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1. Introduction

The United States beef industry is a significant part of the 
nation’s food and fiber industry. To facilitate marketing, beef 
grading standards to classify carcasses into quality and yield 

grades were developed in 1926 by the United States Depart-
ment of Agriculture (USDA). There are commercial video im-
age analysis-based systems available to assist the prediction 
of yield grades. But quality grades based on marbling levels 
(abundance and distribution of intramuscular fat) and phys-
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Abstract
Beef tenderness is an important quality attribute for consumer satisfaction. The current beef quality grading 
system does not incorporate a direct measure of tenderness because there is currently no accurate, rapid, non-
destructive method for predicting tenderness available to the beef industry. The objective of this study was to 
develop and test a visible/nearinfrared hyperspectral imaging system to predict tenderness of 14-day aged, 
cooked beef from hyperspectral images of fresh ribeye steaks acquired at 14-day post-mortem. A push-broom 
hyperspectral imaging system (wavelength range: 400-1000 nm) with a diffuse-flood lighting system was de-
veloped and calibrated. Hyperspectral images of beef-steak (n = 111) at 14-day post-mortem were acquired. Af-
ter imaging, steaks were cooked and slice shear force (SSF) values were collected as a tenderness reference. All 
images were corrected for reflectance. After reflectance calibration, a region-of-interest (ROI) of 200 × 600 pix-
els at the center was selected and principal component analysis was carried out on the ROI images to reduce 
the dimension along the spectral axis. The first five principal components explained over 90% of the variance of 
all spectral bands in the image. Gray-level textural co-occurrence matrix analysis was conducted to extract sec-
ond-order statistical textural features from the principal component images. These features were then used in 
a canonical discriminant model to predict three beef tenderness categories, namely tender (SSF ≤ 205.80 N), in-
termediate (205.80 N < SSF < 254.80 N), and tough (SSF ≥ 254.80 N). With a leave-one-out cross-validation pro-
cedure, the model predicted the three tenderness categories with a 96.4% accuracy. All of the tough samples 
were correctly identified. Our results indicate that hyperspectral imaging has considerable promise for predict-
ing beef tenderness. 

Keywords: beef tenderness, hyperspectral imaging, principal component analysis, textural co-occurrence matri-
ces, instrument grading
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iological maturity of the carcass are subjectively (visual ap-
praisal) assigned by trained USDA graders. Food service pro-
viders in the U.S. receive 95% of their beef products from the 
“A” maturity carcass grade (NAMP, 2007). Therefore, the 
current grading system is based primarily on the degree of 
marbling.

Tenderness, juiciness, and flavor of beef are important at-
tributes of palatability (Shackelford et al., 2001). Among these 
three attributes, tenderness is the single, most important palat-
ability attribute for U.S. consumers. Several studies (Boleman 
et al., 1997; Lusk et al., 2001; Shackelford et al., 2001; Feuz et al., 
2004) have shown that most consumers can discriminate levels 
of tenderness. Most consumers are willing to pay a premium 
for steaks that are “guaranteed tender.” Marbling is highly in-
dicative of juiciness and flavor but only slightly related to ten-
derness (Jeremiah, 1996; Wheeler et al., 1994). Thus, the cur-
rent USDA quality grading system may not always categorize 
carcasses correctly based on tenderness, one of the most im-
portant palatability attributes for consumer satisfaction.

The National Beef Quality Audits (Lorenzen et al., 1993), 
1995 (Boleman et al., 1998), and 2000 (McKenna et al., 2002) 
and National Beef Tenderness Surveys conducted in 1991 
(Morgan et al., 1991) and 1998 (Brooks et al., 2000) identified 
the lack of tenderness as a major concern for the beef industry. 
Currently, the USDA grading system does not include a di-
rect measure of tenderness. Carcasses are not priced on the ba-
sis of tenderness, so producers lack incentive to supply a ten-
der product. As a result, consumer preference is not usually 
considered by producers. An accurate, rapid, and nondestruc-
tive method for predicting tenderness is needed by the beef 
industry.

Of the various noninvasive beef tenderness prediction tech-
niques, video image analysis (VIA) and spectroscopy are po-
tential methods for on-line implementation (Shackelford et al., 
1999; Vote et al., 2003). A color VIA system can capture im-
ages in three distinct wavelengths or bands (RGB: red-green-
blue). Modern digital RGB images can have a high spatial res-
olution, but have a limited spectral resolution. A spectrometer 
provides high spectral resolution information over both visi-
ble and near-infrared spectral regions but with virtually no 

spatial information. Zheng et al. (2006) used VIA and discrim-
inant models to classify beef samples into two categories—
tender and tough. They used textural features and achieved a 
prediction accuracy of 70.3%.

Mitsumoto et al. (1991) pioneered the use of spectroscopy 
for beef tenderness prediction and obtained an accuracy of 
68% in predicting tenderness. Subsequently several additional 
studies reported moderate to promising results in predict-
ing beef tenderness (Hildrum et al., 1994, 1995; Rødbotten et 
al., 2001; Park et al., 1998; Jeyamkondan and Kranzler, 2003; 
Liu et al., 2003). However, contradictory results have been re-
ported in the literature regarding the use of spectroscopy for 
beef tenderness prediction. Orientation of the sample with re-
spect to light and various chemometric data analysis methods 
were the major reasons for contradictory results. Recently, Xia 
et al. (2006) measured spatially resolved light scattering and 
absorption of beef samples between 450 and 950 nm using a fi-
ber optic probe. They reported that absorption and scattering 
coefficients have direct relationships with chemical composi-
tion (myoglobin concentration) and structural properties (sar-
comere length), respectively. They found a linear relationship 
between the scattering coefficient and Warner-Bratzler shear 
values with a R2 of 0.59.

A hyperspectral imaging system, which consists of both a 
digital camera and a spectrograph, can acquire images with 
both high spatial and spectral resolution content. Therefore, 
this system could be considered an extension of a VIA system 
with hundreds of narrow spectral bands along the spectral 
axis. With hyperspectral imaging, a spectrum for each pixel 
can be obtained (Figure 1) and a gray scale or tonal image for 
each narrow band (Figure 2) can be obtained. Hyperspectral 
imaging has been successfully tested for several precision ag-
ricultural applications (Bajwa et al., 2004) and food quality/
safety areas (Kim et al., 2001). Hyperspectral imaging systems 
have been used to detect fecal contamination in apples (Kim et 
al., 2002a), skin tumors in chicken carcasses (Kim et al., 2002b), 
feces on the surface of poultry carcasses (Park et al., 2002, 2004, 
2005a,b), and cucumber chilling damage (Cheng et al., 2004).

Muscle structure (connective tissue) and biochemical prop-
erties (proteolysis of myofibrillar and cytoskeletal proteins) 

Figure 1. A hyperspectral image of a beef-steak showing typical spectral signatures of lean and fat pixels.
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are the primary factors influencing beef tenderness variation 
(Koohmaraie, 1994). VIA systems were used to relate image 
textural features to beef muscle structure (Zheng et al., 2006; 
Du and Sun, 2006), while spectroscopic systems were used to 
relate spectral reflectance measurements to chemical composi-
tion of beef (Park et al., 2001; Hildrum et al., 1994). VIA and 
spectroscopy are two promising nondestructive methods, but 
have achieved only limited success for predicting beef tender-
ness. This study explores a relatively new technique for beef 
tenderness prediction using hyperspectral imaging, which 
combines VIA and spectroscopy. Hyperspectral imaging may 
capture both structural and biochemical information simulta-
neously so that the likelihood of predicting beef tenderness ac-
curately could be much greater. The overall objective of this 
study was to predict 14-day aged, cooked beef tenderness 
from hyperspectral images of 14-day aged, raw beef samples.

2. Materials and methods

2.1. Hyperspectral imaging system

A hyperspectral imaging system (Figure 3) consisting of 
a charge coupled device (CCD)-based digital video camera 
(Model: IPX2M30, Imperx Inc., Boca Raton, FL) and a spectro-
graph (Model: Enhanced series Imspector V10E, Specim, Fin-
land) was used. The Imperx camera has a spatial resolution of 
1600 × 1200 pixels. The image was binned 2 × 4 vertically to 
improve the signal/noise ratio, which resulted in a final reso-
lution of 800 × 300 after binning. The spectrograph, V10E, had 
a spectral range of 400-1000 nm, with a 30-m slit, providing a 
spectral band resolution of 2.8 nm. The camera was fitted with 
a 12.5mm lens. The system scans a single-spatial line of a tar-
get object, and the spectrograph disperses light from each line 
element or pixel to a spectrum. Thus, each spectral image con-
tains lines of pixels in one axis (800 pixels) and spectral pix-
els in the other axis (300 pixels). To obtain a three-dimensional 
(3D) hyperspectral data cube, the object has to be scanned 
or moved along a second spatial dimension. A linear motor-
ized slide (Model: MN10-0300, Velmex Inc., Bloomfield, NY) 

was used to move the sample using a stepper motor (Model: 
MDrive23, Intelligent Motion Systems, Glastonbury, CT). The 
stepper motor was controlled by the computer via a serial port 
so that both camera scanning and slide motion could be syn-
chronized. A scanning rate was selected to achieve a square 
pixel. A Teflon-coated plate was mounted on the linear slide. 
The sample was placed on the slide along with a white ref-
erence Spectralon plate (Labsphere, North Sutton, NH). This 
Teflon-coated plate was mounted on the linear slide.

@ 600 nm                                                  @700 nm                                                  @ 800 nm

Figure 2. Tonal images of a beef-steak at selected wavelengths.

[1] CCD camera. [2] Spectrograph. [3] Lens. [4] Diffuse lighting cham-
ber. [5] Tungsten halogen lamps. [6] Linear slide. [7] Sample plate.

Figure 3. Schematic diagram of the visible near-infrared hyperspectral 
imaging system.
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A diffuse lighting chamber was designed to illuminate the 
target. Lighting was provided with six 50-W tungsten-halo-
gen lamps (Model: MR16, Phillips Lighting Co.). A lamp con-
troller (Model: TXC300-72/120, Mercron Industries, Richard-
son, TX) converted 60-Hz AC voltage to 60-kHz. At this high 
frequency, tungsten-halogen lamps do not respond quickly. 
This simulated a constant DC voltage power supply. Over 
the lifespan, tungsten-halogen lamps lose their efficiency and 
produce less light output. A photodiode was placed near a 
tungsten-halogen lamp to provide feedback to the controller. 
Based on this feedback, the current input to the tungsten-hal-
ogen lamps was increased over the life of the lamp to pro-
vide a constant intensity output. A hemispherical dome of 
40-cm diameter was placed over the lamps. The inner surface 
of the dome was painted with white paint (Munsell white re-
flectance coating, Edmund Optics, Barrington, NJ). The re-
flective dome provided uniform diffuse light over the steak. 
The hyperspectral camera was placed on a rack and pinion 
arrangement on a video mounting workstation (Edmund 
Optics) to alter working distance. The camera acquired the 
image of a steak through a viewport in the top of the hemi-
spherical dome.

2.2. Calibration of the hyperspectral imaging system

A pushbroom hyperspectral imaging system was used to 
scan lines of an object and disperse them into a two-dimen-
sional (2D) image, where the horizontal and vertical dimen-
sions corresponded to spatial and spectral axes, respectively. 
The object has to be moved at a controlled speed to get the full 
image of the object. This working nature of the imaging sys-
tem makes the job of ensuring proper focus and determin-
ing pixel size difficult. Therefore, the system needs to be cal-
ibrated. A target with parallel straight lines of known length 
was placed on the sample plate and the working distance and 
focus of the camera was adjusted until the camera produced a 
sharp image, in which the lines were straight and parallel to 
each other. Pixel size was calculated by counting the number 
of pixels covering a known distance in the image.

Mercury Argon (Model: Newport 6035) and Kryp-
ton (Model: Newport 6031) calibration lamps, which pro-
vide unique peaks at particular wavelengths between 400 
and 1000 nm, were used for spectral calibration. The pro-
cedure explained by Lawrence et al. (2003) was followed to 
develop a regression equation to convert band numbers to 
wavelengths.

2.3. Steak Samples

Beef ribeye steaks (longissimus dorsi muscle) between the 
12th and 13th ribs were collected from four different regional 
packing plants and were aged for 14 days in vacuum pack-
ages. After aging, the steaks (n = 111) were frozen and shipped 
to a central location. Before imaging, the samples were thawed 
overnight at refrigerated temperatures in a cooler. As the sam-
ples for this study were randomly collected from four differ-
ent regional packing plants on different days, freezing was the 
only way of controlling age of the samples. It is very impor-
tant to have samples with the same age, because age has direct 
relationship with tenderness. Each individual steak sample 
was vacuum packaged and frozen quickly. Then, the sam-

ples were thawed slowly at refrigerated temperatures to mini-
mize changes in texture or muscle structure. During the freez-
ing and thawing process, the characteristics of the samples 
may change. However, this process was applied to all samples 
in a consistent manner and should produce uniform changes 
in the characteristics of the samples. Therefore, this uniform 
change in the sample characteristics would have minimal ef-
fect on tenderness variation between samples, and the ability 
of a system to discriminate samples based on tenderness. This 
is a “proof-of-concept” study to demonstrate the effectiveness 
of hyperspectral imaging to predict beef tenderness. Eventu-
ally, this study has to be repeated on unfrozen samples before 
industrial implementation.

Steaks were removed from the vacuum packages and were 
allowed to oxygenate for 30 min. After imaging, the steaks 
were cooked in an impingement oven with a moving-belt. 
Slice shear force (SSF) values were measured and recorded fol-
lowing the procedures presented by Shackelford et al. (2001). 
Based on the SSF values, the samples were classified into three 
tenderness categories: tender (SSF = 205.80 N), intermediate 
(205.80 N < SSF < 254.80 N), and tough (SSF = 254.80 N). The 
SSF cutoff values used to classify beef samples into three ten-
derness categories were selected as per the U.S. beef industry 
practice (Personal communication with Dr. Daniel Schaefer, 
Director, Research and Development, Cargill Meat Solutions, 
KS). These categories were used as the references for canonical 
discriminant model development.

2.4. Image Processing

The hyperspectral image files were then exported to En-
vironment for Visualizing Images (ENVI) software (Research 
Systems Inc., Boulder, CO) for further image processing and 
analysis.

2.4.1. Reflectance calibration
The calibration process included corrections for dark cur-

rent and sensor response variation due to time and tempera-
ture. During image acquisition, dark current estimates were 
obtained at regular intervals and it was subtracted pixel-byp-
ixel from the steak image. Also, a 99% white reference plate 
was placed near the samples and used for reflectance correc-
tion. By thresholding, a portion of the white reference plate in 
image was segmented. The spectrum of each pixel in the im-
age was then divided by the average spectrum of the white 
reference to calculate the reflectance image. By calculating re-
flectance, differences due to illumination from one sample to 
another sample were minimized or eliminated.

2.4.2. Principal component analysis
After calculating reflectance, a region-of-interest (ROI) of 

size 200 × 600 pixels (37.5 mm × 112.5 mm) at the center of 
the image was selected. The image center coordinates were 
first derived, and the ROI was selected with respect to the 
image center coordinates. No manual interaction was re-
quired to select the ROI. The ROI size was selected in such 
a way that the ROI fit within the ribeye area. Principal com-
ponent analysis (PCA) was performed on the ROI images to 
reduce the dimension along the spectral axis. Further image 
processing steps were implemented on the principal compo-
nent (PC) images.
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2.4.3. Gray-level co-occurrence matrix analysis
On the PC images, four gray-level co-occurrence matrix 

(GLCM) analyses with a distance value of 1 and angles of 0°, 
45°, 90°, and 135° were constructed for extracting image tex-
tural features. The g level was set as 64 to reduce computa-
tion time. The GLCM procedure was used to obtain eight tex-
tural feature images or bands: mean, variance, homogeneity, 
contrast, dissimilarity, entropy, second moment, and correla-
tion (Haralick et al., 1973). The mean values of textural images 
or bands were calculated for each textural band, giving 40 tex-
tural features for each original beef image.

2.5. Canonical discriminant model development

Canonical discriminant analysis (CDA) is a statistical di-
mensionality reduction and classification technique, and cre-
ates special canonical variables or scores, which are a linear 
combination of all feature variables. Using canonical scores 
for each observation, the CDA procedure calculates a member-
ship value for each observation and assigns observation into 
classes (Johnson, 1998).

The canonical discriminant algorithm was developed in 
SAS 9.1 (The SAS Institute, Cary, NC). The 40 extracted tex-
tural features from each image and the tenderness categories 
defined based on the SSF values were used as independent 
and dependent variables, respectively, in developing a canoni-
cal discriminant model. An option to conduct a hypothesis test 
for using pooled covariance matrix or within class covariance 
matrices was selected.

3. Results

Hyperspectral images (n = 111) of USDA Choice and Select 
beef longissimus steaks (14 day post-mortem) were collected 
in less than 10 s per sample. However, the computer process-
ing time required to assign a tenderness category was approx-
imately 10 min per sample (Intel Xeon Dual Core computer 
with 3-GHz processor and 4-GB RAM). The reference tender-
ness values or SSF values ranged from 72.86 to 329.91 N with 
a mean and standard deviation of 143.62 and 55.64 N, respec-
tively (Figure 4).

Figure 5 shows a typical hyperspectral image textural 
feature extraction procedure. The original image had 300 
tonal bands (Figure 5a). Due to a low signal to noise ratio, 75 
bands at each extreme of the spectral range were excluded 
from the analysis. Therefore, 150 bands in the middle spec-
tral region, representing a wavelength range between 550 
and 850 nm, were used. All images were corrected for re-
flectance (Figure 5b) to minimize variations due to sensor re-
sponse, illumination, and temperature. The ROI image was 
obtained (Figure 5c).

PCA was then implemented to reduce the spectral dimen-
sion of the ROI hyperspectral image. The optimal number of 
PC images was chosen with Eigen values significantly greater 
than zero (Johnson, 1998). For this step, the first five PC im-
ages had Eigen values significantly greater than zero. These 
Eigen values (Figure 5d-h) explained over 90% of the variance 
of all bands for the image.

In this study, a non-traditional PCA approach was fol-
lowed. Each hyperspectral image was considered as a separate 
data set and PCA was conducted for each image separately 
to retain spatial variability of samples, instead of mosaicking 
all images. The loading vectors or Eigen vectors are different 
among images. This approach explains ‘within sample’ varia-
tion. Furthermore, the wavelengths 568, 590, 604, 614, 636, 722, 
736, and 814 nm (Figure 6) played major roles in construct-
ing the PC images. In PC image 1 (Figure 5d), fat pixels are 
brighter than lean pixels; where as in PC images 3 (Figure 5f) 
and 4 (Figure 5g), lean pixels are brighter than fat pixels. Such 
significant contrast differences could be used for segmenting 
lean and fat regions and calculating a marbling score.

GLCM was used to extract textural features from PC im-
ages. The second-order textural feature extraction routine pro-
duced textural tonal images (Figure 5i-p), mean, variance, ho-
mogeneity, contrast, dissimilarity, entropy, second moment, 
and correlation. The average value of each textural band was 
then calculated and used in developing a canonical discrimi-
nant model to classify steaks into three tenderness categories: 
tender, intermediate and tough. Figure 7 shows the distribu-
tion of samples in this canonical space. The hypothesis test for 
using pooled covariance matrix was accepted. This plot shows 
considerable clustering of the tenderness categories, with min-
imal overlap.

Therefore, a linear discriminant function was employed in 
forming the classification rules. Using a leave-one-out cross-
validation procedure, 93 of the 94 tender samples were cor-
rectly classified, one was misclassified as intermediate and no 
tender sample was misclassified as tough. Of the 12 interme-
diate samples, nine were accurately classified as intermediate, 
three were misclassified as tender and no intermediate sample 
was misclassified as tough. All five tough samples were cor-
rectly identified. Out of 111 samples, the number of tender, in-
termediate, and tough samples was 94 (84.7%), 12 (10.8%) and 
5 (4.5%), respectively. Overall accuracy was 96.4% (Table 1). 
This suggests that this classification method has some poten-
tial in predicting beef tenderness.

4. Discussion

Inconsistency in beef tenderness is a major problem faced 
by the beef industry. Even an occasional unsatisfactory experi-
ence due to the consumption of a tough steak can significantly 

Figure 4. Sample distribution of longissimus dorsi muscle based on slice 
shear force (SSF) measurement.
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influence the consumer’s future buying. The beef industry is 
looking for a noninvasive instrument to predict beef tender-
ness from fresh steaks. Tenderness is a property of a cooked 
product and predicting that property from a fresh steak poses 
considerable challenges. In this study, an innovative tech-
nique, hyperspectral imaging, capable of collecting spectral in-

formation at each and every pixel of the image has been devel-
oped and tested.

The samples used in this study were collected randomly 
from a commercial branded beef program, which aims to pro-
duce only tender samples. Therefore, the number of inter-
mediate and tough samples was less. McKenna et al., 2002 

Figure 5. Hyperspectral image textural feature extraction methodology.
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reported that about 90% of the carcasses have only two qual-
ity grades namely USDA Choice and Select. Because we ran-
domly collected samples from a normal population—typically 
found in a packing plant, all our samples represent only two 
of the seven USDA quality grades. These two quality grades 
exemplify only four marbling levels out of eleven. Despite the 
narrow range of samples used for testing this system, the ac-
curacy was over 96% that shows considerable promise for this 
technique for beef tenderness prediction.

The canonical discriminant procedure used in this study 
first determines the category (tender, intermediate, and tough) 
centers. Then it transforms the 40 original variables (textural 
features) into canonical variables with an objective to increase 
the distance between category centers and reduce the dis-
tance between each class center and samples of the same class. 
Therefore, it strives to achieve the most compact clusters, 
while each cluster is far apart from others. During this trans-
formation, covariance matrices of size 40 × 40 have to be cal-
culated for each class. The covariance matrices for tender, in-
termediate and tough classes were obtained from 94, 12 and 
5 samples, respectively. Because of the less number of sam-
ples in intermediate and tough classes, the covariance matrices 
for these two classes may not be as accurate as that of tender 
class. Splitting of the dataset into training and validation will 
still reduce the number of intermediate and tough samples in 
the training set, and therefore yield inaccurate estimates of co-
variance matrices. In this situation, cross-validation is a valid 
statistical procedure to evaluate the model. Before industrial 
implementation, the model must be validated with new set of 
samples.

In the U.S. meat marketing system, beef products leave 
the packing plant at about 3 days post-mortem. It takes ap-
proximately 14 days for the beef products to reach the con-
sumer. The beef industry needs an instrument that can scan 
fresh meat at 2-3 days post-mortem and predict ultimate 14-
day cooked-beef tenderness. Further work is needed to deter-
mine the relationship of scans made earlier post-mortem with 
the tenderness classification at 14-day post-mortem.

Any instrumentation that is meant for beef tenderness eval-
uation should be fast enough to keep up with a speed at which 
a beef carcass moves in a production line and should have the 
ability to be implemented on-line. The developed hyperspec-
tral imaging system, an off-line system, took 10 s to acquire 
an image of a beef sample, and 10 min to assign a tenderness 
category. Hyperspectral images have redundant information 
about the object and often require application of dimensional-
ity reduction methods such as PCA, to remove the redundant 
information. Such dimensionality reduction steps significantly 
increase the time required to process each image. In our data 
analysis, we used PCA as a dimensionality reduction method 
and identified eight important spectral bands or wavelengths. 
Implementing image processing routines at these selected 
bands would decrease the processing time significantly. An-
other use of these selected bands is to reduce image acquisi-
tion time by acquiring images at those selected wavelengths 
and such approach is called multispectral imaging. The devel-
oped hyperspectral imaging system was a pushbroom system 
that scans a line of the object and requires sequential object 
movement to build the whole hyperspectral image of the ob-
ject. The principle at which the imaging system works makes 
it an off-line instrumentation. However, there are commer-
cially available whiskbroom hyperspectral imaging system 
that does not require object movement. Fast and on-line beef 
tenderness evaluation instrumentation could be feasible with 
whiskbroom multispectral imaging systems.

GLCM, a spatial domain procedure, was employed to ex-
tract textural features from PC images. Du and Sun (2006) and 
Zheng et al. (2006) have evaluated both spatial and transform-
based texture feature extraction procedures for tenderness 
prediction in cooked pork ham, and large, cooked beef joints, 
respectively. They suggested that features extracted from the 

Figure 6. First three loading or Eigen vectors of principal component 
analysis (PCA).

Figure 7. Distribution of samples in the canonical space.

Table 1. Beef-steak classification using leave-one-out cross-
validation and a canonical discriminant model

Actual categoriesa          Predicted categories                       Total

                                    Tender    Intermediate    Tough

Tenderb 	 93	  1	  0 	 94
Intermediatec 	 3 	 9	  0 	 12
Toughd 	 0 	 0 	 5 	 5
Total 	 96 	 10 	 5	  111

a Defined based on slice shear force (SSF).
b SSF ≤ 205.80 N.
c 205.80 N < SSF < 254.80 N.
d SSF ≥ 254.80 N.
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transform-based methods such as wavelet, and Gabor, had 
better relationships with tenderness as compared to spatial 
features. Hence, other transform-based textural feature extrac-
tion procedures should be evaluated for hyperspectral images 
for beef tenderness prediction.

As a widely used multivariate dimensionality reduction 
technique, PCA was successfully implemented to remove re-
dundant information from the hyperspectral images of beef 
samples. Bajwa et al. (2004) also implemented supervised 
(PCA and artificial neural network) and unsupervised (in-
formation entropy, first spectral derivative, and second spec-
tral derivative) dimensionality reduction techniques, but con-
cluded that the artificial neural network was application 
specific and it could outperform other methods. That is yet to 
be fully realized. Similarly, Lawrence et al. (2006) evaluated 
the partial least square regression approach for contaminant 
detection on poultry carcasses. Although PCA in this study 
provided good discrimination results, additional research is 
needed to compare and identify which dimensionality reduc-
tion technique works best for beef tenderness prediction.

5. Summary and conclusions

A hyperspectral imaging system with diffuse lighting was 
developed. Hyperspectral images (n = 111) of USDA Choice 
and Select beef longissimus steaks (14-day post-mortem) were 
collected. Principal component analysis and co-occurrence 
matrix analysis were implemented to extract features from the 
hyperspectral images. A discriminant model was developed 
using the extracted features. With a leave-one-out cross-vali-
dation procedure, the model predicted three tenderness cate-
gories – namely tender, intermediate, and tough – with an ac-
curacy of 96.4%.

Categorizing meat cuts by tenderness would enhance eco-
nomic opportunities for cattle producers and processors by 
improving assessment of beef product quality to meet con-
sumer expectations. Also, it would help the U.S. beef industry 
maintain or expand its market in the face of increasing com-
petition from other protein sources. Labeling accurate quality 
factors on the packaging of retail cuts would add value to the 
products and benefit consumers.
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