element 
method (DEM) (Nayroles et al. 1992). The EFG solution 
is built using shape functions generated with the moving 
least squares (MLS) approximation scheme. For details on 
the MLS approximation and EFG, see for example, Bobaru 
and Mukherjee (2001).

To be concrete, we present below the EFG approxima-
tion for the heat transfer equations. The EFG approxima-
tions for elasticity and thermo-elasticity can be seen in, 
for example, Bobaru and Mukherjee (2001) and (2002), re-
spectively. The only reason we focus on the heat transfer 
problem is because we will test the proposed method on 
a challenging problem in optimal shape design of a ther-
mal system in which very large shape changes have to 
be dealt with. The shape optimization method described 
here is applicable without any changes to problems in 
elasticity, etc.

The general heat-transfer problem with Dirichlet, Neu-
mann, and Robin boundary conditions for a two-dimen-
sional domain takes on the following form:

 	 ∇ · (κ ∇ θ) + Q = 0 	 in ω 
	 θ = θ0 	 on Γ 0

θ 

	 κ ∇ θ · n =  q̂  	 on Γ 1
θ    {

	 κ ∇ θ · n + h(θ − θ∞) = 0 	 on Γ 2
θ      (1)

where κ is the thermal conductivity of the body; Q, the inter-
nal heat source; θ, the temperature; θ0, the prescribed tem- 
perature on the Dirichlet boundary, Γ0

θ ; n, the outward 
normal to a boundary; q̂ , the heat flux prescribed over the 
Neumann boundary, Γ1

θ ; and h, the convective heat trans-
fer coefficient over the convective boundary, Γ2

θ. When h 
depends on temperature (as we will consider in our calcu-
lations), the problem becomes weakly nonlinear. A fixed-
point iteration solution method can be efficiently used to 
linearize the problem in this case. The details of the EFG 
solution to the non-linear heat-transfer problem are given 
in Bobaru and Rachakonda (2004b), and the same scheme 
is used in the computations below. θ∞ is the given ambi-
ent temperature. The dot, (· ), in the above equations de-
notes the scalar (or dot-) product between tensors of rank 
one.

The problem in the weak form is stated as follows: Find 
θ ∈ V = { θ ∈ H1(ω), θ = θ0 on Γθ

0 } such that for every test func-
tion η ∈ V0 = { η ( H1(ω), η = 0 on Γθ

0 }, we have:

∫ κ∇θ ∙ ∇η dω – ∫ Qη dΩ – ∫ q̂η dΓ + 
 ω                                ω                   Γ 1

θ 

   ∫ hθη dΓ – ∫ hθ∞η dΓ = 0  for any η ∈ V.      (2)
     Γ2

θ                           Γ
2
θ   

The equalities in the definitions of the spaces V and V0 are 
to be considered in the sense of trace. 
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The mesh-free discretization of the trial and test func-
tions in terms of the MLS approximants are:

θ(x) = ∑ΦI (x) θI
                  I ∈ C

η(x) = ∑ΦI (x) ηJ                             (3)
                    J ∈ C

where C is the set of nodes that cover, with 
their corresponding approximation function 
supports, the point x, θI is the approximations 
to the nodal temperatures, and the MLS shape 
functions are evaluated by
ΦI (x) = P(x)T A−1(x)bI (x).                        (4)

Here, we use a linear basis in 2D, given by

P(x) = [P1(x), P2(x), P3(x)]T = [1, x, y]T .           (5)

In Equation (4), the matrix A and the vector bI are given by:

A(x) = P−1W(x)P

BI (x) = [P1(xI ) w (x − xI ), P2(xI ) w (x − xI ),

                     P3(xI ) w (x − xI )]T

with w being a weighting function with compact support, 
and the matrices P and W having the form:

	 P1(xc1 ) 	 P2(xc1 ) 	 P3(xc1 )
	 P1(xc2 ) 	 P2(xc2 ) 	 P3(xc2 )
P =      [ 	 .	 .	 . 	         ]	 .	 .	 . 
	 .	 .	 . 
	 P1(xcm ) 	 P2(xcm ) 	 P3(xcm )

  	 wc1 (x − xc1) 	 …  	 0
	 0 	 … 	 0 
	 .	 .	 .
W(x) = [	 .	 .	 .	          ]	 .	 .	 .
	 0 	 … 	 wcm (x − xcm)

The indexes, {c1, … , cm}, correspond to the indexes of 
nodes in set C, which cover with their supports the evalua-
tion point, x.

A quartic spline with radial support is used in our com-
putations as weighting function for the MLS approximants 
(e.g., Bobaru and Mukherjee 2002). We impose the Dirichlet 
boundary conditions using the transformation method from 
Chen and Wang (2000) and implemented in the case of heat 
transfer equations in Bobaru and Rachakonda (2004a). 

One important property of the MLS approximation with 
great impact in our fixed grid shape optimization scheme 
is that the approximation in (3) is in Cmin(p,q) (ω), where p 
and q are the degrees of smoothness for the basis func-
tions in (5), and the weighting function, respectively. In 
our case, as the quartic spline is C 2(ω), the MLS approxi-
mation will have the same smoothness. As the shape func-

tions in (4) are nodal-based and not element-dependent, 
the approximation is “diffuse.” In other words, the EFG 
shape functions or their derivatives do not have disconti-
nuities at the integration cell boundaries, as it is the case 
in finite elements. Our conjecture is that this “diffuse” 
mesh-free approximation together with the high smooth-
ness of the approximants, effectively eliminates the prob-
lem of non-differentiable objective function observed in fi-
nite element fictitious domain methods (Haslinger and 
Mäkinen 2003) for shape optimization. While a mathemat-
ical proof of this assertion is still needed, we note that as 
shown in Haslinger and Mäkinen (2003) pp. 187–189, the 
source of non-differentiability of the objective in terms of 
the shape design variables in fixed-grid methods with non-
fitted FEM meshes is the jumps in the FEM derivatives of 
the shape functions at the element boundaries. 

A quadratic basis can be used instead of (5) to improve 
convergence, but this would penalize efficiency and the 
gains in convergence rate do not justify it. Several studies 
show that using a linear basis is effective (e.g. Belytschko et 
al. 1996; Rabczuk and Belytschko 2005), and this basis will 
be used in all our numerical examples. 

Normally, the integrals over ω are computed using 
Gaussian integration over a set of background cells that over-
lap the domain exactly. Here, we use a different approach for 
integration and this is explained in the next section. 

2.3 Geometry projection for integrating the EFG weak 
form 

The discussion below is limited to the two-dimensional 
case in which the designable boundary curve is given by a 
function of one variable (the x-coordinate in Figure 2). The 
method is easily extended to the case in which the design-
able boundary is a general curve in 2D or a surface in 3D. 

The domain occupied by the physical body is bounded 
by its boundary curve (or surface in 3D). The domain is 
overlapping a fixed grid, as depicted in Figure 2 for the 
case of a quarter of a disk for which the designable bound-
ary curve is defined by the function, f (x) = (1 − x2)½. We 
take the fixed grid cells over Ω to play the role of the back-
ground integration cells used for integrating the weak form 
over ω. The EFG discretization nodes are the grid nodes. 
While the choice above is convenient and simplifies the 
data structures, other choices for the nodes and the back-
ground integration cells are possible.

New “floating” nodes are defined at the points where 
the design boundary curve intercepts the integration grid 
lines. The coordinates of these points are easily determined 
in the examples we consider in Sections 3 and 4, as we em-
ploy the Akima interpolating spline through the design 
variables. The y-coordinates of the points that control the 
shape of the Akima spline are the design variables in the 
shape optimization algorithm. The design points are com-
pletely independent from the grid nodes. In the current im-
plementation, we find the “floating” boundary nodes at the 
intersections between the vertical grid lines and the bound-
ary spline curve. As the boundary is given by a one-dimen-
sional function, the intersection between a vertical grid line 
and the boundary is unique.  
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With the boundary nodes assigned, we determine if 
a Gauss point is to be used in the integration of the weak 
form by finding whether the Gauss point is inside or out-
side the domain. This can be done, for example, by com-
paring the y-coordinate of the current Gauss point (xG, 
yG) with the value of a spline function, s, interpolating the 
boundary nodes, evaluated at xG:

if yG − s (xG) < 0 then use this Gauss point    (6)

The numerical integration of domain integrals in the weak 
form in (2) is performed using the fixed grid integration 
cells following the algorithm below:

Algorithm 1 Geometry projection in E(FG)2: computing a do-
main integral such as those in (2)

1: determine location of boundary nodes 
2: find the set S of nodes inside domain ω and on the boundary 
3: for all integration cells with at least one node inside domain ω do 
4:     for all Gauss points (xG, yG) inside integration cell do 
5:         if yG − s(xG) < 0 then 
6:             search neighboring nodes in S that cover this Gauss  
                      point (form set C of covering nodes) 
7:                   for all nodes in C do 
8:                         compute shape function and derivatives at  
                                  Gauss point 
9:                         assemble contributions to global matrix 
10:             end for nodes in C 
11:         end if 
12:     end for Gauss points 
13: end for integration cells 

One important advantage of the fixed-grid algorithm for 
shape optimization is that the smaller the domain, ω, is, the 
faster the computation becomes. Cells that have no node 
inside the boundary are skipped from the computations al-
together. The scheme described above is schematically rep-
resented in Figure 2. When the body becomes non-convex, 
a neighboring search algorithm like the one proposed by 
Duarte (1996) has to be used to find the set of nodes that 
cover with their supports a certain Gauss point. 

2.4 Convergence results for the geometry projection method 

We test the convergence properties of the procedure 
described above by evaluating a domain integral. Ω, is 
the unit square in Figure 2, while the physical domain, ω, 
which is to be integrated over, is the quarter disk. The exact 
value of the domain integral over ω is:

π  = ∫ 
1
 √1 − x2 dx = ∫ dxdy               (7) 

4       0                                           ω

The approximation based on the Algorithm 1 described 
in section 2.3 is computed as:

∫ dxdy   ≈   ∑   ∫ 
1
 ∫ 

1
 J (ξ , ζ ) dξ dζ = 

  ω                     cells ∈ C    –1      –1

                   ∑    ( ∑   ∑ wj wk J (ξ j , ζ k ) )        (8)
                           cells ∈ C     j∈ G   k∈ G

where C is the set of cells that have at least one node in-
side the domain, ω, and the set, G, is the set of Gauss points 
that fall inside ω. The parameters, wj ,wk , ξj , and ζk  are the 
usual Gaussian integration weights and Gauss nodes in the 
parent domain, and J is the Jacobian transformation. 

We introduce the approximation error by cutting the in-
tegration cells and using only those Gauss points that fall 
inside the domain. As we see next, the numerical order of 
approximation with this procedure is quadratic in the limit 
of vanishing grid spacing. 

In the numerical convergence tests of the geometry pro-
jection discussed above, we compute the relative error as 

e =
 | Aapprox − Aexact |              

(9)                   Aexact  

where Aexact is the exact value of the integral in (7) and  
Aapprox is the value computed with the geometry projec-
tion EFG method as an area integral over the quarter disk  

Figure 2. The geometry projection scheme. “Floating” nodes are placed at the intercepts between the boundary curve and the ver-
tical grid lines. The mesh-free approach allows for easy introduction of these new nodes. Note that a similar FEM solution would 
have to deal with complex algorithms for creating new elements at the boundary. In our case, no new cells and integration points 
need to be created; nodes and Gauss points outside the physical domain are left out from the computation. The geometry projec-
tion scheme proposed shows quadratic convergence in terms of the grid spacing when evaluating domain integrals [see (8)]. In 
the computations we use 5 × 5 integration in each cell.



220  Bo b ar u & Rac h ak o n d a i n Str u c tu r a l a nd Mul ti d i s c i p l i n a r y Opt i m i z a ti o n  32 (2006) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
in Figure 2. We use grid spacings h equal to 1/5, 1/10, 
1/20, 1/40, 1/80, and 1/160, respectively. The variation of 
the relative error, e, vs. the grid spacing is shown (in a log−
log plot) in Figure 3. We use linear spline and Akima spline 
interpolation in (6) to determine if a Gauss point is inside 
or outside ω. The convergence becomes quadratic for the 
denser grids. Notice that the quadratic convergence is the 
analytical rate for approximating the disk area with trian-
gular sectors spanning equal angles. The number of sec-
tors used for the plot in Figure 3 is 1/h, that is, 5, 10, 20, 40, 
80, 160, respectively. In the computations that follow, the 
Akima spline interpolation will be used in (6) for comput-
ing integrals over the domain. 

2.5 Fixed-grid shape optimization with EFG 

With this simple geometry projection for computing 
the solution over the physical domain, ω, the algorithm for 
EFG fixed-grid, E(FG)2, shape optimization is proposed: 

Algorithm 2. E(FG)2: the EFG fixed-grid shape optimization 
method 

1: define initial guess for design variables (control points for the 
boundary spline function) 
2: while not a local minimum do 
3:     find objective function, constraints by solving (2) using EFG  
        method and Algorithm 1 over ω 
4:     compute sensitivities of objective function, constraints, with  
        method of choice 
5:     optimizer provides new values for design variables 
6:     update control points for boundary spline 
7: end while 

The sensitivities can be computed in various manners: 
by direct-differentiation method, adjoint system, or by fi-
nite differences. In the example we present below, we use 
an sequential quadratic programming (SQP) optimizer 

from the International Mathematical and Statistical Library 
(IMSL) that internally computes sensitivities by finite dif-
ferences. This choice is made here for convenience only. 

This algorithm is clearly applicable to not only shape 
optimization problems for thermal systems but to any 
shape optimization problems whose equations of state are 
described by PDEs, such as optimal shape design of elastic 
and thermoelastic bodies under stress constraints. 

3 Test problem for shape optimization involving large 
shape changes 

A challenging test in optimal shape design is the shape 
optimization of cooling fins. The problem is treated in, for 
example, Bobaru and Mukherjee (2002); Bobaru and Racha-
konda (2004b). When starting from a generic regular shape 
of the cross-sectional area of the thermal cooling system, 
large shape changes between the initial and final design 
take place. 

We analyze a section of a long fin array and use periodic 
boundary condition. One face of the thermal system is at-
tached to a body at constant temperature, while the oppo-
site face is exposed to the cooler temperature of the ambi-
ent air (Figure 4). We solve the shape optimization problem 
on the top cross-section of the cooling system. The bound-
ary conditions on the cross-section of the thermal system 
are shown in Figure 4. The following values are used in (1) 
: θ0 = 500K, θ∞ = 300K, and q = 0 (due to periodicity condi-
tions). Even if the shape optimization problem is set in two 
dimensions, the solution takes into account the third di-
mension via the dependence of the heat transfer coefficient 
on the height of the fin. We consider the heat transfer coef-
ficient as a function of the boundary temperature:

h (z, θ) =          2κ Pr 1/2              [Gr (z, θ)]1/4.         (10)                 z [336(Pr + 5/9)]1/4

Here, z is the coordinate along the height of the fin, Pr is 
Prandtl’s number, and Gr is Grashof’s number. The heat  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The relative error computed as in (9) vs. the grid 
spacing. Superlinear to quadratic convergence is achieved in 
numerically integrating the domain using the cutting strategy 
described in Figure 2. 

Figure 4. The imposed temperature boundary, (Γθ
0), zero-flux 

boundary, (Γθ
1), and the convective boundary, (Γθ

2). Design 
variables (control points) are interpolated with a shape-pre-
serving Akima spline and are selected on Γθ

2 only (including 
its ends); as a result, the zero-flux, Γθ

1 , boundaries can change 
their length but not shape. Symmetry is imposed about the 
middle vertical axis. 
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transfer coefficient depends on Grashof’s number which 
implies a dependence on the fin’s temperature on Γθ

2 , as

Gr (z, θ)  =
  gβ(θ − θ∞)z3     

(11)                              ν 2

The dependency of h on θ|Γθ
2  is more complicated than 

the root-four behavior apparent from (10) and (11). That 
is because the Prandtl number and the convective factor, 
gβ/ν 2, in Grashof’s number also vary with the temperature 
θ on Γθ

2 (see Table 1 in Bobaru and Rachakonda 2004a). The 
values we use for the ambient are those of air at one atmo-
sphere and for the range of temperatures and conditions 
specified above. The ambient fluid properties are captured 
by the “convective term,”  gβ/ν 2. These properties are nor-
mally evaluated at the film “average” temperature θ f = (θw 
+ θ∞) as described in White (1988), page 298, where θw is 
the “wall” temperature, i.e., the temperature of the fin’s 
convective boundary. 

The mathematical form of the optimization problem is 
to find the shape of the fin cross-section that solves:

min F(y) = −κ
 ∫Γθ

0 
qdΓ  

, y ∈ ω             (12)                            Lfin

subject to

H1(y) = 1 − ∫ω dω  ≥ 0       (13)                    Amax

H2(y) = 1 −    BLO      ≥ 0      (14)
                     BLOmax

where q is the heat flux from the base, Lfin is the length of 
the base of the fin, y = [y1, … , yp] is the design vector repre-
senting the y-coordinates of the control points on the spline 
boundary. The domain, ω, is defined by {y ∈ Rp : 0.005 ≤ 
yi ≤ 0.05, ∀i = 1, … , p}. The upper bound is chosen arbi-
trarily. Notice that in the moving grid approach used in 
Bobaru and Rachakonda (2004a,b) we were forced to use 
a higher lower bound for the design variables due to the 
large difference in node density created after large shape 
changes. In the present fixed-grid method, the only limita-
tion is given by the fineness of the discretization. For the 
discretization we use, we select the lower bound such that 
at least a few node layers are covered between convective 
boundary and the base of the fin. This insures an accurate 
computation of the heat- flux through the base. Amax is 60% 
of the original rectangular area. BLO is the “boundary layer 
overlap” which is the area shown in Figure 5. 

 

Instead of directly evaluating this area, we compute an 
equivalent measure of it using a fast algorithm introduced 
in Bobaru and Rachakonda (2004a), based on the x-coordi-
nates of nodes along the design boundary. A small viola-
tion is allowed in BLOmax with a value equal to 5% of the 
fin base length.

The minimization problem (12)–(13) is ill-posed in the 
sense that the more design variables are assigned, the more 
fins are created with a shape that produces a better and 
better objective. This aspect of the problem has been dis-
cussed in Bobaru and Rachakonda 2004a with the mov-
ing grid approach. Imposing a constraint on the length 
or on the curvature of the design boundary to regularize 
the problem would be misleading: first, the length of the 
boundary should be part of the solution, and second, the 
boundary should be allowed to have non-differentiable 
points. In fact, we noticed (Bobaru and Rachakonda 2004b) 
that the best shape for highly conductive materials is given 
by pointed fins. 

In Section 4.1 we show that the newly introduced 
method is insensitive to biased grids and that we can per-
form large shape changes in a single iteration. The EFG 
fixed-grid method eliminates the need for special arrange-
ments of nodes required in the moving grid method (Bo-
baru and Rachakonda 2004a,b). In section 4.2, the E(FG)2 
method allows us to enlarge the bounds on the design vari-
ables, and thus, uncover a new property of the optimal 
shapes for low and highly conductive materials; in section 
4.3, we eliminate boundary overlap for low conductivity 
periodic fins by introducing a new zero-slope constraint. 
The E(FG)2 helps us observe new properties for the con-
ductivity-dependence of the optimal shape. 

4 Numerical results 

4.1 Area constrained optimization; biased grids 

We test the new E(FG)2 shape optimization method for 
the problem with area constraint only (12)–(13) on a part of 
an infinite-length thermal system by using periodic bound-
ary conditions (no-flux though Γθ

1 boundaries in Figure 4). 

Figure 5. Overlap area for the thermal boundary layer for two 
fins too close to one another. Instead of having the ambient 
cooling air at the limit of the boundary layer, the fins are fac-
ing each other’s thermal layer of a higher temperature; thus, 
reducing the heat transfer.

Table 1 Coordinate values of the starting guess (in meters) for 
the design variables (d.v.’s) used to obtain the optimal shapes 
in Figures 10 (sharp fins) and 11 (round fins)

d.v.’s x-coordinates       d.v.’s y-coordinates        d.v.’s y-coordinates
(m)                                    sharp fins case (m)          round fins case (m)

0.0 × 10−2 	 5.0 × 10−2 	 4.2 × 10−2

1.0 × 10−2 	 4.9 × 10−2 	 4.5 × 10−2

2.5 × 10−2 	 5.0 × 10−2 	 5.0 × 10−2
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The dimensions for the cooling system are (see Figure 4): 
fin length is 1 × 10−1 m, fin width is 5 × 10−2 m, and the 
height is selected to be 4 × 10−1 m, such that it does not lead 
to a turbulent thermal boundary layer in natural convec-
tion conditions anywhere along the height of the system. 
Recall that the third dimension enters the 2D equations via 
the heat transfer coefficient (10). 

The proposed shape optimization procedure is insensi-
tive to biased grids. To verify this, we solve the optimiza-
tion problem for the fin above with symmetry conditions 
on the design variables. In this test, we use a grid of 21 × 41 
nodes for the fixed grid over the rectangular domain Ω of 
1 × 10−1 m by 5 × 10−2 m and five design variables (control 
points) with their x-coordinates equally spaced along the 
convective boundary. The control points do not have to be 
grid nodes. The design variables control the profile of the 
convective boundary as described above. Figure 6 shows 
the optimal shape when no boundary layer constraint is 
used and when we impose a strong bias on the horizon-
tal arrangement of the nodes. Note that as the integration 

cells are fixed, we no longer have to solve the optimization 
problem on grids in which the nodes are arranged in “col-
umns” as in Figure 3 in Bobaru and Rachakonda (2004a). 
This is an important generalization and advantage com-
pared to the moving grid approach. Convergence to the op-
timal shape, which is given by a design vector with values 
alternating between the lower and upper bounds [0.5, 0.05, 
0.5, 0.05, 0.5] × 10−1 m, is achieved in a single iteration from 
a slightly perturbed rectangular original shape defined by 
the guess design vector, [0.5, 0.49, 0.5, 0.49, 0.5] × 10−1 m. 

When no boundary layer constraint is imposed, the 
ill conditioning of the problem is manifested by the in-
crease in the number of fins, thinner and closer to one an-
other, with the increase in the number of design variables. 
This has been observed before in the shape optimization 
with EFG based on the moving grid method in Bobaru 
and Rachakonda (2004a). The new fixed-grid method re-
covers that results, but in addition, it allows us to elimi-
nate the requirement for a high lower bound, the moving 
grid method had to impose on the design variables. We can 

Figure 6. Insensitivity of the optimal shapes with the discreti-
zation grid: the case of a uniform grid (top) and a horizontally 
biased nonuniform grid (bottom). Five design variables, equally 
spaced in the horizontal direction, are selected on the convec-
tive boundary. Total number of nodes is the same in both cases, 
(21 × 41). New boundary nodes are created as in Figure 2. 

Figure 7. A single optimization iteration is required from the 
starting guess shape (top) to the final finned shape (bottom) of 
the thermal system cross-section. The large shape changes in-
volved are easily dealt with by the mesh-free fixed-grid method. 
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now handle very large shape changes between consecutive 
iterations. The moving grid method could deal with mod-
erately large shape changes only. 

With nine design variables, the optimal shape shown in 
Figure 7 gives a better objective function value. By chang-
ing the initial perturbation from the rectangular shape so 
that the middle design variable is on a “hill” rather than in 
a “valley” as in Figure 7, we obtain the results in Figure 8. 
Notice that in this case, the fins at the extremities present 
regions of only colinear nodes. The EFG solution can break 
down in such cases (see, e.g., Belytschko et al. (1994)), and 
to avoid this, the supports for adjacent nodes have to be in-
creased. This process degrades the accuracy of the solution 
as we loose the localization properties of the approxima-
tion. A denser grid is required in such situations. 

When even more control points are chosen on the con-
vective boundary, more fins form for an even better value 
of the objective function. The case of 13 design variables is 
in Figure 9. The grid size is kept the same in all these case 
of 5, 9, and 13 design variables. The values of the objective 
function (negative heat flux) are not physical, as the model 

assumes that all points on the convective boundary are ex-
posed to the ambient temperature. This, however, is not 
possible if the fins that are generated are too close to one 
another due to the presence of the thermal boundary layer 
that forms along the height of the fins. A constraint, such as 
the one in (14), has to be used for a physically correct model. 

4.2 Boundary layer overlap constrained optimization 

The constrained optimization problem (12)–(14) is well-
posed as fins cannot be generated ad infinitum due to the 
overlap of the thermal boundary layer. We now select a 
unit cell of length 5 × 10−2 m for reasons presented in Bo-
baru and Rachakonda (2004a). The third dimension, z, en-
ters the solution in two ways: firstly, through the convec-
tive boundary condition as the heat transfer coefficient, h, 
depends on the height, and secondly, through the thick-
ness of the boundary layer which is used to compute the 
boundary layer overlap in (14). A fixed grid with 31 × 31 
nodes is used for the rectangular area, Ω, of 5 × 10−2 m by 5 
× 10−2 m.  

Figure 8. The first (top) and second and last (bottom) iterations 
for nine design variables. Notice that the formation of very 
thin fins at the zero- flux boundaries where colinear nodes will 
eventually degrade the EFG solution. In the computation of 
the EFG shape functions (4), each Gauss point involved in the 
computation needs to be covered by the supports of at least 
three non-colinear nodes. 

Figure 9. The first (top) and second (bottom) and last iterations 
for 13 design variables. The number of fins increases unlimited 
with the increase of the number of design variables. The objec-
tive value continues to “improve” since the thermal boundary 
layer is not taken into account. 
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We use five design variables selected on the convective 
boundary. Four copies of the unit cell optimal shape are 
repeated to construct the periodic fin array shown in Fig-
ures 10 and 11 which are obtained with the starting guesses 
for the design variables as in Table 1. We give only the first 
three coordinates as we use symmetry of the geometry for 
the remaining two design variables. 

For the unit-cell, the history of the objective function, 
area constraint, and thermal boundary layer overlap (BLO) 
constraint for the highly conductive material (aluminum 
with κ = 235 W/mK) are given in Figures 12, 13, and 14, re-
spectively. While the boundary layer overlap is eliminated 
in the unit cell, the value of the objective function reached 
by the rounded tip fins is overstated for the periodic con-
struct due to the overlap of the thermal boundary layer re-
sulting when the unit cells are joined together. Notice that 
for the highly conductive material, the sharp fin shape uses 
only 48% of the maximum area allowed, while the round 
fin shape uses 80% of the same value. The sharp fins, there-

fore, use 40% less material while providing a value of the 
objective function 8% higher than the round profile. The 
control points oscillate between their lower and upper 
bounds. The area constraint is not active. As the tempera-
ture does not drop significantly (less than 0.5%) while heat 
is transported across the fin for this highly conductive ma-
terial, it is beneficial to create shapes with as much conduc-
tive boundary length as possible enclosing the finite cross-
sectional area to maximize the heat flux through the fin. 
The only limiting factors here are the boundary layer over-
lap constraint and the simple bounds on the design vari-
ables themselves. 

We now use a hypothetical material with a low thermal 
conductivity value, κ = 1 W/mK. An optimal shape for the 
unit cell is shown in Figure 15. The area constraint is ac-
tive, but in contrast to the highly conductive case, the de-
sign variables stay away from their upper bounds. The op-
timal shape, in this case, is determined such that the top 
cross-section of the cooling system does not extend narrow 

Figure 10. The optimal configuration for the periodic fin of a 
highly conductive material. Five design variables are selected 
on the unit cell. The control points oscillate between the their 
lower and upper bounds. The area constraint, however, is not 
active. As the temperature does not drop significantly while 
heat is transported across the fin, it is beneficial to create “in-
finite length bounding a finite area” shapes to maximize the 
heat flux through the fin.  

Figure 11. An optimal configuration for the periodic fin of a 
highly conductive material. Five design variables are selected 
on the unit cell. The area of the cross-section used is 40% 
larger than the sharp fin solution, while the heat flux through 
the base is 8% less than the sharp fins. The periodic array has 
some overlap of the thermal boundary layer which can be 
eliminated by imposing zero-slope end conditions for the in-
terpolated design boundary.  

Figure 12. The objective function history for two initial config-
urations that lead to the optimal shapes shown in Figures 10 
and 11. A lower value is better. 

Figure 13. The history of the area constraint (13) for highly 
conductive material. A larger value means less area is used. A 
positive value means the area used is less than the maximum 
allowed value. The sharp fin design uses 40% less material 
than the rounded shape design.
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fins that would cool too much and, with their reduced sur-
face temperature, limit the effectiveness of the heat-transfer 
with the ambient [see (10) and (11) for the connection be-
tween θ|Γθ

2 – θ∞ and heat-transfer coefficient]. 
In our previous work using a moving grid method, we 

were not able to use lower values for the design variables’ 
lower bound, and the unit conductivity local optimal shape 
we determined did not make use of all allowable area (see 
Table 3 in Bobaru and Rachakonda 2004b). The bound-
ary layer overlap constraint induces a large number of lo-
cal minima in the problem. With the lowering of the lower 
bound permitted by the new E(FG)2 method, we can attain 
a better objective function value than before and also ob-
serve an interesting property of low conductivity materi-
als; the amount of material used by the optimal top cross-
section is maximized to prevent drastic cooling that reduces 
heat transfer. In Table 2, we compare the results obtained 
with the moving grid in Bobaru and Rachakonda (2004b) 
and those with the current E(FG)2 for the low conductivity 
material. Using the same starting guess but having different 
lower bounds for the design variables in the moving grid 
and the fixed grid, the latter improves the objective value 
by almost 15% with an increase in the use of area of 9%. 
The shape, however, that activates the area constraint (uses 
100% of the allowed cross-sectional area) provides the best 
value of the objective function. The final shape obtained 
with “guess B” in Table 2 is used for the plot in Figure 15. 

Notice that the fin in Figure 15 induces significant 
boundary layer overlap if repeated by periodicity. One 
solution for eliminating the overlap is to space the fins 
to twice the thickness of the boundary layer at the point 
where the adjacent layers come in contact. Another option 
is to use a constraint on the geometry requesting the slope 
of the boundary curve to be zero at the ends of the fin. The 
latter is analyzed next. 

4.3 Smooth-shape constraints for periodic array: low con-
ductivity materials case 

For the non-sharp shapes, it seems reasonable to im-
pose a zero-slope condition at the ends of the interpolating  

 
 
 
 
 
spline. In the moving grid solution (Bobaru and Racha-
konda 2004b), the discretization nodes at the ends of the 
design boundary are forced to take on the same y-coordi-
nate. In the present case, this is not possible as the nodes 
are fixed. Moreover, one cannot impose an end condition 
on shape-preserving splines. The end conditions for these 
splines are determined automatically to preserve the “as-
pect” of the interpolated points. 

Here, we introduce a control point (design variable) 
close to the end-control point (we still use symmetry) and 
choose to impose a geometric constraint in addition to (13) 
and (14), such that the first two design variables have simi-
lar y-coordinates. When the design variables are then inter-
polated with the shape-preserving spline, we will approx-
imately satisfy the zero slope at the ends of the convective 
boundary, which eliminates boundary layer overlap. The 
added constraint is:

H3(y) = (0.001 − |y1 − y2|) * s              (15) 

where s is a scaling factor taken equal to 500. The constraint 
becomes active when the first two design variables dif-
fer from each other by more than 2% when they are close 
to their upper bound or 20% when they are close to their 
lower bound. We select two different starting guesses as 
detailed in Table 3:

case 1 	 starting values are close to their lower bounds 
case 2 	 shift upwards the values in case 1 (by 2 cm) so 

that starting values are closer to their upper 
bounds 

These two different starting guesses lead to the optimal 
shapes shown in Figure 16. 

Observe that the shapes obtained are similar to each 
other, the only difference being that in case 1 (starting 
closer to the base of the fin), the optimal shape stays closer 

Figure 14. The history of the boundary layer overlap con-
straint (14) for the material with high conductivity. 

Figure 15. An optimal configuration for the unit-cell fin of a 
low conductivity material when five design variables are used 
on the design boundary. The area constraint is active. As the 
temperature on the convective boundary drops compared to 
the based temperature when heat transfer to the ambient com-
petes with the heat conduction from the base, it is not beneficial 
to create narrow elongated shapes that can reduce heat transfer, 
and thus, decrease the heat flux. In this optimal design (local), 
the control points stay away from their upper bounds. 
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to the base and uses less area, yet produces a similar heat 
transfer value as that from case 2. The more extended fins, 
produced using case 2, result in lower convective bound-
ary temperatures that, in turn, reduce the heat transfer. The 
reason for which the objective function value is not lower 
in case 2 than in case 1 is that the cross-sectional area and 
the length of the convective boundary at the final iteration 
are larger in case 2 than in case 1. This can be seen from the 
data in Figure 17 and Table 2. 

Unfinned local minimizers are also obtained for the case 
of low conductivity material under certain initial guesses. 
Such a local minimum is obtained with all design variables 
touching their lower bounds, closest to the heat source. The 
value of the objective function, however, is better for the 
designs shown above. There is, of course, a certain value 
of the material conductivity that renders the unfinned ther-
mal system as the global minimizer. 

5 Conclusions 

We presented a new shape optimization method based 
on a mesh-free solver, the element-free Galerkin method. 
The new method performs shape changes over a fixed grid 
in which the domain of interest is imbedded (projected). A 
set of “floating” nodes that discretize the boundary are the 
only ones that move, their positions being determined by 
the shape design variables (control points) on the design 
boundary at the intersections between the boundary curve 
and the fixed grid. The combination of the projection onto 

the fixed grid and the EFG solver led to the new E(FG)2 
shape optimization method in which: 

1. the floating nodes are easy to deal with as they do not in-
troduce any complexity in the solution procedure. 

2. the non-smoothness of the objective function observed 
in FEM-based fictitious domain methods appears to 
be eliminated due to the “diffuse” type and higher 
smoothness of the mesh-free approximation functions. 
A formal proof of this is still needed. 

3. shape changes can be extreme from one iteration to the 
next and are no longer limited by differences in node 
density as was the case for moving-grid EFG-based 
shape optimization methods. 

The method introduced here is applicable to general op-
timization problems in elasticity, etc. Here, we treated in 
detail examples from shape optimization of the convective 
boundary for cooling systems (thermal fins) under natural 
convection conditions. Sensitivities were computed here, 
for convenience, internally by the SQP optimizer from the 
IMSL using finite differences. Compared to previous re-
sults on optimal shape design of thermal fins, the newly in-
troduced E(FG)2 method proved to be: 

– 	 insensitive to the positioning of nodes in the fixed grid, 
– 	 capable of handling very large shape changes from one 

iteration to the next, 
– 	 able to enlarge the simple bounds imposed on the shape 

design variables.   

Table 2. Comparison of the influence of the design variables bounds on the qualitative solution for low-conductivity materials. 
Results with lower bound (LB) of 0.015 m are obtained in Bobaru and Rachakonda (2004b). The values of the objective function and 
constraints are shown for the optimal design. 

Test case 	 Starting 	 Final 	 Heat flux (-F(y)) 	 Area 	 Percentage 	 Boundary 
 	 values for  	 values for  	 final value 	 constraint 	 of allowed 	 layer overlap   	
d.v.’s (m)	 d.v.’s (m)	  (W/m2) 	 final value	 area 	 constraint 

Moving grid a  	 4.2 × 10−2 	 1.5 × 10−2 	 1253.6 	 1.1 × 10−1 	 89% 	 −0.55 × 10−3 
(LB 0.015)   	 4.5 × 10−2 	 2.8 × 10−2 
	 5.0 × 10−2 	 4.65 × 10−2 
Fixed grid guess A   	 4.2 × 10−2 	 0.50 × 10−2 	 1435.6 	 3.1 × 10−2 	 97% 	 0.9 
(LB 0.005)   	 4.5 × 10−2 	 3.41 × 10−2 
	 5.0 × 10−2 	 3.17 × 10−2 
Fixed grid guess B b  	 1.0 × 10−2 	 0.50 × 10−2 	 1483.4 	 3.3 × 10−14 	 100% 	 0.3 × 10−1 
(LB 0.005)   	 2.40 × 10−2 	 3.57 × 10−2 
	 4.95 × 10−2 	 3.17 × 10−2 

a. Results from Table 3 in Bobaru and Rachakonda (2004b) 
b. This starting guess is a perturbation of the final shape obtained with the moving grid method in Bobaru and Rachakonda (2004b)  

Table 3. Coordinate values of the starting guess (in meters) for the seven design variables (only four a given due to symmetry 
imposed) used to obtain the optimal shapes in Figures 10 (sharp fins) and 11 (round fins).

d.v.’s   	 d.v.’s   	 optimal   	 d.v.’s   	 optimal    
x-coordinates  	 y-coordinates  	 y values 	 y-coordinates  	 y values 
(cm) 	 for case 1 (cm)  	 for case 1 (cm)	 for case 2 (cm) 	 for case 2 (cm) 

0.00 	 0.60 	 0.50 	 2.60 	 0.98 
0.50 	 0.80 	 0.60 	 2.80 	 1.10 
1.50 	 1.50 	 1.17 	 3.50 	 1.96 
2.50 	 3.00 	 3.85 	 5.00 	 4.83
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We found new characteristics of the solution to the prob-
lem of generating optimal shape fins from unfinned areas: 
low conductivity materials tended to use the maximum 
amount of cross-sectional area to allow better “access” to 
the heat source for points on the conductive boundary; 
whereas, highly conductive materials developed long and 
narrow fins to maximize the length exposed to the cooling 
ambient with the design variables touching their lower and 
upper bounds alternatively, while the cross-sectional area 
constraint was far from being active. To eliminate bound-
ary overlap in periodic fins, we introduced a new con-
straint, and we obtained optimal shapes for low conduc-
tivity materials in the form of finned cross-sections that are 
optimal when they remain closer to the heat source. 

The shape optimization method developed here was ca-
pable of capturing all the essential properties of the prob-
lem of shape optimization of cooling systems starting from 
generic, unfinned shapes. The physical process that deter-
mines if fins are to be present or not is driven by the com-
petition between the heat transfer at the convective bound-
ary and the material’s conductivity. Several examples from 
the biological realm can be invoked here in connection to 
this optimal shape design problem: stegosaurus plates 
that evolved, at least in part, as heat-loss fins (Farlow et al. 
1976), and extended surfaces of intestinal villi. The mean-
ing of the coefficients in the heat transfer equations would 
have to be changed to describe the mass transfer equations, 
for the case of the intestinal villi. 

Compared to other fictitious-based projection type 
methods, the E(FG)2 method introduced here handles large 
shape changes in fewer iterations and can be applied for 
shape optimization problems with any types of constraints 
and boundary conditions. 

Figure 16. Two local optimal configurations for the periodic 
fin of a unit conductivity material with an additional con-
straint for the slope at the ends of the unit cell. Seven design 
variables are selected on the unit cell (due to symmetry, only 
four are used). The top design (case 1 in Table 3) stays as close 
as possible to the base of the fin to reduce cooling. The bot-
tom design (case 2) produces a similar objective value but uses 
more area (see Figure 17). The length of the design boundary 
is longer to compensate for the reduced surface temperature 
compared to the case 1 design. 

Figure 17. History of the objective function (12) and con-
straints (13), (14), (15), for a unit-conductivity material with 
slope constraint. The two starting guesses are as described in 
Table 3. The design resulting from case 1 is closer to the im-
posed temperature boundary and uses less area while provid-
ing the same heat flux value as that of case 2. 
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