
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Faculty Publications from the Department of 
Electrical and Computer Engineering 

Electrical & Computer Engineering, Department 
of 

2009 

The Impact of QoS Constraints on the Energy Efficiency of Fixed-The Impact of QoS Constraints on the Energy Efficiency of Fixed-

Rate Wireless Transmissions Rate Wireless Transmissions 

Deli Qiao 
University of Nebraska-Lincoln, dlqiao@ce.ecnu.edu.cn 

M. Cenk Gursoy 
University of Nebraska-Lincoln, gursoy@engr.unl.edu 

Senem Velipasalar 
University of Nebraska-Lincoln, velipasa@engr.unl.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/electricalengineeringfacpub 

 Part of the Electrical and Computer Engineering Commons 

Qiao, Deli; Cenk Gursoy, M.; and Velipasalar, Senem, "The Impact of QoS Constraints on the Energy 
Efficiency of Fixed-Rate Wireless Transmissions" (2009). Faculty Publications from the Department of 
Electrical and Computer Engineering. 127. 
https://digitalcommons.unl.edu/electricalengineeringfacpub/127 

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from 
the Department of Electrical and Computer Engineering by an authorized administrator of 
DigitalCommons@University of Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17239191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/electricalengineeringfacpub
https://digitalcommons.unl.edu/electricalengineeringfacpub
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineeringfacpub?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/electricalengineeringfacpub/127?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages


IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 12, DECEMBER 2009 5957

The Impact of QoS Constraints on the Energy
Efficiency of Fixed-Rate Wireless Transmissions

Deli Qiao, Student Member, IEEE, Mustafa Cenk Gursoy, Member, IEEE, and Senem Velipasalar, Member, IEEE

Abstract—Transmission over wireless fading channels under
quality of service (QoS) constraints is studied when only the
receiver has channel side information. Being unaware of the
channel conditions, transmitter is assumed to send the infor-
mation at a fixed rate. Under these assumptions, a two-state
(ON-OFF) transmission model is adopted, where information is
transmitted reliably at a fixed rate in the ON state while no
reliable transmission occurs in the OFF state. QoS limitations
are imposed as constraints on buffer violation probabilities, and
effective capacity formulation is used to identify the maximum
throughput that a wireless channel can sustain while satisfying
statistical QoS constraints. Energy efficiency is investigated by
obtaining the bit energy required at zero spectral efficiency and
the wideband slope in both wideband and low-power regimes
assuming that the receiver has perfect channel side information
(CSI). Initially, the wideband regime with multipath sparsity
is investigated, and the minimum bit energy and wideband
slope expressions are found. It is shown that the minimum bit
energy requirements increase as the QoS constraints become
more stringent. Subsequently, the low-power regime, which is
also equivalent to the wideband regime with rich multipath
fading, is analyzed. In this case, bit energy requirements are
quantified through the expressions of bit energy required at zero
spectral efficiency and wideband slope. It is shown for a certain
class of fading distributions that the bit energy required at zero
spectral efficiency is indeed the minimum bit energy for reliable
communications. Moreover, it is proven that this minimum bit
energy is attained in all cases regardless of the strictness of
the QoS limitations. The impact upon the energy efficiency of
multipath sparsity and richness is quantified, and comparisons
with variable-rate/fixed-power and variable-rate/variable-power
cases are provided.

Index Terms—Bit energy, effective capacity, energy efficiency,
fading channels, fixed-rate transmission, low-power regime, min-
imum bit energy, QoS constraints, spectral efficiency, wideband
regime, wideband slope.

I. INTRODUCTION

THE two key characteristics of wireless communications
that most greatly impact system design and performance

are 1) the randomly-varying channel conditions and 2) lim-
ited energy resources. In wireless systems, the power of the
received signal fluctuates randomly over time due to mobility,
changing environment, and multipath fading caused by the
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constructive and destructive superimposition of the multipath
signal components [22]. These random changes in the received
signal strength lead to variations in the instantaneous data rates
that can be supported by the channel. In addition, mobile
wireless systems can only be equipped with limited energy
resources, and hence energy efficient operation is a crucial
requirement in most cases.

To measure and compare the energy efficiencies of dif-
ferent systems and transmission schemes, one can choose
as a metric the energy required to reliably send one bit of
information. Information-theoretic studies show that energy-
per-bit requirement is generally minimized, and hence the
energy efficiency is maximized, if the system operates at low
signal-to-noise ratio (SNR) levels and hence in the low-power
or wideband regimes. Recently, Verdú in [1] has determined
the minimum bit energy required for reliable communication
over a general class of channels, and studied the spectral
efficiency–bit energy tradeoff in the wideband regime while
also providing novel tools that are useful for analysis at low
SNRs.

In many wireless communication systems, in addition to
energy-efficient operation, satisfying certain quality of service
(QoS) requirements is of paramount importance in providing
acceptable performance and quality. For instance, in voice
over IP (VoIP), interactive-video (e.g,. videoconferencing),
and streaming-video applications in wireless systems, latency
is a key QoS metric and should not exceed certain levels
[23]. On the other hand, wireless channels, as described
above, are characterized by random changes in the channel,
and such volatile conditions present significant challenges in
providing QoS guarantees. In most cases, statistical, rather
than deterministic, QoS assurances can be given.

In summary, it is vital for an important class of wireless sys-
tems to operate efficiently while also satisfying QoS require-
ments (e.g., latency, buffer violation probability). Information
theory provides the ultimate performance limits and identifies
the most efficient use of resources. However, information-
theoretic studies and Shannon capacity formulation generally
do not address delay and quality of service (QoS) constraints
[2]. Recently, Wu and Negi in [4] defined the effective capacity
as the maximum constant arrival rate that a given time-
varying service process can support while providing statistical
QoS guarantees. Effective capacity formulation uses the large
deviations theory and incorporates the statistical QoS con-
straints by capturing the rate of decay of the buffer occupancy
probability for large queue lengths. Hence, effective capacity
can be regarded as the maximum throughput of a system
operating under limitations on the buffer violation probability.

1536-1276/09$25.00 c⃝ 2009 IEEE
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In the absence of such limitations, effective capacity special-
izes to the ergodic capacity. At the other extreme in which
deterministic, rather than statistical, limitations are imposed,
effective capacity specializes to the delay-limited capacity [3].
Hence, in general, effective capacity formulation, by providing
us the performance in the presence of soft constraints on the
queue length, enables us to fill in the gap between the results
obtained using ergodic and delay-limited capacities (see e.g.,
[14] for further discussion).

The analysis and application of effective capacity in various
settings have attracted much interest recently (see e.g., [5]–
[14] and references therein). For instance, Tang and Zhang in
[7] considered the effective capacity when both the receiver
and transmitter know the instantaneous channel gains, and
derived the optimal power and rate adaptation technique that
maximizes the system throughput under QoS constraints.
These results are extended to multichannel communication
systems in [8]. Liu et al. in [11] considered fixed-rate transmis-
sion schemes and analyzed the effective capacity and related
resource requirements for Markov wireless channel models. In
this work, the continuous-time Gilbert-Elliott channel with ON
and OFF states is adopted as the channel model while assum-
ing the fading coefficients as zero-mean Gaussian distributed.
A study of cooperative networks operating under QoS con-
straints is provided in [12]. In [14], we investigated the energy
efficiency under QoS constraints by analyzing the normalized
effective capacity (or equivalently the spectral efficiency) in
the low-power and wideband regimes. We considered variable-
rate/variable-power and variable-rate/fixed-power transmission
schemes assuming the availability of channel side information
at both the transmitter and receiver or only at the receiver.

In this paper, we consider a wireless communication sce-
nario in which only the receiver has the perfect channel side
information, and the transmitter, not knowing the channel
fading coefficients, sends the information at a fixed-rate with
fixed power. If the fixed-rate transmission cannot be supported
by the channel, we assume that outage occurs and information
has to be retransmitted. This is accomplished by employing a
simple automatic repeat request (ARQ) mechanism in which
the receiver at the end of each frame duration sends one
bit feedback to the transmitter, indicating the success or
failure of the transmission. Similarly as in [11], we consider
a channel model with ON and OFF states. In this scenario,
we investigate the energy efficiency under QoS constraints in
the low-power and wideband regimes by considering the bit
energy requirement defined as average energy normalized by
the effective capacity.

The rest of the paper is organized as follows. Section
II introduces the system model. In Section III, we briefly
describe the notion of effective capacity and the spectral
efficiency–bit energy tradeoff. In Section IV, we analyze the
energy efficiency in the wideband regime under the assump-
tion of sparse multipath fading. Energy efficiency in the low-
power regime is investigated in Section V. Finally, Section
VI provides conclusions while proofs of several theorems are
relegated to the Appendix.

Fig. 1. The general system model.

II. SYSTEM MODEL

We consider a point-to-point wireless link in which there
is one source and one destination. The system model is
depicted in Figure 1. It is assumed that the source generates
data sequences which are divided into frames of duration 𝑇 .
These data frames are initially stored in the buffer before they
are transmitted over the wireless channel. The discrete-time
channel input-output relation in the 𝑖th symbol duration is
given by

𝑦[𝑖] = ℎ[𝑖]𝑥[𝑖] + 𝑛[𝑖] 𝑖 = 1, 2, . . . . (1)

where 𝑥[𝑖] and 𝑦[𝑖] denote the complex-valued channel input
and output, respectively. We assume that the bandwidth avail-
able in the system is 𝐵 and the channel input is subject to the
following average energy constraint: 𝔼{∣𝑥[𝑖]∣2} ≤ 𝑃/𝐵 for
all 𝑖. Since the bandwidth is 𝐵, symbol rate is assumed to be
𝐵 complex symbols per second, indicating that the average
power of the system is constrained by 𝑃 . Above in (1), 𝑛[𝑖] is
a zero-mean, circularly symmetric, complex Gaussian random
variable with variance 𝔼{∣𝑛[𝑖]∣2} = 𝑁0. The additive Gaussian
noise samples {𝑛[𝑖]} are assumed to form an independent and
identically distributed (i.i.d.) sequence. Finally, ℎ[𝑖] denotes
the channel fading coefficient, and {ℎ[𝑖]} is a stationary
and ergodic discrete-time process. We denote the magnitude-
square of the fading coefficients by 𝑧[𝑖] = ∣ℎ[𝑖]∣2.

In this paper, we consider the scenario in which the receiver
has perfect channel side information and hence perfectly
knows the instantaneous values of {ℎ[𝑖]} while the transmitter
has no such knowledge. In this case, the instantaneous channel
capacity with channel gain 𝑧[𝑖]=∣ℎ[𝑖]∣2 is

𝐶[𝑖] = 𝐵 log2(1 + SNR𝑧[𝑖]) bits/s (2)

where SNR = 𝑃/(𝑁0𝐵) is the average transmitted signal-to-
noise ratio. Since the transmitter is unaware of the channel
conditions, information is transmitted at a fixed rate of 𝑟
bits/s. When 𝑟 < 𝐶, the channel is considered to be in
the ON state and reliable communication is achieved at this
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Fig. 2. ON-OFF state transition model.

rate. From information-theoretic arguments, this is possible if
strong codes with large blocklength is employed in the system.
Since there are 𝑇𝐵 symbols in each block, we assume 𝑇𝐵
is large enough to establish reliable communication. If, on
the other hand, 𝑟 ≥ 𝐶, outage occurs. In this case, channel
is in the OFF state and reliable communication at the rate
of 𝑟 bits/s cannot be attained. Hence, effective data rate is
zero and information has to be resent. We assume that a
simple ARQ mechanism is incorporated in the communication
protocol to acknowledge the reception of data and to ensure
that the erroneous data is retransmitted [11].

Fig. 2 depicts the two-state transmission model together
with the transition probabilities. In this paper, we assume that
the channel fading coefficients stay constant over the frame
duration 𝑇 . Hence, the state transitions occur at every 𝑇
seconds. Now, the probability of staying in the ON state, 𝑝22,
is defined as follows1:

𝑝22 = 𝑃{𝑟 < 𝐶[𝑖+ 𝑇𝐵]
∣∣ 𝑟 < 𝐶[𝑖]}

= 𝑃{𝑧[𝑖+ 𝑇𝐵] > 𝛼
∣∣ 𝑧[𝑖] > 𝛼} (3)

where

𝛼 =
2

𝑟
𝐵 − 1

SNR
. (4)

Note that 𝑝22 depends on the joint distribution of (𝑧[𝑖 +
𝑇𝐵], 𝑧[𝑖]). For the Rayleigh fading channel, the joint density
function of the fading amplitudes can be obtained in closed-
form [18]. In this paper, with the goal of simplifying the
analysis and providing results for arbitrary fading distributions,
we assume that fading realizations are independent for each
frame2. Hence, we basically consider a block-fading channel
model. Note that in block-fading channels, the duration 𝑇 over
which the fading coefficients stay constant can be varied to
model fast or slow fading scenarios.

Under the block fading assumption, we now have 𝑝22 =
𝑃{𝑧[𝑖 + 𝑇𝐵] > 𝛼} = 𝑃{𝑧 > 𝛼}. Similarly, the other
transition probabilities become

𝑝11 = 𝑝21 = 𝑃{𝑧 ≤ 𝛼} =

∫ 𝛼

0

𝑝𝑧(𝑧)𝑑𝑧 and

𝑝22 = 𝑝12 = 𝑃{𝑧 > 𝛼} =

∫ ∞

𝛼

𝑝𝑧(𝑧)𝑑𝑧 (5)

where 𝑝𝑧 is the probability density function of 𝑧. Throughout
the paper, we assume that both 𝑝𝑧(𝑧) and the cumulative

1The formulation in (3) assumes as before that the symbol rate is 𝐵
symbols/s and hence we have 𝑇𝐵 symbols in a duration of 𝑇 seconds.

2This assumption also enables us to compare the results of this paper with
those in [14] in which variable-rate/variable-power and variable-rate/fixed-
power transmission schemes are studied for block fading channels.

distribution function 𝑃{𝑧 ≤ 𝛼} are differentiable. We finally
note that 𝑟𝑇 bits are successfully transmitted and received in
the ON state, while the effective transmission rate in the OFF
state is zero.

III. PRELIMINARIES – EFFECTIVE CAPACITY AND

SPECTRAL EFFICIENCY-BIT ENERGY TRADEOFF

In [4], Wu and Negi defined the effective capacity as the
maximum constant arrival rate3 that a given service process
can support in order to guarantee a statistical QoS requirement
specified by the QoS exponent 𝜃. If we define 𝑄 as the
stationary queue length, then 𝜃 is the decay rate of the tail
of the distribution of the queue length 𝑄:

lim
𝑞→∞

log𝑃{𝑄 ≥ 𝑞}
𝑞

= −𝜃. (6)

Therefore, for large 𝑞max, we have the following approxima-
tion for the buffer violation probability: 𝑃{𝑄 ≥ 𝑞max} ≈
𝑒−𝜃𝑞𝑚𝑎𝑥 . Hence, while larger 𝜃 corresponds to more strict
QoS constraints, smaller 𝜃 implies looser QoS guarantees.
Moreover, if 𝐷 denotes the steady-state delay experienced in
the buffer, then it is shown in [13] that 𝑃{𝐷 ≥ 𝑑max} ≤
𝑐
√
𝑃{𝑄 ≥ 𝑞max} for constant arrival rates. This result pro-

vides a link between the buffer and delay violation probabil-
ities. In the above formulation, 𝑐 is some positive constant,
𝑞max = 𝑎𝑑max, and 𝑎 is the source arrival rate. Therefore,
effective capacity provides the maximum arrival rate when
the system is subject to statistical queue length or delay
constraints in the forms of 𝑃{𝑄 ≥ 𝑞max} ≤ 𝑒−𝜃𝑞𝑚𝑎𝑥 or
𝑃{𝐷 ≥ 𝑑max} ≤ 𝑐 𝑒−𝜃𝑎𝑑𝑚𝑎𝑥/2, respectively. Since the
average arrival rate is equal to the average departure rate when
the queue is in steady-state [17], effective capacity can also
be seen as the maximum throughput in the presence of such
constraints. We also note that effective capacity characterizes
the performance in the large-queue-length regime. If the queue
length is finite and small, supported arrival rates will be
smaller than predicted by the effective capacity. Additionally,
in such cases, packet and data loss events, occurring when
the queue is full, should also be explicitly considered. Hence,
systems with limited queue length require in general more
energy, and results presented in this paper in the large-queue-
length regime can be regarded as fundamental limits that can
be used as benchmarks for such systems.

The effective capacity for a given QoS exponent 𝜃 is
obtained from

− lim
𝑡→∞

1

𝜃𝑡
log𝑒 𝔼{𝑒−𝜃𝑆[𝑡]} def

= −Λ(−𝜃)

𝜃
(7)

where 𝑆[𝑡] =
∑𝑡

𝑘=1𝑅[𝑘] is the time-accumulated service
process and {𝑅[𝑘], 𝑘 = 1, 2, . . .} denote the discrete-time,
stationary and ergodic stochastic service process. Note that
in the model we consider, 𝑅[𝑘] = 𝑟𝑇 or 0 depending on the
channel state being ON or OFF, respectively. In [15] and [16,
Section 7.2, Example 7.2.7], it is shown that for such an ON-
OFF model, Λ(𝜃)

𝜃 is given by (8) on the next page.
Using the formulation in (8) and noting that 𝑝11+𝑝22 = 1 in

our model, we express the effective capacity normalized by the

3For time-varying arrival rates, effective capacity specifies the effective
bandwidth of the arrival process that can be supported by the channel.
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Λ(𝜃)

𝜃
=

1

𝜃
log𝑒

(1
2

(
𝑝11 + 𝑝22𝑒

𝜃𝑇𝑟 +
√
(𝑝11 + 𝑝22𝑒𝜃𝑇𝑟)2 + 4(𝑝11 + 𝑝22 − 1)𝑒𝜃𝑇𝑟

))
. (8)

frame duration 𝑇 and bandwidth 𝐵, or equivalently spectral
efficiency in bits/s/Hz, for a given statistical QoS constraint
𝜃, as

R𝐸(SNR, 𝜃)

=
1

𝑇𝐵
max
𝑟≥0

{
− Λ(−𝜃)

𝜃

}
(9)

= max
𝑟≥0

{
− 1

𝜃𝑇𝐵
log𝑒

(
𝑝11 + 𝑝22𝑒

−𝜃𝑇𝑟
)}

(10)

= max
𝑟≥0

{
− 1

𝜃𝑇𝐵
log𝑒

(
1− 𝑃{𝑧 > 𝛼}(1− 𝑒−𝜃𝑇𝑟)

)}
(11)

= − 1

𝜃𝑇𝐵
log𝑒

(
1− 𝑃{𝑧 > 𝛼opt}

(
1− 𝑒−𝜃𝑇𝑟opt

))
bits/s/Hz

(12)

where 𝑟opt is the maximum fixed transmission rate that solves
(11) and 𝛼opt = (2

𝑟opt
𝐵 − 1)/SNR. Note that both 𝛼opt and 𝑟opt

are functions of SNR and 𝜃.

The normalized effective capacity, R𝐸 , provides the maxi-
mum throughput under statistical QoS constraints in the fixed-
rate transmission model. It can be easily shown that

lim
𝜃→0

R𝐸(SNR, 𝜃) = max
𝑟≥0

𝑟

𝐵
𝑃{𝑧 > 𝛼}. (13)

Hence, as the QoS requirements relax, the maximum constant
arrival rate approaches the average transmission rate. On the
other hand, for 𝜃 > 0, R𝐸 < 1

𝐵 max𝑟≥0 𝑟𝑃{𝑧 > 𝛼} in order
to avoid violations of QoS constraints.

In this paper, we focus on the energy efficiency of wire-
less transmissions under the aforementioned statistical QoS
limitations. Since energy efficient operation generally requires
operation at low-SNR levels, our analysis throughout the paper
is carried out in the low-SNR regime. In this regime, the trade-
off between the normalized effective capacity (i.e, spectral
efficiency) R𝐸 and bit energy 𝐸𝑏

𝑁0
= SNR

R𝐸(SNR) is a key tradeoff
in understanding the energy efficiency, and is characterized by
the bit energy at zero spectral efficiency and wideband slope
provided, respectively, by

𝐸𝑏

𝑁0

∣∣∣∣
R𝐸=0

= lim
SNR→0

SNR

R𝐸(SNR)
=

1

Ṙ𝐸(0)
, and

𝒮0 = −2(Ṙ𝐸(0))
2

R̈𝐸(0)
log𝑒 2

(14)

where Ṙ𝐸(0) and R̈𝐸(0) are the first and second derivatives
with respect to SNR, respectively, of the function R𝐸(SNR) at

zero SNR [1]. 𝐸𝑏

𝑁0

∣∣∣
R𝐸=0

and 𝒮0 provide a linear approximation

of the spectral efficiency curve at low spectral efficiencies, i.e.,

R𝐸

(
𝐸𝑏

𝑁0

)
=

𝒮0

10 log10 2

(
𝐸𝑏

𝑁0

∣∣∣∣
𝑑𝐵

− 𝐸𝑏

𝑁0

∣∣∣∣
R𝐸=0,𝑑𝐵

)
+ 𝜖

(15)

where 𝜖 = 𝑜

(
𝐸𝑏

𝑁0
− 𝐸𝑏

𝑁0

∣∣∣∣
R𝐸=0

)
.

Above, 𝐸𝑏

𝑁0

∣∣∣
𝑑𝐵

= 10 log10
𝐸𝑏

𝑁0
. When the spectral efficiency

R𝐸 is a non-decreasing concave function of SNR, the bit energy
𝐸𝑏

𝑁0
diminishes with decreasing spectral efficiency. Hence, in

this case, the bit energy required at zero spectral efficiency is
indeed the minimum one, i.e., 𝐸𝑏

𝑁0

∣∣∣
R𝐸=0

= 𝐸𝑏

𝑁0 min
.

IV. ENERGY EFFICIENCY IN THE WIDEBAND REGIME –
SPARSE MULTIPATH FADING CASE

In this section, we consider the wideband regime in which
the bandwidth is large. We assume that the average power
𝑃 is kept constant. Note that as the bandwidth 𝐵 increases,
SNR = 𝑃

𝑁0𝐵
approaches zero and we operate in the low-SNR

regime.
Following the approach generally employed in information-

theoretic analyses, we assume that the wideband channel is
decomposed into 𝑁 parallel subchannels. We further assume
that each subchannel has a bandwidth that is equal to the
coherence bandwidth, 𝐵𝑐. Therefore, independent flat-fading
is experienced in each subchannel, and we have 𝐵 = 𝑁𝐵𝑐.
Similar to (1), the input-output relation in the 𝑘th subchannel
can be written as

𝑦𝑘[𝑖] = ℎ𝑘[𝑖]𝑥𝑘[𝑖] + 𝑛𝑘[𝑖] 𝑖 = 1, 2, . . . and 𝑘 = 1, 2, . . . , 𝑁.
(16)

The fading coefficients {ℎ𝑘}𝑛𝑘=1 in different subchannels are
assumed to be independent. The signal-to-noise ratio in the
𝑘th subchannel is SNR𝑘 = 𝑃𝑘

𝑁0𝐵𝑐
where 𝑃𝑘 denotes the power

allocated to the 𝑘th subchannel and we have
∑𝑁

𝑘=1 𝑃𝑘 = 𝑃 .
Over each subchannel, the same transmission strategy as
described in Section II is employed. Therefore, the transmitter,
not knowing the fading coefficients of the subchannels, sends
the data over each subchannel at the fixed rate of 𝑟. If 𝑟 <
𝐵𝑐 log(1 + SNR𝑘𝑧𝑘[𝑖]) where 𝑧𝑘 = ∣ℎ𝑘∣2, then transmission
over the 𝑘th subchannel is successful. Otherwise, retransmis-
sion is required. Hence, we have an ON-OFF state model for
each subchannel. On the other hand, for the transmission over
𝑁 subchannels, we have a state-transition model with 𝑁 + 1
states because we have overall the following 𝑁 + 1 possible
total transmission rates: {0, 𝑟𝑇, 2𝑟𝑇, . . . , 𝑁𝑟𝑇 }. For instance,
if all 𝑁 subchannels are in the OFF state simultaneously, the
total rate is zero. If 𝑗 out of 𝑁 subchannels are in the ON
state, then the rate is 𝑗𝑟𝑇 .

Now, assume that the states are enumerated in the increasing
order of the total transmission rates supported by them. Hence,
in state 𝑗 ∈ {1, . . . , 𝑁+1}, the transmission rate is (𝑗−1)𝑟𝑇 .
The transition probability from state 𝑖 ∈ {1, . . . , 𝑁 + 1} to
state 𝑗 ∈ {1, . . . , 𝑁 + 1} is given by (17) on the next page
where ℐ𝑗−1 denotes a subset of the index set {1, . . . , 𝑁} with
𝑗−1 elements. The summation in (17) is over all such subsets.
Moreover, in (17), ℐ𝑐

𝑗−1 denotes the complement of the set

ℐ𝑗−1, and 𝛼𝑘 = 2
𝑟

𝐵𝑐 −1
SNR𝑘

. Note in the above formulation that
the transition probabilities, 𝑝𝑖𝑗 , do not depend on the initial
state 𝑖 due to the block-fading assumption. If, in addition to
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𝑝𝑖𝑗 = 𝑝𝑗 = 𝑃{(𝑗 − 1) subchannels out of 𝑁 subchannels are in the ON state}

=
∑

ℐ𝑗−1⊂{1,...,𝑁}

⎛
⎝ ∏

𝑘∈ℐ𝑗−1

𝑃{𝑧𝑘 > 𝛼𝑘}
∏

𝑘∈ℐ𝑐
𝑗−1

(1− 𝑃{𝑧𝑘 > 𝛼𝑘})
⎞
⎠ (17)

being independent, the fading coefficients and hence {𝑧𝑘}𝑁𝑘=1

in different subchannels are identically distributed, then 𝑝𝑖𝑗 in
(17) simplifies and becomes a binomial probability:

𝑝𝑖𝑗 = 𝑝𝑗 =

(
𝑁

𝑗 − 1

)
(𝑃{𝑧 > 𝛼})𝑗−1

(1− 𝑃{𝑧 > 𝛼})𝑁−𝑗+1
.

(18)

Note that if the fading coefficients are i.i.d., the total power
should be uniformly distributed over the subchannels. Hence,
in this case, we have 𝑃𝑘 = 𝑃

𝑁 and therefore SNR𝑘 = 𝑃𝑘

𝑁0𝐵𝑐
=

𝑃/𝑁
𝑁0𝐵/𝑁 = 𝑃

𝑁0𝐵
= SNR which is equal to the original SNR

definition used in (2). Now, we have the same 𝛼 = 2
𝑟

𝐵𝑐
−1

SNR for
each subchannel.

The effective capacity of this wideband channel model is
given by the following result.

Theorem 1: For the wideband channel with 𝑁 parallel
noninteracting subchannels each with bandwidth 𝐵𝑐 and in-
dependent flat fading, the normalized effective capacity in
bits/s/Hz is

R𝐸(SNR, 𝜃)

= max
𝑟≥0

𝑃𝑘≥0 s.t.
∑

𝑃𝑘≤𝑃

⎧⎨
⎩− 1

𝜃𝑇𝐵
log𝑒

⎛
⎝𝑁+1∑

𝑗=1

𝑝𝑗 𝑒
−𝜃(𝑗−1)𝑟𝑇

⎞
⎠
⎫⎬
⎭
(19)

where 𝑝𝑗 is given in (17). If {𝑧𝑘}𝑁𝑘=1 are identically dis-
tributed, then the normalized effective capacity expression
simplifies to

R𝐸(SNR, 𝜃)

= max
𝑟≥0

{
− 1

𝜃𝑇𝐵𝑐
log𝑒

(
1− 𝑃{𝑧 > 𝛼}(1− 𝑒−𝜃𝑇𝑟)

)}
.

(20)

where 𝛼 = 2
𝑟

𝐵𝑐 −1
SNR and SNR = 𝑃

𝑁0𝐵
.

Proof : See Appendix A.
Theorem 1 shows that the effective capacity of a wideband

channel with 𝑁 subchannels each with i.i.d. flat fading has an
expression similar to that in (11), which provides the effective
capacity of a single channel experiencing flat fading. The only
difference between (11) and (20) is that 𝐵 is replaced in (20)
by 𝐵𝑐, which is the bandwidth of each subchannel.

In this section, we consider the wideband regime in which
the overall bandwidth of the system, 𝐵, is large. In particular,
we analyze the performance in the scenario of sparse mul-
tipath fading. Motivated by the recent measurement studies
in the ultrawideband regime, the authors in [19] and [20]
considered sparse multipath fading channels and analyzed
the performance under channel uncertainty, employing the
Shannon capacity formulation as the performance metric. In

particular, [19] and [20] noted that the number of independent
resolvable paths in sparse multipath channels increase at
most sublinearly with the bandwidth, which in turn causes
the coherence bandwidth 𝐵𝑐 to increase with increasing
bandwidth. To characterize the performance of sparse fading
channels in the wideband regime, we assume in this section
that 𝐵𝑐 → ∞ as 𝐵 → ∞. We further assume that the
the number of subchannels 𝑁 remains bounded and hence
the degrees of freedom are limited. For instance, this case
arises if the number of resolvable paths are bounded even at
infinite bandwidth. Such a scenario is considered in [21] where
the capacity and mutual information are characterized under
channel uncertainty in the wideband regime with bounded
number of paths.

The case of rich multipath fading in which 𝐵𝑐 remains
fixed and 𝑁 grows without bound and the scenario in which
both 𝐵𝑐 and 𝑁 increase to infinity are treated in Section V
because each subchannel in these cases operates in the low-
power regime as 𝑁 increases.

We first introduce the notation 𝜁 = 1
𝐵𝑐

. Note that as
𝐵𝑐 → ∞, we have 𝜁 → 0. Moreover, with this notation, the
normalized effective capacity in (20) given for i.i.d. fading
can, after maximization, be expressed as4

R𝐸(SNR) = − 𝜁

𝜃𝑇
log𝑒

(
1− 𝑃{𝑧 > 𝛼opt}

(
1− 𝑒−𝜃𝑇𝑟opt

))
.

(21)
Note that 𝛼opt and 𝑟opt are also in general dependent on 𝐵𝑐

and hence 𝜁. The following result provides the expressions for
the minimum bit energy, which is achieved at zero spectral
efficiency (i.e., as 𝐵 → ∞ and 𝐵𝑐 → ∞), and the wideband
slope, and characterizes the spectral efficiency-bit energy
tradeoff in the wideband regime when multipath fading is
sparse, the number of subchannels is bounded, and the fading
coefficients are i.i.d. in different subchannels.

Theorem 2: In sparse multipath fading wideband channels
with bounded number of subchannels each with i.i.d. fading
coefficients, the minimum bit energy and wideband slope are
given by

𝐸𝑏

𝑁0 min

=
−𝛿 log𝑒 2

log𝑒 𝜉
and (22)

𝒮0 =
2𝜉 log2𝑒 𝜉

(𝛿𝛼∗
opt)

2𝑃{𝑧 > 𝛼∗
opt}𝑒−𝛿𝛼∗

opt
, (23)

respectively, where 𝛿 = 𝜃𝑇𝑃
𝑁𝑁0 log𝑒 2 and 𝜉 = 1 − 𝑃{𝑧 >

𝛼∗
opt}(1 − 𝑒−𝛿𝛼∗

opt). 𝛼∗
opt is defined as 𝛼∗

opt = lim𝜁→0 𝛼opt and

4Since the results in the paper are generally obtained for fixed but arbitrary
𝜃, the normalized effective capacity is often expressed in the paper as
R𝐸(SNR) instead of R𝐸(SNR, 𝜃) to avoid cumbersome expressions.
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Fig. 3. Spectral efficiency vs. 𝐸𝑏/𝑁0 in the Rayleigh channel.

𝛼∗
opt satisfies

𝛿𝛼∗
opt = log𝑒

(
1 + 𝛿

𝑃{𝑧 > 𝛼∗
opt}

𝑝𝑧(𝛼∗
opt)

)
. (24)

Proof: See Appendix B.
Remark: Theorem 2, through the minimum bit energy

and wideband slope expressions, quantifies the bit energy
requirements in the wideband regime when the system is
operating subject to statistical QoS constraints specified by 𝜃.
Note that both 𝐸𝑏

𝑁0 min
and 𝒮0 depend on the QoS exponent 𝜃

through 𝛿. As will be observed in the numerical results, 𝐸𝑏

𝑁0 min
and the bit energy requirements at nonzero spectral efficiency
values generally increase with increasing 𝜃. Moreover, when
compared with the results in Section V, it will be seen that
sparse multipath fading and having a bounded number of
subchannels incur energy penalty in the presence of QoS
constraints while performances do not depend on the multipath
sparsity when there are no such constraints and hence 𝜃 = 0.

Having analytically characterized the spectral efficiency–bit
energy tradeoff in the wideband regime in Theorem 2, we
now provide numerical results to illustrate the theoretical
findings. Fig. 3 plots the spectral efficiency curves as a
function of the bit energy in the Rayleigh channel. In
all the curves, we have 𝑃/(𝑁𝑁0) = 104. Moreover,
we set 𝑇 = 2 ms in the numerical results throughout
the paper. As predicted by the result of Theorem 2,
𝐸𝑏

𝑁0

∣∣∣
R𝐸=0

= 𝐸𝑏

𝑁0 min
in all cases in Fig. 3. It can be found

that 𝛼∗
opt = {1, 0.9858, 0.8786, 0.4704, 0.1177} from which

we obtain 𝐸𝑏

𝑁0 min
= {2.75, 2.79, 3.114, 5.061, 10.087}dB for

𝜃 = {0, 0.001, 0.01, 0.1, 1}, respectively. For the same set of 𝜃
values in the same sequence, we compute the wideband slope
values as 𝒮0 = {0.7358, 0.7463, 0.8345, 1.4073, 3.1509}. We
immediately observe that more stringent QoS constraints and
hence higher values of 𝜃 lead to higher minimum bit energy
values and also higher energy requirements at other nonzero
spectral efficiencies. Fig. 4 provides the spectral efficiency
curves for Nakagami-𝑚 fading channels for different values
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Fig. 4. Spectral efficiency vs. 𝐸𝑏/𝑁0 in Nakagami-𝑚 channels; 𝜃 = 0.01,
𝑚 = 0.6, 1, 2, 5.

of 𝑚. In this figure, we set 𝜃 = 0.01. For 𝑚 = 0.6, 1, 2, 5,
we find that 𝛼∗

opt = {1.0567, 0.8786, 0.7476, 0.6974},
𝐸𝑏

𝑁0 min
= {3.618, 3.114, 2.407, 1.477}, and 𝒮0 =

{0.6382, 0.8345, 1.1220, 1.4583}, respectively. Note that
as 𝑚 increases and hence the channel conditions improve,
the minimum bit energy decreases and the wideband
slope increases, improving the energy efficiency both at zero
spectral efficiency and at nonzero but small spectral efficiency
values. As 𝑚 → ∞, the performance approaches that of the
unfaded additive Gaussian noise channel (AWGN) for which
we have 𝐸𝑏

𝑁0 min
= −1.59 dB and 𝒮0 = 2 [1].

V. ENERGY EFFICIENCY IN THE LOW-POWER REGIME

In this section, we investigate the spectral efficiency–bit
energy tradeoff in a single flat-fading channel as the average
power 𝑃 diminishes. We assume that the bandwidth allocated
to the channel is fixed. Note that SNR = 𝑃/(𝑁0𝐵) vanishes
with decreasing 𝑃 , and we again operate in the low-SNR

regime similarly as in Section IV. Note further from (12) that
the effective capacity of a flat-fading channel is given by

R𝐸(SNR) = − 1

𝜃𝑇𝐵
log𝑒

(
1− 𝑃{𝑧 > 𝛼opt}

(
1− 𝑒−𝜃𝑇𝑟opt

))
.

(25)

On the other hand, we remark that the results derived here
also apply to the wideband regime under the assumption that
the number of non-interacting subchannels increases without
bound with increasing bandwidth. Note that in such a case,
each subchannel operates in the low-power regime.

The following result provides the expressions for the bit
energy at zero spectral efficiency and the wideband slope.



QIAO et al.: THE IMPACT OF QOS CONSTRAINTS ON THE ENERGY EFFICIENCY OF FIXED-RATE WIRELESS TRANSMISSIONS 5963

Theorem 3: In the low-power regime, the bit energy at zero
spectral efficiency and wideband slope are given by

𝐸𝑏

𝑁0

∣∣∣∣
R𝐸=0

=
log𝑒 2

𝛼∗
opt𝑃{𝑧 > 𝛼∗

opt}
and (26)

𝒮0 =
2𝑃{𝑧 > 𝛼∗

opt}
1 + 𝛽(1 − 𝑃{𝑧 > 𝛼∗

opt})
, (27)

respectively, where 𝛽 = 𝜃𝑇𝐵
log𝑒 2 is the normalized QoS con-

straint. In the above formulation, 𝛼∗
opt is defined as 𝛼∗

opt =
limSNR→0 𝛼opt, and 𝛼∗

opt satisfies

𝛼∗
opt𝑝𝑧(𝛼

∗
opt) = 𝑃{𝑧 > 𝛼∗

opt}. (28)

Proof: See Appendix C.
Corollary 1: The same bit energy and wideband slope

expressions as in (26) and (27) are achieved in the wideband
regime as 𝐵 → ∞ if the fading coefficients in different
subchannels are i.i.d. and also if the number of subchannels
𝑁 increases linearly with increasing bandwidth (as in rich
multipath fading channels), keeping the coherence bandwidth
fixed.

Under the assumptions stated in Corollary 1, the effective
capacity is given by (20). Moreover, as 𝐵 → ∞, we have
𝐵𝑐 fixed while 𝑁 → ∞. Hence, SNR = 𝑃/𝑁

𝑁0𝐵𝑐
→ 0. This

setting is exactly the same as the low-power regime considered
in Theorem 3. Therefore, the results of Theorem 3 apply
immediately.

Next, we show that equation (28) that needs to be satisfied
by 𝛼∗

opt has a unique solution for a certain class of fading
distributions.

Theorem 4: Assume that the probability density function
of 𝑧, denoted by 𝑝𝑧(⋅), is differentiable, and both 𝑝𝑧(⋅) and
its derivative �̇�𝑧(⋅) at the origin do not contain impulses or
higher-order singularities and are finite. Assume further that
the support of 𝑝𝑧(⋅) is [0,∞). Under these assumptions, if
2𝑝𝑧(𝑥)+𝑥�̇�𝑧(𝑥) = 0 is solved at a single point 𝑥0 > 0 among
all 𝑥 ∈ (0,∞), then the equation 𝛼∗

opt𝑝𝑧(𝛼
∗
opt) = 𝑃{𝑧 > 𝛼∗

opt}
has a unique solution.

Proof : We first define 𝑓(𝑥) = 𝑥𝑝𝑧(𝑥) − 𝑃{𝑧 > 𝑥} for
𝑥 ≥ 0.Under the conditions stated in Theorem 4, we can easily
see that 𝑓(0) = −1 and 𝑓(∞) = 0. Moreover, 𝑓(𝑥) ≥ −1
for all 𝑥 ≥ 0 because 𝑝𝑧(𝑥) ≥ 0 and 𝑃{𝑧 > 𝑥} ≤ 1. It can
also be seen that

∫∞
0 𝑓(𝑥)𝑑𝑥 =

∫∞
0 𝑥𝑝𝑧(𝑥)𝑑𝑥 − ∫∞

0 𝑃{𝑧 >
𝑥}𝑑𝑥 = 𝐸{𝑧} − 𝐸{𝑧} = 0. Therefore, there exists 𝑥 > 0
such that 𝑓(𝑥) > 0.

Differentiating 𝑓(𝑥) with respect to 𝑥 gives 𝑓(𝑥) =
2𝑝𝑧(𝑥) + 𝑥�̇�𝑧(𝑥). Note that 𝑓(0) = 2𝑝𝑧(0) ≥ 0. Since
𝑓(𝑥) ≥ −1 and 𝑓(0) = −1, 𝑓 is necessarily an increasing
function initially. Hence, 𝑓(𝑥) > 0 for all 𝑥 ∈ (0, 𝑥0) where
𝑥0 is the point at which 𝑓(𝑥0) = 0. Since 𝑥0 is the only
positive point for which the derivative is zero, and 𝑓(𝑥) > 0
for some 𝑥 as discussed above and 𝑓(𝑥) has to approach zero
as 𝑥 → ∞, we conclude that 𝑓(𝑥) is a decreasing function for
all 𝑥 > 𝑥0, and hence 𝑓(𝑥) < 0 for all 𝑥 > 𝑥0. Otherwise,
if 𝑓(𝑥) > 0 for some 𝑥, 𝑓(𝑥) never becomes zero again,
and 𝑓(𝑥) increases indefinitely. Furthermore, we can see that
𝑓(𝑥) > 0 for all 𝑥 ≥ 𝑥0 because if 𝑓(𝑥) < 0 for some 𝑥 ≥ 𝑥0,
𝑓(𝑥) should start increasing to zero as 𝑥 → ∞. However, this
is not possible because 𝑓(𝑥) < 0 for all 𝑥 > 𝑥0.
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Fig. 5. The plots of the function 𝑓(𝑧) for Gamma distribution 𝑝𝑧(𝑧) =

𝑧𝛼−1𝑒
− 𝑧

𝛽

𝛽𝛼Γ(𝛼)
with 𝛼 = 𝛽 = 3, and Lognormal distribution 𝑝𝑧(𝑧) =

1
𝜎𝑥

√
2𝜋

𝑒
− (log𝑒 𝑥−𝑚)2

2𝜎2 with 𝜎 = 1, 𝑚 = 2.

Therefore, we have concluded that 𝑓(0) = −1 and 𝑓(𝑥)
is an increasing function in the range 𝑥 ∈ (0, 𝑥0). Moreover,
𝑓(𝑥0) > 0 and 𝑓(𝑥) decreases to zero without being negative
as 𝑥 → ∞. From this, we conclude that 𝑓(𝑥) intersects the
horizontal axis only once at an 𝑥 value in between 0 and 𝑥0.
Therefore, 𝑓(𝑥) = 0 has a unique solution. □

Remark: The conditions of Theorem 4 are satisfied by a
general class of distributions, including the Gamma distribu-
tion,

𝑝𝑧(𝑧) =
𝑧𝛼−1𝑒−

𝑧
𝛽

𝛽𝛼Γ(𝛼)
,

where 𝑧, 𝛼, 𝛽 > 0, and Lognormal distribution,

𝑝𝑧(𝑧) =
1

𝜎𝑧
√
2𝜋

𝑒−
(log𝑒 𝑧−𝑚)2

2𝜎2 ,

where 𝑧 > 0, −∞ < 𝑚 < ∞, and 𝜎 > 0. Note that in
Nakagami-𝑚 and Rayleigh fading channels, the distribution
of 𝑧 = ∣ℎ∣2 can be seen as special cases of the Gamma
distribution. In Fig. 5, where the function 𝑓(⋅) is plotted for
Gamma and Lognormal distributions, we indeed observe that
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these distributions satisfy the conditions of Theorem 4 and the
function 𝑓(⋅) is equal to zero at a unique point.

Remark: Theorem 3 shows that the 𝐸𝑏

𝑁0

∣∣∣
R𝐸=0

for any 𝜃 ≥ 0

depends only on 𝛼∗
opt. From Theorem 4, we know under certain

conditions that 𝛼∗
opt is unique and hence is the same for all 𝜃 ≥

0. We immediately conclude from these results that 𝐸𝑏

𝑁0

∣∣∣
R𝐸=0

also has the same value for all 𝜃 ≥ 0 and therefore does not
depend on 𝜃 for the class of distributions and channels given
in the above Remark.

Moreover, using the results of Theorem 4 above and The-
orem 2 in Section IV, we can further show that 𝐸𝑏

𝑁0

∣∣∣
R𝐸=0

is

the minimum bit energy. Note that this implies that the same
minimum bit energy can be attained regardless of how strict
the QoS constraint is. On the other hand, we note that the
wideband slope 𝒮0 in general varies with 𝜃.

Corollary 2: In the low-power regime, when 𝜃 = 0, the
minimum bit energy is achieved as 𝑃 → 0, i.e., 𝐸𝑏

𝑁0

∣∣∣
R𝐸=0

=

𝐸𝑏

𝑁0 min
. Moreover, if the probability density function of 𝑧

satisfies the conditions stated in Theorem 4, then the minimum
bit energy is achieved as 𝑃 → 0, i.e. 𝐸𝑏

𝑁0

∣∣∣
R𝐸=0

= 𝐸𝑏

𝑁0 min
, for

all 𝜃 ≥ 0.
Proof: Recall from (13) that in the limit as 𝜃 → 0,

R𝐸(SNR, 0) = lim
𝜃→0

R𝐸(SNR, 𝜃) = max
𝑟≥0

𝑟

𝐵
𝑃

{
𝑧 >

2
𝑟
𝐵 − 1

SNR

}
.

(29)

Since the optimization is performed over all 𝑟 ≥ 0, it can be
easily seen that the above maximization problem can be recast
as follows:

R𝐸(SNR, 0) = max
𝑥≥0

𝑥𝑃

{
𝑧 >

2𝑥 − 1

SNR

}
. (30)

From (30), we note that R𝐸(SNR, 0) depends on 𝐵 only
through SNR = 𝑃

𝑁0𝐵
. Therefore, increasing 𝐵 has the same

effect as decreasing 𝑃 . Hence, low-power and wideband
regimes are equivalent when 𝜃 = 0. Consequently, the result
of Theorem 2, which shows that the minimum bit energy is
achieved as 𝐵 → ∞, implies that the minimum bit energy is
also achieved as 𝑃 → 0.

Note that R𝐸(SNR, 𝜃) ≤ R𝐸(SNR, 0) for 𝜃 > 0. Therefore,
the bit energy required when 𝜃 > 0 is larger than that required
when 𝜃 = 0. On the other hand, as we have proven in Theorem
4, 𝛼∗

opt is unique and the bit energy required as 𝑃 → 0 is the
same for all 𝜃 ≥ 0 when 𝑝𝑧 satisfies certain conditions. Since
the minimum bit energy in the case of 𝜃 = 0 is achieved as
𝑃 → 0, and the same bit energy is attained for all 𝜃 > 0, we
immediately conclude that 𝐸𝑏

𝑁0

∣∣∣
R𝐸=0

= 𝐸𝑏

𝑁0 min
for all 𝜃 ≥ 0

□
Next, we provide numerical results which confirm the

theoretical conclusions and illustrate the impact of QoS con-
straints on the energy efficiency. We set 𝐵 = 105 Hz in the
computations. Fig. 6 plots the spectral efficiency as a function
of the bit energy for different values of 𝜃 in the Rayleigh
fading channel (or equivalently Nakagami-𝑚 fading channel
with 𝑚 = 1) for which 𝔼{∣ℎ∣2} = 𝔼{𝑧} = 1. In all cases in

Fig. 6, we readily note that 𝐸𝑏

𝑁0

∣∣∣
R𝐸=0

= 𝐸𝑏

𝑁0 min
. Moreover, as
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Fig. 6. Spectral efficiency vs. 𝐸𝑏/𝑁0 in the Rayleigh channel (equivalently
Nakagami-𝑚 channel with 𝑚 = 1).

predicted, the minimum bit energy is the same and is equal
to the one achieved when there are no QoS constraints (i.e.,
when 𝜃 = 0). From the equation 𝛼∗

opt𝑝𝑧(𝛼
∗
opt) = 𝑃{𝑧 > 𝛼∗

opt},
we can find that 𝛼∗

opt = 1 in the Rayleigh channel for which
𝑝𝑧(𝛼

∗
opt) = 𝑃{𝑧 > 𝛼∗

opt} = 𝑒−𝛼∗
opt . Hence, the minimum bit

energy is 𝐸𝑏

𝑁0 min
= 2.75 dB. On the other hand, the wideband

slopes are 𝒮0 = {0.7358, 0.6223, 0.2605, 0.0382, 0.0040} for
𝜃 = {0, 0.001, 0.01, 0.1, 1}, respectively. Hence, 𝒮0 decreases
with increasing 𝜃 and consequently more bit energy is required
at a fixed nonzero spectral efficiency. Assuming that the
minimum bit energies are the same and considering the linear
approximation in (15), we can easily show for fixed spectral
efficiency R𝐸

(
𝐸𝑏

𝑁0

)
for which the linear approximation is

accurate that the increase in the bit energy in dB, when the
QoS exponent increases from 𝜃1 to 𝜃2, is

𝐸𝑏

𝑁0

∣∣∣∣
𝑑𝐵,𝜃2

− 𝐸𝑏

𝑁0

∣∣∣∣
𝑑𝐵,𝜃1

=

(
1

𝒮0,𝜃2

− 1

𝒮0,𝜃1

)
R𝐸

(
𝐸𝑏

𝑁0

)
10 log10 2. (31)

As observed in Fig. 6 (and also as will be seen in Fig. 7),
spectral efficiency curves are almost linear in the low-power
regime, validating the accuracy of the linear approximation in
(15) obtained through 𝐸𝑏

𝑁0

∣∣∣
R𝐸=0

and 𝒮0.

Fig. 7 plots the spectral efficiency curves as a function
of the bit energy for Nakagami-𝑚 channels for different
values of 𝑚. 𝜃 is set to be 0.01. For 𝑚 = {0.6, 1, 2, 5},
we compute that 𝛼∗

opt = {1.2764, 1, 0.809, 0.7279},
𝐸𝑏

𝑁0 min
= {3.099, 2.751, 2.176, 1.343}, and 𝒮0 =

{0.1707, 0.2605, 0.4349, 0.7479}, respectively. We observe
that as 𝑚 increases and hence the channel quality improves,
lower bit energies are required. Finally, in Fig. 8, we
plot the spectral efficiency vs. 𝐸𝑏/𝑁0 for different
transmission strategies. The variable-rate/variable-power
and variable-rate/fixed-power strategies are studied in [14].
We immediately see that substantially more energy is required
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Fig. 7. Spectral efficiency vs. 𝐸𝑏/𝑁0 in Nakagami-𝑚 channels; 𝜃 = 0.01,
𝑚 = 0.6, 1, 2, 5.
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Fig. 8. Spectral efficiency vs. 𝐸𝑏/𝑁0 in the Rayleigh channel; 𝜃 = 0.001.

for fixed-rate/fixed-power transmission schemes considered
in this paper.

Remark: From the result of Corollary 1, we note that
the analytical and numerical results in this section apply to
wideband channels with rich multipath fading. Comparison of
Fig. 6 with Fig. 3, where sparse multipath fading scenario is
considered, leads to several insightful observations. Note that
in both figures, the performance is the same when 𝜃 = 0.
Hence, in the absence of QoS constraints, multipath sparsity
or richness has no effect. This also confirms the claim in the
proof of Corollary 2 that low-power and wideband regimes
are equivalent when 𝜃. However, we see a stark difference
when 𝜃 > 0. We observe that multipath sparsity and having
the number of subchannels bounded in the wideband regime
increases the bit energy requirements significantly especially
when 𝜃 is large. Moreover, while the minimum bit energy is
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Fig. 9. Spectral efficiency vs. 𝐸𝑏/𝑁0 in the Rayleigh channel. The number
of subchannels 𝑁 increases sublinearly with bandwidth.

the same for all 𝜃 in Fig. 6, the minimum bit energy increases
with increasing 𝜃 in Fig. 3.

In Section IV, the number of subchannels are assumed
to be bounded. In this section, we have considered the rich
multipath fading channels in which the number of subchannels
increases linearly with bandwidth. A scenario in between these
two cases is the one in which the number of subchannels
𝑁 increases but only sublinearly with increasing bandwidth.
As 𝑁 increases, each subchannel is allocated less power and
operate in the low-power regime. At the same time, since
𝑁 increases sublinearly with 𝐵, the coherence bandwidth
𝐵𝑐 = 𝐵/𝑁 also increases. Therefore, the minimum bit energy
and wideband slope expressions for this scenario can be
obtained by letting 𝐵 in the results of Theorem 3 go to infinity.
Note that under the conditions of Theorem 4, 𝛼∗

opt is unique
and hence does not depend on the bandwidth.

Corollary 3: In the wideband regime, if the number of
subchannels 𝑁 increases sublinearly with 𝐵 and if fading co-
efficients in different subchannels are i.i.d. and the probability
density function 𝑝𝑧 satisfies the conditions in Theorem 4, then
the minimum bit energy and wideband slope are given by

𝐸𝑏

𝑁0 min

=
log𝑒 2

𝛼∗
opt𝑃{𝑧 > 𝛼∗

opt}
and (32)

𝒮0 =

{
2𝑃{𝑧 > 𝛼∗

opt} 𝜃 = 0
0 𝜃 > 0

. (33)

In this result, we see that although the same minimum bit
energy is attained for all 𝜃 ≥ 0, approaching this minimum
energy level is extremely slow and demanding when 𝜃 > 0 due
to zero wideband slope. This result is illustrated numerically
in Fig. 9.

VI. CONCLUSION

In this paper, we have considered the effective capacity as
a measure of the maximum throughput under statistical QoS
constraints, and analyzed the energy efficiency of fixed-rate
transmission schemes over fading channels. In particular, we
have investigated the spectral efficiency–bit energy tradeoff
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in the low-power and wideband regimes. We have obtained
expressions for the bit energy at zero spectral efficiency and
the wideband slope, which provide a linear approximation to
the spectral efficiency curve at low SNRs. In the initial analysis
of the wideband regime with bounded number of resolvable
paths and hence bounded number of subchannels, we have
determined that the bit energy required at zero spectral effi-
ciency (or equivalently at infinite bandwidth) is the minimum
bit energy. In this case, we have noted that the minimum bit
energy and wideband slope in general depend on the QoS
exponent 𝜃. As the QoS constraints become more stringent and
hence 𝜃 is increased, we have observed in the numerical results
that the required minimum bit energy increases. Subsequently,
we have considered the low-power regime, which can also
be equivalently regarded as the wideband regime with rich
multipath fading. We have obtained expressions for the bit
energy required at zero spectral efficiency, and wideband
slope. For a certain class of fading distributions, we have
shown that the bit energy at zero spectral efficiency is indeed
the minimum bit energy and is achieved regardless of how
strict the QoS constraints are. However, we have also noted
that the wideband slope decreases as 𝜃 increases, increasing
the energy requirements at nonzero spectral efficiency values.
Overall, we have quantified the increased energy requirements
in the presence of QoS constraints in both wideband and low-
power regimes, and identified the impact upon the energy
efficiency of multipath sparsity and richness in the wideband
regime.

APPENDIX

A. Proof of Theorem 1

In [16, Chap. 7, Example 7.2.7], it is shown for Markov
modulated processes that

Λ(𝜃)

𝜃
=

1

𝜃
log𝑒 𝑠𝑝 (Φ(𝜃)P) (34)

where 𝑠𝑝 (Φ(𝜃)P) is the spectral radius (i.e., the maximum of
the absolute values of the eigenvalues) of the matrix Φ(𝜃)P,
P is the transition matrix of the underlying Markov process,
and Φ(𝜃) is a diagonal matrix whose 𝑗 th component, 𝜙𝑗(𝜃), is
the moment generating function of the random process 𝑦𝑗(𝑡)
given in this state. Hence, we have 𝜙𝑗(𝜃) = 𝐸{𝑒𝜃𝑦𝑗(𝑡)}.

The transmission model described for the wideband channel
with 𝑁 subchannels is a Markov-modulated process where
the underlying Markov process has 𝑁 + 1 states with the
transition probabilities given in (17). Hence, the transition
matrix is given by (35) on the next page. Note that the
rows of P are identical due to the fact that the transition
probabilities do not depend on the initial state. In each state,
the transmission rate is non-random and fixed. Recall that
in state 𝑗, the transmission rate is equal to (𝑗 − 1)𝑟𝑇 . The
moment generating function of this deterministic process is
𝜙𝑗(𝜃) = 𝐸{𝑒𝜃(𝑗−1)𝑟𝑇} = 𝑒𝜃(𝑗−1)𝑟𝑇 . Therefore, we can
express Φ(𝜃)P as in (36) on the next page.

Note that the rows of Φ(𝜃)P are multiples of each other,
and hence Φ(𝜃)P is a matrix of unit rank. This leads to the

conclusion that

𝑠𝑝 (Φ(𝜃)P) = trace(Φ(𝜃)P) =

𝑁+1∑
𝑗=1

𝑝𝑗 𝑒
𝜃(𝑗−1)𝑟𝑇 . (37)

Therefore, for the wideband channel in consideration, we have

Λ(𝜃)

𝜃
=

1

𝜃
log𝑒 𝑠𝑝 (Φ(𝜃)P) =

1

𝜃
log𝑒

⎛
⎝𝑁+1∑

𝑗=1

𝑝𝑗 𝑒
𝜃(𝑗−1)𝑟𝑇

⎞
⎠ .

(38)

Applying the definition

R𝐸(SNR, 𝜃) =
1

𝑇𝐵
max
𝑟≥0

𝑃𝑘≥0 s.t.
∑

𝑃𝑘≤𝑃

{
− Λ(−𝜃)

𝜃

}
(39)

where we have maximization over the transmission rates and
power allocation strategies, we immediately obtain (19).

Assume now that {𝑧𝑘}𝑁𝑘=1 are identically distributed and
therefore 𝑝𝑗 is in the binomial form given in (18). Then, we
can easily obtain (40)–(43) on the next page. Note that (41)
is obtained by applying a change of variables with 𝑖 = 𝑗 − 1
and combining the second and fourth terms in the summation
in (40) to write

(
𝑃{𝑧 > 𝛼}𝑒𝜃𝑟𝑇 )𝑖. (42) follows from the

Binomial Theorem. Now, the expression in (20) is readily
obtained by noting that 𝐵

𝑁 = 𝐵𝑐. □

B. Proof of Theorem 2

Assume that the Taylor series expansion of 𝑟opt with respect
to small 𝜁 = 1

𝐵𝑐
is

𝑟opt = 𝑟∗opt + �̇�opt(0)𝜁 + 𝑜(𝜁) (44)

where 𝑟∗opt = lim𝜁→0 𝑟opt and �̇�opt(0) is the first derivative with
respect to 𝜁 of 𝑟opt evaluated at 𝜁 = 0. From (4), we can find
that

𝛼opt =
2𝑟opt𝜁 − 1

𝑃𝜁
𝑁𝑁0

=
𝑟∗opt log𝑒 2

𝑃
𝑁𝑁0

+
�̇�opt(0) log𝑒 2 +

(𝑟∗opt log𝑒 2)2

2
𝑃

𝑁𝑁0

𝜁 + 𝑜(𝜁)

(45)

from which we have as 𝜁 → 0 that

𝛼∗
opt =

𝑟∗opt log𝑒 2

𝑃
𝑁𝑁0

and (46)

�̇�opt(0) =
�̇�opt(0) log𝑒 2 +

(𝑟∗opt log𝑒 2)2

2
𝑃

𝑁𝑁0

(47)

where �̇�opt(0) is the first derivative with respect to 𝜁 of 𝛼opt

evaluated at 𝜁 = 0. According to (46), 𝑟∗opt =
𝑃𝛼∗

opt

𝑁𝑁0 log𝑒 2 . We

can now derive (48) on the next page where Ṙ𝐸(0) is the
derivative of R𝐸 with respect to 𝜁 at 𝜁 = 0,

𝛿 =
𝜃𝑇𝑃

𝑁𝑁0 log𝑒 2
,

and
𝜉 = 1− 𝑃{𝑧 > 𝛼∗

opt}(1− 𝑒−𝛿𝛼∗
opt).
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P =

⎡
⎢⎢⎣

𝑝1,1 𝑝1,2 . . 𝑝1,𝑁+1

. .

. .
𝑝𝑁+1,1 𝑝𝑁+1,2 . . 𝑝𝑁+1,𝑁+1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

𝑝1 𝑝2 . . 𝑝𝑁+1

. .

. .
𝑝1 𝑝2 . . 𝑝𝑁+1

⎤
⎥⎥⎦ . (35)

Φ(𝜃)P =

⎡
⎢⎢⎣

1 0 . . 0
0 𝑒𝜃𝑟𝑇 0 . 0
. .
0 0 . 0 𝑒𝜃𝑁𝑟𝑇

⎤
⎥⎥⎦

︸ ︷︷ ︸
Φ(𝜃)

⎡
⎢⎢⎣

𝑝1 𝑝2 . . 𝑝𝑁+1

. .

. .
𝑝1 𝑝2 . . 𝑝𝑁+1

⎤
⎥⎥⎦

︸ ︷︷ ︸
P

=

⎡
⎢⎢⎣

𝑝1 𝑝2 . . 𝑝𝑁+1

𝑝1𝑒
𝜃𝑟𝑇 𝑝2𝑒

𝜃𝑟𝑇 . . 𝑝𝑁+1𝑒
𝜃𝑟𝑇

. .
𝑝1𝑒

𝜃𝑁𝑟𝑇 𝑝2𝑒
𝜃𝑁𝑟𝑇 . . 𝑝𝑁+1𝑒

𝜃𝑁𝑟𝑇

⎤
⎥⎥⎦ . (36)

𝑁+1∑
𝑗=1

𝑝𝑗 𝑒
𝜃(𝑗−1)𝑟𝑇 =

𝑁+1∑
𝑗=1

(
𝑁

𝑗 − 1

)
(𝑃{𝑧 > 𝛼})𝑗−1

(1− 𝑃{𝑧 > 𝛼})𝑁−𝑗+1
𝑒𝜃(𝑗−1)𝑟𝑇 (40)

=

𝑁∑
𝑖=0

(
𝑁
𝑖

)(
𝑃{𝑧 > 𝛼}𝑒𝜃𝑟𝑇 )𝑖 (1− 𝑃{𝑧 > 𝛼})𝑁−𝑖 (41)

= (1− 𝑃{𝑧 > 𝛼} + 𝑃{𝑧 > 𝛼}𝑒𝜃𝑟𝑇 )𝑁 (42)

= (1− 𝑃{𝑧 > 𝛼}(1− 𝑒𝜃𝑟𝑇 ))𝑁 . (43)

𝐸𝑏

𝑁0

∣∣∣∣
R𝐸=0

= lim
𝜁→0

𝑃
𝑁𝑁0

𝜁

R𝐸(𝜁)
=

𝑃
𝑁𝑁0

Ṙ𝐸(0)
=

− 𝜃𝑇𝑃
𝑁𝑁0

log𝑒
(
1− 𝑃{𝑧 > 𝛼∗

opt}(1− 𝑒−𝜃𝑇𝑟∗opt)
) =

−𝛿 log𝑒 2

log𝑒 𝜉
(48)

Since 𝐸𝑏

𝑁0
=

𝑃
𝑁𝑁0
R𝐸(𝜁)

𝜁

, the result that 𝐸𝑏

𝑁0

∣∣∣
R𝐸=0

= 𝐸𝑏

𝑁0 min
follows

from the fact that R𝐸(𝜁)/𝜁 monotonically decreases with
increasing 𝜁, and hence achieves its maximum as 𝜁 → 0.
Therefore, we prove (22).

The second derivative R̈𝐸(0), required in the computation
of the wideband slope 𝒮0, is derived through (49)–(52) on

the next page where 𝑟∗opt =
𝑃𝛼∗

opt

𝑁𝑁0 log𝑒 2 . Note that (51) and
(52) follow by using L’Hospital’s Rule and applying Leibniz
Integral Rule [24].

Next, we derive an equality satisfied by 𝛼∗
opt. Consider the

objective function in (20)

− 1

𝜃𝑇𝐵𝑐
log𝑒

(
1− 𝑃{𝑧 > 𝛼}(1 − 𝑒−𝜃𝑇𝑟)

)
. (53)

It can easily be seen that both as 𝑟 → 0 and 𝑟 → ∞, this
objective function approaches zero5. Hence, (53) is maximized
at a finite and nonzero value of 𝑟 at which the derivative of
(53) with respect to 𝑟 is zero. Differentiating (53) with respect
to 𝑟 and making it equal to zero leads to the following equality
that needs to be satisfied at the optimal value 𝑟opt:

2𝑟opt𝜁𝑝𝑧(𝛼opt)𝑁𝑁0 log𝑒 2

𝑃
(1− 𝑒−𝜃𝑇𝑟opt)

= 𝜃𝑇 𝑒−𝜃𝑇𝑟opt𝑃{𝑧 > 𝛼opt} (54)

where 𝜁 = 1/𝐵𝑐. For given 𝜃, as the bandwidth increases (i.e.,
𝜁 → 0), 𝑟opt → 𝑟∗opt. Clearly, 𝑟∗opt ∕= 0 in the wideband regime.
Because, otherwise, if 𝑟opt → 0 and consequently 𝛼opt → 0,
the left-hand-side of (54) becomes zero, while the right-hand-

5Note that 𝛼 increases without bound with increasing 𝑟.

side is different from zero. So, employing (46) and taking the
limit of both sides of (54) as 𝜁 → 0, we can derive

𝑝𝑧(𝛼
∗
opt)𝑁𝑁0 log𝑒 2

𝑃

(
1− 𝑒−

𝜃𝑇𝑃
𝑁𝑁0 log𝑒 2𝛼

∗
opt

)
= 𝜃𝑇 𝑒

− 𝜃𝑇𝑃
𝑁𝑁0 log𝑒 2𝛼

∗
opt𝑃{𝑧 > 𝛼∗

opt} (55)

which, after rearranging, yields

𝜃𝑇𝑃

𝑁𝑁0 log𝑒 2
𝛼∗

opt = log𝑒

(
1 +

𝜃𝑇𝑃

𝑁𝑁0 log𝑒 2

𝑃{𝑧 > 𝛼∗
opt}

𝑝𝑧(𝛼∗
opt)

)
.

(56)
Denoting 𝛿 = 𝜃𝑇𝑃

𝑁𝑁0 log𝑒 2 , we obtain the condition (24) stated
in the theorem.

Combining (55) and (47) with (52) gives us

R̈𝐸(0) = −𝑁𝑁0 log
2
𝑒 2

𝜃𝑇𝑃

𝑟∗opt
2𝑝𝑧(𝛼

∗
opt)(1− 𝑒−𝜃𝑇𝑟∗opt)

1− 𝑃{𝑧 > 𝛼∗
opt}

(
1− 𝑒−𝜃𝑇𝑟∗opt

)
= −𝑟∗opt

2𝑃{𝑧 > 𝛼∗
opt}𝑒−𝜃𝑇𝑟∗opt log𝑒 2

1− 𝑃{𝑧 > 𝛼∗
opt}

(
1− 𝑒−𝜃𝑇𝑟∗opt

) (57)

Substituting (57) and the expression for Ṙ𝐸(0) in (48) into
(14), we obtain (23). □

C. Proof of Theorem 3

We first consider the Taylor series expansion of 𝑟opt in the
low-SNR regime:

𝑟opt = 𝑎SNR + 𝑏SNR2 + 𝑜(SNR2) (58)
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R̈𝐸(0) = lim
𝜁→0

2
R𝐸(𝜁)− Ṙ𝐸(0)𝜁

𝜁2
(49)

= lim
𝜁→0

2
1

𝜁

(
− 1

𝜃𝑇
log𝑒

(
1− 𝑃{𝑧 > 𝛼opt}

(
1− 𝑒−𝜃𝑇𝑟opt

))
+

1

𝜃𝑇
log𝑒

(
1− 𝑃{𝑧 > 𝛼∗

opt}(1− 𝑒−𝜃𝑇𝑟∗opt)
))

(50)

= lim
𝜁→0

− 2

𝜃𝑇

(
𝑝𝑧(𝛼opt)�̇�opt(𝜁)(1 − 𝑒−𝜃𝑇𝑟opt)− 𝑃{𝑧 > 𝛼opt}𝜃𝑇 𝑒−𝜃𝑇𝑟opt�̇�opt(𝜁)

)
1− 𝑃{𝑧 > 𝛼opt}

(
1− 𝑒−𝜃𝑇𝑟opt

) (51)

= − 2

𝜃𝑇

(
𝑝𝑧(𝛼

∗
opt)�̇�opt(0)(1− 𝑒−𝜃𝑇𝑟∗opt)− 𝑃{𝑧 > 𝛼∗

opt}𝜃𝑇 𝑒−𝜃𝑇𝑟∗opt�̇�opt(0)
)

1− 𝑃{𝑧 > 𝛼∗
opt}

(
1− 𝑒−𝜃𝑇𝑟∗opt

) (52)

where 𝑎 and 𝑏 are real-valued constants. Substituting (58) into
(4), we obtain the Taylor series expansion for 𝛼opt:

𝛼opt =
𝑎 log𝑒 2

𝐵
+

(
𝑏 log𝑒 2

𝐵
+

𝑎2 log2𝑒 2

2𝐵2

)
SNR+𝑜(SNR). (59)

From (59), we note that in the limit as SNR → 0, we have

𝛼∗
opt =

𝑎 log𝑒 2

𝐵
. (60)

Next, we obtain the Taylor series expansion with respect to
SNR for 𝑃{𝑧 > 𝛼opt} using the Leibniz Integral Rule [24] as
in (61) on the next page.

Using (58), (59), and (61), we find the series expansion for
R𝐸 given in (12) as in (62) on the next page. Then, using
(60), we immediately derive from (62) that

Ṙ𝐸(0) =
𝛼∗

opt𝑃{𝑧 > 𝛼∗
opt}

log𝑒 2
, (63)

R̈𝐸(0) = −𝛼∗
opt

3𝑝𝑧{𝛼∗
opt}

log𝑒 2

− 𝜃𝑇𝐵𝛼∗
opt

2

log2𝑒 2
𝑃{𝑧 > 𝛼∗

opt}(1− 𝑃{𝑧 > 𝛼∗
opt}). (64)

Similarly as in the discussion in the proof of Theorem 2
in Section IV, the optimal fixed-rate 𝑟opt, akin to (54), should
satisfy

2𝑟opt/𝐵𝑝𝑧(𝛼opt) log𝑒 2

𝐵SNR
(1−𝑒−𝜃𝑇𝑟opt) = 𝜃𝑇 𝑒−𝜃𝑇𝑟opt𝑃{𝑧 > 𝛼opt}.

(65)
Taking the limits of both sides of (65) as SNR → 0 and
employing (58), we obtain

𝑎𝑝𝑧(𝛼
∗
opt) log𝑒 2

𝐵
= 𝑃{𝑧 > 𝛼∗

opt}. (66)

From (60), (66) simplifies to

𝛼∗
opt𝑝𝑧(𝛼

∗
opt) = 𝑃{𝑧 > 𝛼∗

opt}, (67)

proving the condition in (28). Moreover, using (67), the
first term in the expression for R̈𝐸(0) in (64) becomes

−𝛼∗
opt

2𝑃{𝑧≥𝛼∗
opt}

log𝑒 2 . Together with this change, evaluating the
expressions in (14) with the results in (63) and (64), we obtain
(26) and (27). □
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𝑃{𝑧 > 𝛼opt} = 𝑃{𝑧 > 𝛼∗
opt} −

(
𝑏 log𝑒 2

𝐵
+
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∗
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𝜃𝑇𝐵
log𝑒

[
1−

(
𝑃{𝑧 > 𝛼∗

opt} −
(
𝑏 log𝑒 2

𝐵
+

𝑎2 log2𝑒 2

2𝐵2

)
𝑝𝑧(𝛼

∗
opt)SNR + 𝑜(SNR)

)

× (
𝜃𝑇𝑎SNR + (𝜃𝑇 𝑏− (𝜃𝑇𝑎)2

2
)SNR2 + 𝑜(SNR2)

)]
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opt}
𝐵

SNR +
1

𝐵

(
− 𝜃𝑇𝑎2

2
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opt} −
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∗
opt) log

2
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2𝐵2
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2
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