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Abstract
Time series data are widely used in many applications including critical decision support 
systems. The goodness of the dataset, called the Fitness of Use (FoU), used in the analysis 
has direct bearing on the quality of the information and knowledge generated and hence 
on the quality of the decisions based on them. Unlike traditional quality of data which is 
independent of the application in which it is used, FoU is a function of the application. As 
the use of geospatial time series datasets increase in many critical applications, it is impor-
tant to develop formal methodologies to compute their FoU and propagate it to the de-
rived information, knowledge and decisions. In this paper we propose a formal frame-
work to compute the FoU of time series datasets. We present three different techniques 
using the Dempster-Shafer belief theory framework as the foundation. These three ap-
proaches investigate the FoU by focusing on three aspects of data: data attributes, data 
stability, and impact of gap periods, respectively. The effectiveness of each approach is 
shown using an application in hydrological datasets that measure streamflow. While we 
use hydrological information analysis as our application domain in this research, the tech-
niques can be used in many other domains as well.

Keywords: Fitness of Use (FoU), Dempster-Shafer belief theory, time series data

1 Introduction 

Time series datasets contain the value of a certain variable as a function of time. In the 
geospatial domain, such datasets are used to store measurements for many natural and hu-
man events at different points along the time line. Over the years, many time series datasets 
have been collected in many domains such as meteorology, agriculture, biology, ecology, 
hydrology and oceanography. Large amounts of these time series datasets are now univer-
sally becoming available and being widely used (e.g., water data [1]). In many of these do-
mains the datasets are used to compute various pieces of information and to derive knowl-
edge that is used as thebasis for making critical decisions. For example, the trends in flow 
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of streams and amount of precipitation are often used to determine the severity of droughts 
[2]. This information is then used to decide the amount and type of support that can be pro-
vided to farmers and ranchers.

In most applications, it is commonly assumed that the datasets are perfect and without 
any blemish. This assumption is, of course, not true. The data is merely a representation of 
a continuous reality both in space and time. It is difficult to measure the values of a contin-
uous space and time variable with infinite precision. Limitations are also the result of in-
adequate human capacity, sensor capabilities and budgetary constraints. The discrepancy 
therefore exists between the reality and the datasets that are derived to represent it. It is 
critical to capture the degree of this discrepancy and incorporate it in the analysis to ob-
tain a more accurate picture of the temporal processes. This measure of quality of a dataset 
is clearly a function of the purpose for which it is used. If the dataset is being used to ana-
lyze the long-term behavior of a temporal process, e.g., global warming, then it is important 
to have the measurements over a long period of time without significant gaps. Similarly if 
a process is very dynamic, e.g., streamflow of a river, then it is necessary to measure its pa-
rameters at a finer temporal scale.

This aspect of the datasets is often called its Fitness of Use (FoU). For a given application, 
this value varies among the datasets. Information derived from high-FoU datasets is more 
useful and accurate for the users of the application than that from low-FoU datasets. The chal-
lenge is to develop appropriate methods to evaluate this FoU measure for a dataset in order 
to gain information on how the dataset can be used or how appropriate the dataset is for a 
particular application [3]. This challenge and other aspects of goodness of datasets have been 
identified as reasons for failure in many data warehouse projects [4],[5].

In this paper, we focus on computing the FoU of dynamic datasets that are quite com-
mon and are widely used in many critical decision support systems. Our approach is to de-
velop efficient methods to evaluate the FoU of time series data using rules derived for specific 
applications. While we use a specific application from the geospatial domain to illustrate our 
techniques, they are applicable in many different domains. Specific examples of these types of 
datasets include measurements of precipitation and other weather related parameters, stream-
flow, amount of water in lakes and reservoirs, crop yield, or virtually, any dataset that records 
measurement of the same quantity over a long period of time at regular intervals We use an 
information theoretic approach to compute the FoU of a dataset. The Dempster-Shafer belief 
theory [6] is used as the basis for our approach, in which the FoU is represented as a range of 
possibilities and integrated into one value based on the information from multiple sources. 
Dempster-Shafer is the primary alternative to Bayes theory [7], [8], which requires previously 
known probability determinations for data fusion.

The paper is organized as follows. In Section 2, we review the related research work 
in computing fitness of use. In Section 3, we define and formulate the problem of comput-
ing the FoU for time series data. We describe the Dempster-Shafer belief theory and how 
it applies to our problem. Three solution approaches-heuristic analysis, temporal variabil-
ity analysis, and time series analysis-and algorithms for computing the FoU are described 
in Section 4. In Section 5, we describe the implementation and results of using the FoU com-
putation in a geospatial application domain. Finally, we give a summary and describe direc-
tions for future work in Section 6.

2 Related Work

The focus of this paper is not on the computation of traditional data quality, but on their 
fitness of specific applications. Specifically, we seek to incorporate the FoU in knowledge 
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discovery and data mining (KDD) approaches and apply this to geospatial datasets. In this 
section, we first differentiate between traditional data quality and the FoU measure. Then, 
we discuss approaches to computing the FoU in geospatial time series datasets.

Though related, traditional data quality and the FoU are different. Previous studies ad-
dressed data quality as a multi-dimensional concept [9]-[13]. Data quality is commonly 
evaluated along five major dimensions [3]: (1) accuracy that measures the conformity of the 
recorded value with the actual value, (2) precision which is the degree of detail that can be 
recorded, (3) resolution which is the level of detail that can be represented, (4) consistency 
which means that the representation of the data is in the same format, and (5) completeness 
which implies that all values for a certain variable are recorded. Furthermore, data qual-
ity may also include data accessibility, appropriate amount of data, data believability, data 
completeness, data representation, ease of manipulation, data interpretability, data reputa-
tion, data security, and data timeliness [11]. In some GIS-based analysis, the quality of geo-
spatial data has been evaluated with uncertainty as the basis of quality [14]. Data quality is 
therefore expressed as the degree of discrepancy between the data in GIS and the data in the 
geographic reality. In [15],[16], the quality of geospatial data was investigated by detecting 
the errors and inconsistencies in spatial datasets.

On the other hand, the definition of the FoU measures the “quality” of data from the 
viewpoint of its suitability for a specific application. For example, a value with precision 
of three decimal points is more accurate than the same value rounded to two decimal 
points. However, both values may have the exactly the same FoU in an application, in 
which the values are used as integers. In [17], the FoU was derived from the aspects of 
metadata quality, data availability, data resolution, data collection methods, data classifi-
cation methods, and cost of accessing data. In [18], the authors studied the FoU obtained 
from multiple sources with different levels of reliability. Compared to these studies, our 
work is focused on metadata quality and considers a single data source, e.g., streamflow 
measurements.

Considering the complex nature of geospatial time series datasets and the limitation of 
methods used to capture the data, different models have been proposed to model errors and 
inconsistencies, on which the FoU is based. In [19],[20], the probability theory was used to 
evaluate the uncertainty in the capture of geospatial data. The probability theory is espe-
cially powerful when dealing with uncertainty that is introduced by randomness (e.g., dig-
itization of a point using GIS [14]). However, the appropriateness of probability theory be-
comes questionable when dealing with the uncertainty that is caused by fuzziness [21] (e.g., 
the creation of a map using remote sensing classification techniques [14]). The possibility 
theory, on the other hand, shows efficiency in calculation of uncertainty that is introduced 
due to fuzziness but is less efficient in dealing with uncertainty caused by randomness. In 
[22], the possibility theory was used in FoU evaluation. In [23], the authors studied the un-
certainty using various mathematical models, e.g., normal or Gaussian distributions. Such 
uncertainty analysis is not used in our study because we focus only on the data but not the 
quality of the instruments used to capture data.

KDD techniques are designed to extract interesting information and knowledge from 
vast amounts of data and can play a major role in affecting the FoU of the data. Steps in a 
typical KDD application are: (1) data gathering, (2) data storage, (3) data retrieval, (4) data 
mining, and (5) knowledge delivery [24]. During the data gathering stage, the FoU can be 
affected by the manual entry (e.g., duplicate data entry, error of measurement equipment). 
At the data storage stage, inappropriate data model or structure and untimely updates may 
lower the FoU. At the data retrieval stage, the problems include computational constraints 
and inefficient use of memory. Data mining can be used to compute the FoU [25],[26]. For 
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example, mining of association rules were employed to detect, quantify, explain and correct 
data quality deficiencies in databases. In [27], a machine learning algorithm, namely C4.5, 
was used to design a data auditing generator. The data auditing generator can systemati-
cally generate and pollute an artificial benchmark that is used to audit a database. Statistical 
methodologies (e.g., standard statistical tests) for detecting abnormal or missing data and 
profiling the quality of a dataset have been developed [28],[29]. In [30], a module was devel-
oped to capture data quality problems in database systems by performing data extraction, 
data transformation and data loading. In [31], a data quality model was developed to im-
prove the query performance of database management systems.

To summarize, the focus of our work is in computing the FoU of a dataset and not the 
traditional aspect of data quality. Many previous studies have investigated geospatial data 
by only considering a single dimension, e.g., scale incompatibility or error detection, or by 
analyzing multiple dimensions separately. Our study evaluates the fitness of use as a whole 
by making use of an information fusion approach to combine the impact from all the re-
lated data aspects/attributes into a single measurement. For example, data gap (interrup-
tions in measurements) is an important data attribute in FoU evaluation, which was con-
sidered in [32] and [33]. However, those studies did not provide a systematic approach for 
combining data gap with other related factors (as suggested by [34]). Specifically, our re-
search investigates the FoU by incorporating the impact from data gap, data stability fac-
tors, and other data attributes. This is particularly important for analyzing geospatial time 
series data, where gaps in measurement may be a significant issue. Our proposed approach 
is based on the Dempster-Shafer belief theory which has been used by Eastman for uncer-
tainty management for decision support tools [35].

3 Problem Formulation

The central problem we address in this paper is to determine the FoU of time series data-
sets for applications. Assume that we are given a set of time series datasets, S = {S1, S2,...,Sn}. 
A dataset Si may consist of many types of information including (and not limited to) spatial 
coordinates, metadata about the dataset, denoted by auxi, and the actual time series data, 
denoted by tSi.

The metadata for a dataset includes the type of information being recorded (e.g., precip-
itation, or discharge of water in a stream), the period of record, and the frequency of mea-
surement. Thus,

auxi = 〈typei, tbi, tei, inti〉〉,

where tbi and tei denote the beginning and the ending time stamps for the measurements, 
and inti is the interval at which the measurements are made. Other metadata such as the 
type and age of recording device can also be added.

The time series data in a dataset consist of a sequence of measurements,

tSi = 〈mi,1, mi,2, …, mi,p〉.

Each measurement stores both the time the measurement was taken and the actual value re-
corded by the sensor. Thus, each measurement is given by:

m i,j = 〈ti,j; vi,j〉.
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We assume that the measurements in the dataset are maintained in chronological order. 
Therefore,

ti,j < ti,k for j < k.

Furthermore, the first and last measurement times should match the period of record stored 
in the metadata,

tbi = ti,1 and tei = ti,p.

For our research, we consider datasets that store measurements at regular intervals. In 
general, different datasets record values at different intervals. For example, some datasets 
will be based on daily observations, while others at weekly or monthly intervals. The work 
reported here can be extended to the case when the measurements are taken at irregular in-
tervals, but this is beyond the scope of this paper.

The problem of finding the suitability of a dataset for a given application is to define a 
function for the FoU that computes the fitness of use of a dataset described above. The func-
tion FoU maps a time series dataset Si to a normalized value between 0 and 1:

FoU(Si,A) = [0,1],

where Si is a single dataset and A is the intended application of the data. The application A 
is represented in the form of domain knowledge that describes how goodness of a dataset is 
viewed. We use a set of rules that specify this information. Thus,

A = {R1, R2, …, Rd},

where Ri is a domain rule to describe the goodness of a dataset, and d is the number of rules. 
Therefore, our FoU function is defined with respect to an application domain. Different ap-
plications can use different rules for goodness and derive different FoU values for the same 
dataset.

4 Approach

The challenge in computation of the fitness of use for datasets is to identify the dimen-
sions that are important in the application, to formalize the domain rules, and finally to 
combine them to derive an overall quality indicator. The important dimensions must be rep-
resentative and collectively be able to define the expected variance in the datasets. The fun-
damental issue is the fact that the natural processes are inherently variable and hence their 
measurements are uncertain. Furthermore, the FoU of a dataset can be measured along dif-
ferent dimensions. For example, if the data is recorded at a daily interval, the resulting da-
taset can be viewed to have higher quality than one that is recorded weekly. The reason for 
this assessment is that more precise analysis can be obtained from daily data than weekly 
data. One can computationally derive weekly data from daily data,. However, this can lead 
to bias and trends that do not accurately reflect reality. Therefore, there is a loss of informa-
tion and hence it is not possible, in general, to derive daily data from weekly data. Similarly, 
if there are missing records in the dataset, then the length of the period for which there are 
no measurements is a (negative) factor in the quality of the dataset.

In this paper, we propose three different approaches to compute the fitness of use of da-
tasets. They differ in the way in which the quality is modeled and quantified. In all three 
approaches however, we use the Dempster-Shafer belief theory [6] as the basis to derive a 
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composite quality indicator. The three proposed approaches are heuristic analysis, tempo-
ral variability analysis, and predicted error estimates using time series analysis. Briefly, the 
heuristic analysis uses commonsense heuristics (rules of thumb) taking into account consis-
tency, length, recency, resolution (e.g., spatial or temporal), completeness, and noise to eval-
uate the FoU of datasets. The temporal variability analysis considers a coefficient of varia-
tion to measure the stability of values at the same periodic time points over an interval of 
measurements, with the assumption that high stability implies high FoU. The time series 
approach uses a regression model to estimate the maximum predicted error, which is then 
used as an inversely proportional estimate of the FoU of datasets.

The general application on which the FoU is defined is decision support systems to pro-
viding information to users on the “goodness” of the measurement stations. Information on 
the goodness of the measurement stations allow users to, for example, decide how to add 
new stations or make use of existing stations to extrapolate values for regions not covered 
by the stations. This general application can thus be plugged into most GIS-based applica-
tions (e.g., hydrological analysis and drought assessment).

In the following subsections, we first briefly describe the Dempster-Shafer belief theory 
and how it can be used to compute the FoU of datasets. Then we discuss the three proposed 
approaches.

4.1 Dempster-Shafer belief theory

There are several limitations of applying the traditional Bayes probability theory to rep-
resent the full scope of uncertainty [36]. For example, the probability of an outcome occur-
ring is measured based on how often that particular outcome occurs in a series of trials with 
respect to other outcomes in the long run. However, in most uncertain scenarios, the proba-
bility of an outcome is not known as (1) we do not have the frame of all possible outcomes, 
especially in a non-discrete domain, and (2) we do not have enough data to ascertain the 
frequency of an outcome. Thus, uncertainty is often represented with subjective probability. 
The Dempster-Shafer belief theory addresses this limitation. Instead of a single probability 
value associated with an event or measurement, the theory allows an interval-valued prob-
ability to be associated with the event. There are several advantages of the Dempster-Shafer 
belief theory. First, it does not require that the individual elements follow a certain probabil-
ity. In other words, Bayes’ theorem considers an event to be either true or untrue, whereas 
Dempster-Shafer allows for unknown states [37]. This characteristic makes Dempster-Shafer 
belief theory a powerful tool for the evaluation of risk and reliability in many real applica-
tions when it is impossible to obtain precise measurements/results from real experiments. 
In addition, Dempster-Shafer Belief Theory provides a framework to combine the evidence 
from multiple sources and does not assume disjoint outcomes [31]. Also, Dempster-Shafer’s 
measures are not necessarily less accurate than Bayesian methods, and in fact reports have 
shown that it can sometimes outperform Bayes’ theorem [38], [39].

The two central ideas of Dempster-Shafer belief theory are: (a) obtaining degrees of be-
lief from subjective probabilities for a related question, and (b) Dempster’s rule for com-
bining such degrees of belief when they are based on independent items of evidence. For 
a given proposition, P and given some evidence, we derive a confidence interval, defined 
by an interval of probabilities within which the true probability lies within a certain con-
fidence. This interval is defined by the belief and plausibility supported by the evidence for 
the given proposition. The lower bound of the interval is called the belief and measures the 
strength of the evidence in favor of a proposition. The upper bound of the interval is called 
the plausibility. It brings together the evidence that is compatible with the proposition and is 
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not inconsistent with it. The values of both belief and plausibility range from 0 to 1. The be-
lief function (bel) and the plausibility function (pl) are related by:

pl(P) = 1 – bel(P‾)

where P‾ is the negation of the proposition P. Thus, bel (P‾) is the extent to which evidence is 
in favor of P‾. It should also be noted that it is not necessary that pl(P) + pl(P‾ ) = 1. Likewise, 
it is not necessary that bel (P) + bel (P‾) = 1.

The term Frame of Discernment (FOD) consists of all hypotheses for which the informa-
tion sources can provide evidence. This set is finite and consists of mutually exclusive prop-
ositions that span the hypotheses space. For a finite set of mutually exclusive propositions 
(θ) the set of possible hypotheses is its power set (2θ), i.e., the set of all possible subsets in-
cluding itself and a null set. Each of these subsets is called a focal element and is assigned a 
confidence interval [belief, plausibility].

Based on the evidence, we first assign a probability mass to each focal element. The 
masses are probability-like in that they are in the range [0, 1] and sum to 1 over all hypothe-
ses. However, they represent the belief assigned to a focal element. In most cases, this basic 
probability assignment is derived from the experience and rules provided by some experts 
in the application domain.

Given a hypothesis, H, its belief is computed as the sum of all the probability masses of 
the subsets of H as follows:

bel(H) = ∑m(e),
                                                                                   e⊂H

where m(e) is the probability mass assigned to the subset e. The probability mass function 
distributes the values on subsets of the frame of discernment. Only to those hypotheses, for 
which it has direct evidence, are assigned non-zero values. Thus, the Dempster-Shafer be-
lief theory allows for having a single piece of evidence supporting a set of multiple proposi-
tions being true.

If there are multiple sources of information, we can derive probability mass functions 
for each data source. These mass values are then combined using Dempster’s Combination 
Rule to derive joint evidence to support a hypothesis from multiple sources. Given two ba-
sic probability assignments, mA and mB for two independent sources (A and B) of evidence 
in the same frame of discernment, we can compute the joint probability mass, mAB, accord-
ing to Dempster’s Combination Rule:

                                                             ∑ m(A)*m(B)
                                         mAB(C) =  A∩B=C

                                                           1 – ∑ m(A)*m(B)
                                                                                         A∩B= ∅ 

Furthermore, the rule can be repeatedly applied for more than two sources sequentially, 
and the results are order-independent. That is, combining different pieces of evidence in 
different sequences yields the same results.

Finally, to determine the confidence in a hypothesis H being true, we multiply belief by 
plausibility:

confidence(H) = bel(H) ·  pl(H)

 Thus, the system is highly confident about a hypothesis being true if it has high belief and 
plausibility for that hypothesis being true.
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For all of our approaches, we use three discrete FoU outcomes of the datasets: suitable 
(s), marginal (m), and unsuitable (u). Thus,

θ = {s,m,u}

and the frame of discernment is:

FOD = 2θ = {∅, {s}, {m}, {u}, {s,m}, {s,u}, {m,u}, {s,m,u}}.

4.2 Heuristic Analysis

As described before, the assignment of probability masses can be done in different ways. 
In our first approach, we use a set of domain heuristics for this purpose and then use the 
combination rule to compute the fitness of use of the datasets. The heuristics can be based 
on common sense knowledge or can be based on expert feedback. We use the following cri-
teria to judge the FoU of geospatial time series datasets for general GIS applications.

Consistency—A dataset is consistent if it does not have any gaps. A consistent dataset has 
a higher fitness value.

Length—The period of record for the dataset is also an important factor in the quality. 
Longer periods of record generally imply higher fitness value.

Recency—Datasets that record more recent observations are considered to be of higher fit-
ness value.

Temporal Resolution—Data are recorded at different time scales (sampling periods). For 
example, the datasets can be recorded daily, weekly or monthly. Sometimes data are 
recorded daily, but summarized weekly or monthly. Depending on the application 
higher or lower resolution may be better. The higher resolution had more information, 
but is noisier as well. This is also called the granularity [40].

Completeness—A data record may have many attributes, e.g., time, location, and one or 
more observations. For example, a weather station may record the daily high and low 
temperature, daily precipitation, moisture level, etc. A dataset is complete if all the rel-
evant attributes are recorded. Incomplete datasets are considered to be inferior [40].

Noise—All datasets have some noise due to many different factors. They include severe 
weather conditions during data collection, human factors, and inaccuracy of measure-
ment devices. All these factors may lead to lower FoU values for a dataset.

For each of the above criteria, we can define one or more heuristics to determine the subjec-
tive probability mass for different data quality values. We specify the heuristics in the form 
of rules as follows:

C1(Si) ∧ C2(Si) ∧ … ∧ Cn(Si) → mass(Si, {qtype}) = m

where Ci specifies a condition of the dataset, Cj (Si) evaluates to true if the condition Cj holds 
for the dataset Si, and mass(Si, {qtype}) denotes the mass of evidence that the dataset Si con-
tributes to the FoU outcome types in {qtype}. The symbol ∧ is used for logical conjunction 
(and) and the symbol → is used for logical implication (implies). We say that the rule is trig-
gered or fires [41] if all the conditions are met. When the rule fires, we evaluate the right-
hand side of the rule, which assigns a value m to the probability mass for a given set of 
outcome types, which in this case can be described in the following formulation: {qtype} ⊆  
{suitable, marginal, unsuitable}.



Co mp u ti n g Fou F o r ti me Se r i eS Data S e tS i n ge oS p ati a l Do ma i n     99

Applying a set of rules as defined above to dataset Si thus yields a set of masses for dif-
ferent combinations of outcome types. These masses are then combined using the Demp-
ster’s Combination Rule, as discussed in Section 4.1, to yield a coherent set of masses for 
each element of FOD. We then further reduce the result by considering only the singletons: 
{suitable}, {marginal}, and {unsuitable}, which allows us compute the belief, plausibility, 
and confidence values on only these three outcome types.

It should be noted that the criteria and the corresponding rules should not be treated as 
universal. For example, if the historical context is of great importance in an application, the 
recency of the dataset will be of less significance than its “oldness.” The rules can then be 
adjusted accordingly.

4.3 Temporal variability analysis

In addition to the generally recognized factors that affect the FoU, as described in the 
previous section, we note that the stability of the datasets is also important. Many natural 
processes follow periodic patterns, the periodicity guided by factors including diurnal, sea-
sonal or annual fluctuations. Other than exceptional events (e.g., severe floods), measure-
ments at the same point time in a cycle should be similar (i.e., without much variation). An 
unstable dataset with random variations will generally not be useful in developing predic-
tive models. To illustrate, Table 1 shows the measurements of two stream gauges during the 
same period on the same date of the year. Station No. 1 (or dataset Si) has stable measure-
ments while the second station shows dramatic changes. Thus it is more difficult to derive a 
concrete pattern from the measurements for Station No. 2 (or dataset Sj). We deem the FoU 
of Sj to be lower than that of Si.

To capture the above patterns of goodness, we use the temporal variability of the datas-
ets. Suppose that a geospatial time series Si has the following measurements, as previously 
defined in Section 3:

tSi = 〈mi,1, mi,2, …, mi,p〉, and mi,j = 〈ti,j, vi,j〉

Suppose that the measurements are collected periodically at a regular interval. For example, 
measurements can be collected three times a day, at 0900 h, 1200 h, and 1600 h, for 31 days 
between 2006-01-01 and 2006-01-31; or collected once a day, for 365 days, for 10 years be-
tween 1991 and 2001. The period of record for the first dataset is 31 days while it is 10 years 
for the second dataset. Suppose that we define the periodicity of a data series as the time be-
tween two measurements collected at the same spatial location at the same time mark. Thus, 
in our examples, the periodicity of the first data set is 1 day, while the period of the second 
data set is 365 days. Given this notion of periodicity, we can compute the average value of 
all measurements at each particular time mark over the entire period of record. In this case, 
we can compute the average of 31 measurements at 0900 h, the average of 31 measurements 

Table 1. Parts of records of two stream flow gauges (i.e., of two datasets, Si and Sj) showing differ-
ent patterns

Time stamp                                Station no. 1 (Si)                                Station no. 2 (Sj)

1978-11-01  5.0  22.0
1979-11-01  5.0  25.0
1980-11-01  5.3  85.0
1981-11-01  5.2  70.0
1982-11-01  5.1  75.0

Datasets are obtained from USGS.
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at 1200 h and 31 measurements at 1600 h for the first data set. Similarly we can compute the 
average of ten measurements for each day of the week for the second data set. Formally, tsi 
= 〈mi,1, mi,2, …, mi,p〉 can be re-written as:

tSi = 〈mi,1, mi,2, …, mi,period, mi,period+1, mi,period+2, …, mi,2*period, mi,2*period+1, …, mi,k*period 〉

such that ti,k*period - ti,1 = inti.Given the above representation, we can derive the periodic mean 
at each time mark j as:
                                                                                           

k

Σ
p=0

 m i,p*period+j
                                             meani,j =
                                                                           k 
Likewise, we can derive the periodic variance for the time marks j as:

                                          k 
k
Σ
p=0

 m2 i,p*period+j – (  
k
Σ
p=0

 m i,p*period+j)2

                           vari,j =
                                                                    k (k – 1)

Given the set of means and variances for all time marks in a period, we can further compute 
the coefficient of variation at each time mark j:

                                                                                  √vari,j 
covi,j =   meani,j

The temporal variability of the dataset Si can then be defined as the average value of coeffi-
cient of variation for all time marks:
                                                                                                                                  

period

c‾(Si) =
  Σ

j=1
 covi,j

                                                                                  period

We can then use heuristics to assign probability masses to the different outcomes based on 
the value of c‾. For example, to assign probability masses to the outcomes, we divide the 
temporal variability into three ranges: the upper (largest) one-third, the middle one-third 
and the lower (smallest) one-third. For each range, we define one or more heuristics to de-
termine the probability mass for different FoU values. The heuristics are specified in the 
form of rules as follows:

(c‾(Si)within range k → mass (Si, {qtype}) = m 

where c‾(Si) is the average coefficient of variation of the dataset Si, and the range k is one of 
the three ranges mentioned above. For a given dataset Si, we evaluate the right hand side of 
the above rule and assign a value m to the probability mass for a given type (suitable, mar-
ginal, or unsuitable). We can also combine these probability masses with those described in 
Section 4.2 using Dempster’s Combination Rule.

4.4 Time series analysis (predicted error estimate)

Another approach to determine the goodness of a data set is to apply a regression model 
to the data and estimate the maximum predicted error. The maximum error will be in-
versely proportional to the fitness of the dataset for use in our application. Ordinary regres-
sion analysis assumes that the error variance is the same for all observations. When the er-
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ror variance is not constant, the data are said to be heteroscedastic, and ordinary least-square 
estimate methods are inaccurate [42]. More efficient use of the data and more accurate pre-
diction error estimates can be made by models that take the heteroscedasticity into account. 
Time series data are often autocorrelated and hence are heteroscedastic. It is particularly so in 
hydrological datasets which are strongly correlated to seasonal trends. In such cases, gener-
alized autoregressive conditional heteroscedasticity models are more appropriate since they 
correct for serial correlation.

Autoregressive models augment the regression model with an autoregressive model for 
the random error to account for the autocorrelation of the errors. The model is given by:

yt  = β0 + xt β1 + νt,

where x and y are the independent (regressor) and dependent (response) variables and are 
functions of time, β0 and β1 are the intercept and the slope in a linear model, and νt is the au-
tocorrelated error given by:

νt  =  –φiνt–1 – –φ2νt–2 – … – –φmνt–m + εt 

where φi ‘s are the model parameters and εt is the error estimate that is independent and is 
normally distributed with a zero mean.

By simultaneously estimating the regression coefficients β0 and β1 and the autoregressive 
error model parameters φi ‘s, we can predict the upper and lower confidence limits with a 
fixed probability value (say 0.98).

This approach can be used to estimate the maximum error value for gaps in the time se-
ries. Typically, a time series consists of a set of observations made at a succession of equally 
spaced points in time. However, in practical applications, some measurements may not 
be recorded due to various reasons, such as equipment malfunction or human errors. The 
missing data records or gaps impact the quality of the dataset. The degree of the impact is 
dependent on the nature of the datasets; some gaps may heavily impact the quality of da-
taset while some other gaps may have minor or even no impact on the quality of dataset, if 
we can accurately predict the values at the gaps. To illustrate, Table 2 shows two datasets 
with the same gap (the gap period from 1957-10-03 to 1957-11-04). In the case of the first da-
taset, the gap has little impact. It is very likely that the stream is dry during the gap period 
if it was dry both before and after the gap period. On the other hand it is not clear what the 
value should be during the gap period for the second dataset since stream volumes before 
and after the gap period are not consistent.

We use the upper and lower confidence limits of the predicted values using an autore-
gressive model to guide the quality of the dataset. Figure 1 shows an example of the confi-

Table 2. Parts of records of two stream flow gages (i.e., two  datasets, Si and Sj) showing different 
patterns

Time stamp  Station no.1 (Si)  Station no. 2 (Sj)
 06875500  06453600 

1957-10-01  0.0  122.0
1957-10-02  0.0  125.0
1957-11-05  0.0  85.0
1957-11-06  0.0  70.0
1957-11-07  0.0  75.0

Datasets are obtained from USGS
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dence limits using autoregressive analysis. The blue line represents the predicted values of 
the corresponding dataset. The upper bound shows the maximum values the prediction can 
reach whereas the lower bound shows the minimum values the prediction can reach.

We use the maximum range of the confidence interval during the gaps as a guide to the 
FoU the dataset. We then use heuristics to assign probability masses to the different out-
comes based on the value of confidence interval. To assign probability masses to the out-
comes, we divide the confidence interval into three ranges: the upper (largest) one-third, the 
middle one-third and the lower (smallest) one-third. For each of the three ranges, we define 
one or more heuristics to determine the probability mass for different FoU values. The heu-
ristics are specified in the form of rules as follows:

(confidence_interval (Si)within range r) → mass(Si, {qtype}) = m

where confidence_interval(Si) is the maximum range of the confidence interval computed 
using the predicted error estimate defined above of a given dataset Si, and the range r is one 
the three ranges mentioned above. For a given dataset, Si, we evaluate the right hand side of 
the above rule and assign a value m to the probability mass for a given type (suitable, mar-
ginal, or unsuitable). Using Dempster’s Combination Rule, we can also combine these prob-
ability masses with the other heuristics (described in Section 4.2 and 4.3) to get an overall es-
timate of the FoU.

5 Implementation and results

5.1 Application domain

The focus of this paper is to describe an approach that can be used to compute the fit-
ness of use of time series data for geospatial applications. As described in Section 4, FoU 
is a function of a dataset and a given application. To illustrate the use of the approach, we 
choose the hydrological analysis as our application domain. The water cycle is a complex 
process that includes precipitation, surface water runoff, groundwater flow, and evapo-

Figure 1. The predicted value and the lower and upper bounds on it using the autoregressive 
model. The dataset corresponds to the USGS stream gauge 06462000
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transpiration (directly from the surface of the water or indirectly via plants). In order to un-
derstand each component of the water cycle, an elaborate sensor network has been put into 
place. For example, the National Weather Service has been collecting data about precipita-
tion at various locations for over a hundred years. The US Geological Survey (USGS) main-
tains thousands of stream gauges to measure the flow of water in streams. State and local 
agencies also maintain a large network of groundwater monitoring wells to measure the 
water level at a variety of locations. For example, there are 273 stream gauges, 251 weather 
stations and 4,160 groundwater monitoring wells in the state of Nebraska, many of which 
have long periods of record. To illustrate our approach, we will apply the Dempster-Shafer 
belief theory to determine the FoU of the datasets from the 274 stream gages.

Hydrological data processes, while being periodic, are inherently difficult to model due 
to noise and multiple contributing factors. Local hydrological processes, for example, are 
affected by the global climate cycles. In some datasets the recorded measurements are es-
timates. For example, during winter months, the instruments in streams may be inopera-
ble because of ice. Some components of the water cycle are measured at regular intervals 
while others are measured intermittently. Some stations record data every hour, others once 
a month and still others a few times a year. Furthermore, water-related monitoring stations 
are distributed in space. The overlap between different networks is inconsistent both spa-
tially and temporally. While at any given point in space and time, there may be only a small 
number of measurements (if any), there are sufficient measurements in space to obtain an 
overall picture of the state of the hydrological resources.

The quality of individual monitoring stations is different and can be viewed as inversely 
proportional to the noise, incompleteness, irregularity, and inaccuracy found in a dataset. 
For example, the FoU from a stream gauge that records daily streamflow with a 50-year re-
cord without any gaps will be deemed higher than a stream gauge that has only 30 years of 
weekly measurements with a 5-year gap in the middle.

5.2 Geographic Scope

In our study, we consider the datasets that store surface water measurements in the state of 
Nebraska [43]. There are a total of 273 surface water measurement sites in the state, many 
with records that go back to over 50 years. The measurements are recorded daily. Many sta-
tions have gaps in their record reducing the quality of the data. The datasets are obtained 
from US Geological Service (http://water.usgs.gov). Each dataset consists of series of re-
cords that consists of the measuring station ID, geographic coordinates of the station, the 
date of measurement and the streamflow measurement in cubic feet per second. Table 3 
shows part of a sample dataset.

5.3 FoU using Heuristic Approach

Based on the criteria defined in Section 4.2, we have designed two rulebases (i.e., Rule-
base 1 and Rulebase 2) to compute the quality of the time series datasets. In the two rule-
bases, the criteria length and consistency are measured with different temporal resolutions. 
In Rulebase 1 we use a yearly time scale in the specification of rules. In contrast, the rules 
in Rulebase 2 use a monthly time scale. The temporal resolution affects the data consistency 
since it is determined by the number of gaps in the data record. In Rulebase 1, the gaps are 
coarser (i.e., yearly), while they are finer (i.e., monthly) in Rulebase 2. There are a total of 21 
rules in Rulebase 1 and 30 rules in Rulebase 2. Sample rules that match the records for Sta-
tion 6445500 (period of record from 1936-10-1 to 1944-1-31 with no gap) are given below:
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[ surfacewater (Si) ∧ daily (Si) ∧ ¬ten_year_old (Si) ∧ ¬current (Si) ∧ 1940s (Si) ∧ ¬gap (Si) ]
     → mass (Si, {suitable}) = 0.380

[ surfacewater (Si) ∧ daily (Si) ∧ ¬ten_year_old (Si) ∧ ¬current (Si) ∧ 1940s (Si) ∧ ¬1950s (Si) ]  ∧  [record_length (Si) < 500] ∧ ¬gap (Si)
     → mass (Si, {unsuitable}) = 0.770

The first rule states that if the station (1) is a surface water station, (2) records measure-
ments daily with an interval of record less than 10 years, (3) is not current, (4) has data pe-
riod overlapping 1940s, and (5) has no gap, then the assertion that “the FoU recorded for 
the station will be suitable” will have a probability mass of 0.38, a rather low value. Simi-
larly, the second rule assigns the probability mass of the assertion that the “FoU for the sta-
tion is unsuitable.” Thus for the Station 6445500, we will have the following probability mass 
assignments.

                                                      mass (6445500, {suitable}) = 0.380
mass (6445500, {unsuitable}) = 0.770

After the individual masses are assigned, the overall quality of each dataset is obtained by 
combining them using Dempster’s Combination Rule as explained in Section 4.1. Table 4 
shows the FoU classification results for all the datasets using Rulebase 1 and Rulebase 2.

Results show that Rulebase 1 classifies 270 datasets as good and three as unsuitable 
while Rulebase 2 classifies 183 datasets as good and 85 datasets as unsuitable. We analyzed 
the results using common sense reasoning and input by domain experts and determined 
that the Rulebase 2 to be more reasonable. For example, Rulebase 1 classifies the Station 
6445500 (illustrated in this section) as suitable while Rulebase 2 classifies it as unsuitable. As 
suggested by common sense knowledge and confirmed by domain experts, the FoU of sta-
tion 6445500 should be considered unsuitable as suggested by Rulebase 2.

Table 3. Some measurement records of surface water Station 06455500

Source  ID   Latitude  Longitude  Date  Value (ft3/s)  Type

USGS  06455500  42°27’23.47”  103°04’07.75”  1946-10-01  1.9  daily
USGS  06455500  42°27’23.47”  103°04’07.75”  1946-10-02  1.9  daily
USGS  06455500  42°27’23.47”  103°04’07.75”  1946-10-03  1.9  daily
USGS  06455500  42°27’23.47”  103°04’07.75”  1946-10-04  1.9 daily
USGS  06455500  42°27’23.47”  103°04’07.75”  1946-10-05  1.9  daily

Table 4. Summary of FoU computation using Rulebase 1 and Rulebase 2

  Rulebase 1  Rulebase 2

Fitness of use  Suitable  270  183
 Marginal  0  5
 Unsuitable  3  85
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Table 5 shows some sample stations classified using Rulebase 2. The FoU of Station 
6445500 is considered unsuitable with a high degree of confidence (0.770) since it has low 
recency and a short record. The FoU of Station 6453500 is suitable with almost 100% con-
fidence as it has a long record of measurements (about 45 years) and is quite recent (1994). 
The FoU of Station 6459200 is marginal with a confidence value of 0.331, and suitable with a 
confidence value of 0.101. Thus, the system decides that the station is marginal in its fitness 
value.

5.4 FoU based on temporal variability analysis

In Section 4.3, dataset stability is defined based on temporal variability of a dataset Si us-
ing the average of coefficient of variance:
                                                                                      

period

c‾(Si) =
  Σ

j=1
 covi,j

                                                                                  period

In our implementation, we set period to 365 days, with each time mark being the particu-
lar day of a year. The mean is then taken over k periods (or k years), where k is defined as in 
ti,k*period -ti,1 = inti, as presented in Section 4.3. Essentially, for this implementation, we com-
pute the mean and variance of streamflow measurements for day 1 of a year, the mean and 
variance of streamflow measurements for day 2 of a year, and so on. We also compute the 
coefficient of variation for each day, and arrive at the average as above. Thus, in this imple-
mentation, c is the average value of the daily variations.

Figure 2 shows a distribution of surface water stations against the average daily vari-
ations. Based on the distribution, we divide the variations into three ranges: (a) upper 
one third (c > 2), (b) the middle one-third (0:75 < c < 2), and the lower (smallest) one-third  

Table 5. FoU of some sample stations using Rulebase 2

ID  Recency   Granularity  Consistency (gap)  Fitness of use
 Start date  End date    Suitable  Marginal  Unsuitable

6453500  1949-10-1  1994-9-30  Daily  yes (no gap)  0.962  0.000  0.000
6459200  1962-10-1  1981-9-30  Daily  yes (no gap)  0.101  0.331  0.014
6445500  1936-10-1  1944-1-31  Daily  yes (no gap)  0.015  0.000  0.770

Bold values correspond to the classifications of the stations.

Figure 2. Distribution of surface 25 water stations against the average daily variations
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(0 < c < 0.75). Of the 273 datasets, 91 datasets have c values lower than 0.75, 96 datasets have 
c values between 0.75 and 2, and 86 datasets have c values higher than 2.

Some sample rules to assign probability masses based on the above classification are 
given below: 

UpperThird (Si) → mass (Si, {unsuitable}) = 0.7
MiddleThird (Si) → mass (Si, {marginal}) = 0.5
LowerThird (Si) → mass (Si, {suitable}) = 0.7

The predicate UpperThird returns true if the average daily variation (c) belongs to the upper 
one-third range and returns false otherwise. Similarly, the predicates MiddleThird and Low-
erThird return true when the average daily variation (c) is in middle and lowest thirds, re-
spectively. It should be noted that these assignments are determined experimentally and 
can be adjusted based on domain expertise.

We then use Dempster-Shafer belief theory to combine the probability masses, which are 
assigned according to the average daily variations (c), with the rules included in the heuris-
tic approach. Sample rules used for assignment of probability masses in temporal variability 
analysis have been described above. The following example illustrates how we combine the 
probability mass assignment rules in the heuristic approach with those in the temporal vari-
ability analysis. In the example, the station 6454100 has the record period from 1957-10-1 to 
1991-9-30 (daily record); the record length is 12,418 days; no gap period; and the c value is 
0.35. Based on the rules defined in Section 4.2, using Dempster’s Combination Rule, we as-
sign the probability mass to the station as follows:

[ surfacewater (Si) ∧ daily (Si) ∧ twentyplus_years_old (Si) ∧ ¬current (Si) ∧ 1990s (Si) ∧ ¬gap (Si) ]  ∧  [10,000 < record_length (Si) < 15,000] ∧ LowerThird (Si)

     → mass (Si, {suitable}) = 0.986

Table 6 shows the FoU for some sample stations using this approach. For example, station 
6796973 has a length of record of 5,478 and is the most recent among the three datasets. 
However, its average daily variation is extremely high and results in its FoU being assigned 
unsuitable. Station 6460900’s average daily variation is moderately high, and even though it 

Table 6. FoU of some sample stations using Rulebase 2 and temporal variability analysis

ID  Recency   Granularity  Length  c‾  Fitness of use
 Start date  End date     Suitable  Marginal  Unsuitable

6796973  1982-10-1  1992-09-30  daily  5,478  1.10  0.099  0.000  0.496
6459200  1962-10-1  1981-09-30  daily  6,940  0.11  0.500  0.061  0.003
6460900  1958-03-1  1974-10-02  daily  6,060  0.83  0.011  0.207  0.048

Bold values correspond to the classifications of the stations.

Table 7. Summary of FoU computation using heuristic and temporal variability study

  Heuristic  Temporal Variability

Fitness of use  Suitable  183  184
 Marginal  5  3
 Unsuitable  85  86
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has a suitable length of record, it is considered to have marginal FoU. The confidence in the 
classification is also weak (0.207) as the system considers it to be possibly suitable (0.114). 
Comparing Stations 6796973 and 6460900, we see that the system tends towards the length 
of records and the average daily variation.

Table 7 compares the results using Heuristic Analysis and the results from Temporal 
Variability Analysis. We see that with the inclusion of the temporal variability analysis, the 
number of suitable stations increases from 183 to 184, the number of unsuitable stations in-
creases from 85 to 86, and the number of average datasets decreases from 5 to 3.

Table 8 shows the old and new confidence values for three stations whose classifica-
tions changed. The FoU for Station 6796973 changes from suitable to unsuitable since it has 
a large variability. The confidence in classification is also higher, from 0.342 to 0.469. This 
clearly demonstrates the impact of the temporal variability analysis on the classification. 
Station 6459200, on the other hand, benefits from a low temporal variability and has its FoU 
changed from unsuitable to marginal. Station 6803170 also changes from suitable to unsuit-
able and compared to Station 6796973, it has a relatively low confidence value 0.276 in the 
classification.

5.5 FoU based on time series analysis

In time series analysis, we explicitly model the impact of gaps on the fitness of use. As de-
scribed in Section 4.4, we use the confidence interval of the gap to determine the data qual-
ity. If it is small, it means that the error in the predicted value for a measurement in the gap 
is low. Consequently, the gap has only a minor impact on the FoU. On the other hand, if 
the confidence interval is large, then the error in the predicted value will be high and the 
gaps will have a significant impact on the FoU. In our dataset, we had 25 stations that have 

Table 8. Sample stations that change classes after temporal variability analysis is added to the sys-
tem with Rulebase 2

ID  Recency   Consistency  Length   c‾ Fitness of use
   (gap)
 Start date  End date     Suitable  Marginal  Unsuitable
      Old  New  Old  New  Old  New

6796973  1982-10-1  1992-9-30  no gap  5,478  1.10  0.324  0.099  0.003  0.000  0.137  0.496
6459200  1962-10-1  1981-9-30  no gap  6,940  0.11  0.101  0.500  0.331  0.061  0.014  0.003
6803170  1989-8-16  2001-3-30  has gap  4,398  0.85  0.308  0.190  0.003  0.001  0.158  0.276

Figure 3. Distribution of surface 6 water stations against the confidence interval values
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gaps of various sizes. Figure 3 shows a distribution of the confidence intervals. Based on the 
distribution, we divide the confidence interval into three ranges: (a) large (confidence inter-
val  >1,000), (b) medium (250 < confidence interval  ≤ 1,000) and (c) small (confidence interval ≤ 
250). Using this scheme, 7 stations have large confidence interval, 7 have medium confidence 
interval and 11 have small confidence interval.

Sample rules to assign probability masses are given below:

                                Large ConfidenceInterval (Si) → mass (Si, {unsuitable}) = 0.7
Medium ConfidenceInterval (Si) → mass (Si, {marginal}) = 0.5

                                Small ConfidenceInterval (Si) → mass (Si, {suitable}) = 0.7

The predicates LargeConfidenceInterval, MediumConfidenceInterval, and SmallConfidenceInter-
val have obvious meanings. These assignments are determined experimentally and can be 
adjusted based on domain expertise. To reduce the subjectivity of this approach, one may 
elicit knowledge from a group of experts using one of three group-appropriate techniques: 
brainstorming, consensus decision making, and the nominal group technique [44].

Similar to our implementation that incorporates temporal variability analysis, we use 
Dempster-Shafer belief theory to combine the probability masses, which are assigned ac-
cording to confidence intervals, with the rules included in the heuristic approach. The fol-
lowing example illustrates how we combine the probability mass assignment rules in the 
heuristic approach with those in the time series analysis. In the example, the station 6462500 
has the record period from 1948-1-1 to 1994-9-30 (daily recorded); the record length is 16,709 
days; there is one gap event from 1975-9-30 to 1976-10-1; and the confidence interval value is 
86. Based on the rules defined in Section 4.2, we assign the probability mass to the station as 
follows: 

[surfacewater (Si) ∧ daily (Si) ∧ twentyplus_years_old (Si) ∧ ¬current (Si) ∧ 1990s (Si)
  ∧  oneyear_gap (Si) ∧ [15,000 < record_length (Si) < 20,000] ∧ SmallConfidenceInterval (Si) ]
      → mass (Si, {suitable}) = 0.986

Table 9. FoU of some sample stations using Rulebase 2 and time series analysis

ID  Recency   Record  Confidence  Fitness of use
   length  interval
 Start date  End date    Suitable  Marginal  Unsuitable

6770478  1983-10-1  1989-6-27 2,045  1,800  0.000  0.000  0.959
6804900  1990-8-28  2001-9-30  4,051  33  0.251  0.001  0.182
6811000  1954-10-1  1969-9-30  5,499  4  0.031  0.410  0.040

Bold values correspond to the classifications of the stations.

Table 10. Summary of FoU computation using heuristic and time series analysis

Fitness of use  Heuristic analysis  Time Series analysis

Suitable  13  11
Marginal  1  1
Unsuitable  11  13
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Table 9 shows some examples of the classification using time series analysis. Station 6770478 
has a large confidence interval and hence is classified as unsuitable with close to 100% confi-
dence. In contrast, Station 6811000 is classified as marginal even though the data records are 
very old because it has a very low confidence interval. Station 6804900, received a suitable 
FoU rating, since it is more recent and has a relatively small confidence interval. However, it 
does not receive a high confidence (only 0.251) in the classification.

Table 10 lists the new results about the gap datasets. We find that FoU of two datasets 
changes from suitable to unsuitable. The change indicates that the gaps have significant im-
pact on the FoU of these two datasets, as shown in Table 11. The classes of other datasets re-
main unchanged.

Table 11 shows the confidence values for the two datasets whose FoU has changed. Sta-
tion 6852000 has a moderately large confidence interval. The system is not very decisive 
in the classification; it thinks that the FoU of the dataset is unsuitable with only 0.286 confi-
dence and suitablewith 0.197 confidence. The system believes that the station is either a suit-
able one or an unsuitable one. The confusion is caused by high values for the dataset in its re-
cency, granularity, consistency, and length. The FoU of Station 6681999 also changes from 
suitable to unsuitable due to the relatively large confidence interval. In contrast with Station 
6852000, Station 6681999 has a higher confidence value 0.603, which implies that the system 
is confident that the FoU is unsuitable.

5.6 Comparison of the approaches

Table 12 summarizes the confidence values for each of the three approaches. It shows 
the average confidence values assigned to classifications into suitable, marginal, and unsuit-
able categories. This value reflects the overall confidence in the assignment into classes. In 
general, the system is able to label a station with suitable FoU with high confidence (~0.80). 
It is able to label a station unsuitable FoU with lower confidence (~0.55). It is only margin-
ally confident in labeling marginal FoU stations. This matches the experience of our domain 
experts. They are more confident in labeling a station as suitable or unsuitable, and not as 
confident in labeling stations that are in-between.

Table 13 shows the confusion matrix for the classification using the three approaches. 
The table shows that the three approaches are consistent with each other. For example, of 
the 183 stations labeled as suitable by the Heuristic Analysis, 171 were also labeled as suitable 
by Temporal Variability Analysis and 181 were labeled as suitable by the Time Series Anal-
ysis. Similarly, 87 stations labeled as unsuitable by Time Series Analysis, 85 were labeled as 
unsuitable by Heuristic Analysis and 75 were labeled as unsuitable by Temporal Variability 
Analysis. This provides another kind of validation for the three approaches.

Figure 4 shows the FoU of the surface water stations for the State of Nebraska. With 
respect to our decision support application for identifying regions with adequate or inad-

Table 12. Average confidence values in the FoU Classes

Fitness of use  Approaches
 Heuristics analysis  Temporal variability analysis  Time series analysis 

Suitable 0.83 0.80 0.79
Average 0.27 0.24 0.21
Unsuitable 0.60 0.53 0.56
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equate measurement of streamflow, the above approach achieves its objective. The map 
shows the major stream segments as well as the watersheds. The three kinds of FoU values 
are shown in different colors. The map shows that while there are a number of stations with 
unsuitable FoU, they are geographically distributed. Similarly, the suitable stations are also 
distributed, thereby facilitating accurate hydrological analysis based on these datasets. The 
results show that many of the unsuitable datasets are associated with measuring stations 
in the central and east-central parts of the state. This is important since this area is a part of 
the large agricultural belt of the state that relies heavily on irrigation. This information will 
be useful for both decision makers when they consider requests for irrigation permits. This 
is also important for decision makers who are responsible for the addition of new and re-
moval of old measuring stations. This region would benefit from additional monitoring sta-
tions that would in the long run produce suitable datasets for hydrological analysis and for 
monitoring water resources.

6 Summary and conclusion

In our study, we have devised a framework to determine the FoU of geospatial time se-
ries datasets. As these datasets become widely available and get used in critical decision 
support systems, the significance of this problem grows even more. We define the FoU of a 
dataset as its suitability in a given application. This is in contrast with traditional data qual-
ity which is designed as an inherent characteristic of a given dataset. We have proposed 
three approaches (heuristic analysis, temporal variability analysis, and time series analy-
sis) to compute the FoU. They have been evaluated with a specific application in the do-
main of hydrological analysis, i.e., to provide decision support for decision or policy mak-
ers in determining the adequacy or coverage of measuring stations. The heuristic approach 

Figure 4. Distribution of surface water stations with FoU Labels
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computes the FoU from the characteristics of a dataset such as data record starting time and 
ending time, data record gap periods. Applying this approach to our surface water datasets 
for the state of Nebraska, we found that fine measurement of FoU judging criteria helps im-
prove the accuracy of FoU results. The temporal variability analysis approach computes the 
FoU of datasets by evaluating the fluctuation within datasets. Stable and long records help 
improve the FoU of a dataset. The time series analysis approach is a good method to evalu-
ate how deeply record gaps impact the FoU of geospatial datasets, particularly for those da-
tasets largely impacted by gaps.

While our approach has been tested in a specific domain, it is applicable in many other 
domains. In some cases (e.g., weather station records) some of the heuristics described here 
can be directly used. In other applications, one can develop heuristics (e.g. based on spatial 
data quality metrics) along the same lines as we have described here.
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