
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Faculty Publications from the Department of 
Electrical and Computer Engineering 

Electrical & Computer Engineering, Department 
of 

2009 

Missing-Sensor-Fault-Tolerant Control for SSSC FACTS Device Missing-Sensor-Fault-Tolerant Control for SSSC FACTS Device 

With Real-Time Implementation With Real-Time Implementation 

Wei Qiao 
University of Nebraska–Lincoln, wqiao@engr.unl.edu 

Ganesh Kumar Venayagamoorthy 
Missouri University of Science and Technology, gkumar@ieee.org 

Ronald G. Harley 
Georgia Institute of Technology 

Follow this and additional works at: https://digitalcommons.unl.edu/electricalengineeringfacpub 

 Part of the Electrical and Computer Engineering Commons 

Qiao, Wei; Venayagamoorthy, Ganesh Kumar; and Harley, Ronald G., "Missing-Sensor-Fault-Tolerant 
Control for SSSC FACTS Device With Real-Time Implementation" (2009). Faculty Publications from the 
Department of Electrical and Computer Engineering. 135. 
https://digitalcommons.unl.edu/electricalengineeringfacpub/135 

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from 
the Department of Electrical and Computer Engineering by an authorized administrator of 
DigitalCommons@University of Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17239199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/electricalengineeringfacpub
https://digitalcommons.unl.edu/electricalengineeringfacpub
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineeringfacpub?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/electricalengineeringfacpub/135?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages


740 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 24, NO. 2, APRIL 2009

Missing-Sensor-Fault-Tolerant Control for SSSC
FACTS Device With Real-Time Implementation

Wei Qiao, Member, IEEE, Ganesh Kumar Venayagamoorthy, Senior Member, IEEE, and
Ronald G. Harley, Fellow, IEEE

Abstract—Control of power systems relies on the availability
and quality of sensor measurements. However, measurements are
inevitably subjected to faults caused by sensor failure, broken
or bad connections, bad communication, or malfunction of some
hardware or software. These faults, in turn, may cause the failure
of power system controllers and consequently, severe contingen-
cies in the power system. To avoid such contingencies, this paper
presents a sensor evaluation and (missing sensor) restoration
scheme (SERS) by using auto-associative neural networks (auto
encoders) and particle swarm optimization. Based on the SERS,
a missing-sensor-fault-tolerant control is developed for control-
ling a static synchronous series compensator (SSSC) connected
to a power network. This missing-sensor fault-tolerant control
(MSFTC) improves the reliability, maintainability, and surviv-
ability of the SSSC and the power network. The effectiveness of
the MSFTC is demonstrated by a real-time implementation of
an SSSC connected to the IEEE 10-machine 39-bus system on
a Real Time Digital Simulator and TMS320C6701 digital signal
processor platform. The proposed fault-tolerant control can be
readily applied to many existing controllers in power systems.

Index Terms—Auto-associative neural network, fault-tolerant
control, flexible ac transmission system (FACTS) device, missing
sensor restoration, particle swarm optimization (PSO), real-time
implementation, static synchronous series compensator (SSSC).

I. INTRODUCTION

C ONTROL of any plant (device or subsystem) in an elec-
tric power system depends on the availability and quality

of sensor measurements. Measurements, however, can be cor-
rupted or interrupted due to sensor failure, broken or bad con-
nections, bad communication, or malfunction of some hardware
or software (all of these are referred to as missing sensor mea-
surements in this paper). If some sensors are missing, the con-
trollers cannot provide the correct control actions for a plant
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based on faulty input data. As a result, the plant may have to
be tripped off from the power system.

In a power system, there are many devices (e.g., flexible ac
transmission system (FACTS) devices) that play a crucial role
in system regulation, control, and stability. For instance, the
static synchronous series compensator (SSSC) [1]–[4], which is
a voltage-source converter (VSC)-based FACTS device, is typi-
cally placed in series on a critical transmission line of the power
network for power-flow control and power oscillation damping
[3], [4]. Unexpected tripping of such an SSSC due to missing
sensor measurements may cause overloading of some transmis-
sion lines and reduce the operating margin of the power system.
If a severe disturbance occurs under this condition, further con-
tingencies may occur and the system may lose stability. To avoid
such contingencies, fault tolerance is an essential requirement
for power system control.

A fault-tolerant control system [5] should be able to mitigate
the effects of the sensor faults to an acceptable level by detecting
and restoring the missing sensor data. This will improve the reli-
ability, maintainability, and survivability of the power system. In
principle, to achieve fault-tolerance, system redundancy is nec-
essary. For many systems, certain degrees of redundancy are
present among the data from various sensors. If the degree of
redundancy is sufficiently high, the readings from one or more
missing sensors may be able to be accurately restored from the
remaining healthy sensor data.

State estimation [6] is commonly used to identify state
variables that are not accessible from direct measurements, and
could therefore be modified to restore missing sensor data. This
technique is based on an analysis of the system model and the
redundancy of system state variables. By deriving closed-form
solutions for the variables corresponding to the missing sensors,
the lost data are explicitly reconstructed from the remaining
available data. However, for many systems, this model-based
method converges slowly and the closed-form solutions can
be unfeasible. Moreover, accurate system models are usually
unavailable in real system applications.

In their previous work [7]–[9], the authors proposed and
demonstrated several missing-sensor-fault-tolerant identifica-
tion and control schemes for an SSSC by using auto-associative
neural networks (auto-encoders) [10], [11] and particle swarm
optimization (PSO) [12], [13]. These fault-tolerant schemes
were demonstrated by simulation studies in PSCAD/EMTDC
on a single-machine infinite bus (SMIB) [7], [8] or a small
multimachine power system [9]. However, two important issues
related to the practical system applications were not consid-
ered. First, these fault-tolerant schemes employ a PSO-based

0885-8977/$25.00 © 2009 IEEE
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iterative search algorithm for online missing sensor restoration.
Compared to the normal sampling frequency when no sensors
are missing, the restored missing sensor data can only be sent to
the SSSC controllers at a reduced sampling frequency in order
to provide a sufficient period of time step to perform this online
search algorithm. The use of a reduced sampling frequency
may have a significant effect on the controller performance.
This issue can only be investigated by real-time or hardware
implementations. Second, practical power systems are large
scale with complex dynamics. Therefore, the previous studies
using software simulations on an SMIB or a small multima-
chine system do not sufficiently demonstrate the effectiveness
of these fault-tolerant schemes in a practical power system.

This paper extends the work in [7]–[9] on a missing-sensor-
fault-tolerant control (MSFTC) for controlling an SSSC in a
power network. The MSFTC contains a conventional internal
and external control scheme [2], [3] (i.e., without any fault-tol-
erant design) cascaded with a sensor evaluation and (missing
sensor) restoration scheme (SERS). The conventional control
scheme provides the correct control actions for the SSSC under
the condition that all the required sensor data are available. The
SERS is designed by using the auto-encoders and PSO. It eval-
uates the integrity of the sensor data used by the SSSC con-
trollers. If some sensor data are missing, it is able to detect and
restore the missing sensor data and, therefore, provides a set
of complete sensor measurements to the SSSC controllers. The
resulting MSFTC therefore provides a missing-senor-fault-tol-
erant control for the SSSC. The proposed MSFTC is validated
by a real-time implementation on an SSSC connected to the
IEEE 10-machine 39-bus system, using a Real-Time Digital
Simulator (RTDS) and TMS320C6701 digital signal processor
(DSP) platform.

II. SSSC AND ITS CONVENTIONAL CONTROL

The SSSC in Fig. 1 is a VSC-based series FACTS device
which injects a controllable voltage in quadrature with the line
current of a power network. This is equivalent to rapidly pro-
viding a controllable capacitive or inductive reactance compen-
sation independent of the line current [2]. Moreover, with a suit-
ably designed external damping controller [3], [4], the SSSC can
also be used to improve damping of the low-frequency transient
power oscillations in a power network. These features make the
SSSC an attractive FACTS device for power-flow control, power
oscillation damping, and improving transient stability. This sec-
tion briefly discusses the conventional internal and external con-
trol of the SSSC.

The main objectives of the SSSC internal control [2] (Fig. 1)
are to inject a controllable voltage (by injecting a desired
compensating reactance ) at the ac terminals of the inverter
as well as to keep the dc terminal voltage of the inverter constant
at steady state.

The objective of the SSSC external control (Fig. 2) is to damp
transient power oscillations of the system. This external con-
troller is able to rapidly change the compensating reactance
injected by the SSSC, thus providing supplementary damping
during transient power swings [3], [4]. In a practical controller,
it is usually desirable to choose a local signal. In this paper, the
active power deviation on the transmission line, measured

Fig. 1. Schematic diagram of the SSSC internal controller.

Fig. 2. Schematic diagram of the SSSC external damping controller.

at the connection point of the SSSC, is used as the input signal
to the external controller. In Fig. 2, is passed through
two first-order low-pass filters and a damping controller (con-
sisting of a proportional damping gain and a washout filter)
to form a supplementary control signal , which is then
added to a steady-state fixed set-point value to form the
total commanded value of compensating reactance at the
input of the SSSC internal controller [9]. The washout filter is
a high-pass filter that removes the dc offset, and without it, the
steady changes in active power would modify the value of
compensating reactance. The use of two low-pass filters is based
on two reasons: 1) filtering the electrical noise in the measure-
ments and 2) phase compensation to ensure that the variations
in compensating reactance are correctly phased with respect to
the transient power oscillations in order to provide supplemen-
tary damping.

III. MISSING SENSOR RESTORATION ALGORITHM

An auto-encoder can learn the data correlations through in-
spection of historical data. Once trained, data correlations es-
tablished by the auto-encoder can be used by some search al-
gorithms (e.g., PSO in this paper) to restore missing data if the
data dependency is sufficiently strong. This completes a missing
sensor restoration algorithm (MSR), as shown in Fig. 3. The
unique point of convergence of the MSR rests on the concepts
of contractive and nonexpansive mappings [14] and the oper-
ating point determined by the healthy sensor data.

A. Auto-Encoder [Fig. 3(a)]

The auto-encoder [7]–[9] is a three-layer feedforward neural
network with sigmoidal nonlinearity in the hidden layer. It is
trained to perform an identity mapping, where the network in-
puts are reproduced at the output layer. The network contains a
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Fig. 3. Overall structure of the MSR: TDL denotes time delay lock. (a) Training
of the auto-encoder. (b) Online restoration of missing sensor data.

hidden “bottleneck” layer which has fewer nodes than the input
and output layers. The dimensionality reduction through the
input-to-hidden layer enables the network to extract significant
features, without restriction on the character of the nonlineari-
ties in the data (nonlinear feature extraction). Hence, the hidden
layer captures the correlations between all input data. On the
other hand, the dimensionality expansion through the hidden-to-
output layer enables the network to reproduce the high dimen-
sional inputs at the output layer. The overall input–output map-
ping for the auto-encoder : is

(1)

where ; is the dimension of the input and output
vectors; is the number of hidden-layer neurons; is the input
vector; is the th output; and are the input and output
weight matrices, respectively; and is the sigmoid ac-
tivation function of the hidden-layer neuron, given by

(2)

where

(3)

Suppose the vector consists of the mea-
sured time-varying sensor data at each time sampling . In a
power system, the time-varying variables are generally periodic
and in the sinusoidal form, given by

(4)

Each periodic time-varying variable is auto-correlated
and its feature is determined by the magnitude , the angular
frequency , and the phase angle . Auto-correlations can
be used to extract the significant features buried in a periodic
time-varying signal and, therefore, are useful to restore the
missing time-varying sensor measurements. The auto-corre-
lation of each variable in the vector can be captured by
the auto-encoder using the time-delayed inputs. As shown in
Fig. 3(a), the inputs of the auto-encoder consist of the vector

at the present time step as well as at the previous two time
steps (i.e., ).

The auto-encoder is first trained without any missing sensor.
It starts off with small random initial weights. By feeding the
data through the auto-encoder and adjusting its weight matrices
(using the backpropagation algorithm [15]) and , the auto-
encoder is trained to reproduce its input data at its output layer.
Once trained, the cross correlations between different sensor
data as well as the auto-correlations of each sensor data in the
vector are established by the auto-encoder. The auto-encoder
with fixed parameters is then used for sensor evaluation and
missing sensor restoration.

B. Missing Sensor Restoration [Fig. 3(b)]

After training, the auto-encoder with fixed parameters is able
to reproduce its inputs at its output layer. Under such a condi-
tion, if one or more sensor measurements are missing, the out-
puts of the auto-encoder no longer match its inputs , and the
error signal in Fig. 3(a) becomes significant. In this case,
the PSO module in the feedback search loop of the MSR is ac-
tivated and only the healthy sensor data are fed directly into
the auto-encoder. The error signal is then used by the PSO as
a fitness signal to search for the optimal estimates of the missing
sensor data, based on the correlations between the healthy data
and the missing data, established by the auto-encoder. At each
iteration, the estimated missing sensor data by the PSO,
which is the swarm best position that the PSO achieves so far,
is fed together with the healthy sensor data through the auto-en-
coder to reduce the value of the following fitness measure func-
tion for each particle, defined by:

(5)

where represents the actual healthy sensor data and rep-
resents the reproduced healthy sensor data from the auto-en-
coder. Once the error is below a predetermined threshold,
the output of the auto-encoder is regarded as the best esti-
mates of the missing sensor data.

The use of the auto-encoder does not need an explicit plant
model. In addition, the PSO algorithm provides a fast and ef-
ficient search for the optimal solution, because of its attractive
features including simple implementation, small computational
load, and fast convergence. Therefore, the MSR algorithm is
suitable for online applications.

C. Convergence of the MSR

The unique convergence of the MSR can be shown through
the concepts of contractive and nonexpansive mapping. An op-
erator mapping is contractive if, for any vectors,
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and , it follows that ,
where denotes the Euclidean norm. The operator is non-
expansive if . According to the Banach
Fixed-Point Theorem [16], if is a contractive mapping, then a
unique fixed point exists for which ; if is nonex-
pansive, then a plurality of fixed points may exist for which

.
A well-trained auto-encoder constructs a nonexpansive map-

ping between its input space and output space
, because for any vector , a unique vector exists

so that . The auto-encoder performs a data com-
pression through the input-to-hidden layer to extract significant
features in the data. To avoid losing any significant information
in the data, a necessary condition is that the dimension of the
hidden layer must be equal to or exceed the number of degrees
of freedom in the input data.

Suppose sensor data in are missing, then the number of
healthy sensor data is . If the degree of data redundancy
is sufficiently high (i.e., the number of degrees of freedom of
the healthy sensor data is still ), then the “operating
point” defined by the set of healthy sensor data is the same
as that defined by the full set of sensor data ,
because the missing sensor data are redundant. Here,
represents the correct values of the missing sensor data. Under
such a condition, given an “operating point” defined by the set of
healthy sensors, a unique point of convergence exists for a well-
trained auto-encoder. This convergence point should be reached
regardless of how the missing sensors are initialized. Generally,
such a condition is satisfied if because .

On the other hand, if the degree of data redundancy is not
sufficiently high (i.e., ), then there may be

. Under such a condition, the number of degrees of freedom of
the healthy sensor data is less than . Therefore, different
sets of missing sensor data and may exist so that

and , where and
. Here, and are the correct values of

the missing sensor data. In other words, given the set of healthy
sensor data , the missing sensor data might be restored as
different values by the MSR. To avoid such a result, a necessary
condition for the auto-encoder to work is that the number of
healthy inputs must be equal to or exceed the number of degrees
of freedom in the hidden layer [11].

To conclude, generally with a well-trained auto-encoder, the
unique convergence of the MSR is achieved if two conditions
are satisfied: 1) and 2) , and vice versa.

IV. MISSING-SENSOR-FAULT-TOLERANT CONTROL

Control of the SSSC (Figs. 1 and 2) relies on the availability
and quality of four sets of sensor measurements: the three-phase
currents of the transmission line, the three-phase bus volt-
ages , the injected three-phase voltages of the SSSC,
and the dc-link voltage . Other variables, such as and ,
are calculated from these measured variables. In addition, the
dc-link current is also measured to protect the inverter from
overcurrent caused by the short-circuit fault of the dc link [17].
However, the value of is irrelevant to the performance of the
SSSC controllers. In this section, the MSFTC is designed for

Fig. 4. Overall structure of the proposed missing-sensor-fault-tolerant control
(MSFTC) strategy.

both internal and external control of the SSSC. This MSFTC
provides fault tolerance to any set of major sensors ( , ,

, and ) faults based on two reasonable assumptions: 1)
there are no multiple sets of sensors missing and 2) the power
system operates under a three-phase balanced condition at the
transmission level.

A. Overall Structure of the MSFTC

Fig. 4 shows the overall structure of the MSFTC for the SSSC.
It consists of an internal controller, an external controller, and
an SERS. The four sets of sensor data used by the SSSC internal
and external controllers are fed into the SERS, which evaluates
the integrity of these sensor data. If the SERS detects that one
or more sensors are missing, it is responsible for restoring all of
the missing sensor data. The output variables of the SERS with
a subscript represent the restored missing sensor data, while
the output variables with a subscript represent the healthy
sensor data. If there is no sensor missing, the outputs with a sub-
script are exactly the same as the corresponding inputs (e.g.,

). The active power used by the external controller
is calculated from and , and the active power

used by the internal controller is calculated from
and . Other sensor data used by the internal controller
consist of and .
The SERS provides a set of complete sensor data to the SSSC
controllers even when some sensors are missing and, therefore,
guarantees a fault-tolerant control strategy for the SSSC.

B. Design of the SERS

1) Three-Phase Current Sensor Measurements: Power
systems normally operate under almost balanced three-phase
conditions at the transmission level. Thus, the three-phase cur-
rents , , and should approximately satisfy the following
equation:

(6)

A more realistic expression for (6) can be written as

(7)

where is a predetermined small threshold. Under balanced
conditions, if the aforementioned relationship (7) is not satis-
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Fig. 5. Structure of the SERS-I.

fied, it indicates that one or more current sensors are missing.
However, if , , and are all missing, there might be

and, therefore, (7) is still satisfied; to distinguish
such a case from the case of no missing sensor, another equation
is used, given by

and and (8)

where is a predetermined small threshold. If (7) is satisfied
but (8) is not satisfied, there is no sensor missing. Otherwise,
one or more phase current sensors are missing.

If only one phase current sensor is missing, it can simply
be restored by using (6). However, in order to detect and
restore multiple missing current sensors, a sensor evaluation
and missing sensor restoration scheme (SERS-I) is designed,
as shown in Fig. 5. A necessary condition for SERS-I im-
plementation is that all the sensor data in and are
available. How to determine this condition is discussed later in
Section IV-B3) on the overall structure of the SERS. Here, it
is simply assumed that this condition is satisfied. The SERS-I
contains two MSR blocks and a block that implements (6) and
(7). Each MSR block has the same structure as shown in Fig. 3
and only evaluates the status of one current sensor. If any MSR
block detects that the current sensor is missing, its PSO module
is then activated and only performs a 1-D search to restore the
missing current. In Fig. 5, is evaluated by MSR1. If is
missing, it is restored by MSR1 and the restored value is
then used as the healthy input for MSR2 and the block (6), (7);
if is healthy, then . In a similar way, is evaluated
by MSR2. If is missing, it is restored by MSR2 and the
restored value is then used as the healthy input for the block
(6), (7); if is healthy, then . is evaluated by (7). If

is missing, it is calculated by (6). The output vector of the
SERS-I contains the total restored missing current sensor data;
but contains other healthy current sensor data. These two
vectors provide a set of complete current sensor measurements
to the SSSC controllers. In this design, MSR1 needs to use the
other six sensors’ data and in order to provide the
required redundancy to restore the missing current . However,
the four sensors’ data and are enough to provide
MSR2 with the required redundancy to restore the missing
current .

The implementation procedure of the SERS-I is shown as a
flowchart in Fig. 6, where and are predetermined small
thresholds for MSR1 and MSR2, respectively. If the error
signal, for example, of MSR1 (Fig. 3) is smaller than
the threshold , it indicates that , which is monitored by
MSR1, is healthy; otherwise, if , it indicates that
is missing and is restored by MSR1. Similarly, if ,

Fig. 6. Implementation procedure of the SERS-I.

then is healthy; otherwise, if , then is missing
and is restored by MSR2.

The use of the cascading structure to design the SERS-I is
based on the following reasons: 1) this structure enables the
SERS-I itself to evaluate the status of the sensor data and de-
tect which sensor or sensors are missing; 2) each MSR only
searches in a 1-D space to restore one missing sensor measure-
ment, which is faster than only using one MSR to search in
a multidimensional space in order to restore multiple missing
sensor measurements; and 3) the required degree of data re-
dundancy for restoring one missing sensor is lower than that of
restoring multiple missing sensors for each MSR and, therefore,
fewer sensor data need to be used.

In this application, a small population of particles (five par-
ticles) is used in PSO to reduce the computational cost of the
PSO search algorithm. Each MSR converges within 15 itera-
tions to restore one missing sensor measurement. Therefore, the
maximum iteration number for the PSO implementation in each
MSR block is set at . In addition, a necessary condition
for the MSR to work is that the number of healthy inputs of the
auto-encoder must be equal or exceed the number of degrees of
freedom in its hidden layer. Thus, the dimensions of the input,
hidden, and output layers of the auto-encoders in MSR1 and
MSR2 are chosen to be and , respec-
tively.

2) DC-Link Voltage Sensor: Under normal operating condi-
tions, the dc-link voltage is almost constant and its value is far
from zero. The following power balance should be held while
taking into account the dynamics of the dc-link:

(9)

where is the measured active power injected to the SSSC
(Fig. 1); denotes the estimated power losses, including the
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Fig. 7. Overall structure of the SERS.

copper loss, iron loss, switching loss, etc., in the SSSC. A sim-
plified method to estimate the power losses in a three-phase con-
verter has been discussed in [18]. In practice, if , where

is a predetermined threshhold, then the measured dc-link
voltage is replaced by the calculated value by using

.
3) Overall Structure of the SERS: Fig. 7 shows the overall

structure of the SERS. The structure and implementation of the
SERS-I block have been shown in Figs. 5 and 6, respectively.
The SERS-VC and SERS-V blocks, which have the same struc-
tures as the SERS-I block, are used to evaluate the sensor data
and restore the missing sensor data in and , respec-
tively. The status of the sensor data in , , and is
preevaluated by the equation evaluation block called (7), (8),
(10–(13), where (10)–(13) are given by

(10)

and and (11)

(12)

and and (13)

where , , , and are small threshholds. If (10) is satis-
fied but (11) is not satisfied, there is no sensor missing in ;
otherwise, one or more sensors in are missing. If (12) is
satisfied but (13) is not satisfied, there is no sensor missing in

; otherwise, one or more sensors in are missing. If the
equation evaluation block detects that any of the three vectors

, , and contain missing sensor data, it will activate
the corresponding SERS-X (X represents I, VC, or V) block to
identify and restore the missing sensors. The healthy sensor data
and restored missing sensor data are then output from the SERS.
If there is no missing sensor, the SERS outputs all of the healthy
sensor data. This procedure is shown in the flowchart of Fig. 8.

4) Training of the Auto-Encoders: The auto-encoders in the
two MSR blocks of each SERS-X are continuously trained on-
line simultaneously without any missing sensors (determined by
(7), (8), and (10)–(13)). By feeding forward the data through the
auto-encoder and adjusting its weight matrices and , using
the backpropagation algorithm, the auto-encoder is trained to
map its inputs to its outputs as shown in Fig. 3(a). After training
for every time step, the weights of each auto-encoder are
frozen for time steps to evaluate the convergence of the
auto-encoder. During the evaluation, if the error of each
auto-encoder is beyond a specified threshold at any evalua-
tion time step, the training resumes for the next time steps.
Otherwise, if the error of each auto-encoder is below the
threshold during the entire time step, the training stops

Fig. 8. Implementation procedure of the SERS.

and the auto-encoder is used for sensor evaluation and missing
sensor restoration. If the system changes to a new operating
point, the error might be beyond the threshold again.
In this case, if there is no sensor missing, the training resumes
to adapt to this new operating point.

C. Unbalanced Operation

The transmission system of a power network normally
operates under a nearly balanced three-phase condition. The
unbalanced operations are mainly caused by grid disturbances,
such as unbalanced faults including a single-phase-to-ground
fault, phase-to-phase fault, etc. Under these conditions, the
transmission system experiences a short-term unbalanced op-
eration (e.g., typically 50–200 ms) during the fault, and returns
to its balanced three-phase operation after the fault is cleared.
During the short-term unbalanced fault, (7), (8), and (10)–(13)
are not applicable to evaluate the status of the sensor data;
therefore, the equation evaluation block (7), (8) and (10)–(13)
in Fig. 7 is temporarily deactivated, and the SERS continues
to restore the missing sensors if they exist. In addition, if
three sensor data in one set of sensor measurements (e.g., the
three current sensors), are all missing during an unbalanced
operation, then the third missing sensor cannot be accurately
restored by (6). However, since the fault only exists for a very
short period of time, it does not have any notable effect on the
performance of the MSFTC.

The long-term unbalanced operations are mainly caused by
an unbalanced load, transformers with different single phase
units, untransposed transmission lines, etc. The effects of long-
term unbalanced operations are normally small since the trans-
mission system is still close to balanced operation [19].
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Fig. 9. Single-line diagram of an SSSC connected to the IEEE 10-machine
39-bus New England system.

V. REAL-TIME IMPLEMENTATION PLATFORM

To demonstrate the effectiveness of the MSFTC, the IEEE
10-machine 39-bus New England system [20], as shown in Fig.
9, is now considered. An SSSC is connected to the bus 24 end
of the transmission line 23–24 to regulate its power flow. This
arrangement also improves the transient stability of this multi-
machine power system [21]. In this study, G10 is modeled as
a three-phase infinite source, while the other nine synchronous
generators (G1–G9) are modeled in detail, with the turbine gov-
ernor and AVR/exciter dynamics taken into account [22]. The
SSSC is represented by a detailed switching-level model, in
which the PWM voltage source inverter is fully represented by
individual GTO switches.

In this application, the operation and control of the SSSC rely
on the availability and quality of four sets of sensor measure-
ments: the three-phase currents , , , of line 22–24; the in-
jected three-phase voltages , , and of the SSSC; the
three-phase voltages , , and of bus 24; and the
dc-link voltage . The MSFTC as shown in Fig. 4 is applied
to provide the fault-tolerant control for the SSSC.

The proposed MSFTC for the SSSC is validated by a real-
time implementation by using an RTDS and an Innovative In-
tegration M67 DSP card (based on a TMS320C6701-167 pro-
cessor). Fig. 10 shows the real-time implementation platform.
The SSSC and its internal and external controllers as well as
the IEEE 39-bus power system are implemented on the RTDS;
while the SERS is implemented on the M67 DSP card. This M67
DSP card communicates with the RTDS in real-time through a
DSP–RTDS interface. The RTDS is equipped with analog input/
output channels [23]. The sensor data used by the SSSC con-
trollers are sent through the RTDS analog output channels and
DSP-RTDS interface to the M67 DSP card for the implementa-
tion of the SERS. The M67 DSP card, operating at 167 MHz, is
hosted on a Pentium III 433 MHz personal computer (PC) and
equipped with two OMINBUS A4D4 I/O modules [24]. Each
A4D4 module has four analog-to-digital (A/D) converters and
four digital-to-analog (D/A) converters. The A4D4 modules re-
ceive the analog inputs (sensor data) from the DSP–RTDS in-

Fig. 10. Real-time implementation platform.

terface and convert them to digital signals. They are then used
by the SERS, running on the TMS320C6701-167 processor, for
sensor evaluation and missing sensor restoration. The healthy
sensor data and the restored missing sensor data are sent back
to the RTDS through the DSP-RTDS interface and RTDS analog
input channels for fault-tolerant internal and external control of
the SSSC.

If there is no missing sensor, the SERS only performs the
equation evaluation block (7), (8), (10)–(13) to evaluate the in-
tegrity of the sensor measurements. Therefore, a high sampling
rate, such as 5 kHz, can be used for the SERS implementation.
However, if some sensors are missing, the SERS has to perform
a PSO-based iterative search algorithm to restore the missing
sensor data. In this case, the sampling rate for the SERS imple-
mentation is reduced to 50 Hz to ensure that the missing sensors
can be restored within one sampling period of 20 ms using the
MSR algorithm with the maximum iteration number of 15. More
discussions on choosing the sampling frequency are provided in
Section VII.

VI. REAL-TIME IMPLEMENTATION RESULTS

The dynamic performance of the MSFTC is evaluated by ap-
plying different disturbances, such as unbalanced and balanced
grid faults and change of load conditions, on the system in Fig. 9
that is implemented on the RTDS (Fig. 10). For each disturbance
event, three (missing) sensor tests are performed and compared
to evaluate the fault tolerance of the MSFTC: no sensor missing,
two current sensors and missing, and three current sensors

, , and missing. In a practical system, if some sensors are
missing, their values may be read as zeros, some noise, or some
uncertain error values. Since the forms of missing sensor read-
ings have no effect on the implementation of the SERS during
the real-time tests, the sensor readings are simply set to zeros if
they are missing.

A. Single-Phase-to-Ground (A-G) Fault

The system in Fig. 9 is first operated at a normal operating
condition without any missing sensors. The auto-encoder in
each MSR block of the SERS is continuously trained online
without any missing sensor, as discussed in Section IV. The
online training of the auto-encoders converges within several
minutes. Then, the training stops and the SERS continuously
works online to evaluate the status of the sensor measurements
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Fig. 11. Dynamic performance of the MSFTC with different (missing) sensor
tests during a single-phase-to-ground (A-G) fault: � and � .

and restore the missing sensor data. Thereafter, the first test is
performed in which a temporary unbalanced phase A-to-ground
short circuit is applied at the bus 22 end of the transmission line
21–22. The fault is cleared 150 ms after it has been applied.
After the system returns to steady state, the second test is then
performed in which two phase current sensors and are set
to be missing. Thereafter, the same phase A-to-ground fault is
applied to the system. Again, after the system returns to steady
state, the third test is performed in which all of the three phase
current sensors , , and are set to be missing and the same
grid fault is applied to the system.

If some phase current sensors are missing, they are detected
and restored by the SERS. The restored missing phase current
sensors are used to calculate the -axis and -axis current com-
ponents by applying the synchronously rotating reference frame
transformation. The resulting currents and in the three
(missing) sensor tests are compared in Fig. 11. Compared to the
case of no sensor missing, the values of and , calculated by
using the restored missing phase currents, only deviate slightly
during the transient system oscillations after the grid fault. As
discussed in Section IV, the unbalanced fault has no notable
effect on the SERS performance since the unbalanced opera-
tion caused by the fault only exists for a very short period of
time. These results indicate that the SERS correctly restores the
missing current sensors during steady state as well as during the
transient disturbance with a significantly reduced sampling fre-
quency of 50 Hz. Therefore, the SERS provides a set of fault-tol-
erant complete sensor data for the SSSC controllers.

Fig. 12 compares the results of G7 angular speed and the
transmitted active power by the transmission line 23–24 for
the three sensor tests. The responses of when two or all of
the three crucial phase current sensor measurements are missing
are almost the same as those in the case of no sensor missing.
Compared to the synchronous generator angular speed, the ac-
tive power is more sensitive to the missing-current-sensor
faults because of the direct electrical relationship between the

Fig. 12. Dynamic performance of the MSFTC with different (missing) sensor
tests during a single-phase-to-ground (A-G) fault: � and � .

active power and the currents. As a result, the damping con-
trol of the MSFTC degrades slightly but is still effective when
multiple current sensors are missing, as shown in Fig. 12 for

. These results demonstrate that the MSFTC does provide
fault-tolerant effective control for the SSSC and the power net-
work even when multiple crucial phase current sensors are not
available. In addition, neither the reduced sampling frequency
at which the SERS provides the restored missing sensor data to
the SSSC controllers, nor the short-term unbalanced operation
caused by the fault has any notable effect on the performance of
the MSFTC.

B. Three-Phase-to-Ground (ABC-G) Fault

A 150 ms temporary three-phase-to-ground short circuit is
now applied at the bus 22 end of the transmission line 21–22
for the same three (missing) sensor tests as in the previous sub-
section A. Fig. 13 compares the results of and in the three
(missing) sensor tests. Again, the SERS correctly restores the
two and three missing current sensor data. The responses of
and are then compared in Fig. 14. The MSFTC correctly con-
trols the SSSC and the power system back to the prefault steady-
state operating condition even when multiple crucial phase cur-
rent sensors are missing. These results show that the MSFTC
provides fault-tolerant effective control for the SSSC and the
power network during a balanced grid fault, and that the reduced
sampling frequency has no notable effect on the performance of
the SERS and MSFTC.

C. Change of Load Conditions

The same three (missing) sensor tests as in the previous sub-
sections are again performed. During each test, the three-phase
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Fig. 13. Dynamic performance of the MSFTC with different (missing) sensor
tests during a three-phase-to-ground (ABC-G) fault: � and � .

Fig. 14. Dynamic performance of the MSFTC with different (missing) sensor
tests during a three-phase-to-ground (ABC-G) fault: � and � .

electric load at bus 24 is increased from 308.6 MW and 92
MVAr to 608.6 MW and 2 MVAr at , respectively.
After the change of the load condition, the system settles down
to a new operating point. However, the auto-encoder in each
MSR block of the SERS has not been trained at this new op-
erating point since the sensors were missing before the load
change.

Fig. 15 shows the results of and , in the three (missing)
sensor tests. The change of load condition results in a small
transient in and . Their steady-state values change from

Fig. 15. Dynamic performance of the MSFTC with different (missing) sensor
tests during an increase of electric load at bus 24: � and � .

1.0 kA and 0.015 kA to 1.08 kA and 0.04 kA, respectively.
The SERS correctly restores the two and three missing current
sensors when the system changes to a new operating condition.

The responses of and are compared in Fig. 16.
Although the dynamic performance degrades slightly when
multiple crucial phase current sensors are missing, the MSFTC
still correctly controls the SSSC and power network to adapt to
the new operating condition after the change of load condition.
These results clearly show that the desired fault-tolerance is
achieved by the MSFTC.

The missing sensor tests are also performed for two other
sets of sensor measurements , , , and , , .
Similar results as in Figs. 11–16 are obtained.

VII. DISCUSSIONS ON SAMPLING FREQUENCY

Sampling frequency is not a problem in software-based sim-
ulation studies because all of the required computation can be
completed in one sampling period. In [7] and [8], the sampling
frequency for MSR implementation is chosen to be 1 kHz. The
resulting MSR is able to perfectly restore a 60 Hz sinusoidal
waveform for each missing sensor data. In [9], a low sampling
frequency of 50 Hz is used, as in this paper, and the resulting
MSR still correctly restores the missing sensor data.

However, in real-time hardware implementations, sampling
frequency is a critical issue for any real-time algorithm and
control strategy. Generally, a high sampling frequency is ex-
pected. However, there are two contradictory inherent limits on
choosing the sampling frequency: an upper limit and a lower
limit.

The upper limit is placed by the computational cost of the
algorithm and the available hardware. Specifically, in this paper,
the upper limit is determined by the size of the auto-encoder
and PSO, the convergence rate, and efficiency of the MSR, the
number of missing sensor data, the performance of the DSP,
A/D and D/A modules, and communication channels, etc. To
ensure the convergence of each MSR in the SERS to restore
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Fig. 16. Dynamic performance of the MSFTC with different (missing) sensor
tests during an increase of electric load at bus 24: � and � .

all three missing phase currents during each sampling period,
the maximum sampling frequency is limited by 60 Hz. Higher
sampling frequencies than 60 Hz may result in the failure of the
MSR to restore the missing data during some sampling periods;
and, as a result, the performance of the SSSC controllers will
degrade. A further increase of the sampling frequency, say more
than 100 Hz, results in the complete failure of the MSR and,
consequently, the failure of the SSSC controllers.

The lower limit is placed by the characteristics of the system
dynamics and the requirement of the SSSC controllers. A prac-
tical power system typically exhibits dynamics with frequen-
cies less than a few Hertz. Therefore, when designing the SSSC
controllers, the measured three-phase voltages and currents are
normally transformed into synchronous reference frame vari-
ables, which are all dc quantities at steady state and oscillate
at frequencies less than a few Hertz during disturbances. Other
variables, such as generator speed, system frequency, active and
reactive power, also vary at less than a few Hertz. Therefore, the
reduced sampling frequency of 50 Hz is sufficient for the SSSC
controllers to use these low-frequency or dc variables to pro-
vide correct control actions. However, a basic rule is that the
sampling frequency should be chosen at least ten times the fre-
quency of the system dynamics in order to ensure an acceptable
performance of the controllers. In this application, the frequen-
cies of the system dynamics are around 1 Hz. Therefore, a min-
imum sampling frequency of 10 Hz should be used. Any sam-
pling frequency less than 10 Hz results in a significant degra-
dation of the MSR performance and, consequently, a significant
degradation of the SSSC controller performance.

VIII. CONCLUSION

Fault tolerance is an essential requirement for modern power
system control. This paper has proposed an MSFTC strategy
for controlling an SSSC connected to a power network. The
MSFTC consists of a sensor evaluation and (missing sensor)
restoration scheme (SERS) and a conventional internal and ex-
ternal SSSC control scheme (without any fault-tolerant design).
The conventional control scheme provides the correct control
actions for the SSSC under the condition that all of the required
sensor data are available. The SERS evaluates the integrity of
the time-varying sensor measurements used by the conventional
SSSC controllers. If some sensors are missing, it is able to de-
tect and restore the missing sensor data. The restored missing
sensor data are then used by the SSSC controllers, which pro-
vide an MSFTC for the SSSC.

The proposed MSFTC has been validated by real-time im-
plementations of an SSSC connected to the IEEE 10-machine
39-bus system on the RTDS and TMS320C6701 DSP platform.
The SSSC and power network have been subjected to various
grid disturbances and missing sensor faults (with two or three
phase current sensors missing). Results have shown that the
SERS correctly restores the data from multiple missing current
sensors, and the resulting MSFTC provides fault-tolerant effec-
tive control for the SSSC and the power network during steady
state, and transient state of unbalanced and balanced grid faults
as well as a change of load conditions.

REFERENCES

[1] L. Gyugyi, C. D. Schauder, and K. K. Sen, “Static synchronous se-
ries compensator: A solid-state approach to the series compensation
of transmission lines,” IEEE Trans. Power Del., vol. 12, no. 1, pp.
406–417, Jan. 1997.

[2] B. S. Rigby and R. G. Harley, “An improved control scheme for a se-
ries-capacitive reactance compensator based on a voltage-source in-
verter,” IEEE Trans. Ind. Appl., vol. 34, no. 2, pp. 355–363, Mar./Apr.
1998.

[3] B. S. Rigby, N. S. Chonco, and R. G. Harley, “Analysis of a power os-
cillation damping scheme using a voltage-source inverter,” IEEE Trans.
Ind. Appl., vol. 38, no. 4, pp. 1105–1113, Jul./Aug. 2002.

[4] W. Qiao and R. G. Harley, “Indirect adaptive external neuro-control
for a series capacitive reactance compensator based on a voltage source
PWM converter in damping power oscillations,” IEEE Trans. Ind. Elec-
tron., vol. 54, no. 1, pp. 77–85, Feb. 2007.

[5] R. J. Patton, “Fault-tolerant control: The 1997 situation,” in Proc. IFAC
Symp. Fault Detection, Supervision, Safety for Technical Processes,
Hull, U.K., Aug. 1997, pp. 1033–1055.

[6] O. Alsac, N. Vempati, B. Stott, and A. Monticelli, “Generalized state
estimation,” IEEE Trans. Power Syst., vol. 13, no. 3, pp. 1069–1075,
Aug. 1998.

[7] W. Qiao, R. G. Harley, and G. K. Venayagamoorthy, “A fault-tolerant
P-Q decoupled control scheme for static synchronous series compen-
sator,” in Proc. IEEE Power Eng. Soc. General Meeting, Montreal, QC,
Canada, Jun. 18–22, 2006.

[8] W. Qiao, Z. Gao, R. G. Harley, and G. K. Vanayagamoorthy, “Robust
neuro-identification of nonlinear plants in electric power systems with
missing sensor measurements,” Eng. Appl. Artif. Intell., vol. 12, no. 4,
pp. 604–618, Jun. 2008.

[9] W. Qiao, R. G. Harley, and G. K. Venayagamoorthy, “Fault-tolerant
optimal neurocontrol for a static synchronous series compensator con-
nected to a power network,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp.
74–84, Jan./Feb. 2008.

[10] H. Bouland and Y. Kamp, “Auto-association by multi-layer percep-
trons and singular value decomposition,” Biol. Cybern., vol. 59, no.
4–5, pp. 291–294, 1988.



750 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 24, NO. 2, APRIL 2009

[11] M. A. Kramer, “Autoassociative neural networks,” Comput. Chem.
Eng., vol. 16, no. 4, pp. 313–328, 1992.

[12] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Networks, Nov. 27–Dec. 1, 1995, vol. 4, pp.
1942–1948.

[13] Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J. C. Hernandez,
and R. G. Harley, “Particle swarm optimization: Basic concepts, vari-
ants and applications in power systems,” IEEE Trans. Evol. Comput.,
vol. 12, no. 2, pp. 171–195, Apr. 2008.

[14] B. B. Thompson, R. J. Marks, and M. A. El-Sharkawi, “On the con-
tractive nature of autoencoders: Application to missing sensor restora-
tion,” in Proc. Int. Joint Conf. Neural Networks, Jul. 20–24, 2003, pp.
3011–3016.

[15] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[16] W. A. Kirk and M. A. Khamsi, An Introduction to Metric Spaces and
Fixed Point Theory. New York: Wiley, 2001.

[17] F. Blaabjerg, J. K. Pedersen, U. Jaeger, and P. Thoegersen, “Single cur-
rent sensor technique in the DC link of three-phase PWM-VS inverters:
A review and a novel solution,” IEEE Trans. Ind. Appl., vol. 33, no. 5,
pp. 1241–1253, Sep./Oct. 1997.

[18] W. Qiao, W. Zhou, J. M. Aller, and R. G. Harley, “Wind speed esti-
mation based sensorless output maximization control for a wind tur-
bine driving a DFIG,” IEEE Trans. Power Electron., vol. 23, no. 3, pp.
1156–1169, May 2008.

[19] D. Reichelt, E. Ecknauer, and H. Glavitsch, “Estimation of steady-state
unbalanced system conditions combining conventional power flow and
fault analysis software,” IEEE Trans. Power Syst., vol. 11, no. 1, pp.
422–427, Feb. 1996.

[20] T. Athay, R. Podmore, and S. Virmani, “A practical method for di-
rect analysis of transient stability,” IEEE Trans. Power App. Syst., vol.
PAS-98, no. 2, pp. 573–584, Mar./Apr. 1979.

[21] M. H. Haque, “Damping improvement by FACTS devices: A compar-
ison between STATCOM and SSSC,” Elect. Power Syst. Res., vol. 76,
pp. 865–872, 2006.

[22] F. L. Alvarado, J. Meng, C. L. DeMarco, and W. S. Mota, “Stability
analysis of interconnected power systems coupled with market dy-
namics,” IEEE Trans. Power Syst., vol. 16, no. 4, pp. 695–701, Nov.
2001.

[23] P. Forsyth, T. Maguire, and R. Kuffel, “Real time digital simulation
for control and protection system testing,” in Proc. 35th Annu. IEEE
Power Electronics Specialists Conf., Jun. 20–25, 2004, pp. 329–335.

[24] “OMNIBUS User’s Manual,” Innovative Integration, Simi Valley, CA,
Feb. 2001.

Wei Qiao (S’05–M’08) received the B.Eng. and
M.Eng. degrees in electrical engineering from
Zhejiang University, Hangzhou, China, in 1997 and
2002, respectively, the M.S. degree in high-perfor-
mance computation for engineered systems from
the Singapore–MIT Alliance (SMA), Singapore, in
2003, and the Ph.D. degree in electrical engineering
from the Georgia Institute of Technology, Atlanta, in
2008.

From 1997 to 1999, he was an Electrical Engineer
with China Petroleum & Chemical Corporation

(Sinopec). Currently, he is an Assistant Professor of Electrical Engineering at
the University of Nebraska-Lincoln. His research interests include renewable
energy systems and distributed generation, microgrids, power system control,
stability and performance optimization, power electronics, electric machines,
flexible ac transmission system devices, and the application of computational
intelligence in electric power and energy systems. He is the first author of
two book chapters, 11 refereed journal papers, and more than 20 refereed
international conference proceeding papers.

Dr. Qiao is the Technical Program Co-Chair of the 2009 IEEE Symposium
on Power Electronics and Machines in Wind Applications. He was the recipient
of the first price in the Student Paper and Poster Competition of the IEEE Power
Engineering Society General Meeting 2006 in Montreal, QC, Canada.

Ganesh Kumar Venayagamoorthy
(S’91–M’97–SM’02) received the Ph.D. degree
in electrical engineering from the University of
KwaZulu Natal, Durban, South Africa, in 2002.

Currently, he is an Associate Professor of Elec-
trical and Computer Engineering and the Director
of the Real-Time Power and Intelligent Systems
Laboratory at the Missouri University of Science
and Technology (Missouri S&T), Rolla. He was a
Visiting Researcher with ABB Corporate Research,
Vasteras, Sweden, in 2007. His research interests

are the development and applications of computational intelligence for power
systems stability and control, alternative sources of energy, and FACTS devices.
He has published two edited books, five book chapters, 57 refereed journal
papers, and more than 200 refereed international conference proceeding papers.
He has attracted in excess of U.S.$4 million in competitive research funding
from external funding agencies.

Dr. Venayagamoorthy is the Chair of the Working Group on Intelligent Con-
trol Systems and the Secretary of the Intelligent Systems subcommittee of the
IEEE Power Engineering Society. He is the General Chair of 2008 IEEE Swarm
Intelligence Symposium and the Program Chair of the 2009 IEEE-INNS Inter-
national Joint Conference on Neural Networks. He was a recipient of the 2007
U.S. Office of Naval Research Young Investigator Program Award, the 2004 Na-
tional Science Foundation CAREER Award, the 2006 IEEE Power Engineering
Society Walter Fee Outstanding Young Engineer Award, the 2005 IEEE Industry
Applications Society (IAS) Outstanding Young Member Award, the 2003 INNS
Young Investigator Award, and a 2007/2005 Missouri S&T Faculty Excellence
Award.

Ronald G. Harley (M’77–SM’86–F’92) received
the M.Sc.Eng. degree (Hons.) in electrical engi-
neering from the University of Pretoria, Pretoria,
South Africa, in 1965, and the Ph.D. degree in elec-
trical engineering from London University, London,
U.K., in 1969.

In 1971, he was appointed Chair of Electrical
Machines and Power Systems at the University of
Natal in Durban, Durban, South Africa. Currently, he
is the Duke Power Company Distinguished Professor
at the Georgia Institute of Technology, Atlanta. His

research interests include the dynamic behavior and condition monitoring of
electric machines, motor drives, power systems and their components, and
controlling them with the use of power electronics and intelligent control
algorithms. He has coauthored approximately 400 papers in refereed journals
and international conferences and three patents. During 2000 and 2001,
he was one of the IEEE Industry Applications Society’s six Distinguished
Lecturers. In 2005, he received The Cyril Veinott Electromechanical Energy
Conversion Award from the IEEE Power Engineering Society for “Outstanding
contributions to the field of electromechanical energy conversion.”


	Missing-Sensor-Fault-Tolerant Control for SSSC FACTS Device With Real-Time Implementation
	

	untitled

