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Superpave, a set of advancements in testing devices and specifications for asphalt 

binders and mixtures, was limited to address the effects of aggregates. Because 

aggregates represent around 95% in mass of the asphalt mixtures, it is important to 

understand how these materials affect properties and performance of such mixtures. This 

research focus on how different types and contents of aggregates affect properties of 

mastics and asphalt mixtures, and their performance considering the viscoelastic nature of 

the asphalt material.  

Five different types of aggregates and hydrated lime were used for sample 

fabrication together with two different binders. Several different tests were performed to 

the aggregates separately. Viscoelastic properties for both mastics and hot mix asphalt 

mixtures were characterized. In addition, the mixtures produced with those aggregates 

were also evaluated for rutting and fatigue performances using the APA and UTM-25kN 

machines.  

Among the studies conducted in this research work are: restricted zone, a 

controversial concept and its redundancy; rutting potential of mixtures with different 



coarse and fine angularities; the stiffening potential of binders provided by different 

fillers; the stiffening provided by different contents of hydrated lime to asphalt concrete 

mixtures and fatigue and rutting potential of mixtures with different contents of hydrated 

lime.  

The results indicate that the restricted zone should not be a criterion for the 

selection of mixture gradations, that angularity somewhat affects the rutting potential of 

asphalt concrete mixtures, that fillers of different materials provide different gain in 

stiffness for binders and that this improvement is binder dependent. Also, hydrated lime 

was found to have higher stiffening potential than general mineral fillers used in this 

study. Hydrated lime was also proven to improve the stiffness of asphalt concrete 

mixtures. Even though stiffening the mixtures, hydrated lime was shown to improve the 

fatigue performance of the mixtures. Finally, this filler also improved the rutting 

resistance of mixtures.  
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CHAPTER 1 

 

INTRODUCTION 

 

Safe and comfortable transport of goods and people is the key for local and 

national development in any part of the world. The transportation business involves a 

number of professionals from diverse disciplines and with different expertise and 

receives a huge portion of the public investment. In 2005, the United States roadway 

network (including both rural and urban segments) encompassed 4,010,247 miles, of 

which 1,408,757 miles were unpaved and the majority of the paved roadway network 

used flexible pavements (FHWA, 2005). 

According to the Nebraska Department of Roads (NDOR, 2003), the expenditures 

for roadways in the state of Nebraska occupy the second place, only next to Education 

and Health and Human Services. Thus, it is not surprising that during the fiscal year 

2003, 9% of the state money was used for NDOR activities. In 2005, the state 

government invested $621 million to move people and goods across and throughout the 

state. From the money reserved for construction, $5,440,666 (2%) was spent on railroad 

viaducts, $61,571,715 (19%) on bridges, and $259,187,316 (79%) on roadways (NDOR, 

2005).  

 Whereas during the fiscal year 2006, $356,075,000 was spent for construction in 

the Nebraska’s Highway System, out of which $191,481,000 was spent for the 

construction of smaller roadways within the eight Nebraska districts, $99,937,000 was 
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spent on expressways, and $64,657,000 on interstate services (Bettenhausen, 2006). 

Again in 2006, approximately 1.6 million of tons of asphalt concrete were laid in 

Nebraska at a total cost of $60,660,213.33 (Miller, 2006).  

The numbers mentioned above provide an idea of the importance and robustness 

of the transportation business. The increase in traffic volume over the past decades 

required the laying down of higher quality roadways. Researchers worldwide try to 

develop better composites, both affordable and more resistant, and a lot of money is 

invested on the development of new performance tests that better simulate field 

conditions. The quality level of highways is directly associated with the proper selection 

of materials (aggregates, binder, and additives), mix design, proper construction 

procedures, and adequate structural design of the pavement layers. If these factors are 

optimized, the distresses on the structure will be reduced, thereby significantly affecting 

the costs associated with rehabilitation and replacement of the structures.  

This thesis presents a study of the effects of aggregates on the properties and 

performance of mastics and hot mix asphalt (HMA). The viscoelastic nature of the 

asphalt binder as well as several other aspects of the HMA are considered. First, a study 

as to how different mixtures behave relative to the restricted zone criterion was 

conducted. This zone lies on the maximum-density line of the mixture gradations, and 

researchers of the strategic highway research program (SHRP) suggested that it should be 

avoided to create stronger mixtures against permanent deformations. The performances 

of five different mix gradations (one above, two through, and two below the restricted 

zone) with respect to permanent deformation were characterized using the asphalt 

pavement analyzer (APA). The results obtained from APA testing were also used to 
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compare the rutting potential of mixtures with different fine aggregate angularity (FAA) 

and coarse aggregate angularity (CAA). 

Furthermore, this study also investigated as to how the type and amount of fillers 

changed the viscoelastic property *G , the dynamic shear modulus of each mastic. A 

similar investigation was conducted to assess how different contents of hydrated lime 

changed the viscoelastic property, the dynamic modulus ( *E ) of each HMA sample.  

The viscoelastic properties *G  and *E  were then translated into master curves, 

a representation of the properties over a wider range of frequencies. From the *G  and 

*E  properties, relaxation shear modulus, (G(t)), and relaxation modulus, (E(t)), 

functions were obtained, respectively. This was performed by curve-fitting Prony series 

on the experimental data with the aid of the collocation method.   

The next step was to evaluate the fatigue life of HMA mixtures by varying the 

contents of hydrated lime. For this case, curves that represent applied stress and the 

number of cycles to failure (so-called S-N curves) were created for a controlled-force 

testing mode.  

Finally, rutting performances of similar HMA mixtures were indirectly evaluated 

by considering the vertical permanent-deformation from creep and recovery tests as a 

comparison parameter. Also, constant loads that are high enough to cause damage were 

applied to samples at a temperature close to the highest temperature in the performance 

grade (PG) of the binders used. The beginning of the tertiary flow was monitored to 

compare the rutting potentials of mixtures.  

This research is divided into five chapters as follows. 
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Chapter 2 is a review of topics related to the research. The main issues addressed 

are the definition and characterization of asphalt, its compositional model, the effects of 

chemical composition on performance, the viscoelastic nature of the material, definitions 

of the viscoelastic properties, the importance of their characterization and the mechanical 

analogs used to represent those properties accurately, the energy-dissipation concept used 

to relate the viscoelastic properties of mastics to rutting and fatigue distresses, the 

concept of linear viscoelasticity, the time-temperature superposition principle, and curve-

fitting procedures available to fit expressions of the viscoelastic properties to the 

experimental data. For the aggregates, definitions and classifications are provided, along 

with their effect on the performance of asphalt mixtures. Superpave and its innovations 

including the control points and the controversial restricted-zone concept are also 

discussed. A short description of the major distresses in asphalt pavements is also found 

in that section. Finally, there is a discussion related to the derivations of solutions for the 

viscoelastic properties of HMA when tested in indirect tension (IDT) mode. 

Chapter 3 discusses methods, loading shapes and levels, frequencies, 

temperatures, and equipments chosen to characterize the properties and performance of 

mastics and asphalt concrete mixtures. Curve-fitting procedures are also described. 

Finally, this chapter discusses how testing results are interpreted and related to the 

potential of the mixtures to the fatigue and rutting distresses. 

Chapter 4 presents the testing results and relates APA and UTM-25 results with 

fatigue- and rutting-performance potential of mixtures. 

Chapter 5 summarizes the conclusions and recommendations with regard to this 

research work.  
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CHAPTER 2 

 

LITERATURE REVIEW 

2.1. Asphalt 

 

2.1.1. Definition 

 

Asphalt is a complex material composed of hydrocarbons and has high viscosity, 

is black in color, and is present chiefly in crude petroleum and in some natural deposits. 

There are some disagreements among chemists regarding the structure of asphalt, but it is 

most commonly modeled as a colloid, with asphaltene as the dispersed phase and maltene 

as the continuous phase. Asphalt can also be defined as “a brown or black, tar-like, 

bituminous substance that mainly consists of hydrocarbons, found in large flat beds or 

made by refining petroleum.” Bitumen can be defined as “1) asphalt found in natural 

state, 2) any of various black, combustible, solid to semisolid mixtures of hydrocarbons 

that are usually obtained from the distillation of petroleum, used to make roofing 

materials, sealants, paints, etc (Webster’s dictionary, 2005).” Krishnan and Rajagopal 

(2003) suggested that bitumen and asphalt could be interchangeable terms.  
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2.1.2. Applications 

 

Asphalt cement is one of the oldest engineering materials. There are records of the 

use of asphalt in the ancient times as mortar between bricks and stones, as waterproofing 

agent, and as a material to embalm mummies (Egypt, B.C. 2600) etc. According to 

Roberts et al. (1996), a Sumerian who thrived on shipbuilding industry used the material 

in B.C. 6000. The Sumerians also used the black material for inlaying shells, precious 

stones, and pearls (WSDOT, 2006). Around 1500 A.D., there were records of the use of a 

material similar to the modern bituminous macadam to pave the Incas’ highway system 

in Peru. In modern times, the first roadway in the U.S. to be paved using asphalt was 

Pennsylvania Avenue in Washington D.C., in 1876 (Roberts et al., 1996).  

Krishnan and Rajagopal (2003) referred to the Shell Bitumen Handbook to 

summarize more than 250 known current uses of bitumen in agriculture, construction, 

hydraulics, erosion control, automobile industry, electrical industry, railways, paving 

industry, etc. According to the authors, however, the most widespread use of asphalt is in 

the construction of roadways and runways. 

 

2.1.3. Chemistry Involved 

 

Roberts et al. (1996) referred to a study conducted by Peterson (1984) about the 

chemical composition of asphalt. The author related this composition to the durability of 
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the material. In the study, the author published the composition of different asphalts 

shown in Table 2.1. 

 

Table 2.1 - Elemental analysis of representative petroleum asphalts 

Asphalt type 
Element 

Mexican Blend Arkansas Louisiana Boscan California 

Carbon (%) 83.77 85.78 82.90 86.77 
Hydrogen (%) 9.91 10.19 10.45 10.93 
Nitrogen (%) 0.28 0.26 0.78 1.10 

Sulfur (%) 5.25 3.41 5.43 0.99 
Oxygen (%) 0.77 0.36 0.29 0.20 

Vanadium (ppm) 180 7 1380 4 
Nickel (ppm) 22.00 0.40 109.00 6.00 

 

It is clear from Table 2.1 that carbon and hydrogen together represent 

approximately 95% of the asphalt composition. The next most abundant element is sulfur. 

There are also some small amounts of nitrogen and oxygen and heavy metals such as 

vanadium and nickel. The polar part of the asphalt (sulfur, nitrogen, and oxygen) defines 

how the asphalt molecules interact with each other and with other materials. 

The elements are linked together in the form of long chains that can be arranged 

in three different ways: 1) straight chains: “aliphatic;” 2) simple or complex saturated 

rings: “naphtenic;” and 3) one or more stable six-carbon condensed, unsaturated ring 

structures: “aromatic.” 

There are disagreements on the conceptual composition of the asphalts. 

Researchers have proposed different conceptual models. Petersen et al. (1994) discussed 

the history of these models. The main ones are as follows: 

Asphalt as a Colloidal System: Petersen et al. (1994) used the “McGraw-Hill 

Encyclopedia of Science and Technology” to define a colloidal system as the phase made 
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up of particles having dimensions of 1-1000 nm that are dispersed in another phase. The 

authors claimed that Nellensteyn (1924) was the first to recognize the colloidal nature of 

asphalts. After Nellesteyn, Mack (1932) also concluded that asphalts are colloidal 

materials. Labout (1950) suggested that the amounts and characteristics of the asphaltene 

and maltene can be defined if the asphalt acts as “sol” (the asphaltenes are highly 

dispersed in the oily phase), “gel” (the resins are not as effective for dispersing the 

asphaltenes in the oily phase), or “sol-gel” (there is an intermediate dispersion).  

Strategic Highway Research Program (SHRP) Microstructural Model: Jones 

and Kennedy (1991) mentioned other denominations given to the model. According to 

them, the SHRP model is also named as “polar dispersed fluid,” “spaghetti and sauce,” or 

“spider” model. There are two distinguishable phases: associated or polar molecules, 

which form the network and are responsible for the elastic behavior of the asphalt, and 

solvent or nonpolar molecules, which form the body of the network and are responsible 

for the viscous properties. Excessive amounts of the associated phase result in brittle 

asphalts and problems associated with cracking. Very low association results in problems 

associated with damage caused by moisture and in permanent deformation. SHRP also 

identified a type of molecule known as “amphoterics,” which constituted only 10-15% of 

the asphalt composition, but are largely responsible for their viscoelastic properties. 

Figure 2.1 has been used by Jones and Kennedy (1991) as a scheme of the model. 

According to the authors, the SHRP study gave a clearer relationship between the 

chemistry and performance of asphalts.  
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Figure 2.1 - SHRP microstructural model (Jones and Kennedy, 1991) 

 

WSDOT (2006) summarized the failure mechanisms of the asphalt concrete and 

related them to the basic molecular or intermolecular chemistry of the asphalt. In case of 

the rutting distress, it is suggested that if the molecular network is relatively simple and 

not interconnected, asphalt will tend to deform inelastically when a load is applied (e.g., 

not all the deformation is recoverable). In addition, asphalt with a higher percentage of 

nonpolar dispersing molecules possesses better flow and plastic-deformation capabilities. 

The various fragments of network-forming polar molecules can move more easily 

relative to one another because of the higher percentage of nonpolar molecules in the 

fluid. In case of fatigue cracking, it is suggested that if the molecular network becomes 

very organized and rigid, asphalt will fracture rather than deform elastically under stress. 

Therefore, asphalt with a higher percentage of polar, network-forming molecules may be 

more susceptible to fatigue cracking. Details about aging, thermal cracking, stripping, 

and damage caused by moisture can be found in the references. 
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2.1.4. Viscoelastic Nature 

 

According to Elseifi et al. (2006), the use of elastic theory to describe HMA 

behavior often results in an underestimation of the pavement responses for intermediate 

and high temperatures, where there is a flow and energy dissipation by frictional losses. 

The pavement response under high temperatures or loading in low frequencies results in 

distresses such as permanent deformation (rutting). The authors stated that HMA has only 

an elastic behavior at low temperatures or at highloading frequencies, when the rigidity of 

the HMA confers characteristics of an elastic solid to the material. This low-temperature 

elastic behavior causes nonload-associated low-temperature cracking. Fatigue occurs at 

intermediate temperatures and is a load-associated type of distress. 

Stresses are a single-valued function of the strains in elastic materials, which are 

inappropriate for asphalt concretes, since stresses of asphalt concretes are functions of the 

entire history of the strains due to the viscoelastic characteristics. Findley et al. (1976) 

stated that viscoelasticity characterizes materials that exhibit strain-rate effects in 

response to applied stresses. In addition, Kim et al. (2002) stated that the responses of 

such types of materials are not only functions of the current input but also of the entire 

input history. The authors used the hereditary integral to relate the input (stress or strain) 

to the response (strain or stress) of linear viscoelastic materials.  

Marasteanu and Anderson (2000) suggested that viscoelastic materials will be in 

their linear region when the magnitude of the deformation is sufficiently small or when 

the rate of deformation is sufficiently low relative to the relaxation time of the material. 

According to homogeneity concept, the strain output due to a stress input is equal to a 
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scalar multiplied by the strain output due to a stress input that was multiplied by that 

scalar. This means that if the input is doubled, the output should also be so. The 

superposition principle states that the strain output due to the combination of two 

arbitrary but different stress inputs applied at different times is equal to the sum of the 

strain outputs due to the stress inputs acting separately. Equations 2.1 and 2.2 provide an 

explanation for those concepts. 

cR{I}  {cI} R =                 (2.1) 

Ib}  {Ia R  {Ib} R  {Ia} R +=+                (2.2) 

where R = response (stress for strain input or strain for stress input); 

I = input (either stress or strain); 

a, b, c = scalar constants. 

Kim et al. (2002) also distinguished aging from nonaging systems. For the aging 

systems, the response at any time is a function of the current time of loading (t) and the 

initial time of loading application (τ ). For the nonaging system, the response at any time 

is a function of only the history of loading application time, or (t-τ ). According to the 

researchers, the nonaging system is commonly used. Assuming that the system is 

nonaging, that the input starts at time t = 0, and that both input and response are zero for 

“t” < 0, the hereditary integral becomes 

τ
τ

τ d
d

dI
tRR

t

H∫ −=
0

)(              (2.3) 

where R = response (stress if the strain is the input or strain if the stress is the input); 

RH = unit response function: creep compliance (D(t)) for stress input or relaxation 

modulus (E(t)) for strain input due to H(t-τ ); 
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H(t-τ ) = Heaviside Unit Step Function; 

I = input (either stress or strain).  

The Heaviside step function can be defined as follows: 
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On the basis of Schapery’s studies, Kim et al. (2002) also showed that there is a 

correspondence principle relating the constitutive equations of elastic and certain 

viscoelastic media. This principle is suitable for both linear and nonlinear materials. It 

states that stresses and strains are not necessarily physical quantities in the viscoelastic 

body, but pseudo variables in the form of convolution integrals. The uniaxial pseudo 

strain ( Rε ) can be represented by: 

τ
τ

ε
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0
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1

               (2.6) 

Where =Rε uniaxial pseudo strain; 

ER = reference modulus that is an arbitrary constant and has the same unit as the 

relaxation modulus (E(t)). The authors use 1.0 in their research; 

=− )( τtE uniaxial relaxation modulus. 

For the linear viscoelastic materials, a uniaxial stress-strain relationship is given 

as 

τ
τ

ε
τσ d

d

d
tEt

t

∫ −=
0

)()(                    (2.7) 
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Using the pseudo strain, the stress equation mentioned above can be rewritten as 

R
RE εσ =                          (2.8) 

Or, considering the Laplace domain and operations 

[ ] gfdgtfL =−∫ τττ )()(              (2.9) 

hs
dt

tdh
L =




 )(
,               (2.10) 

Equation 2.7 becomes 

( )εσ sE=                                               (2.11) 

where f, g, and h = arbitrary functions; 

 s = Laplace transform variable; 

=Es Carson transform of E. 

Equation 2.11 is equivalent to Hooke’s Law (linear elastic stress-strain 

relationship), except that stress and strain are in the Laplace transform domain and the 

Young’s Modulus in the Carson transform domain. If the material is not tested beyond its 

linear viscoelastic range, no damage will be induced and the accumulated strain will be 

due exclusively to the viscoelasticity of that material. This argument indicates that the 

elastic-viscoelastic correspondence principle is a powerful tool to define the limits 

between the cases in which damage is induced and those in which damage is not induced.  

Kim et al. (2004) suggested that the pseudo-strain concept based on Schapery’s 

elastic-viscoelastic correspondence principle can represent nonlinear behavior of the 

viscoelastic material due to damage. Using this concept, material nonlinearity can be 

identified by characterizing the pseudo-variable history. 
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Figure 2.2 and Figure 2.3 were used by Lee and Kim (1998) to illustrate the linear 

nature of the relationship between stress and pseudo strain for cyclic loading tests when 

damage is not induced on the asphalt concrete specimen. The authors also defined how to 

obtain the pseudo strains, but this is out of the scope of this thesis and will be one of the 

targets of future works using data from this research. This research effort, however, has 

characterized the relaxation curves of mastics and HMA mixtures as a function of time, 

which are the fundamental quantities necessary for obtaining the pseudo strains for 

further stress-strain analyses. 

 

 

Figure 2.2 - Stress vs. strain (Lee and Kim, 1998) 
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Figure 2.3 - Stress vs. pseudostrain (Lee and Kim, 1998) 
 

AASHTO T315 recommends a procedure to define whether the material is within 

the viscoelastic range using Dynamic Shear Rheometer (DSR) tests. According to the 

recommendation, strain sweep tests should be conducted, and the linear region will then 

be defined as the range of strains where the *G  is 95% or more of the initial value.  

Marasteanu and Anderson (2000) presented a general approach for checking both 

homogeneity and superposition principles in oscillatory (by DSR), creep (by bending 

beam rheometer (BBR)), and monotonic constant strain-rate (by direct tension (DT)) 

tests. According to the authors, there are no documented studies for checking the 

superposition principle using DSR tests. They suggested that a multiwave experiment in 

which the applied stress (or strain) is composed of many stress (or strain) signals should 

be conducted simultaneously. For the linear range, the material response due to the 

multiwave signal should be equal to the sum of the responses due to the individual 

signals. 
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Smith (2004) defined viscoelastic material as “one that can both store and 

dissipate mechanical energy in response to deformation by a mechanical stress. The 

storage ability is referred to as elasticity and the dissipative losses are due to viscous 

effects.” According to the author, an elastic material is the one that responds 

instantaneously to the solicitations, whereas viscous effects act to delay the response to a 

time-varying stress or strain. This delay is called “phase angle” (φ ) or “time lag.” A 

phase angle (φ ) of 90° represents a perfect viscous behavior, whereas the 0° time lag 

characterizes an elastic material. Viscoelastic materials have phase angle between 0° and 

90°. This means that when they are loaded, parts of the deformation are recoverable or 

elastic and the remaining parts are nonrecoverable or viscous.  

According to Kim et al. (2002), the viscoelastic properties that should be obtained 

when modeling asphalt concrete are creep compliance, relaxation modulus, or complex 

modulus (from which phase angle and dynamic modulus are determined). The authors 

stated that the creep compliance and the complex modulus can be easily obtained from 

testing, whereas the relaxation modulus, which is essential for the calculation of the 

pseudo strains (Haifang, 2001), cannot be easily obtained from testing because of the 

high initial load caused by a step displacement input. However, the authors suggested that 

these three material properties are related and showed procedures to obtain the relaxation 

modulus from either the creep compliance or the complex modulus. 

The asphalt resistance to deformation when subjected to a repeated sinusoidal 

load is represented by the so-called complex modulus (E*). This modulus is expressed by 

a complex number composed of a real and an imaginary part. The real part is related to 

the so-called storage or elastic modulus (E’), whereas the imaginary part represents the 
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loss or viscous modulus (E”). The dynamic modulus can be obtained from the storage 

and loss modulus by using equation 2.12. 

22 )''()'(* EEE +=                             (2.12) 

Whereas E’ and E” can be obtained from *E and φ  by using the following 

relationships: 

φcos*' EE =                       (2.13) 

φsin*'' EE =                       (2.14) 

Dougan et al. (2003) suggested that for the case where =φ 0° (pure elastic 

material), E* confounds to its absolute value *E . 

The characterization of such a property of the binder is performed by applying a 

pure shear loading, using a DSR to produce the complex shear modulus (G*). Figure 2.4 

shows schematic illustrations relating G*, G’, G”, and φ  for two different binders. 

 

 

(a)                                                                     (b) 

Figure 2.4 - Dynamic shear modulus as a complex number for two different binders 

(Roberts et al., 1996) 
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Roberts et al. (1996) used Figure 2.4 to show that the complex modulus is not 

enough to characterize binders. The phase angle is also required. In Figure 2.4, both the 

first and second binders have the same dynamic shear modulus, represented by the length 

of the G* arrow. However, the binder in Figure 2.4a has a viscous portion that is larger 

than the second one. This means that this binder will display less recoverable and more 

nonrecoverable deformation when loaded than the binder shown in Figure 2.4b. 

Roberts et al. (1996) also related G* and φ  with rutting and fatigue performances, 

respectively. They stated that for any damage phenomena that occur in asphalt, the lower 

the amount of energy dissipated per cycle, the less is the distress that will occur. The 

authors used the work-dissipation concept to explain that, for improving rutting 

performance, the binder should exhibit a larger *G  and a lowerφ . The *G  guarantees 

more resistance to permanent deformation because it represents a stiffer binder. Whereas 

the low φ  produces a more elastic binder, which also increases the resistance to 

permanent or plastic deformation. For the enhancement of fatigue performance (strain-

controlled phenomenon for thin HMA pavement layers), however, a binder with lower 

*G  and lower φ  should be used. The low *G  allows the binder to deform without 

building up large stresses. The low φ  allows the binder to regain its original condition 

after loading without dissipating work. Equations 2.15 and 2.16 are used to address the 

relationship between dissipated work and complex shear modulus and phase angle for 

rutting and fatigue, respectively. 
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where =cW work dissipated per load cycle; 

=oσ stress applied during the load cycle; 

=*G dynamic shear modulus; 

 =φ  phase angle;   

 =oε strain applied during the load cycle;   

The total dissipated work after N cycles in either Equation 2.15 or 2.16 is then 

defined as: 

∑
=

=
N

i
ctot WW

1

            (2.17) 

Dougan et al. (2003) mentioned that the E* of the mixtures is related to the G* of 

the binders through the following equation:  

*)1(2* GE υ+=             (2.18) 

where =υ Poisson’s ratio. 

Note that Equation 2.18 is valid for the elastic case. For viscoelastic materials, the 

change in υ  as a function of time should be taken into account. 

The other two viscoelastic characteristics, stress relaxation and creep, are defined 

by Smith (2004) as follows: stress relaxation is the phenomenon of decay occurring over 

the time of induced stresses in a body when a strain is applied and then maintained 

constant (step function). Whereas creep is the increase in the strain deformation over time 

when stresses are applied as a step function to a body and may be defined as the time-

dependent part of strain due to an applied stress. Creep compliance is the time-dependent 

strain divided by the applied stress (AASHTO T322). Relaxation modulus is the stress 

per unit of applied strain (Findley et al., 1976). Since the stiffness of asphalt is time 
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dependent, Anderson et al. (1994) suggested that such material should be classified as 

rheological material. The word is derived from the Greek “rheo,” which translates 

literally as “to flow.” In addition, asphalt is also temperature dependent. Therefore, 

loading rate and temperature variations should be taken into account when characterizing 

the flow properties of asphaltic materials. 

The time-temperature dependency in materials such as asphalt can be classified as 

thermorheologically simple because they exhibit similar behavior at fast loading rates and 

cold temperatures and at slow loading rates and high temperatures. This time-temperature 

dependency can be represented by a single parameter called reduced time,ξ , through the 

time-temperature superposition principle. This principle is a powerful tool to predict 

material behavior over a range of loading times that are much wider than the range of 

testing times. Lundström and Isacsson (2004) and Kim et al. (2002) expressed the 

reduced time as shown in Equation 2.19. 

Ta

t
=ξ             (2.19) 

where t = physical time, i.e., time during the test; 

aT = time-temperature shift factor.  

Kim et al. (2002) also suggested that, since the complex modulus is described as a 

function of frequency ( f ), a new parameter called reduced frequency,γ , should be used. 

Equation 2.20 represents the reduced frequency as a function of Ta . 

f=γ × Ta             (2.20) 

The shift factor can be determined from any of the linear viscoelastic tests and 

should be the same for all the viscoelastic material properties, i.e., creep compliance, 



 21 

relaxation modulus, and complex modulus. A more detailed discussion will appear later 

in the section Methodology. 

The characterization of the viscoelastic materials is conducted based on simplistic 

models with arrangements of a number of Hookean springs representing the elastic 

behavior of the material and Newtonian dashpots representing the viscous part. For the 

springs, force is proportional to the applied deformation by a factor k (spring constant), 

such as kxF = . For the Newtonian dashpots, force is now proportional to the velocity of 

the deformation by a factor η  (viscosity) such as
dt

dx
F η= . A combination of springs and 

dashpots is then used to characterize the viscoelastic models.  

The creep and recovery of viscoelastic materials follow the pattern shown in 

Figure 2.5. The figure shows six distinct regions that explain the creep evolution. The 

material first deforms instantaneously and elastically because of the instantaneous change 

of load (Region 1). Then, there is a deceleration of the creep and this is the so-called 

primary or transient creep (Region 2). Furthermore, the primary region blends 

asymptotically into the secondary or steady-state creep (Region 3). When the load is 

removed, there is an instantaneous or elastic recovery (Region 4). Findley et al. (1976) 

suggested that this region is large for plastics and small for metals. At this point, it is 

important to state that, if the load is not removed, the secondary creep region will 

eventually change its slope, when the creep starts to accelerate and material begins to 

fracture. This is the so-called tertiary creep and is not shown in Figure 2.5. More details 

about the tertiary creep can be found in Gittus (1975). The next creep stage is the delayed 

recovery (Region 5). Finally, the material does not recover all of the deformation, and the 

irrecoverable or plastic portion appears (Region 6).  
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Figure 2.5 - Creep behavior of viscoelastic materials 
 

The relaxation behavior is less complex than the creep. The stress of a viscoelastic 

material subjected to a constant strain will relax as shown in Figure 2.6. 

 

0

500000

1000000

1500000

2000000

2500000

0 0.5 1 1.5 2 2.5 3 3.5 4

time (s)

S
tr

e
s

s
 (

P
a

)

 

Figure 2.6 - Stress relaxation behavior of viscoelastic materials 
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There are several mechanical analogs available for viscoelastic analyses. The 

simplest ones are the Maxwell’s (James Clerk Maxwell, 1831-1879) and the Voigt’s 

(Woldemar Voigt, 1850-1919) models. In the Maxwell’s model, one spring and one 

dashpot are combined in series. The resulting relaxation modulus ( MAXE ) and creep 

compliance ( MAXD ) as a function of time are: 

t
E

MMAX
M

M

eEtE η
−

=)(            (2.21) 
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where EM = Young’s modulus of the Maxwell’s spring; 

 =Mη viscosity of the Maxwell’s dashpot. 

The corresponding graphs are shown in Figure 2.7 and Figure 2.8.  
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Figure 2.7 - Maxwell's model - relaxation modulus 
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Figure 2.8 - Maxwell's model - creep compliance 
 

Figure 2.8 shows that Maxwell model does not represent the reality, since the 

creep compliance in reality typically converges to an asymptotic value. 

Voigt’s model combines one spring with one dashpot in parallel. The 

corresponding relaxation modulus ( VOIE ) and creep compliance ( VOID ) as a function of 

time are: 

VVOI EtE =)(                         (2.23) 
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where =VE Young’s modulus of the Voigt’s spring; 

 =Vη viscosity of the Voigt’s dashpot. 

The corresponding graphs are shown in Figure 2.9 and Figure 2.10.  
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Figure 2.9 - Voigt's model - relaxation modulus 
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Figure 2.10 - Voigt's model - creep compliance 
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The limitation of the Voigt’s model is evident due to the constant nature of its 

relaxation modulus. Another limitation is that its creep does not exhibit the instantaneous 

initial behavior as shown in Figure 2.5. 

More elaborated arrangements are the standard linear solid (SLS) and the 

Burgers’ (Johannes Martinus Burgers, 1895-1981) models. The SLS combines a 

Maxwell’s element with a spring in series. The corresponding creep and relaxation 

behavior differ from the ones shown in Figure 2.5 and Figure 2.6. The stress of the SLS 

model relaxes in a manner similar to that shown in Figure 2.6, but does not tend to be 

zero or infinity, and the creep compliance has also a similar behavior to the one shown in 

Figure 2.5, but Region 6 is not present.  

For the Burgers’ model, there is an association in series of a Maxwell’s and a 

Voigt’s element. The presence of the Maxwell’s dashpot creates the permanent strain 

(Region 6) shown in Figure 2.5. The Burgers’ relaxation curve is also similar to the one 

shown in Figure 2.6. 

To obtain more accurate viscoelastic representations, it is common to use a 

generalized Voigt (or Kelvin’s - William Thomson, 1st Baron Kelvin, 1824-1907) or a 

generalized Maxwell (or Wiechert’s - Dieter Weichert, 1948 to present date) model. 

Kelvin’s model is an association in series of “n” Voigt’s elements with one Maxwell’s 

element. The Wiechert’s model is an association in parallel between a spring and “n” 

Maxwell’s elements. The analytical Prony-series expressions representing the relaxation 

modulus of the Wiechert’s model and the creep compliance of the Kelvin’s model are 

presented in the next section. 
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2.1.5. Analytical Representation of Linear Viscoelastic Properties 

 

 Kim et al. (2002) and Chehab and Kim (2007) summarized the primary ways of 

analytically representing the linear viscoelastic response functions: dynamic modulus, 

creep compliance, and relaxation modulus, and how to obtain one as a function of any of 

the other two. 

 The first task is to obtain one of the properties through experimental tests. To 

obtain the dynamic modulus, tests should be conducted at different temperatures and 

loading frequencies. The time-temperature superposition principle is then applied for the 

construction of master curves for *E  and φ  as a function of reduced frequencies. At this 

point, a mathematical function should be fitted to the master curve and this procedure 

will generate a representative analytical expression for the response over a broad 

frequency (or loading time) range. 

 The main analytical representations are: power laws, namely, pure power law 

(PPL), generalized power law (GPL), and modified power law (MPL), and the Prony 

series. 

 

2.1.5.1. Power Laws 

 

 Chehab and Kim (2007) mentioned that the power-law expressions, though 

approximate and simplistic, yields fits that are globally smooth and stable. The first 

common power law is the so-called pure power law (PPL). This is the simplest one and 

can be represented by the following expression for creep compliance: 
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ntDtD 1)( =              (2.25) 

where D1 = creep compliance at t = 1 sec; 

=n representative slope of the experimental data over the transient region plotted 

on a log-log scale. 

The authors suggested that this power law has a limitation of poor representation 

to the regions other than the transient zone. 

 SHRP simple performance-test procedure for the creep testing (Appendix E) 

suggests the use of a PPL to fit the testing data. The next common power law is the 

generalized power law (GPL). The expression representing the creep compliance in a 

GPL form is given by: 

n
g tDDtD 1)( +=             (2.26) 

where Dg = glassy compliance or )(lim
0

tDD
t

g
→

= . 

 The GPL fits the response more accurately than the PPL for the short-time 

behavior due to the gD factor. However, it is not good for long-time data simulation. 

 The modified power law (MPL) for D(t) can be represented as follows: 
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where =eD long-time equilibrium or rubbery compliance or )(lim tDD
t

e
∞→

= ; 

 =τ characteristic retardation time; 

=n slope of the linear portion of the creep-compliance master curve in log-log 

scale. 
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 gD  and eD can be determined by a simple inspection of the experimental data. 

This power law fits data in a much better way than the PPL and GPL. It creates a 

characteristic, broad-band, S-shaped curve. The MPL limitation lies in the representation 

of the top and bottom asymptotes of the S-shaped curve, where the curvatures are 

maximum. An improvement of this power law is the power law series (PLS) as 

represented below: 
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∑           (2.28) 

where iD̂ , iτ̂ (for i = 1 to M), n and M being constants. 

iτ̂  values are to be assigned a priori, and the glassy compliance and n are 

determined from the measured data. To solve for the iD̂ values, one should solve the 

system of M equations by using the collocation method. Huang (2004) defines the 

collocation method as “an approximate method to collocate the computed and actual 

responses at predetermined number of time durations.” The author also explained the 

determination of the coefficients of the Prony series using the collocation method. In 

general, the PLS fits data better as the number of “i” terms increases. However, Kim et al. 

(2002) and Chehab and Kim (2007) suggested that five terms (M=5) are enough for an 

accurate representation. 
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2.1.5.2. Prony Series 

 

 Chehab and Kim (2007) stated that the Prony series method is popular because of 

its ability to describe a wide range of viscoelastic response. In addition, it is 

computationally efficient because it is represented by exponential functions. Furthermore, 

it has also a basis in the theory of mechanical models represented by linear springs and 

dashpots, as mentioned previously. 

 The Prony series representing the creep compliance of the Kelvin’s model and the 

relaxation modulus of the Wiechert’s model are represented: 
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where =oD glassy compliance related to the short-time creep behavior or )(lim
0

0 tDD
t→

= ; 

=∞E long-time equilibrium modulus or )(lim tEE
t ∞→

∞ = ; 

=ij ED , Prony-series regression coefficients related to the retardation and 

relaxation; 

=jτ retardation time;  

 =iρ relaxation  time.  
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2.1.6. Conversions Among the Viscoelastic Properties 

 

 Relaxation modulus, ( )E t , is an essential parameter that is used to characterize 

pseudo strains. It was mentioned previously that it is a hard task to obtain E(t) directly 

from tests due to the high initial stress caused by the strain-step function input. However, 

the theory of linear viscoelasticity states that the viscoelastic material properties E(t), 

D(t), and *E  are related and can be interconverted.  

 Before discussing the interconversions among the properties, it is appropriate to 

introduce the reader to a short mathematical overview of the problem. For an elastic 

material, the Young’s modulus relates to the material compliance by: 

D
E

1
=                   (2.31) 

 However, this is not true if time dependency is introduced, as in a viscoelastic 

material. In that case, Equation 2.31 is not valid, and the relationship becomes: 
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 These expressions are derived from the following constitutive equations: 
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 Taking Laplace transform of Equations 2.34 and 2.35 and combining them, 

yields: 

2

1

s
DE =             (2.36) 

or taking Carson transform, Equation 2.36 becomes: 

1)(
~
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=sDsE             (2.37) 

 Taking the inverse Laplace transform of Equation 2.36, one obtains Equation 2.32 

and/or Equation 2.33. Finally, Equation 2.37 is similar to Equation 2.31; however, 

Equation 2.37 is Carson transformed. Equations 2.38 and 2.39 show the Carson-

transform expressions for the relaxation modulus and creep- compliance functions, 

respectively.  
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 Equations 2.38 and 2.39 are defined by Park and Schapery (1999) as the 

operational modulus and compliance, respectively. The operational functions are in the 

Laplace domain. The authors also relate the operational functions to the functions of the 

complex material as follows: 

ωissEwE →= )(
~

)(*            (2.40) 

ωissDwD →= )(
~

)(*            (2.41) 

 From Equations 2.37, 2.40, and 2.41, the following relationship between the 

complex functions can be drawn: 
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1)(*)(* =ωω DE            (2.42) 

 Finally, considering the Prony series representations of the creep compliance and 

of the relaxation modulus functions described previously in Equations 2.29 and 2.30, 

Park and Schapery (1999) presented the operational and the complex material functions 

as follows: 
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where: s = Laplace variable; 

 =ω angular frequency; 

 =0η zero shear or long  - time viscosity. For viscoelastic solids, =0η 0. 

As can be seen from Equations 2.30, 2.43, 2.45, and 2.46, the coefficients to be 

determined in any expression of the complex modulus or of the operational modulus are 

the same as the ones presented in the expression for the relaxation modulus. Thus, one 

can define the relaxation function in Equation 2.30 by using the same coefficients 
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obtained from the fitting of Prony series to the experimental data of E’(ω ), E”(ω ), or 

)(
~

sE . Note that both expressions 2.45 and 2.46 have the angular frequency.  

There are other documented approaches to obtain E(t) from E’(ω ), such as the 

one described by Kim et al. (2002). The authors used the following approximation: 
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where   E(t) = relaxation modulus; 

 E’(ω ) = storage modulus; 

 ω  = angular frequency = fπ2 ; 

 =Γ gamma function. 

 The storage modulus is obtained from Equation 2.13. The value “n” is used for 

calculating each relaxation modulus point. Finally, after predicting the relaxation moduli 

over the desired time range, Equation 2.30 is fitted to this data and the coefficients, 

iE and iρ , of the Prony series are determined. 

  Finally, Daniel and Kim (1998) use another approximated method proposed by 

Christensen (1982). According to the researchers, time and frequency are inversely 

proportional, but the relationship between time obtained from creep compliance and 

frequencies from dynamic modulus is not clearly defined. According to the authors, a 

common approximation used is: 
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t
f

1.0
=              (2.52) 

 They stated that this approximation comes from a relationship between E(t) and 

E’(ω ) proposed by Christensen (1982) as follows: 

t

EtE
π
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ω 2)(')(
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≈            (2.53) 

where =ω angular frequency or ω = π2 f 

Park and Schapery (1999) showed different ways to interconvert the viscoelastic 

functions. They discussed the relationships involving transient functions, operational 

functions, and complex functions. They suggested that when a set of constants, either 

{ ),...,1(, miEii =ρ  and }∞E  or { ),...,1(, njD jj =τ  and }0D , is known and the target-time 

constants jτ( or iρ ) are specified, the other set of constants can be determined by solving 

the resulting system of linear equations. For more details, the reader is referred to Park 

and Schapery (1999).  

 

2.2. Aggregates 

 

2.2.1. Definition 

 

 Aggregates are the broad category of basic materials used in construction, 

including sand, gravel, crushed stone, slag, and recycled concrete. Aggregates are a basic 

resource, necessary for any kind of modern construction. They are input materials to 
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concrete and asphalt mixtures. In addition, aggregates are used as base materials for 

foundations and roads. They are also defined as the components of a composite material 

used to resist compressive stresses. 

 

2.2.2. Types 

 

2.2.2.1. By Origin 

 

According to Roberts et al. (1996), aggregates are largely obtained from local 

supplies of natural rock. Among the natural rocks, three main types have been identified 

by geologists. They are as follows:  

Igneous rocks: formed by the cooling of molten rock magma; the classification is 

done based on the composition.  

Sedimentary rocks: formed either by deposition of insoluble residue formed 

from the disintegration of existing rocks or from deposition of the inorganic remains of 

marine animals; the predominant mineral present is used for classification purposes 

(calcareous for predominance of limestone and siliceous for predominance of sandstone 

and argillaceous).  

Metamorphic rocks: igneous or sedimentary rocks that have been subjected to 

heat and/or pressure sufficient to change their mineral structure. 

Some materials such as lightweight aggregate produced by heating clay and slag 

from the steel production are mentioned as artificial aggregates used for HMA mixtures.  
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Gravels and sands are formed from the breakdown of any natural rock and the 

most resistant final residue formed by the deterioration of natural rocks, respectively. 

Castelo Branco (2004) studied the effects of the heterogeneous steel-slag material 

on the performance of Marshall mixtures. She first characterized the expansible behavior 

of the material. The mechanical behavior of the asphalt mixtures with steel slag was 

characterized through tests such as the split tensile-strength test, resilient modulus test, 

fatigue test in controlled stress mode, and tests with moisture-induced damage. The 

author concluded that the steel slag is a potential material for asphalt surfacing layers. 

However, due to the high expansibility observed, a better control in the steel-slag 

production facilities should be made. 

 Roberts et al. (1996) summarized the quality of engineering properties of HMA 

mixtures using igneous, sedimentary, and metamorphic aggregates. They also stated that 

the most important effect of aggregate mineralogy is its influence on adhesion and 

damage caused by moisture. Asphalt cement normally tends to bond better to some 

aggregates such as limestone than to siliceous ones such as gravels. Prowell et al. (2005) 

stated that clay-like fine particles in the presence of water tend to produce mixtures prone 

to damage caused by moisture because they coat the fine aggregates and prevent the 

adherence of the asphalt to the aggregate surface. 

 Druta (2006) studied a possible link between G* of binders with the ones of 

mastics and asphalt mixtures using the “master curve” technique and modified Hirsch and 

Shenoy models based on volumetric composition of asphalt mastics and mixtures. This 

model was used for estimating the asphalt concrete E* from binder modulus, voids in the 

mineral aggregate (VMA), and voids filled with asphalt (VFA). These volumetric 
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parameters will be discussed later in this thesis. Repeated shear creep and recovery tests 

were conducted to be used as a possible means to estimate the rate of accumulation of 

permanent strain in the mastics. Druta used a binder PG 64-22 and three types of filler 

(donna fill, limestone, and granite) in five varying amounts by volume (5, 10, 15, 20, and 

30%) for the DSR characterization. From the analyses, he concluded that granite 

produced mastics with higher G* and rutting parameter G*/sinφ , and this was due to its 

higher elastic modulus. These parameters were also higher for the highest amount of filler 

in volume (30%), which means that larger amounts of filler result in higher stiffness for 

mastics at the same temperature. Another conclusion was that shear phase-angles of 

mastics and asphalt concrete mixtures experienced the same trend at different testing 

temperatures (increasing the temperature leads to increase in the shear phase angles), 

whereas different loading frequencies of mastics and asphalt concrete mixtures showed 

opposing trends. For the mastics, the higher the loading frequency, the lower is the shear 

phase-angle. Whereas for the mixtures, the higher the loading frequency, the higher is the 

shear phase-angle. The author stated that this is due to the effect of mineral aggregate on 

the asphalt binder, which makes the binder behave more elastically. 

 

2.2.2.2. By Gradation 

 

 Gradation is defined as the distribution of particle sizes expressed as a percent of 

the total weight. If the specific gravities of the aggregates used are similar, the gradation 

in volume will be similar to the gradation in weight. Roberts et al. (1996) suggested that 

“gradation is perhaps the most important property of an aggregate. It affects almost all 
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the important properties of a HMA, including stiffness, stability, durability, permeability, 

workability, fatigue resistance, frictional resistance, and resistance to moisture damage.” 

 To determine the aggregate gradation, a sieve analysis shall be conducted. This is 

done by simply stacking a series of sieves with increasing openings from bottom to top 

and by weighing the material retained on each sieve. The typical sieves used are: 2”, 1 

½”, 1”, ¾”, ½”, 3/8”, No. 4, No. 8, No. 16, No. 30, No. 50, No. 100, and No. 200. A ½” 

sieve has openings equal to ½”. A No. 4 sieve has four openings per inch. The sieves are 

stacked in such a way that the next sieve’s openings are generally twice as large as the 

previous one (from bottom to top).  

 The gradation of aggregates can be classified as follows: 

Dense-, well-, or continuous-graded: There is a continuous proportion of the 

various aggregate sizes, from fillers to coarse aggregates. This gradation provides high 

stability to the HMAs due to the increased particle contacts and the reduced VMA. 

However, the continuous gradations will result in mixtures more sensitive to slight 

changes in asphalt content. 

Very dense gradations can generate problems with low air voids that do not allow 

a coating of enough film thickness of asphalt cement and produce nondurable mixtures. 

Many transportation agencies have suggested the use of gradations approximately parallel 

to the maximum density line (MDL) with some points above and below this line. Roberts 

et al. (1996) say that many researchers have proposed ideal gradations for maximum 

density. In the 1960s, FHWA introduced the 0.45-sieve size powered gradation. Using 

this type of chart, the MDL is easily drawn by connecting the origin to the percent 
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passing point of the nominal maximum aggregate size (NMAS) (defined later in the 

thesis). 

Open-graded: It is the type of gradation that is typically used in the open-graded 

friction courses (OGFC). In a technical advisory, FHWA attributes the following 

advantages to the use of OGFC: it provides and maintains high speed and improved 

frictional qualities; reduces the potential for hydroplaning; reduces the amount of splash 

and spray; generally produces less noise, often providing a 3-5 decibel reduction in tire 

noise; improves night visibility of painted pavement markings; and helps in the 

preservation of high quality, polish-resistant aggregates, which may be scarce in some 

areas, because they are coated only as a surface layer, up to 3/4 inch thick. The 

limitations described in the same technical advisory are: it increases the potential for 

stripping of the surface and underlying pavement (it does not seal the underlying 

pavement against moisture intrusion); requires special snow- and ice-control methods and 

generally remains icy longer; requires special patching and rehabilitation techniques; 

does not add structural value to the pavement (its performance is governed by the 

condition of the underlying pavement); and may ravel and shove when used at 

intersections, locations with heavy turning movements, ramp terminals, curbed sections, 

and other adverse geometric locations. 

 Kandhal and Mallick (1998) asked numerous questions about OGFC to different 

agencies nationwide and concluded that significant improvements have been observed in 

the performance of OGFC since their introduction in the U.S. in the 1950s. Fifty 

percentage of the states indicated good experience with this type of mixture. A service 

life of eight years or more was reported by 70% of the states. The majority of the states 
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have good experience with the use of polymer-modified binders in the OGFC. Also, the 

gradations currently used tend to be coarser than the ones used in the past.  

Mallick et al. (2000) evaluated the performance of OGFC with different 

gradations and types of additives and recommended a new mix-design system, so-called 

new-generation OGFC. The performance analysis was conducted based on drain-down 

potential, permeability, abrasion resistance, aging potential, and rutting. From their study, 

they concluded that coarser gradations produce better-performing OGFC mixtures. They 

also concluded that the use of modifiers (polymers and/or fibers) enhances the 

performance of OGFC. 

Gap-graded: This is the type of gradation used for stone matrix asphalt (SMA) 

mixtures, a kind of asphaltic mixture developed in Germany in the 1960s and used in the 

U.S. since 1991 (Brown et al., 1997). SMA serves as a deformation-resistant and durable 

surfacing material and is suitable for roads with heavy traffic. SMA includes a high 

proportion of coarse aggregates that interlock to form a stone skeleton that resist 

permanent deformation. The stone skeleton is filled with a mastic composed of bitumen 

and filler, and fibers are added to provide stability to bitumen and to prevent drainage of 

binder during transport and placement. Typical SMA consists of 70-80% of coarse 

aggregate, 8.0-12.0% filler, 6.0-7.0% binder, and 0.3% fiber.  

The advantages of using SMA are: the surface-texture characteristics of SMA are 

similar to those of OGFC so that the noise generated by traffic is lower than that from 

dense gradations, but equal to or slightly higher than OGFC; it can be produced and 

compacted using the same plant and equipment available for normal HMA mixtures; it 

may be used at intersections where OGFC is unsuitable; SMA surfacing may reduce 
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reflection cracking resulting from underlying cracked pavements due to the flexible 

mastic; and its durability is equal or greater than dense gradations and significantly 

greater than OGFC.  

The disadvantages of SMA are: its high material costs; considerably longer 

mixing time and longer time taken for the addition of fillers; the possible delay in 

opening the traffic since SMA should be cooled to 40°C to prevent flushing of the binder 

to the surface (bleeding); and its initial skid resistance may be insufficient until the thick 

binder is worn off from the top of the surface by traffic. 

 Brown et al. (1997) summarized mix design and performance data from 86 SMA 

projects nationwide. They concluded that more than 90% of the SMA projects had rutting 

measurements of less than 4 mm and approximately 25% did not even experience any 

rutting. Also, cracking (thermal and reflective) was not a significant problem. The 

authors stated that SMA appears to be more resistant to cracking than dense-graded 

mixtures. There was also no evidence of raveling. Finally, the authors believed that the 

extra cost for construction should be more than offset by the increased performance. 

 The gradations of all HMA mixtures used in this thesis were dense gradations and 

are in accordance with Superpave requirements. 

 

2.2.2.3. By Size 

 

Aggregates can be classified into coarse, fine, and filler based on their size. They 

can be defined as follows: 
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• Coarse aggregates are those retained on the sieve No. 4 (4.75 mm) (ASTM 

D692); 

• Fine aggregates are those passing through the sieve No. 4 (4.75 mm) (ASTM 

1073); 

• Fillers are those materials of which at least 70% pass through the sieve No. 200 

(0.075 mm) (ASTM D242). Pulverized limestone is the most commonly 

manufactured mineral filler, although other fillers such as stone dust, silica, 

hydrated lime, Portland cement, and certain natural deposits of finely divided 

mineral material are also used. 

 

2.2.3. Properties 

 

Several physical properties are necessary to characterize aggregates. Roberts et al. 

(1996) listed the physical properties as follows: 

• Size and gradation 

• Cleanliness/deleterious materials - resistance to weathering and effects of water 

• Toughness/hardness - resistance to abrasion and degradation 

• Durability - resistance to weather and aging effects 

• Soundness - resistance to freezing and thawing 

• Particle shape/surface texture - skid resistance 

• Absorption 
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• Affinity to asphalt - related to the surface chemical characteristics of the 

aggregate. 

Superpave defines the so-called consensus and the source properties. The former 

is uniformly adopted by all state agencies. Their criteria vary by traffic level and by 

properties related to rut depth in the pavement structure (Prowell et al., 2005). The 

consensus properties are: 

Coarse aggregate angularity (CAA): It is specified at ASTM D5821. It is a 

subjective test that measures the number of one or more and two or more fractured faces 

in the coarse aggregates. The limit values depend on the traffic level and on the depth of 

the layer in the pavement structure. Rounded aggregates tend to contribute to shear 

failure of the pavement. 

Fine aggregate angularity (FAA): It is specified at AASHTO T304-96 and 

represents a measurement of the amount of voids when a fine aggregate sample is poured 

into a cylinder. The amount of voids is proportional to the angularity of the fine 

aggregates. Limits also depend on traffic and on the depth of the layer in the pavement 

structure. 

Flat and elongated particles (F&E): It is specified at ASTM D4791 and defines 

the ratio between the length and thickness of an aggregate. If the ratio is greater than five, 

the aggregate is said to be flat and elongated. Flat and elongated particles should be 

limited in the mixtures because they break easily, possibly leading to stripping of the 

asphalt film in the presence of water. This variation in the shape of aggregates also 

affects the volumetric parameters of the asphalt mixture. The amount of flat and 

elongated particles allowed is based on the traffic level.  
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Sand equivalent (SE) or clay content: It is specified at AASHTO T176 and is a 

measurement of the amount of fine dust or clay-like materials in soils or fine aggregates. 

The increased amount of dust reduces the binder adhesion to the aggregate particles. The 

outcome of the ASTM T176 test is related to the amount of sand and thus it is a minimum 

value in the specification. The limits for clay content are based on the traffic level. 

Buchanan (2000) evaluated the effect of F&E on the volumetric properties of the 

mix design, rutting susceptibility, aggregate breakdown, and fatigue cracking of HMA 

mixtures. They used two types of aggregates: Alabama limestone and North Carolina 

granite. Both materials were evaluated by varying the 3:1 F&E percentages. Three 

different percentages were used. The rutting performance was evaluated by the APA test 

and the fatigue performance by the four-point beam fatigue test. The authors observed 

that increased amounts of 3:1 F&E led to increased breakdown of particles. More than 

30% 3:1 F&E particles significantly affected the volumetric properties of the HMA 

mixtures. They also concluded that the amount of 3:1 F&E did not significantly affect the 

rutting results of mixtures using limestone during APA testing. For the HMA mixtures 

using granite, the rut depths increased with the increase of 3:1 F&E. However, for low 

percentages, this difference was not observed.  

Pan et al. (2006) studied as to how the F&E, angularity index (AI), and surface 

texture (ST) affect the rutting performance of Superpave mixtures. The authors tested 

mixtures with above restricted zone (ARZ), through restricted zone (TRZ), and below 

restricted zone (BRZ) (to be defined later in the section “Superpave”) gradations. They 

used a repeated load permanent deformation test with confinement to simulate more 

realistically the dynamic loading of highway traffic in the laboratory. From the tests, the 
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researchers characterized the slopes of the three permanent-deformation accumulation 

phases and the flow number (FN), which is the number of load repetitions at which the 

slope of the secondary phase increases and starts the tertiary phase. As defined previously 

in the thesis, this tertiary phase will lead to the eventual collapse of the asphalt concrete. 

Figure 2.11 illustrates these parameters. According to their study, F&E ratios had no 

measurable effects on the permanent deformations. FN tended to increase as the AI 

increased. This means that more angular coarse aggregates can improve the stability of 

the HMA. However, this relationship was with respect to only BRZ mixtures, whereas no 

measurable relationship between FN and AI was found for ARZ and TRZ mixtures. The 

researchers also concluded that mixtures with rougher textured aggregates have stronger 

aggregate structures, higher stability, longer lives, and better resistance to rutting. They 

finally concluded that the higher coefficient of determination (R2) between FN and ST 

than the one between FN and AI infers a greater effect of surface texture than that of 

angularity on the rutting performances. 
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Figure 2.11 - Schematic of permanent strain accumulation in repeated load triaxial 

test (Pan et al., 2006) 
 

Prowell et al. (2005) reviewed technical literature and ongoing research to analyze 

how consensus, source, or other aggregate properties significantly impacted the 

performance of HMA. For the consensus properties, they concluded that higher CAA 

produces more rutting-resistant mixtures. The researchers also suggested that there are 

several studies showing the proportionality between CAA and rutting performance, but 

there is little research to support the need for two fractured faces of at least 95%. Some 

agencies have lowered the fractured-face requirements, since it is nearly impossible to 

achieve 100%. For the FAA, several studies suggested 45% uncompacted voids for 

resistance to high traffic volume. However, there are some evidences demonstrating that 

mixtures with good performance can be obtained with the FAA between 43% and 45%. 

For F&E property, the authors suggested that only a limited number of studies have been 

conducted to relate the percentage of flat and elongated particles to performance since the 
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implementation of the Superpave program. According to them, none of those studies has 

addressed the relationship between the F&E and HMA performance at approximately the 

level of 10% particles exceeding the 5:1 ratio. The authors also concluded that no recent 

research has been able to show the relationship between clay-like particles and damage of 

HMA mixtures due to moisture. 

White et al. (2006) used accelerated pavement testing techniques and ranked the 

aggregate tests depending on how well they relate to HMA performance. Full-scale 

accelerated loading conditions were used to relate aggregate properties to performance. 

The authors stated that the content of uncompacted voids of coarse aggregate (AASHTO 

TP56) was the best predictor of rutting performance of coarse-graded mixtures. This 

importance diminishes for lower traffic levels. At least 40% of the content of 

uncompacted voids is suggested for traffic level lower than 100,000 ESALs and at least 

45% for traffic level over 100,000 ESALs. For the F&E analysis, they used a 2:1 

(FOE21) ratio and concluded that rutting increases with increasing percentages of FOE21 

particles. The resistance of HMAs to fatigue was also proportional to the amount of 

FOE21 particles. The content of uncompacted voids of fine aggregates was also related to 

the rutting performance of the HMA. However, similar to the coarse aggregates, the 

relationship between traffic level and the uncompacted voids in fine aggregates seemed to 

be less sensitive for lower traffic levels. At least 40% of the content of uncompacted 

voids was suggested for traffic levels below 500,000 ESALs and at least 45% for more 

than 500,000 ESALs. The resistance to fatigue cracking also tends to increase with the 

increase of the content of fine aggregate uncompacted voids. 
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 Figure 2.12 and Figure 2.13 were used by the researchers to illustrate the 

difference in performance for two of the built sections during the study. Figure 2.12 

shows a loading of 40 kN on dual wheels with a tire pressure of 690 kPa. This section 

failed after only 1,000 passes. The aggregate used for this section was uncrushed gravel. 

Figure 2.13 shows a pavement built with limestone. For this, a loading of 26.7 kN was 

applied to the dual wheels and the tire pressure was reduced to 620 kPa. Since this 

loading level caused no damage to the section, the load and pressure were gradually 

increased to 40 kN and 690 kPa, respectively. Only minor cracking appeared on the 

section, and the test was terminated after 80,000 passes. The subgrade, however, had to 

be repaired due to its failure. 

 

 

Figure 2.12 - Weak asphalt section built with uncrushed gravel (White et al., 2006) 
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Figure 2.13 - Strong asphalt section built with limestone (White et al., 2006) 
 

NDOR uses the following limits for the consensus properties of its different 

mixtures: 

 

Table 2.2 - NDOR's consensus properties limits 

CAA (min) 
Mix Type 

FAA 

(min) > 1 fractured face 

(%) 

> 2 fractured 

faces (%) 

F&E 

 (%, max) 

Sand Equivalent 

(min) 

SPS N/R 35 25 30 
SPL 43 83 N/R N/R 
SP-1 40 55 10 40 
SP-2 43 65 10 40 
SP-3 43 75 10 45 
SP-4 45 85 80 10 45 
SP-4 

Special 
45 85 80 10 45 

SP-5 45 95 90 10 45 
SP-6 45 95 90 10 45 
RLC 45 85 80 10 45 
LC 45 85 80 10 45 

 

The source properties are optional, and their criteria are set from each state 

agency to account for the regional differences in geology. The source properties are: 

Toughness: It is based on the Los Angeles abrasion test specified in AASHTO 

T96. According to Wu et al. (1998), aggregates must be tough and abrasion resistant to 
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prevent problems resulting from crushing, degradation, and disintegration during 

construction and under traffic loads. According to the authors, special care must be taken 

for OGFC, where coarse aggregates are subjected to high contact stress. 

Soundness: AASHTO T104 uses sodium and magnesium sulfate to measure the 

soundness of aggregates. AASHTO T103 measures this material characteristic by 

subjecting the samples to freezing and thawing. These tests are used to measure the 

resistance to breakdown or disintegration of aggregates when subjected to wetting and 

drying and/or freezing and thawing conditions. Weak particles that break during 

compaction create stripping of the HMA, followed by problems associated with damage 

caused by moisture. 

Deleterious materials: ASTM C142 is used to account for the presence of 

organics or other unsuitable materials (sulfate, alkalis, expansive silicates, etc.), which 

can contribute to pop-outs, raveling, and cracking in pavements.  

 

2.3. Additives 

 

Several different types of additives are available to improve performance of 

binders and HMA mixtures. Roberts et al. (1996) summarize additives as follows: 

• Fillers 

• Extenders 

• Rubbers 

• Plastics 



 52 

• Combinations 

• Fibers  

• Oxidants 

• Antioxidants 

• Hydrocarbons 

• Antistripping agents 

Kandhal et al. (1998) conducted a study to determine the P200 (material passing 

through No. 200 sieve) characterization tests that are most related to the performance of 

HMA mixtures. In that attempt, the authors used a PG 64-22 binder and six P200 

materials (natural sand, limestone, dolomite, granite, blast-furnace slag, and limerock) in 

two different filler/asphalt ratios by mass, 0.8 and 1.5. To characterize the six P200 

materials, several different tests were conducted. The HMA mixtures were designed for 

intermediate traffic level (107 ESALs) and were tested using the Superpave shear tester 

and indirect tensile tester for evaluating HMA resistance to rutting and fatigue. 

Furthermore, the Hamburg wheel test and modified Lottman (AASHTO T283) test to 

characterize combined effects of rutting and moisture damage were also performed. From 

the testing data analyses, they concluded that the Superpave G*/sinφ  is directly related to 

the fineness of the P200 materials. The finer the P200 materials, the more it modifies 

binder and HMA stiffness. No correlation was found between the Superpave shear-tester 

fatigue data and the P200 material properties. The stripping potential of the mixtures was 

also related to the fineness of the P200 materials in such a way that the finer the P200, the 

better is the stripping resistance of the mixtures.  
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2.3.1. Hydrated Lime: A Special Additive 

 

Hydrated lime has been used as a mineral filler or an antistripping agent in HMA 

mixtures by many agencies across North America, including the NDOR. However, 

besides working as an antistripping agent, hydrated lime has also been recognized to 

improve properties and performance of asphalt mixtures.  

The mechanisms and reactions occurring in the hydrated-lime-modified HMA 

mixtures are not fully understood (Bari and Witczak, 2005). Nevertheless, it has been 

known that hydrated lime forms insoluble salts with the highly polar molecules of the 

asphalt, which could decrease reactions with other mixture constituents to form water-

soluble soaps that might promote stripping. Hydrated lime also improves the aggregate-

asphalt bonding. The long-term oxidative aging potential of HMA can also be reduced by 

the addition of hydrated lime, from which it can be inferred that hydrated lime can reduce 

the viscosity-building polar components in the binder. Mixture segregation can be 

reduced by the use of hydrated lime because the finer particles of this material increase 

the binder film thickness and improve the binder cohesion, leading to the increased 

adhesion between aggregates and binder. 

Bari and Witczak (2005) also reported that hydrated lime increases the indirect 

tensile strength and resilient modulus of mixtures. Moreover, the slope of HMA fatigue 

curves increases with the addition of hydrated lime, meaning that these mixtures support 

more loading cycles before failure. Rutting performance also improved because of the 

use of hydrated lime. 
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The National Lime Association (2006) has justified the improvement in fatigue 

performance of asphalt mixtures by the addition of hydrated lime with the following 

argument: “The greater improvement in fatigue life due to the addition of hydrated lime 

is a result of the reaction between hydrated lime and the polar molecules in the asphalt 

cement, which increases the effective volume of the lime particles by surrounding them 

with large organic chains. Consequently, the lime particles are better able to intercept and 

deflect microcracks, preventing them from coalescing into large cracks that can cause 

pavement failure.” 

Sebaaly (2006) updated a work from Little and Epps (2001), where the 

advantages of hydrated lime in HMA mixtures were analyzed. They suggested that the 

ability of hydrated lime to improve the resistance of HMA mixtures to damage caused by 

moisture, oxidative aging, mechanical properties, and fatigue and rutting performances 

results in approximate savings of $20/ton of HMA. They also analyzed field data and 

concluded that hydrated lime increases the average pavement lives in approximately 

38%. 

Kim et al. (2003) investigated the effect of fillers and binders on the fatigue 

performance of asphalt mixes. For this purpose, the researchers used two binders (AAD-1 

and AAM-1) and two fillers (hydrated lime and limestone) in three different volume 

fractions (5, 10, and 25% filler/asphalt ratio). To analyze the effects of fillers, the authors 

used the theory of viscoelasticity, a continuum damage fatigue model, and a rheological 

particulate composite model. They concluded that filler type affected the fatigue behavior 

of asphalt binders and mastics. Fillers also stiffened the binders, and hydrated lime was 

more effective in stiffening binders than limestone-type filler. One of the conclusions 



 55 

made by authors is that even if fillers stiffened the binders, they act in such a way that 

they provide better resistance to microcracking and thus increase fatigue life. The better 

performance observed in case of hydrated-lime-mixed mastics was interpreted by the 

authors as an indicator that a mechanism that goes beyond the volume-filling effect 

occurs. This can be supported by Sebaaly et al. (2006). Finally, the researchers concluded 

that the physicochemical interaction between the binder and the filler is material specific, 

since the improvement in fatigue life due to hydrated lime was much greater for the 

AAD-1 mix than for the AAM-1 mix. 

 Little and Petersen (2005) conducted a study to identify the unique effects of 

hydrated lime on the performance-related properties of asphalt cements. They concluded 

that if hydrated lime reacts as active filler with a binder, as shown by Kim et al. (2003) to 

occur for AAD-1 type but not for AAM-1-type binders, the hydrated lime provides a 

high-temperature filler effect that is greater than it would be predicted by models that do 

no account for physical interactions between the materials. However, it was shown that 

the effect of hydrated lime decreased as temperature is lowered. For very low 

temperatures, such as -20°C, the authors suggested that the stiffening provided by the use 

of hydrated lime is similar to the one provided by any other filler. They also concluded 

that the addition of hydrated lime toughens the mastics, which accounts for a higher 

resistance to fracture and crack propagation. Another finding was that hydrated lime is 

much more effective in extending fatigue life and in improving low-temperature cracking 

than is the limestone-type filler. Finally, they concluded that hydrated lime is more 

effective than limestone and that this effectiveness is bitumen dependent.  
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 Bari and Witczak (2005) stated that the effects of hydrated lime on the dynamic 

modulus of HMA mixtures have rarely been evaluated. The authors mentioned that this 

evaluation is important since the dynamic modulus is the design-stiffness parameter at all 

three levels of hierarchical input for the HMA characterization of the new Mechanistic-

Empirical Pavement Design Guide (MEPDG). In their studies, the authors used four 

different binders with different hydrated-lime contents and HMA mixtures from different 

locations, such as from Two Guns, Maryland Department of Transportation, WesTrack, 

Bidahouchi, and Salt River base mixtures. The general trend observed was the increase of 

stiffness as more amount of hydrated lime was added. However, for the Two Guns 

mixtures, an addition level of 2% of hydrated lime produced less stiff mixtures than the 

1% addition case. On average, the rank of mixtures in the order of stiffness (low to high) 

was: 2%, 1% and 1.5%, 3%, and 2.5%. Finally, the authors quantified the amount of 

hydrated lime that interacts with the binder to increase stiffness. For 1% addition, the 

percentage interacting with the binder was approximately 2.8%. For the 2% case, this 

number increased to 3.3%. They concluded that the variation in these values reflects the 

complex interaction of hydrated lime with binder type and characteristics of aggregates. 

  

2.4. Superpave 

 

In an attempt to improve the performance, durability, safety, and efficiency of the 

HMA pavements, the U.S. Congress proposed the formation of the Strategic Highway 

Research Program (SHRP) in 1987. During five years of work (October 1987 - March 

1993), $150 million was spent, of which $50 million was used for the development of 
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performance-based asphalt specifications to directly relate laboratory analysis to field 

performance (http://www.fhwa.dot.gov/ctdiv/whatsnew.htm, 2007). The SHRP 

researchers created the Superior Performing Asphalt Pavements (Superpave), a set of 

advancements in testing devices, protocols, and specifications for HMA materials and 

mixtures. Among these advancements are the novel method of grading binders and the 

novel mix design procedures.  

 The Superpave binder grading system in comparison to the traditional penetration 

and viscosity methods has the following advancements: It is not empirical. It relates 

physical and mechanical properties to the testing performances, considers various 

climates, includes the entire range of temperatures, controls the major pavement 

distresses (discussed later in the thesis), and includes specification for both modified and 

unmodified binders. For this grading system, performance parameters are fixed and a 

range of service temperatures within which the pavement exhibits satisfactory 

performance is determined. The extremes of this range represent the maximum 

pavement-temperature averaged from 7-day measurements at 20 mm deep and 1-day 

minimum temperature at pavement surface and are addressed by the so-called 

performance grade (PG). For example, a pavement with good performance with 

pavement temperatures ranging from -22 to 64°C is classified as PG 64-22. 
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2.4.1. Material Properties 

 

The appropriate material selection, i.e. aggregates, binder, and additives is a key 

issue in the production of a high-quality HMA mixture. As mentioned previously, 

Superpave requires the characterization of the consensus aggregate properties. 

The properties of binders to be addressed are related to their performance under 

high-, intermediate-, and low-temperature conditions. Superpave defines the following 

properties to characterize the binders: kinematic viscosity (in Pa.s) at 135°C, G*/ φsin  (in 

kPa) with original and short-term aged conditions, G* φsin (in kPa) with long-term aged 

conditions, creep stiffness (in MPa), and m-value with long-term aged conditions.  

 

2.4.2. Binder Characterization Equipment 

 

The binder properties are acquired from four equipments: the rotational 

viscometer (RV), the dynamic shear rheometer (DSR), the bending beam rheometer 

(BBR), and direct tension tester (DTT). The properties are evaluated under three different 

aging conditions: original (no aging), short-, and long-term aging. Aging of binders is 

simulated by performing the rolling thin film oven test (RTFOT) for the short-term aging 

and the pressure aging vessel (PAV) test to produce the long-term aged materials.  
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2.4.2.1. Rolling Thin Film Oven Test (RTFOT) 

 

 It is used to age the asphalt binders simulating short-term in-field aging conditions 

occurring during construction of HMA. Approximately 35 g of the binder is poured into 

each bottle, and this is placed in a rack inside the oven at 163°C. The rack is rotated for 

75 minutes and the open orifice on the top of the bottle encounters an air jet during each 

rotation. The standard procedure for this test is shown in ASTM D2872. 

 

2.4.2.2. Pressure Aging Vessel (PAV) 

 

 It simulates the aging of asphalt after 5 to 10 years of service life. This is achieved 

by exposing a 50 g RTFOT residue sample to a high air pressure (2,070 kPa) and 

temperature (90, 100, or 110°C) for 20 hours. The standards are ASTM D454 and ASTM 

D572. 

 

 2.4.2.3. Rotational Viscometer (RV) 

 

 It is used to determine the viscosity of asphalt binders at high construction 

temperatures (135°C for specification purposes) to ensure enough fluidity of the binder 

during the pumping and mixing activities. The equipment consists of a Bookfield 

viscometer and a stainless steel sample chamber, called Thermosel. The rotational 

viscosity is measured based on the torque necessary to maintain a constant rotational 
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speed (20 rpm) of a cylindrical spindle submerged in a binder at constant temperature. 

More details can be found from AASHTO TP48 and ASTM D4402. 

 

2.4.2.4. Dynamic Shear Rheometer (DSR) 

 

The DSR is used to characterize both elastic and viscous behaviors of binders. 

The test applies torque to the asphalt sample “sandwiched” between a fixed and an 

oscillating plate. The shape of loading wave is sinusoidal and is cyclic with no rest 

period. The loading frequency used for grading purposes is 10 rad/sec. The sample 

dimensions vary depending on the testing temperature: 8 mm diameter and 2 mm thick 

for testing temperatures between 4°C and 40°C and 25 mm diameter and 1 mm thick for 

higher testing temperatures.  

 The material properties directly obtained from the DSR test are G* and φ . G* is 

the ratio of the maximum shear stress ( maxτ ) to the maximum shear strain ( maxγ ) and φ  is 

the phase angle between the shear stress and shear-strain sinusoidal wave peaks. Brown 

et al. (2001) suggested that this phase angle is generally obtained by the simple 

multiplication of the time lag ( t∆ ) by the angular frequency applied (ω ). These 

properties are used to evaluate the rutting and fatigue potentials of the binders using 

Equations 2.15 and 2.16, respectively. The goal for a better performance is achieved by 

minimizing the energy dissipation during the loading cycles to the lowest level. This is 

controlled by the minimum limit of 1 kPa and 2 kPa established by Superpave for 

G*/sinφ  of unaged and RTFOT aged binders, respectively, and by the maximum limit of 
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5,000 kPa for G*sinφ  of PAV aged binders. AASHTO TP5 is used as a standard for this 

test. 

 

2.4.2.5. Bending Beam Rheometer (BBR) 

 

This test is used to characterize the binder potential to thermal (or low 

temperature) cracking. This type of cracking occurs when the temperature drops resulting 

in a contraction in the pavement as the level of stress created exceeds the stress-relaxation 

ability of the HMA. Cracks are then produced to relieve this stress. A creep test is 

conducted by applying a constant load to a beam-shaped PAV aged specimen (125 mm 

long, 6.25 mm wide, and 12.5 mm high) at a constant low temperature. The deflection 

after 60 seconds of test is recorded and used to calculate the creep stiffness (S(t)). The 

rate of change in the stiffness is also characterized and expressed by the parameter “m-

value,” which represents the slope of the log S(t) versus log-time curve at any time. High 

S(t) is a sign that indicates that the thermal stresses that will occur in the pavement will 

be high and thus thermal cracking will become more likely. The reduction in the m-value 

represents a lower ability of the HMA to relieve the thermal stresses by flow, which 

increases the thermal-cracking-associated problems. Superpave requires maximum S(t) of 

300 MPa and minimum m-value of 0.3. ASTM D790 is the specification associated with 

the BBR test. 
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2.4.2.6. Direct Tension Tester (DTT) 

 

DTT is an optional test used to overcome the inability of BBR to characterize the 

low-temperature behavior of some modified binders, which may show very high creep 

stiffness (greater than 300 MPa but less than 600 MPa) but do not crack because of their 

good toughening mechanisms. The test is conducted by loading in small PAV aged “dog-

bone”-shaped specimens under tension at a constant rate of 1 mm/min. The parameter 

recorded is the failure strain, which represents the deformation wherein the load on the 

specimen attains its maximum value. Superpave requires a minimum failure strain of 1%. 

AASHTO TP3 specifies testing procedures of the DTT. 

 

2.5. Mix Design 

 

The novel Superpave mix-design procedures are advanced compared with the 

traditional methods (Marshall and Hveem) because the Superpave mix-design methods 

simulate the field densification, the level of traffic, the different climates, and also 

provide a measurement of mixture compactability. The Superpave mix-design procedures 

will be explained in Section 3.5. 
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2.6. The Restricted Zone 

 

Even though Superpave has raised innumerous advancements in comparison to 

the traditional methods, it has a limitation with regard to the study of aggregates. The 

only study of aggregates conducted by SHRP researchers was related to some issues on 

the asphalt-aggregate adhesion and the effects on it due to damage caused by moisture 

(Kandhal and Cooley Jr., 2001).  

According to Khosla et al. (2001), the aggregates occupy approximately 85% of 

the volume of HMA. Prowell et al. (2005) stated that, considering mass, this number 

increased to 94-95%. On the basis of this fact, SHRP formed a group of 14 aggregate 

experts (aggregate Expert Task Group - ETG) that used the Modified Delphi method to 

develop recommendations and/or refinements of aggregate properties and gradations that 

should be used in the HMA mixtures and pavements. This method uses a series of 

questionnaires to collect experts’ opinions and, in contrast to the traditional Delphi 

method, it allows the experts to meet face to face. The final recommended aggregate 

criteria included the control points and the restricted zone (RZ). Cooley Jr. et al. (2002) 

suggested that RZ was not a new concept. SHRP simply named a zone in gradations that 

had been for a long time recognized as a region in which, if gradations passed through, 

mixtures are susceptible to tenderness and rutting in field. Kandhal and Mallick (2001) 

mentioned that, prior to Superpave, most of the states in the U.S. have designed mixtures 

with above restricted zone (ARZ) or through restricted zone (TRZ) gradations. 

The RZ lies along the maximum density line between the 0.3-mm sieve size (No. 

50) and either the 2.36-mm (No. 8) or the 4.75-mm (No. 4) sieve size, depending on the 
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nominal maximum aggregate size (NMAS) of the mixture. The NMAS represents the 

sieve that is one sieve size larger than the first one through which more than 10% of the 

aggregates is retained. Figure 2.14 shows the RZ with a No. 8 sieve end and the 

maximum density line. According to the researchers, the RZ should not be violated 

because this would produce tender mixes during rolling and compaction. Another 

argument is that because mixes with gradations violating the RZ are denser than others, 

the voids in mineral aggregate (VMA) would be reduced and thus the mix would not 

have sufficient effective binder content and air voids. This scenario would result in mixes 

that are not resistant to surface flushing and rutting under the high summer temperatures. 

However, many research efforts showed that TRZ mixes perform similar or better than 

mixes not violating it. The general consensus is that mixes whose gradations undergo the 

restricted zone (i.e., below restricted zone (BRZ)) shows poor performance than the finer 

ones (i.e., ARZ and TRZ).  
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Kim et al. (2006) analyzed the rutting performance of five different 12.5-mm 

(NMAS) Superpave dense-graded mixtures, of which one was ARZ, two TRZs violating 

the RZ concept (in the crossover style), and two BRZs. Confirming recent evidence from 

other research, the authors concluded that TRZ mixtures performed similar or better than 

others. The trend was that the finer gradation shows a better performance than coarser 

graded mixtures. 

Nukunya et al. (2002) evaluated the Superpave RZ as a guideline for mixture 

design using either angular or nonangular aggregates and concluded that BRZ mixes are 

not rutting resistant because of the higher amount of asphalt cement necessary to achieve 

the high value of minimum specified VMA. The authors suggested that the VMA criteria 

for Superpave BRZ mixtures should be revised with caution to avoid the production of 

low-quality mixtures. 

In 2001, Kandhal and Cooley performed intensive investigation of the Superpave 

RZ requirements by evaluating performances of ARZ, BRZ, and TRZs in three 

subcategories of gradations (humped through the restricted zone (Hump), all-the-way 

through the restricted zone (TRZ), and crossover through the restricted zone 

(Crossover)). Both 9.5- and 19-mm NMAS mixtures were analyzed. Figure 2.15 shows 

the gradations that were used. The researchers concluded that, if the volumetrics and 

FAA parameters meet the specification limits, the RZ is a redundant criterion. They also 

recommended that the RZ requirement should be deleted from AASHTO specifications 

and practice for Superpave volumetric design of HMA, regardless of NMAS or traffic 

level. 
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Figure 2.15 - Gradation types considering the restricted zone (Kandhal and Cooley 

Jr., 2001) 
 

Cooley Jr. et al. (2002) reviewed 14 published research studies about RZ to 

determine its significance within Superpave gradation specifications. The vast majority of 

the research analyzed studied the effect of RZ on rutting performance of HMA. The 

relationships between RZ and fatigue and between RZ and low-temperature cracking 

were evaluated based on work of a single research project. They concluded that the 

literature indicates no relationships between RZ and rutting and fatigue performances. 

Zhang et al. (2004) reported the effect of RZ on the HMA rutting performance of 

coarse-graded mixtures for high traffic levels specified by Alabama Department of 

Transportation (ALDOT). On the basis of the results of 12.5-, 19.0-, and 25.0-mm 

NMAS mixtures, these researchers again concluded that TRZ showed a similar or better 

performance than the others. They also suggested that the rutting performance of BRZ 

mixtures is more sensitive to aggregate properties than that of ARZ and TRZ mixtures. 
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Kandhal and Mallick (2001) evaluated the rutting potential of ARZ, TRZ, and 

BRZ Superpave dense-graded mixtures. The specimens were tested in the APA and 

Superpave shear tester (SST) machines. A PG 64-22 binder and three types of aggregates 

(limestone, gravel, and granite) were used. From the APA data, they found that, for 

granite and limestone, the ranking from worse to best rutting performance for gradations 

was of the order: BRZ, ARZ, and TRZ. For gravel mixtures, the trend was: ARZ, TRZ, 

and BRZ. From the SST test data for mixtures with granite, no significant differences 

were observed on the rutting potential between ARZ, TRZ, and BRZ. From the data on 

limestone mixtures, the researchers pointed the BRZ gradation as the most susceptible to 

rutting. Finally, for the mixtures with gravel, TRZ was the least susceptible to rutting and 

ARZ, the most susceptible to rutting. 

Hand et al. (2001) evaluated the impact of gradation and NMAS on the rutting 

performance of HMA. A total of twenty-one mixes were evaluated. They found that 

NMAS did not significantly affect HMA performance. The laboratory test results for 

ARZ and TRZ gradations had a better permanent-deformation resistance than BRZ 

gradations.  

Hand and Epps (2001) made a synopsis of recent research related to the impact of 

gradation with respect to the Superpave RZ on HMA performance. They reviewed 

thirteen journal papers and research reports that investigated the RZ-related gradation 

effects based on different experiments. A general finding from the study was that fine-

graded (ARZ and TRZ) mixtures usually provided better performance than BRZ 

gradation mixtures, and in technical terms, adequate HMA performance could always be 
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obtained with gradations ranging from ARZ to BRZ, indicating no significant 

relationship between the Superpave RZ and HMA rutting or fatigue performance.  

Sebaaly et al. (2004) analyzed results gathered from field test sections and the 

laboratory performance data. The test sections were designed using a series of mixtures 

for a range of traffic and environmental conditions typically encountered in Nevada. The 

field performance was monitored for up to five years after construction. Their findings 

concerning the Superpave RZ requirement showed that TRZ mixtures performed better 

than coarse-graded mixtures (BRZ mixes). They also found that TRZ mixtures had 

greater stiffness than BRZ mixtures made of the same materials.  

Kandhal and Cooley Jr. (2002) compared coarse-graded Superpave mixtures 

(BRZ) with fine-graded Superpave mixtures (ARZ) in terms of resistance to rutting. To 

determine whether restrictions on gradation type (either coarse- or fine-graded mixtures) 

are necessary, three laboratory performance tests (APA, simple shear tester (SST), and 

repeated load confined creep (RLCC)) were performed. The test results indicated no 

significant difference in performance among the mixes analyzed. 

Chowdhury et al. (2001a, 2001b) performed a comprehensive investigation of the 

RZ effect on HMA rutting-based performance. They accounted for the effect of RZ with 

respect to aggregate types (crushed granite, crushed limestone, crushed river gravel, and a 

mixture of crushed river gravel as coarse aggregate with natural fines) and gradations 

(ARZ, TRZ, and BRZ). The research concluded that there is no relationship between the 

RZ and permanent deformation when crushed aggregates are used in the mixture design. 

They also concluded that Superpave BRZ mixtures were generally the most susceptible to 

permanent deformation, whereas ARZ mixtures were the least susceptible to permanent 
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deformation. Recommendations include elimination of the RZ from HMA design 

specifications. 

 

2.7. Pavement Distresses  

 

There are several factors and mechanisms that cause failure of asphalt concrete 

structures. Figure 2.16 shows a section of pavement in the west Lincoln, Nebraska, with 

severe damage. 

 

 

Figure 2.16 - Distresses of a low traffic pavement in Lincoln, NE  
 

Among the documented distresses in asphalt concrete layers, the main ones are: 

Alligator or fatigue cracking: It occurs due to an inadequate structural support 

for the given loading, which can be caused by: the decrease in pavement-load-supporting 

characteristics due to loss of base, subbase, or subgrade support resulting from poor 
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drainage or stripping at the bottom of the HMA layer; the level of load that exceeds the 

level anticipated by the design; inadequate structural design (very thin layers); and poor 

construction procedures such as inadequate compaction. Brown et al. (2001) suggested 

that for thin pavements, fatigue cracking starts at the bottom of the HMA due to high 

tensile strains and migrates upward toward the surface. Whereas for thick pavements, 

cracks start on the HMA surface due to tensile strains at the surface and migrate 

downward. If not repaired on time, this distress allows moisture to infiltrate and lead to 

problems arising from moisture damage. Figure 2.17 illustrates a fatigue failure of a 

pavement section in Lincoln, Nebraska. The potholes (shown in Figure 2.18), which are 

physically separated pieces of HMA dislodged from the pavement by the action of traffic, 

are also a consequence of the fatigue-related alligator cracking.  

 

 

Figure 2.17 - Fatigue damaged pavement in Lincoln, NE 

          



 71 

 

Figure 2.18 - Pothole created as a result of severe fatigue in Lincoln, NE 
 

Rutting (see Figure 2.19): It represents the surface depressions. Possible causes 

of rutting are: insufficient compaction effort during construction, which results in 

increasing densification of the mix under traffic loads; inadequate pavement structure, 

which causes subgrade rutting; improper mix design (many rounded aggregates, 

excessive asphalt content, or very less air voids). Kandhal and Mallick (2001) also 

suggested that stiffer binder courses with larger aggregates generally have less rutting 

potential compared with more flexible wearing courses with finer aggregates and higher 

asphalt contents. 
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Figure 2.19 - Permanent deformation (rutting) 

 

Transverse cracking (see Figure 2.20): Cracks are typically perpendicular to the 

pavement centerline. There are two types of transverse cracks: 1) reflective - occurs in a 

regular pattern and are due to cracks beneath the surface HMA layer; 2) thermal - occurs 

when the stresses caused by the shrinkage of the HMA surface under low temperatures 

exceed the HMA stress-relaxation ability. If those cracks are not repaired, moisture can 

infiltrate and can cause problems to the pavement structure. 
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Figure 2.20 - Thermal cracking 

 

2.8. Material Viscoelastic Properties and Performance 

Tests  

 

Tangella et al. (1990) reviewed the main factors affecting the fatigue performance 

of dense-graded HMA mixtures. They also reviewed various available fatigue test 

methods and addressed the advantages and disadvantages of these methods and ranked 

them in order of preference. The test methods evaluated were: simple flexural test, 

supported flexure test, direct axial test, indirect tensile test (IDT), fracture mechanics test, 

and wheel-tracking test. The flexural test was ranked as the best. Even though it results in 

a complex biaxial stress state and underestimates fatigue life, the IDT test was ranked 

second because it is simple and uses the same equipment as that for other tests. 

Brown et al. (2001) evaluated available information on permanent deformation, 

fatigue cracking, low-temperature cracking, moisture susceptibility, and friction 
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properties, and recommended performance tests that could be immediately adopted to 

ensure improved performance. The authors focused more on the permanent-deformation 

testing procedures. On the basis of equipment availability, cost, testing time, quality 

control-quality assurance (QC-QA) aspects, and easiness to use, the researchers ranked 

the following permanent-deformation tests in the order of priority for recommended use: 

APA, Hamburg wheel-tracking device (HWTD), and French rutting tester (FRT). 

Wen and Kim (2002) characterized viscoelastic properties of asphalt concretes in 

IDT testing mode and developed a simple performance test for fatigue cracking. The 

authors used the theory of viscoelasticity to develop analytical solutions for creep 

compliance and center strain from displacements measured on the specimen surface. 

Those solutions were verified by a 3-D finite element viscoelastic analysis. The tests 

conducted on the specimens were creep and tensile strength, both in the IDT mode. From 

their study, the researchers concluded that the creep compliance (a measurement of the 

stiffness and the time dependence of the material) at a given testing time does not contain 

enough information to predict resistance of the mixture to fatigue cracking. They also 

could not find any relationship between the m-value (constant slope of the secondary-

flow region) and the amount of fatigue cracking in the HMA. Finally, they found an 

excellent correlation between fracture energy (defined as the area under the stress-strain 

curve in the loading portion of the test, which represents the sum of the strain energy with 

the dissipated energy due to structural changes, such as microcracking) at 20°C and 

mixture resistance to fatigue cracking of both laboratory-made and field specimens.  

 Witczak et al. (2002) conducted a study on the different available testing 

procedures for characterization of HMA performance related to rutting, fatigue cracking, 
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and low-temperature cracking. The final product of their study consisted of five test 

methods named as simple performance tests (SPTs) as follows: 

• Test method for dynamic modulus of asphalt concrete mixtures for permanent 

deformation; 

• Test method for repeated load testing of asphalt-concrete mixtures in uniaxial 

compression; 

• Test method for static creep - flow time of asphalt-concrete mixtures in 

compression; 

• Test method for dynamic modulus of asphalt concrete mixtures for fatigue 

cracking; 

• Test method for indirect tensile creep testing of asphalt mixtures for thermal 

cracking. 

Kim et al. (2004) suggested that dynamic modulus is the most important HMA 

property to be characterized. The dynamic modulus represents the temperature- and 

frequency-dependent (and thus time-dependent) stiffness characteristics of the material. 

Contrary to the SHRP SPT uniaxial testing procedure for the characterization of the 

dynamic modulus, the authors claimed the IDT mode to be the most appropriate. This is 

due to the limitation in size of the in-situ cored samples. The uniaxial mode requires a 

long specimen for testing. This is not practically easy considering the few centimeters of 

the typical asphalt layer thickness. 
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2.8.1. Dynamic Modulus 

 
 

 Kim et al. (2004) proposed an analytical solution for testing the dynamic modulus 

of HMA sample in the IDT mode, considering the biaxial state of stresses and strains 

created and the theory of linear viscoelasticity. From their derivations, the final 

expression used to predict the dynamic modulus ( *E ) and Poisson’s ratio (υ ) were as 

follows: 
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where P0 = amplitude of the sinusoidal load applied; 

 a = loading strip width; 

 d = specimen thickness; 

 U0 = constant amplitude of horizontal displacements;  

 V0 = constant amplitude of vertical displacements; 

,,, 121 γββ =2γ coefficients related to the specimen diameter and gauge lengths 

used.  

The calculated values for several combinations of specimen diameter and gauge 

lengths are given in Table 2.3. The authors validated the accuracy of their solution with 

experimental data from both uniaxial and IDT tests. 
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Table 2.3 - Coefficients for Poisson’s ratio and dynamic modulus 

determination from IDT testing mode (Kim et al., 2004) 

Specimen Diameter (mm) Gauge Length (mm) 1β  2β  1γ  2γ  

101.6 25.4 -0.0098 -0.0031 0.0029 0.0091 
101.6 38.1 -0.0153 -0.0047 0.0040 0.0128 
101.6 50.8 -0.0215 -0.0062 0.0047 0.0157 
152.4 25.4 -0.0065 -0.0021 0.0020 0.0062 
152.4 38.1 -0.0099 -0.0032 0.0029 0.0091 
152.4 50.8 -0.0134 -0.0042 0.0037 0.0116 

 

2.8.2. Creep Compliance 

 

 Wen and Kim (2002) derived linear viscoelastic solutions for Poisson’s ratio and 

creep compliance for IDT creep tests and specimen center strain (ε x=0) for IDT strength 

tests. Those are given as follows: 
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where U(t) = horizontal displacement, m; 

     V(t) = vertical displacement, m; 

     d = specimen thickness, m; 

     P = applied load, N; 
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           ,,,,,, 2121,321 γγββααα  3γ , =4γ  coefficients related to the specimen diameter and 

gauge lengths used.  

The calculated values of those coefficients for several combinations of specimen 

diameter and gauge lengths are given in Table 2.4. 
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Table 2.4 - Coefficients for Poisson’s ratio, creep compliance, and center strain determination from IDT testing mode 

(Wen and Kim, 2002) 

Specimen 
Diameter (mm) 

Gauge Length 
(mm) 1α  2α  3α  1β  2β  1γ  2γ  3γ  4γ  

25.4 3.385 1.081 3.122 0.7874 2.2783 12.40 37.7 0.291 0.908 
100 

50.8 4.580 1.316 3.341 0.4032 1.0240 12.40 37.7 0.471 1.570 
25.4 3.172 1.039 3.060 1.1990 3.5330 8.48 25.6 0.207 0.634 
50.8 3.673 1.154 3.192 0.6110 1.6850 8.48 25.6 0.373 1.180 150 
76.2 4.559 1.330 3.311 0.4150 1.0340 8.48 25.6 0.478 1.590 

79 
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CHAPTER 3 

 

 METHODOLOGY 

 

3.1. Material Selection 

 

3.1.1. Binder 

 

Two binders were used in this study, a PG 64-22 from Koch Materials and a SBS-

polymer-modified PG 64-28 from Jebro Inc. The PG 64-22 was used in this study to 

evaluate the effects of aggregate gradation and angularities on the rutting performance of 

HMA mixtures and the effects of mineral fillers on the stiffness of mastics. 

The PG 64-28 binder was used for the fabrication of SP-4 Special mixtures, which 

are used to produce HMA mixtures for low-traffic-volume roadways (0.3 to 1.0 million 

ESALs) and have been used by the NDOR over the past four years as a replacement for 

SP-2 mixtures. For the compaction process of the mixture, the number of gyrations 

necessary for the SP-4 Special mixtures is the same as that for the SP-2 mixtures, but the 

consensus aggregate properties follow recommendations for SP-4 Special. According to 

Koves (2006), SP-4 Special mixtures require more crushed materials than do SP-2, which 

produces more rut-resistant materials. He said that this does not make those mixtures 

expensive (actually they are the cheapest one currently used by the NDOR) because of 

the high amount of recycled asphalt pavement (RAP) allowed. This PG 64-28 binder was 
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also used to obtain *G  for mastics and to study the effect of hydrated lime in the mastic 

on the viscoelastic properties and performance of HMA mixtures.  

  

3.1.2. Aggregates 

 

The aggregates used in this research were: 1/4" Limestone (LS), 5/8" LS, 

screenings, 2A, and 3ACR. Beason (2006), 1/" LS, 5/8" LS, and screenings are angular 

materials obtained from the explosion of natural rocks in rock quarries (Weeping Water, 

Nebraska). The aggregate 3ACR, which represents three aggregates crushed and 

combined together, is an angular crushed gravel obtained from the Platte river in 

Nebraska.  

According to Kettler (2007) and Baumgarten (2007), 3ACR can be classified as 

granitic gravel primarily composed of quartz and feldspar. They also mentioned that 

3ACR has a neutral pH close to 7.3 and was also characterized as a hard material with 

hardness of approximately 7 in the Mohs hardness scale, varying from 0 to 10 (smallest 

to highest hardness). Kettler (2007) and Baumgarten (2007) also mentioned that 

screenings have a basic pH of approximately 12 and its hardness is approximately half of 

3ACR. This information will be useful for the data analysis in the section related to the 

effect of fillers on the mastic stiffness. The aggregate, 2A, is an uncrushed (less angular) 

gravel, which is also taken from the boundaries of the Platte river. Those materials were 

chosen because of their wide use in Nebraska. 

The HMA specimens produced throughout this research used the 1/4" LS, 5/8" 

LS, and 2A as coarse aggregates, and 3ACR and screenings for fine fractions and fillers. 
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3ACR and screenings were also used in this study to analyze the effect of fillers 

on the viscoelastic property ( *G ) of mastics.  

 

3.1.3. Hydrated Lime 

 

Hydrated lime was obtained from Mississippi Lime Company. Although this 

additive has been used by NDOR as an antistripping agent to reduce the damage caused 

by moisture, this research uses it differently as a filler.  

All mixtures fabricated for the evaluation of the viscoelastic property contain 

hydrated lime as one of their constituents. The effect of hydrated lime on the fatigue 

performance of HMA was also evaluated.  

   

3.2. Material Characterization 

 

3.2.1. Binder 

 

Properties of the PG 64-22 and PG 64-28 were provided by NDOR. Table 3.1 and 

Table 3.2 present properties of the PG 64-22 and the PG 64-28, respectively. The mixing 

and compaction temperatures provided by NDOR were 152-157ºC (306-315ºF) and 139-

144ºC (283-292ºF) for the PG 64-22 and 146-157ºC (295-315ºF), and 135-143ºC (275-

290ºF) for the PG 64-28, respectively. 



 83 

Table 3.1 - Mechanical properties of the PG 64-22 binder 

Test 
Temperature 

(°C) 
Test Result Required Value 

Unaged DSR, G*/sinδ (kPa) 64 1.480 Min. 1.000 

RTFO - Aged DSR, G*/sinδ (kPa) 64 3.499 Min. 2.200 

PAV - Aged DSR, G*sinδ (kPa) 25 4,576 Max. 5,000 

PAV - Aged BBR, Stiffness(MPa) -12 203.970 Max. 300.000 

PAV - Aged BBR, m-value -12 0.312 Min. 0.300 

 

Table 3.2 - Mechanical properties of the PG 64-28 binder 

Test 
Temperature 

(°C) 
Test Result Required Value 

Unaged DSR, G*/sinδ (kPa) 64 1.205 Min. 1.000 
RTFO - Aged DSR, G*/sinδ (kPa) 64 3.011 Min. 2.200 
PAV - Aged DSR, G*sinδ (kPa) 19 2,112 Max. 5,000 

PAV - Aged BBR, Stiffness(MPa) -18 181 Max. 300 
PAV - Aged BBR, m-value -18 0.319 Min. 0.300 

      

3.2.2. Aggregates 

 

The aggregates were characterized by the standard methods discussed earlier. 

Table 3.3 summarizes the results. 

 

Table 3.3 - Aggregate properties 

Fine Aggregate Coarse Aggregate 

Aggregate *G
sb

 Absorption 

Capacity (%) 

FAA 

(%) 
*G

sb
 

Absorption 

Capacity 

(%) 

CAA 

(%) 

Sand 

Equivalency (%) 

2A 2.580 0.76 37.6 2.589 0.68 28 100 
1/4" LS N/A N/A N/A 2.607 1.54 100 N/A 

Screenings 2.478 3.66 46.7 N/A N/A N/A 26 
5/8" LS N/A N/A N/A 2.624 1.25 100 N/A 
3ACR 2.556 1.13 43.7 2.588 0.75 70 84 
47B 2.605 0.49 37.3 2.594 0.65 35 98 

  * Specific gravity of the aggregates. 
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3.2.3. Hydrated Lime 

 

Properties of the hydrated lime provided by the supplier are summarized in Table 3.4. 

 
Table 3.4 - Physical and chemical properties of hydrated lime 

Physical Properties 

Specific Gravity  2..343 
Dry Brightness, G.E.  92  
Median Particle Size - Sedigraph  2 micron  
pH  12.4  
BET Surface Area  22 m2/g  
-100 Mesh (150 µm)  100%  
-200 Mesh (75 µm)  99%  
-325 Mesh (45 µm)  94%  
Apparent Dry Bulk Density - Loose  22lbs./ft

3
 

Apparent Dry Bulk Density - Packed  35lbs./ft
3
 

 

Chemical Properties (%) 
 

Ca(OH)
2 
- Total  98.0000  

Ca(OH)
2 
- Available  96.8000  

CO
2
 0.5000  

H
2
O  0.7000 

CaSO
4
 0.1000  

Sulfur - Equivalent  0.0240  

Crystalline Silica  <0.1000  

SiO
2
 0.5000  

Al
2
O

3
 0.2000  

Fe
2
O

3
 0.0600  

MgO  0.4000  
P

2
O

5
 0.0100  

MnO  0.0025  
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3.3. Fabrication of Mastics 

 

Mastics are asphalt mixtures composed of binder and aggregates smaller than 75 

microns (passing through No. 200 sieve). The mastics used in this research were blended 

in such a way that the filler/asphalt (F/A) ratio was always 0.3 in volume. This represents 

approximately 0.75 F/A in mass, which is within the NDOR limits: 0.7-1.7. The 

constituents are given in Table 3.5.  

 

Table 3.5 - Recipes of mastics 

F/A Mass of materials (g) 
Mastic 

by mass by volume Binder 3ACR Screenings HL 

3ACR 0.77 0.301 600.0 462.0 - - 
Screenings 0.77 0.302 600.0 - 460.0 - 

3ACR + HL 0.75 0.300 600.0 337.5 - 112.5 
Screenings + HL 0.75 0.300 600.0 - 337.5 112.5 

HL 0.70 0.299 600.0 - - 420.0 

 

As shown in Table 3.5, the fabrication of mastics required 600 g of binder. Figure 

3.1a shows the mixing process for producing the mastics, and Figure 3.1b shows the 

asphalt sample being poured into the DSR testing mold. 
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(a)                                                     (b) 

Figure 3.1 - Mastic fabrication and the sample used for DSR testing 
 

For both PG 64-22 and PG 64-28 binders, the specific gravities were assumed to 

be 1.0. The specific gravities of each filler (screenings, 3ACR, and hydrated lime) were 

measured and they are 2.552, 2.561, and 2.343, respectively. 

For the fabrication of mastic, the 600 g of binder was placed in a metallic can and 

heated up to 150ºC. Then, the can with the binder was transported from the oven to a 

mechanical blender, which also has a heating system. Filler was then added slowly into 

the can and mixed to provide well-dispersed homogeneous mastics. After the mixing 

process, small amounts of DSR samples were prepared. 
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3.4. Viscoelastic Characterization of the Mastics 

 

3.4.1. DSR 

 

The DSR as shown in Figure 3.2 was used to characterize viscoelastic properties 

of the mastics. The first task for the characterization was to determine the level of strains 

over which the mastics showed a linear viscoelastic behavior. Strain sweep tests were 

conducted, and the *G  was monitored. As presented by Kim et al. (2003), if the *G  is 

90% or above of the initial value, the level of strains corresponded to linear viscoelastic 

behavior of the binder or mastic. 

 

 

Figure 3.2 - Dynamic Shear Rheometer (DSR) 
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Once the level of strains representing the linear viscoelastic behavior was 

determined, frequency sweep tests were conducted using an arbitrary value of strain 

within the linear viscoelastic region at different temperatures (20ºC, 30ºC, and 40ºC in 

this study).  

From the frequency sweep test results, master curves for *G  vs. loading 

frequency were constructed (Figure 3.3) by using the time (or frequency)-temperature 

superposition principle. This was done by applying a shifting factor ( Ta ) that produces 

the best match as shown in Figure 3.3(b). Once the master curves were constructed for a 

certain temperature (so-called reference temperature), material property (in this case *G ) 

can be predicted for any arbitrary temperature by using the shift factor. A graph relating 

log ( Ta ) with temperature can be developed as shown in Figure 3.4. Figure 3.5 shows the 

horizontal shifting used to produce a master curve at 24ºC from the master curve for 

reference temperature of 20ºC shown in Figure 3.3. 

 

 

(a)                                                                   (b) 

Figure 3.3 - Master curve for 20°C 
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Figure 3.4 - Shifting factor vs. temperature 
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Figure 3.5 - Determining a master curve for any desired temperature 
 

The same procedure can be applied to construct master curves in terms of G' 

(storage modulus), instead of *G . From the master curves represented for the G', Prony 

series coefficients of the Wiechert’s model can be found. As mentioned eariler, this can 

be accomplished by using a relationship between G(t) and the G' (see Equation 2.53). 

MC @ 20C 

MC @ 24C 
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3.5. HMA Mix Design  

 

The HMA mixtures were designed following Superpave procedures and NDOR 

specifications. First, each aggregate was sieved, and the screenings were washed to 

remove additional dust adhering to fine particles. The aggregates were then proportioned 

for the fabrication of trial blends. Aggregate proportioning was performed with the aid of 

an Excel spreadsheet developed for monitoring overall properties of combined aggregate 

blends such as CAA, FAA, and specific gravities.  

Once the gradation was determined, CAA and FAA were measured following 

ASTM 5821 and AASHTO T304-96, respectively. F&E and SE were not measured 

directly in this study, but they were measured and provided from NDOR. 

The next step was to determine the optimum binder content that would create 3-

5% air voids in the mixture as suggested by the NDOR specification. To determine the 

optimum binder content, trial HMA specimens were mixed and compacted using the 

Superpave gyratory compactor (SGC). Figure 3.6 is a schematic view of the SGC. 
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Figure 3.6 - Superpave Gyratory compactor (SGC) 
 

For the mix design, the number of gyrations was controlled with 117 gyrations for 

both SP-2 and SP-4 Special mixtures based on the NDOR HMA specification. The 

compaction effort (117 gyrations) was estimated based on the average value of high air 

temperature of 36.67ºC (98ºF) in Omaha, Nebraska. The diameter of the HMA sample 

was 150 mm. Figure 3.7 through Figure 3.9 summarize the steps involved in sample 

fabrication. 

 

 

Figure 3.7 - Binder, aggregates, and sieves 
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Figure 3.8 - Mixing process 

 

 

(a)                                                                          (b) 

Figure 3.9 - Loose mixtures into the SGC mold and compacted HMA sample 
 

After the compaction, the theoretical maximum specific gravity ( MMG ) and the 

bulk specific gravity ( MBG ) of the HMA mixture were obtained. Using these two 

measurements, the air voids ( VA% ), the voids in mineral aggregate ( VMA% ), and the 

voids filled with asphalt ( VFA% ) were calculated as follows: 

MM

MBMM

G

GG
VA

−
= *100%                 (3.1) 

S
SB

designMB P
G

NG
VMA *

@
100% −=            (3.2) 

VA

VMAVA
VFA

%

%%
*100%

−
=               (3.3) 



 93 

where =SP % stone or is equal to 1 - %binder (by total mix); 

Finally, the dust/binder (D/B) ratio was calculated. It should be noted that the D/B 

ratio used in this study follows NDOR definition, which is not same as the one proposed 

by National Superpave Program. The D/B ratio for this study was calculated by: 

'
/ 200

bP

P
BD =                    (3.4) 

where =200P  %filler in the mixture; 

 ='bP %binder in mass by total mix. 

Table 3.6 shows the requirements specified by NDOR for compaction efforts, 

aggregate properties, and volumetric parameters of SP-2 and SP-4 Special mixtures. 

 

Table 3.6 - Requirements proposed by NDOR for SP2 and SP4 special 

mixtures 

NDOR Mix Type 
 

SP2 SP4 special 

Compaction Effort (#of gyrations) 

@Nini 7 
@Ndes 76 
@Nmax 117 

Aggregate Properties 

%CAA (min) 65 85/80 
%FAA (min) 43 45 
%SE (min) 40 45 

%F&E (max) 10 

Volumetric Parameters 

%VA 3 to 5 
%VMA (min) 14 

%VFA 65 to 78 65 to 75 
%Pb - 
D/B 0.7 to 1.7 
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3.6. Characterization of Rutting by APA 

 

 To investigate the effects of RZ, CAA, and FAA of aggregates on HMA rutting 

performance, HMA samples of 150 mm diameter and 75 mm thickness with 4.0 ± 0.5% 

air voids were produced to conduct the APA testing. Figure 3.10 shows APA testing 

machine. The testing temperature was 64ºC as recommended by Kandhal and Cooley Jr. 

(2003). Before testing, samples were preheated for 6 - 24 hours in the APA chamber. The 

equipment could hold up to three pairs of samples at one time and repetitive linear loads 

through the pressurized hoses over wheels were applied. The hose pressure and wheel 

load were 690 kPa and 445 N (100 psi and 100 lb), respectively. The APA tests were 

conducted under dry conditions. The samples were tested up to a rut depth of 12 mm or 

were tested when 8,000 cycles were completed, whichever was attained first. If the 

sample reached 12 mm rut depths before the completion of 8,000 cycles, the test was 

manually stopped and the strokes (cycles of loading) corresponding to 12 mm rut depths 

were recorded.  
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Figure 3.10 - APA testing machine (NDOR) 
 

3.7. Viscoelastic Properties of HMA Mixtures 

 

 The characterization of the viscoelastic property *E  of HMA mixtures was 

conducted using a mechanical testing equipment named UTM-25kN. Figure 3.11 shows 

the UTM-25kN.  

Viscoelastic properties of HMA mixtures were characterized in IDT mode. The 

procedure described herein is similar to the one proposed by Kim et al. (2002). SGC 

samples of 150 mm diameter and approximately 115 mm height were cored to finally 

produce a sample of approximately 100 mm diameter. Figure 3.12 shows the coring 

machine used and a cored sample from the SGC-compacted HMA mixture. 
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Figure 3.11 - UTM-25kN testing equipment 
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Figure 3.12 - Coring the SGC compacted HMA mixture 

 

Each cored specimen was then cut to finally produce two IDT specimens (100 

mm diameter and 38 mm high). Figure 3.13 shows the cutting process, and Figure 3.14 

shows IDT specimens with gauge points attached. This coring and cutting process was 

employed to reduce the variation in the distribution of air voids in the sample and to 

obtain smooth surfaces that provide better bonding of the gauge points on the specimen. 

  

Water supply 

Sample holder 
apparatus 
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Figure 3.13 - Cutting the cored HMA sample 

    

 

Figure 3.14 - IDT specimens from the coring-cutting process 
 

The gauge points were placed as close as possible to the center of the specimen to 

alleviate positioning errors. A gauge-point mounting device as shown in Figure 3.15 was 

Diamond 
blade 
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developed. Lateral metallic bars were also used to avoid rotation and translation of the 

top and bottom plates while gluing the gauge points. 

 

 

Figure 3.15 - Gauge points gluing device 
 

The gauge length used to mount the extensometers for measuring deformations 

was 25.4mm. After gluing the gauge points and attaching the extensometers in both sides 

of the specimen, the specimen was placed between loading strips held together by two 

cylindrical bars. The specimens were then placed into the environmental chamber of the 

UTM-25kN for temperature conditioning, required for each test. A range of temperature 

that can be controlled by the environmental chamber is between -15°C and 60°C. Figure 

3.16 shows the testing set-up with the specimen installed. 
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Figure 3.16 - Testing apparatus 

 

In the IDT testing, a biaxial distribution of stresses and strains is created as shown 

in Figure 3.17. Kim et al. (2004) suggested that considering this biaxial stress-strain state, 

care must be taken when deriving the material properties. The modulus of the material 

cannot be obtained by simply dividing the horizontal stress by the horizontal strain. 

Instead, the modulus is associated with the ratio between the biaxial stress and the 

horizontal strain as given in Equation 3.5. 

( )

x

ctE
ε

υσσ −
=              (3.5) 

where =E  Young’s modulus; 

=tσ  tensile stress along the horizontal direction (perpendicular to the direction 

of the applied load); 
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=cσ  compressive stress along the vertical direction (parallel to the direction of 

the applied load); 

=tε  strain along the horizontal direction; 

=υ  Poisson’s ratio. 

For viscoelastic materials subjected to sinusoidal load, Equation 3.5 becomes: 

( )

x

ctE
ε

υσσ −
=*               (3.6) 

where =*E  complex modulus. 

 

 

Figure 3.17 - Biaxial state of stresses at the center of an IDT sample 
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3.7.1. Dynamic Modulus Test 

 

 Appendix D of NCHRP report 465 (2002) and AASHTO TP62 (2003) 

recommend using uniaxial tests to determine the dynamic modulus of HMA mixtures. In 

the NCHRP protocol, a single effective temperature between 4ºC and 20ºC and a single 

design frequency between 5 Hz and 20 Hz are required to be chosen for testing. The 

linearity is controlled by applying a haversine load that will produce axial strains over the 

range of 50-150 microstrain. This loading level is higher at colder temperatures. 

Preconditioning of the specimen with 200 cycles at 25 Hz should be done before the 

actual test. Calculations of dynamic moduli and phase angles are made using the results 

of the last six loading cycles. The number of specimens required is related to the number 

of LVDTs used AASHTO TP62 (2003) recommends the following set of temperatures 

and frequencies: -10ºC, 4.4ºC, 21.1ºC, 37.8ºC, and 54.4ºC and 0.1 Hz, 0.5 Hz, 1 Hz, 5 

Hz, 10 Hz, and 25 Hz. The number of cycles required for each of the frequencies is 15, 

15, 20, 100, 200, and 200, respectively. The tests should be conducted from the lowest to 

the highest temperature and from the highest to the lowest frequency. The linearity is also 

controlled by applying a haversine load that will produce axial strains between 50 and 

150 microstrain. The number of specimens required for a certain accuracy level depends 

on the number of LVDTs used. Calculations of dynamic moduli and phase angles are 

made based on the data of the last five cycles. 

 This research used procedures suggested by Kim et al. (2004). They derived an 

analytical solution for the dynamic modulus, considering linear viscoelasticity and the 

biaxial stress-strain state developed in an IDT testing mode. The authors suggested that 
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the reduction of the number of temperatures required by NCHRP 1-37A (2004) and/or 

the AASHTO TP62 (2003) could be compensated by adding two more testing 

frequencies based on the time-temperature superposition principle. This action can reduce 

the required testing time to obtain a master curve from 11 or 12 hours to less than 8 

hours. The temperatures suggested for testing were 10ºC, 10ºC, and 35ºC, and the 

frequencies were 0.01 Hz, 0.05 Hz, 0.1 Hz, 0.5 Hz, 1 Hz, 5 Hz, 10 Hz, and 25 Hz. A 

comparison plot between master curves with the five temperatures and those with the 

three temperatures was made by the authors, and no major differences were observed. A 

good agreement between master curves obtained by IDT testing mode and the uniaxial 

testing mode also validate their recommendations to the IDT testing for characterizing the 

dynamic modulus of HMA mixtures. Table 3.7 summarizes loading frequencies and the 

number of loading cycles applied to each loading frequency used in this study. 

 

Table 3.7 - Frequencies and number of cycles of IDT dynamic modulus tests 

Frequency (Hz) Cycles 

25 200 
10 200 
5 100 
1 20 

0.5 15 
0.1 15 

0.05 15 
0.01 15 

  

From the testing results, the dynamic moduli for each frequency were calculated 

using Equation 2.54, and the data are shown in Table 2.3 for the specimen of 100 mm 

diameter and 38.1 mm height. The phase angles were also calculated by simply 

measuring the time delay between stress and strain for last five cycles. From *E  and φ , 
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the storage moduli were calculated using Equation 2.13. Using Equation 2.45 and the 

collocation method, Prony series coefficients iρ  and iE  were determined for identifying 

the relaxation modulus function E(t). 

 

3.8. Indirect Tension (IDT) Fatigue Performance Test  

 

The characterization of fatigue performance was conducted by applying haversine 

loads at 10 Hz to IDT specimens designed with two different amounts of hydrated lime 

(0.5% and 2.0% by total weight of aggregates) in the HMA mixture. The number of 

loading cycles at the beginning of the tertiary flow from the horizontal gauges was used 

for measuring the fatigue life of the specimen. Figure 3.18 illustrates the shape of the 

applied load, and Figure 3.19 shows the fatigue-failure criterion adopted in this study. 

Finally, S-N (applied stress - the number of loading cycles to failure) curves of each 

mixture were drawn and compared to characterize the material-specific fatigue behavior 

due to the addition of hydrated lime. 

 



 105 

 

Figure 3.18 - Sinusoidal load applied for the fatigue test 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000

Cycles

H
o

ri
z

o
n

ta
l 

d
e

fo
rm

a
ti

o
n

 (
m

m
)

 

Figure 3.19 - Fatigue failure criterion 
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3.9. Permanent Deformation Potential 

 

The creep and recovery tests were performed at 35ºC, and the permanent 

deformation region (Region 6 in Figure 2.5) of each mixture was compared to 

characterize the effect of hydrated lime on rutting-related HMA behavior.  

In addition to the creep and recovery test at 35ºC, the temperature was increased 

to 60ºC to simulate the behavior of the mixtures under high-temperature conditions. 

Similar to the fatigue test, the beginning of the tertiary flow in the deformation-loading 

time curve was captured to define sample failure due to permanent deformation.   
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CHAPTER 4  

 

 RESULTS AND DISCUSSION 

 

4.1. Analyses of RZ, CAA, and FAA 

 

The rutting performance from the APA testing was qualitatively analyzed for five 

different mixture gradations. Two of those gradations violate the Superpave RZ concept 

by passing through the restricted zone (TRZ1 and TRZ2), and two gradations are located 

below the restricted zone (BRZ1 and BRZ2), and one above the restricted zone (ARZ) 

was also considered. Table 4.1 and Figure 4.1 show the gradations used in this study. 

 

Table 4.1 - Gradations of each mixture 

% accumulated passing 
Sieve size 

ARZ TRZ 1 BRZ 1 TRZ 2 BRZ 2 RZ limits 

19.0 mm 3/4" 100.0 100.0 100.0 100.0 100.0 - - 

12.5 mm 1/2" 95.0 95.0 95.0 95.0 95.0 - - 

9.5 mm 3/8" 89.0 89.0 89.0 89.0 89.0 - - 

4.75 mm #4 72.0 72.0 72.0 72.0 72.0 - - 

2.36 mm # 8 57.0 55.0 36.0 55.0 32.0 39.1 39.1 

1.18 mm # 16 42.0 24.0 21.0 35.0 19.0 25.6 31.6 

0.60 mm # 30 30.0 15.0 14.0 19.0 13.0 19.1 23.1 

0.30 mm # 50 19.0 11.0 10.0 11.0 9.0 15.5 15.5 

0.15 mm # 100 7.0 7.0 7.0 7.0 7.0 - - 

0.075 mm # 200 1.5 3.5 3.5 3.0 3.5 - - 
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Figure 4.1 - Gradations of each mixture on 0.45-power chart 
  

All mixtures were designed to support a traffic level of 0.3 to 1.0 million ESALs. 

NDOR classifies it as the SP-2 mixture. The specified limits for the NDOR SP-2 mixture 

are given in Table 4.2. 

  

Table 4.2 - NDOR limits for SP2 mixtures 

Parameter 

Compaction Effort 
NDOR Specification (SP-2 Mix) 

Nini: the number of gyration at initial 7 
Ndes: the number of gyration at design 76 
Nmax: the number of gyration at maximum 117 

Aggregate Properties  
CAA (%): Coarse Aggregate Angularity > 65 
FAA (%): Fine Aggregate Angularity > 43 
SE (%): Sand Equivalency > 40 
F&E (%): Flat and Elongated aggregates < 10 

Volumetric Parameters  
%VA: Air Voids 4 ± 1 
%VMA: Voids in Mineral Aggregates > 14 
%VFA: Voids Filled with Asphalt 65 - 78 
%Pb: Asphalt Content - 
D/B (ratio): Dust-Binder ratio 0.7 - 1.7 
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All five mixes designed in asphalt/concrete laboratory at the University of 

Nebraska-Lincoln (UNL) were submitted to NDOR asphalt/aggregate laboratories for 

validation of material properties and volumetric mix-design parameters. UNL design 

values and NDOR validations are presented and compared in Table 4.3. 



 

 

Table 4.3 - The results of mix design results from UNL and NDOR validation 

ARZ TRZ 1 TRZ 2 BRZ 1 BRZ 2 
Parameter 

NDOR 

LIMITS UNL NDOR UNL NDOR UNL NDOR UNL NDOR UNL NDOR 

Gmm - 2.447 2.456 2.421 2.437 2.443 2.447 2.429 2.44 2.418 2.42 

Gsb - 2.583 2.583 2.582 2.582 2.582 2.582 2.575 2.58 2.581 2.58 

Gmb - 2.336 2.338 2.312 2.336 2.339 2.348 2.331 2.34 2.311 2.31 
CAA > 65 84.6 91 84.6 90 84.6 84 84.6 90 84.6 82 
FAA > 43 42.9 43.8 42.95 42.7 42.89 42.6 42.93 43.8 40.87 41.7 
SE > 40 - 73 - 73 - 73 - 81 - 81 

F&E < 10 - 1 - 0 - 0 - 0 - 0 

%Va 4 ± 1 4.6 4.8 4.5 4.14 4.2 4.05 4 4.1 4.4 4.58 
VMA > 14 14.4 14.26 15.5 14.7 14.2 14.04 14.3 14.3 15.5 15.5 
VFA 65 - 78 68.4 66.32 71 71.78 70.2 71.18 71.7 71.3 71.5 70.4 

%Pb - 5.36 5.28 5.65 5.7 5.29 5.47 5.27 5.55 5.6 5.65 
D/B 0.7 - 1.7 1.56 0.77 1.19 1.16 1.46 1.14 1.31 1.32 1.3 1.14 

Sieve  Gradation (% Passing) 
3/4" - 100 100 100 100 100 100 100 100 100 100 
1/2" - 97.4 96.2 93.6 94.3 95.1 95.5 95.5 94.2 96.9 93.5 
3/8" - 91.8 91.1 87 89.4 89.2 89.4 90.6 88.2 87.6 87.9 
# 4 - 79 73.9 71.8 72.4 71.8 75.2 72.8 70.6 72.1 71.3 
# 8 - 62.7 57.9 53.9 54.7 54.5 56.5 36.8 35 34.3 32.1 

# 16 - 46.4 43.2 26 26.1 36.3 36.6 22.4 21.8 21.1 19.8 
# 30 - 34 31 17.1 16.8 21.2 20.7 15.6 15.4 14.8 14.1 
# 50 - 23.3 20 12.7 12.8 13.3 12.6 11.5 11.4 11 10.4 

# 100 - 11.4 8.1 8.8 8.5 9.4 8.4 8.5 5.7 9 8.3 

# 200 - 6.8 3.2 5.8 5.4 6.4 5 5.9 5.9 6.4 5.5 
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As can be seen in Table 4.3, volumetric properties of the mix and the 

characteristics of aggregates obtained from UNL laboratory matched well with NDOR 

measurements and met NDOR SP-2 mix specifications. On the basis of the NDOR 

validation, it can be inferred that UNL mix designs have been conducted successfully. 

However, it can be noted from the table that CAA estimated from UNL is somewhat 

different from NDOR measurements. All SP-2 mixes were designed with a target value 

of CAA of approximately 85; however, CAA values measured from each batch delivered 

to NDOR were approximately 80-90. This is not so surprising since the CAA testing 

protocol in the Superpave specification is not quite repeatable in nature because CAA 

value is substantially influenced by aggregate sampling. Furthermore, CAA test results 

are generally dependent on the individual who performs the testing many times. Some 

researchers have recommended new testing methods such as the one based on image 

analysis for better characterizing aggregate angularity in a more appropriate way. In fact, 

as shown in Table 4.3, NDOR CAA results demonstrated variation in the test results: 82 

for the BRZ2 mixture vs. 91 for the ARZ mixture, even though exactly same types and 

amounts of aggregate were blended for all the five mixtures. Except for the difference in 

CAA, no significant discrepancy in design parameters was observed between UNL and 

NDOR.  

Following the procedures described in Chapter 3, APA samples were fabricated 

and tested under dry condition. The APA test results are summarized in Table 4.4. 

“Front” and “back” in the table refers to the positioning of the sample (for each pair) in 

the APA machine. 
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Table 4.4 - Results of rutting performance of APA 

 

HMA mixes 
Sample 

position 
Gmm Gmb %Va Strokes 

Rut 

depths 

(mm) 

Pass or Fail 

(12mm @ 

8,000 cycles) 

Front1 2.439 2.341 4.0 8000 5.14 
Back1 2.448 2.350 4.0 8000 4.84 

Pass 

Front2 2.442 2.341 4.1 8000 6.12 
ARZ 

Back2 2.441 2.344 4.0 8000 5.12 
Pass 

Front1 2.432 2.328 4.3 8000 8.13 
Back1 2.441 2.330 4.5 8000 6.85 

Pass 

Front2 2.423 2.332 3.7 5300 12.01 
TRZ 1 

Back2 2.428 2.333 3.9 5300 6.15 
Fail 

Front1 2.443 2.345 4.1 8000 4.60 
Back1 2.443 2.343 3.9 8000 3.88 

Pass 

Front2 2.444 2.343 4.2 8000 6.34 
TRZ 2 

Back2 2.442 2.344 4.0 8000 6.92 
Pass 

Front1 2.434 2.336 3.9 4000 6.70 
Back1 2.434 2.343 3.9 4000 12.60 

Fail 

Front2 2.436 2.333 4.2 6000 7.97 
Back2 2.434 2.337 4.0 6000 12.80 

Fail 

Front3 2.429 2.337 3.8 8000 8.85 
Back3 2.432 2.332 4.1 8000 6.28 

Pass 

Front4* 2.441 2.344 4.0 6390 11.71 

BRZ 1 

Back4* 2.441 2.345 3.9 6390 12.01 
Fail 

Front* 2.431 2.343 3.6 5975 11.19 
Back* 2.431 2.344 3.6 5975 12.92 

Fail 

Front* 2.442 2.344 4.0 5805 13.18 
BRZ 1 (CAA 75)** 

Back* 2.442 2.349 3.8 5805 10.91 
Fail 

Front1 2.424 2.328 4.0 5480 6.00 

Back1 2.426 2.337 3.7 5480 12.00 
Fail 

Front2 2.421 2.327 3.9 6324 11.44 
BRZ 2 

Back2 2.426 2.334 3.8 6324 12.30 
Fail 

* For these mixtures, each sample was fabricated by splitting 10,000 g batch in 2. 

** For these mixtures, the manual stop was performed when the average rutting was 

approximately 12 mm. 
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4.1.1. Effects of Restricted Zone  

 

Figure 4.2 summarizes APA test results to investigate the effect of restricted zone. 

From the figure, one can observe that ARZ and TRZ mixtures generally showed a good 

performance, and BRZ mixtures showed more susceptible characteristics to rutting than 

the ARZ and TRZ mixtures. Another fact to be noted from the figure is that TRZ2 

mixture, which is closer to ARZ mixture gradation (inferring finer graded mixture), was 

more rut-resistant than the TRZ1 mixture, which is closer to BRZ gradation (inferring 

coarser graded mixture). Figure 4.2 indicates that HMA aggregate gradations passing 

through the restricted zone showed performance similar to or better than mixtures with 

gradations entirely outside the restricted zone, as long as the aggregate and mixture 

satisfied other Superpave requirements.   

 

 

Figure 4.2 - Rut depths of the APA samples 
 



 114 

4.1.2. Effects of CAA 

 

To investigate the effect of CAA on rutting performance of HMA, samples of 

BRZ1 gradation with a CAA of 75 were additionally fabricated and tested using the APA 

machine. As presented in  

 

Table 4.4, three of four pairs of the BRZ1 mixtures with a CAA of 90 failed 

before 8,000 cycles and both pairs of BRZ1 mixtures with a lower CAA (i.e., 75) failed at 

relatively less number of cycles than the BRZ1 mixtures with a CAA of 90. On the basis 

of this observation, one can infer that the lower CAA might be a potential factor that can 

cause more severe HMA rut-damage. However, this is not conclusive and needs more 

comprehensive investigations to ensure the effects of CAA.  

  

4.1.3. Effects of FAA 

 

 As shown in Table 4.3, the BRZ2 mixture was designed with a lower FAA 

(approximately 41) than the other mixtures (approximately 43). Since BRZ1 and BRZ2 

are all subject to very similar gradations, their rutting performances can be compared to 

observe the effect of FAA. As noticed earlier, three out of four pairs of BRZ1 mixture 

failed, whereas all pairs of BRZ2 mixture failed. Simply considering the number of 

strokes at failure between the BRZ1 and BRZ2, no significant relationship between FAA 

values and APA rut-depth was observed from test data currently obtained. However, 
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APA test results infer that the lower fine angularity is a factor that might cause more rut 

damage based onthe fact that the BRZ2 mixture is similar to or slightly more susceptible 

to rutting compared with the BRZ1 mixture. This may be due to reduced aggregate 

interlocking in the mixture. Further comprehensive investigations need to be performed 

to draw a more generalized finding.        

   

4.3. Effects of Fillers on Mastics 

 

The strain sweep tests were conducted on different mastics at two different 

temperatures (20ºC and 40ºC), which are the extreme temperatures used for the frequency 

sweep tests. The test results that were obtained by varying the dynamic shear modulus 

and increasing the strains indicated that an arbitrary strain less than 0.6% can be used to 

perform the frequency sweep tests because the strain level less than 0.6% is low enough 

that it does not cause any nonlinear viscoelastic behavior of the binders and mastics.  

The frequency sweep tests were then performed at 20ºC, and test results are given 

in Figure 4.3 and Figure 4.4, representing mastics with the binder PG 64-22 and binder 

PG 64-28, respectively. As expected, hydrated lime produced a higher stiffening effect 

than other fillers. This is probably due to certain reactions that occur between hydrated 

lime and the binder. For both binders, the mastics with 3ACR fillers provided better 

stiffening than the mastics with screening fillers. Interestingly, the mastics mixed with 

3ACR and hydrated lime together were less stiff than the mastics with 3ACR only, which 

is not always true for the cases with screenings fillers. On the basis of this observation, it 
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can be inferred that hydrated lime does not function as an ordinary volume-filling agent, 

but acts as a chemically active material producing material-specific characteristics. 

 

 

Figure 4.3 - Stiffness of mastics with PG 64-22 binder 
 

 

Figure 4.4 - Stiffness of mastics with PG 64-28 binder 
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4.4. Effects of Hydrated Lime on HMA Performance 

 
 The gradation chosen for this investigation was the same as that for the BRZ1-

mixture gradation as redrawn in Figure 4.5. Two different mixtures with an addition of 

different volumes of hydrated lime (0.5 and 2.0% by weight of total aggregates) were 

designed and tested under IDT mode to characterize their stiffness, fatigue behavior, and 

rutting performance depending on the amount of hydrated lime added to the mixture.   

 

 

Figure 4.5 - Gradation of HMA mixture 
 

All mixtures designed at the UNL were submitted to NDOR laboratories for 

validation of material properties and volumetric mix-design parameters. The UNL design 

values and NDOR validations are presented and compared in Table 4.5.
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Table 4.5 - Results of mix design (UNL vs. NDOR) 

0.5% HL 2.0% HL 
Parameter NDOR Limits 

UNL NDOR UNL NDOR 

Gmm - 2.428 2.421 2.431 2.438 

Gsb - 2.577 2.577 2.577 2.577 

Gmb - 2.328 2.334 2.334 2.347 

%Va 4 ± 1 4.1 3.6 4.0 3.8 

VMA > 14 15.1 14.9 14.2 13.7 

VFA 65 - 78 72.9 75.9 71.9 72.6 

%Pb - 5.91 5.99 5.08 5.17 

D/B 0.7 - 1.7 0.93 0.95 1.48 1.45 

Sieve  Gradation (% Passing) 

3/4" - 100.0 100.0 100.0 100.0 

1/2" - 95.6 93.7 93.4 94.1 

3/8" - 89.6 87.1 86.8 87.6 

# 4 - 72.4 69.6 70.2 70.6 

# 8 - 36.8 35.2 37.8 37.1 

# 16 - 22.3 22.4 23.6 23.4 

# 30 - 15.5 15.7 16.5 16.7 

# 50 - 11.5 11.1 12.6 12.5 

# 100 - 8.6 8.5 9.6 9.8 

# 200 - 5.5 5.7 7.8 7.5 

 

 To evaluate the stiffening effect provided by the addition of hydrated lime, 

dynamic moduli at three different temperatures were obtained based on the analytical 

solution for the IDT testing mode described by Kim et al. (2004). The loading levels were 

carefully adjusted until the sample deformations were between 50 and 75 microstrain.  

The resulting dynamic moduli calculated using Equation 2.54 were then used to 

construct master curves as shown in Figure 4.6. Frequency-domain dynamic modulus 

master curves in Figure 4.6 were transferred into the time-domain master curves 

represented for the relaxation moduli. The relaxation modulus plots of each mixture that 

were finally obtained are shown in Figure 4.7.  
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Figure 4.6 - Results of dynamic modulus 
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Figure 4.7 - Results of relaxation modulus results 
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As can be seen, the 2.0% hydrated lime did not improve the stiffness of the 

mixture at low loading frequencies (or long loading times). However, beginning at 

approximately 1 Hz, there is a clear trend of gain in stiffness due to the 2.0% lime 

addition compared with the mixture that included 0.5% hydrated lime.  

For fatigue testing, the IDT specimens were subjected to cyclic loads at 20ºC and 

at a frequency of 10 Hz. Table 4.6 summarizes the loads applied and the resulting number 

of cycles to failure (i.e., fatigue lives) of each mixture. Figure 4.8 shows the IDT 

specimen before and after the fatigue test. The figure clearly shows the crack path that 

developed in the sample after the test. 

 

      Table 4.6 - Fatigue testing loads and fatigue lives 

0.5% HL addition 2.0% HL addition 

Force (kN) Cycles Force (kN) Cycles 

2 5,500 2.5 4,900 
2 6,500 2.5 5,100 

1.5 24,000 2 19,000 
1.5 20,000 2 25,000 
1 93,000 1.5 92,000 
1 - 1.5 112,000 

  

 

Figure 4.8 - IDT sample before and after fatigue test 
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The data in Table 4.6 can then be used to draw S-N curves representing the 

fatigue behavior of the mixtures, as shown in Figure 4.9. Hydrated lime improved the 

resistance of mixtures against the damage resulting from fatigue, which is the expected 

phenomena since the addition of hydrated lime resulted in the stiffening of the binder and 

mixture as shown in Figures 4.3, 4.4, and 4.10. Stiffer mixtures typically last longer 

under the load-controlled fatigue-testing mode, which is not true any more in case of 

displacement-controlled fatigue testing. For better insights into the effects of hydrated 

lime on fatigue performance of HMA, the displacement-controlled fatigue tests need to 

be performed as well.  

 

 

Figure 4.9 - S-N curves for controlled-force testing mode 
 

For the analysis of rutting potential affected by the addition of hydrated lime, the 

creep and recovery tests were performed, and the slope (represented by R in Figure 4.10) 

of the creep behavior and permanent deformation after recovery were recorded for 
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comparisons between mixtures with 0.50% hydrated lime and mixtures with 2.0% lime. 

The tests were conducted at 35ºC, and the applied load was 0.11 kN.  

The mixture with 2.0% additional hydrated lime exhibited a lower permanent-

deformation potential. After 1,000 seconds of loading, the vertical deformation on the 

mixture with 0.5% hydrated lime was 0.016 mm, which is 32% higher than the vertical 

deformation experienced by the mixture with 2.0% hydrated lime (0.0072 mm). 

Also, the rate of increase of the deformations (R) for the 2.0% hydrated lime was 

approximately 58% of R value for the 0.5% case (0.0000125 mm/s vs. 0.00000528 

mm/s). The figure clearly shows that hydrated lime improved resistance to the permanent 

deformation of the mixtures. 

 

 

Figure 4.10 - Creep & recovery test vertical deformations 
 

Furthermore, to simulate the rut-associated behavior at a temperature close to the 

maximum pavement temperature, a constant load of 0.27 kN was applied to the samples 

at 60ºC, and the actuator deformations were recorded. The beginning of the tertiary flow 

Permanent 
deformation 

R 
1 
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in the deformation-loading time curve was monitored as the failure criterion. The 

corresponding loading times at failure of each mixture are given in Figure 4.11. 

The higher amount of hydrated lime amazingly improved the resistance of the 

mixtures to permanent deformations. For the case of 0.5% hydrated lime, mixtures failed 

before 300 seconds. For the 2.0% case, this number increased to 12,000 seconds on 

average. 

 

 

Figure 4.11 - Permanent deformation failure times 
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CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

This research presented a study of different aspects of the effects of aggregates on 

the properties and performance of mastics and Superpave HMA asphalt mixtures. The 

variables considered herein were gradations, angularities (shape), and type and amount of 

fillers. 

The effect of gradations on the resistance of HMA mixtures to permanent 

deformations was evaluated. For this purpose, five different gradations of Superpave 

restricted zone (RZ) were considered. The restricted zone was not a significant factor that 

controls rut performance of HMA. In some cases, mixtures violating the RZ showed 

better performance than others in compliance with the restricted zone. A typical trend 

observed is that coarser graded mixtures such as the below-RZ mixtures are generally 

more susceptible to rutting than fine-graded mixtures such as above-RZ mixtures. 

 Next, a brief investigation on the permanent-deformation performance of mixtures 

with different aggregate angularities showed that mixtures with lower CAA and/or FAA 

showed slightly worse performance than mixtures with higher CAA and/or FAA. 

However, a more comprehensive study needs to be conducted for better conclusions. 

 This study also investigated the effects of mineral fillers and hydrated lime on 

material properties and characteristics of HMA performance. Hydrated lime produced a 

higher stiffening effect than other fillers, which might be due to some physico-chemical 
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reactions between hydrated lime and the binder; however, it has not been considered in 

this study. Hydrated lime also showed somewhat material-specific characteristics, which 

is not typically observed in case of commonly used mineral fillers.  

 The effects of hydrated lime have been further investigated by performing several 

mixture tests for two different lime additions (0.5% and 2.0%). Hydrated lime improved 

the stiffness, fatigue resistance, and rut resistance of the HMA mixtures. However, the 

contribution of hydrated lime to fatigue behavior of the mixture needs to be investigated 

with more care, since better resistance to fatigue damage observed from the mixtures 

containing more amount of hydrated lime may not be true in case of displacement-

controlled fatigue testing. This study has only investigated fatigue behavior of mixtures 

under the force-controlled mode.    
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