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INTRODUCTION

Efflorescent metal-sulfate salts have been demonstrated to
play an important role in metal cycling in acid mine-drainage
environments (Dagenhart 1980; Jambor et al. 2000). The salts
form through evaporative processes in all climates and pro-
vide a means of storing acidity and metals. Their rapid and
high solubilities cause acute toxic effects to aquatic ecosys-
tems during spring-melt events in areas with winter snow cover,
and during rainstorm events.

Efflorescent sulfate salts of Fe—both Fe2+ and Fe3+—such
as melanterite [Fe2+SO4·7H2O], rozenite [Fe2+SO4·4H2O], and
copiapite [Fe2+Fe3+

4(SO4)6(OH)2·20H2O], and salts of Al, such
as alunogen [Al2(SO4)3·17H2O] and halotrichite-pickeringite
[(Fe2+, Mg)Al2(SO4)4·22H2O], are common in mine-waste set-
tings. However, salts dominated by other, less abundant metals
such as Cu, Zn, Ni, and others also occur locally (Jambor et al.
2000). More important from an environmental perspective, toxic
trace metals commonly occur in solid solution in the more com-
mon hydrated Fe-sulfate salts such as melanterite, rozenite, or
the Fe2+ sulfate pentahydrate–siderotil. Melanterite has been
documented experimentally and in nature containing close to 45
mol% Cu, 40 mol% Zn, and 20 mol% Ni (Jambor et al. 2000).

The ability to model the geochemical behavior of these min-
erals and their trace elements in aquatic environments relies on
the availability of accurate and precise thermodynamic data
for these phases and their solid solutions. The ability to model
solid solutions depends not only on reliable data for the mix-
ing properties of these minerals, but also on the data for end-
member compositions of hydrated trace metal sulfates.
Thermodynamic data for many of these minerals have not been
available, or were of poor quality until recently. For all of these

systems, such as the Fe2+SO4–H2O system, temperature-depen-
dent equilibria among four or more solids can be described by
simple dehydration reactions. Thus, recent development of the
humidity-buffer technique provides an efficient and reliable
method for obtaining and evaluating these data (Chou et al.
2002). To establish a useful thermodynamic database for the
interpretation of natural assemblages, it is first necessary to
study thermodynamic properties of end-member sulfate salts
(Chou et al. 2000, 2002 for Fe and Cu; Chou and Seal 2001a,
in preparation, for Zn; and Chou and Seal 2001b, 2003, for
Mg). The present study extends the database to the Ni sulfate
system. Dissolved Ni has known toxicity to aquatic ecosys-
tems in a variety of mine drainage settings.

Mineralogy of nickel sulfates

Morenosite is a member of the epsomite group, which con-
sists of orthorhombic (P212121) sulfate heptahydrate minerals
of the type M2+SO4·7H2O, where M represents Mg (epsomite),
Ni (morenosite), and Zn (goslarite). In contrast, the common
Fe2+ sulfate heptahydrate, melanterite [FeSO4·7H2O], is mono-
clinic. Morenosite apparently forms complete solid solutions
with the Mg and Zn end-members (Jambor et al. 2000). In the
presence of an aqueous solution, morenosite is not stable at
temperatures above about 31.2 C and dehydrates to form
retgersite (Linke and Seidell 1965).

Retgersite [a-NiSO4·6H2O] is bluish green and tetragonal
in crystal form. It is stable between 31.2 and 53.3 C (Linke
and Seidell 1965). Above 53.3 C, the crystals turn green and
form nickelhexahydrite [b-NiSO4·6H2O]. Nickelhexahydrite
is one of the six members of the hexahydrite group, which
are monoclinic (C2/c) sulfate minerals of the type
M2+SO4·6H2O, where M represents Mg (hexahydrite), Mn
(chvaleticeite), Fe (ferrohexahydrite), Ni (nickelhexahydrite),
Co (moorhouseite), and Zn (bianchite). Even though little is* E-mail: imchou@usgs.gov
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Metal-sulfate salts in mine drainage environments commonly occur as solid solutions containing
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present study extends to the system containing Ni. Morenosite (NiSO4·7H2O)-retgersite (NiSO4·6H2O)
equilibria were determined along five humidity buffer curves at 0.1 MPa and between 5 and 22 C.
Reversals along these humidity-buffer curves yield ln K = 17.58–6303.35/T, where K is the equilib-
rium constant, and T is temperature in K. The derived standard Gibbs free energy of reaction is 8.84
kJ/mol, which agrees very well with the values of 8.90, 8.83, and 8.85 kJ/mol based on the vapor
pressure measurements of Schumb (1923), Bonnell and Burridge (1935), and Stout et al. (1966),
respectively. This value also agrees reasonably well with the values of 8.65 and 9.56 kJ/mol calculated
from the data compiled by Wagman et al. (1982) and DeKock (1982), respectively. The temperature–
humidity relationships defined by this study for dehydration equilibria between morenosite and retgersite
explain the more common occurrence of retgersite relative to morenosite in nature.
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known about the limits of solid solution in these hexahydrates,
substitution of up to 27 mol% Ni for Mg has been reported for
natural hexahydrite (Janjic et al. 1980). Except for hexahydrite,
minerals of the group occur sparingly as the oxidation prod-
ucts of sulfide deposits (Jambor et al. 2000).

Dehydration equilibrium

The stability of morenosite and retgersite can be related by
the reaction:

NiSO4·7H2O(s) = NiSO4·6H2O(s) + H2O(g)  (1)
morenosite retgersite

where (s) and (g) are solid and gas, respectively. Published es-
timates for the equilibrium relative humidity (RH) at 25 C
range from 67 to 96% for the reaction. To evaluate these data,
the humidity-buffer technique (Polyanskii et al. 1976; Malinin
et al. 1977, 1979; Chou et al. 1998a, 1998b, 1999, Chou et al.
2002) was used in this study to determine equilibrium con-
stants for this reaction between 5 and 22 C at 0.1 MPa. Rever-
sals were obtained along five humidity-buffer curves. This
technique has been applied to determine the equilibria between
melanterite [Fe2+SO4·7H2O] and rozenite [Fe2+SO4·4H2O]
(Chou et al. 2002), chalcanthite [CuSO4·5H2O] and bonattite
[CuSO4·3H2O] (Chou et al. 2002), goslarite [ZnSO4·7H2O] and
bianchite [ZnSO4·6H2O] (Chou and Seal 2003), and epsomite
[MgSO4·7H2O] and hexahydrite [MgSO4·6H2O] (Chou and
Seal, in preparation). It should be emphasized that Reaction 1
of this study does not involve an aqueous phase. However, as
will be presented later, in the presence of an additional aque-
ous phase at equilibrium at 0.1 MPa, the system becomes in-
variant with defined equilibrium temperature and humidity.

The standard Gibbs free energy of reaction, DGr
0, for Reac-

tion 1 was then derived from the equilibrium constant, K, us-
ing the relation:

DGr
0 =–RT ln K = –RT ln (aH2O) = –RT ln (fH2O/0.1) =

–RT ln [(f*H2O/0.1) · (%RH)/100], (2)

where R is the gas constant (8.31451 J/molK); T is absolute
temperature; aH2O is the activity of H2O; fH2O is the equilibrium
H2O fugacity (in MPa); f*H2O is the fugacity of pure H2O (in
MPa) and RH is the relative humidity. The standard states for
minerals and H2O are pure solids and H2O, respectively, at 0.1
MPa and temperature. Preliminary results were presented by
Chou and Seal (2002).

Previous work

Figure 1 summarizes all previous and current data related
to the morenosite-retgersite equilibria in terms of temperature
and relative humidity. Vapor-pressure measurements were made
at 0.1 MPa and 25 C by Schumb (1923), between 10 and 25
C by Bonnell and Burridge (1935), and between 20 and 30 C

by Stout et al. (1966). Thermodynamic data for morenosite and
retgersite derived from calorimetric measurements were evalu-
ated and compiled by Wagman et al. (1982) and DeKock (1982),
and the morenosite-retgersite phase boundaries based on these
data are shown in Figure 1.

EXPERIMENTAL METHOD AND RESULTS

Starting materials were mixtures of reagent grade NiSO4·6H2O (MERCK,
Lot no. 42589) and its hydration product [NiSO4·7H2O]. A weighed amount of
the starting material, typically 350 to 590 mg, was loaded into a plastic sample
container (8 mm ID ¥ 10 mm OD and 20 mm tall), which was partly immersed
in a humidity-buffer solution in a glass container (17.5 mm ID ¥ 20 mm OD and
40 mm tall) sealed by a rubber stopper. Humidity-buffer solutions are saturated
solutions with well-characterized humidity variations with temperature
(Greenspan 1977; Chou et al. 2000, 2002). The present study used five different
binary aqueous buffer solutions: KI, NaCl, NaNO3, KBr, and KCl (Fig. 1). The
whole assembly was then immersed in a water bath, the temperature of which
was controlled to ±0.03 C and measured by a Pt resistance probe (accurate to
±0.02 C). Small holes through the cap of the sample chamber allow the vapor
phase of the sample to equilibrate with that of the buffer system at the fixed
temperature. The direction of reaction was determined by the mass change of
the sample (precise to ±0.05 mg). Both the starting material and experimental
products were examined by X-ray diffraction and optical methods, and no un-
expected phases were identified. Uncertainties in predicted %RH for the hu-
midity buffers used in the temperature range of this study are no more than ±0.4
(Greenspan 1977). Experimental results are listed in Tables 1 and 2, and plotted
in Figure 1. In Figure 1, the circle along each humidity buffer curve represents
a reversal point, and the thick solid curve is the least-squares regression of these
reversal points. Previous published results are also plotted for comparison.

Thermodynamic analysis
Equilibrium constants and DGr

0 values for Reaction 1 were obtained from
our experimental data using Equation 2 and these values are listed in Tables 2

FIGURE 1. Morenosite [NiSO4·7H2O]-retgersite [NiSO4·6H2O]
equilibria at 0.1 MPa. Result of vapor-pressure measurement at 0.1
MPa and 25 C by Schumb (1923) is shown by the square. Also shown
are those between 10 and 25 C by Bonnell and Burridge (1935; upright
triangles), and between 20 and 30 C by Stout et al. (1966; downward
triangles). The morenosite-retgersite phase boundary based on the
thermodynamic data compiled by Wagman et al. (1982) and DeKock
(1982) are represented by the thick dashed and dash-dot lines,
respectively. Experimental results obtained in this study are shown by
the large circles along five humidity-buffer cures (near-vertical thin
solid lines), and the thick solid line is the least-squares fit for new
experimental data. The equilibrium boundaries for morenosite-saturated
and retgersite-saturated aqueous solutions are shown by the thin dashed
and solid curves, respectively (Reardon 1989; personal communication,
2002). These data predict the invariant point for the assemblage
morenosite + retgersite + aqueous solution + vapor at the invariant
temperature of 31.2 C (Linke and Seidell, 1965; horizontal dotted line)
at %RH = 92.0 (open diamond). Our data predict the invariant point at
%RH = 95.6, as shown by the solid diamond. For details, see text.
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and 3. Figure 2 shows the relation between ln K and 1/T for Reaction 1; our
reversal data can be represented by ln K (±0.013) = 17.58–6303.35/T. The stan-
dard enthalpy of reaction, DHr

0, was calculated according to the relation:

 (ln K)/  (1/T) = –DHr
0/R (3)

The value of DHr
0 for Reaction 1 is listed in Table 3, and the entropy of

reaction, DSr
0, was calculated from the relation:

DGr
0 = DHr

0 – T DSr
0 (4)

and is also listed in Table 3. These derived thermodynamic data are compared
with previous data in Table 3. Note that the uncertainties listed in Table 3 were
derived from those associated with equilibrium temperatures and humidity buff-
ers assuming no uncertainties for the vapor pressure of pure water.

Our data are in excellent agreement with all previous vapor pressure mea-
surements (Schumb 1923; Bonnell and Burridge 1935; Stout et al. 1966), as
shown in Table 3 and Figures 1 and 2. Also, our data agree reasonably well with
the thermodynamic data compiled by Wagman et al. (1982), and those compiled
by DeKock (1982). Our value for DGr

0 is 0.2 kJ/mol lower than the value reported
by Wagman et al. (1982), and 0.7 kJ/mol higher than the value of DeKock(1982);
these differences are well within the uncertainties of their estimates.

DISCUSSION

To verify our experimental results, we compared the invari-
ant point for the assemblage morenosite + retgersite + aqueous
solution + vapor (MRAV) derived from our results with that
predicted by Reardon (1989, and personal communication
2002). Previous observations (Linke and Seidell 1965 and ref-

erences therein) indicated that the temperature of the invariant
point for the assemblage MRAV is most likely near 31.2 C
(horizontal dotted line in Fig. 1). Also shown in Figure 1 are
the stability boundaries between morenosite and aqueous solu-
tion, and between retgersite and aqueous solution predicted by
Reardon (personal communication, 2002) using the model of
Pitzer (Reardon 1989). These boundaries indicate the %RH for
the MRAV invariant point at 31.2 C is 92.0, which compares
reasonable well with the value of 95.6 obtained from the cur-
rent morenosite-retgersite boundary at 31.2 C.

The results of the present study and those of Chou et al.
(2002), Chou and Seal (in preparation), and Chou and Seal (in
press) further confirm the conclusion of Hemingway et al.
(2002) that the Gibbs free energy contribution for each water
of crystallization in hydrated sulfate salts, except for the first
water is about –238.0 kJ/mol. The Gibbs free energy contribu-
tion for each water of crystallization can be calculated from
the experimental results of this study for Reaction 1 by the
equation:

DG0
xw, 298.15K =–(DGr

0
, 298.15K – nDGf

0H2O, 298.15K)/n          (5)

where DG0
xw, 298.15K is the Gibbs free energy contribution for each

additional water of crystallization at 298.15 K, DGr
0

, 298K is the
Gibbs free energy of the reaction at 298.15 K, DGr

0H2O, 298.15K
is the Gibbs free energy of formation from elements for water
at 298.15 K (Cox et al. 1989), and n is the stoichiometric coef-
ficient for water in the dehydration reaction. For Reaction 1,

TABLE 1. Experimental results at 0.1 MPa

Humidity Experiment T Mass of initial Duration Mass change
buffer no. ( C)* sample (mg)† (h)  (mg)
KI 1 (6.45) 351.81 72 + 0.09

2 (6.45) 373.97 72 + 0.28
3 (7.22) 351.90 98 – 0.12
4 (7.22) 374.25 98 – 0.03
5 8.84 354.44 72 – 0.40
6 8.84 377.02 72 – 0.63

NaCl 1 (11.57) 515.35 67 + 0.61
2 (11.57) 588.77 67 + 0.49
3 (12.04) 515.35 97 – 0.09
4 (12.04) 588.88 97 – 0.07
5 12.45 515.96 69 – 0.61
6 12.45 589.26 69 – 0.46

NaNO3 1 10.46 355.71 68 + 0.49
2 10.46 377.43 68 + 0.42
3 11.57 356.20 67 + 0.22
4 11.57 377.85 67 + 0.20
5 (12.04) 355.62 95 + 0.47
6 (12.04) 368.38 95 + 0.14
7 12.04 356.27 97 – 0.08
8 12.04 377.92 97 – 0.02
9 (12.45) 356.42 69 – 0.15
10 (12.45) 378.05 69 – 0.13

KBr 1 16.17 356.19 55 + 0.88
2 16.17 377.90 55 + 0.74
3 (17.01) 356.92 96 + 0.32
4 (17.01) 378.56 96 + 0.28
5 (17.97) 357.07 64 – 0.15
6 (17.97) 378.64 64 – 0.08
7 20.16 515.17 117 – 0.30
8 24.02 514.91 96 – 0.12
9 24.02 591.18 96 – 0.17

KCl 1 (20.16) 357.17 117 + 0.39
2 (20.16) 378.88 117 + 0.79
3 (21.17) 357.56 118 – 0.31
4 (21.17) 379.67 118 – 0.35
5 24.02 357.25 96 – 3.05
6 24.02 379.32 96 – 2.59

* Values in parentheses were used to bracket the reaction.
† Starting material consisted of a mixture of NiSO4·7H2O and NiSO4·6H2O.

FIGURE 2. ln K vs. 1/T plot for the morenosite-retgersite equilibria
at 0.1 MPa. Circles are current data from Table 2, and the solid line is
a least-squares regression of the data. Previous datum at 25 C reported
by Schumb (1923) is shown by the square. The downward triangles
between 10 and 25 C represent the data of Bonnell and Burridge
(1935), and upright triangles between 20 and 30 C are the data of
Stout et al. (1966). Also shown are regression lines based on the data
of Bonnell and Burridge (1935; dotted), Stout et al. (1966; dash-dot-
dot), Wagman et al. (1982; dash), and DeKock (1982; dash-dot).
The large filled circle at the upper left corner is the invariant point
at 31.2 C for the assemblage morenosite + retgersite + aqueous
solution + vapor predicted from the model of Pitzer for the
morenosite- and retgersite-saturated solution (Reardon 1989, and
personal communication, 2002). For detail, see text.
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DGr
0

, 298.15K is 8.841 kJ/mol, DGf
0H2O, 298.15K is –228.6 kJ/mol

(Cox et al. 1989), and n is 1, which yields a DG0
xw, 298.15K of

–237.44 kJ/mol. For melanterite-rozenite and chalcanthite-
bonattite equilibria (Chou et al. 2002), calculated values for
DG0

xw, 298K are –238.34 and –239.90 kJ/mol, respectively. The
value for the goslarite-bianchite equilibria is –238.23 kJ/mol
(Chou and Seal, in preparation), and for epsomite-hexahydrite
equilibria is -238.73 kJ/mol (Chou and Seal 2003).

Morenosite and retgersite are relatively rare in nature. The
mineralogy of selected occurrences is summarized in Table 4.
The minerals can be found as weathering products of mineral
deposits (Frondel and Palache 1949; King and Evans 1964;
Paulo 1970; Otto and Schuerenberg 1974; Yakhontova et al.
1976; Sejkora and Rídkošil 1993), coal measures (Walker 1988),
and ultramafic rocks (Bermanec et al. 2000). Typically,
morenosite will be found in association with retgersite, whereas
retgersite may comprise the only hydrated Ni sulfate in a sample
or may occur with nickelhexahydrite (Table 4). The common
association of retgersite with morenosite can be explained by
the location of the dehydration reaction that relates the two.
The equilibrium relative humidity for morenosite-retgersite re-

action is relatively high for a given temperature compared to
other systems investigated to date (Fig. 3). Thus, morenosite
should only be expected to form under cool conditions where
relative humidities are high. Unless care is taken in sample
collection, and analysis in the laboratory, morenosite is likely
to react partly or totally to form retgersite or nickelhexahydrite.

The scarcity of these minerals in nature also can be attrib-
uted in part to the relative scarcity of Ni in geological environ-
ments. Coggans et al. (1999) concluded that the pore waters in
the Ni-rich Copper Cliff tailings near Sudbury, Ontario (Canada)
were significantly undersaturated with respect to morenosite

TABLE 2. Derived equilibrium constants for reaction (1) at 0.1 MPa

Humidity T ( C)† f *H2O %RH§ ln K
buffer (MPa)‡
KI 6.84 ± 0.39 0.0009914 72.86 ± 0.11 –4.930 ± 0.025
NaCl 11.81 ± 0.24 0.0013856 75.66 ± 0.11 –4.558 ± 0.016
NaNO3 12.25 ± 0.20 0.0014265 77.06 ± 0.05 –4.511 ± 0.013
KBr 17.49 ± 0.48 0.0019999 82.13 ± 0.09 –4.109 ± 0.030
KCl 20.67 ± 0.51 0.0024386 85.01 ± 0.08 –3.877 ± 0.030
† Equilibrium T; mean of the two values used to bracket equilibrium (see Table 1). The uncertainty listed is half of the difference of the bracket values.
‡ Calculated from Haar et al. (1984).
§ Calculated from Greenspan (1977). Uncertainties are also based on Greenspan (1977).

TABLE 3. Derived thermodynamic data for reaction 1 at 298.15K
and 0.1 MPa

DG r
0 DH r

0 DS r
0 Reference

(kJ/mol) (kJ/mol) [J/(mol·K)]
8.841 ± 0.077 52.40 ± 0.97 146.1 ± 3.5 This study

8.901 – – Schumb (1923)
8.827 52.61 146.9 Bonnell and Burridge (1935)
8.864 49.13 135.0 Stout et al. (1966)
8.648 51.69 144.4 Wagman et al. (1982)
9.557 51.33 140.1 DeKock (1982)
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and retgersite. However, common geochemical processes may
conjoin in appropriate settings at Ni mines to cause their for-
mation. For example, oxidation of tailings waters or other simi-
lar mine drainage will lead to the oxidation of Fe2+, thus avoiding
the precipitation of melanterite or other Fe2+ sulfates, which
can carry significant amounts of Ni in solid solution (Jambor
et al. 2000). In general, Ni is also less likely than other metals,
such as Pb or Cu, to sorb on to hydrated Fe3+ oxides that may
result from the oxidation of dissolved Fe2+ at pH values less
than 6 (Smith 1999); therefore, divalent metals other than Ni
may be preferentially removed from solution. However, it is
worth noting that the sorption behavior of Ni and other metals
is complex and depends upon a variety of factors, including
the concentration of the sorbent, the concentration of the sor-
bate, and pH (Smith 1999). Finally, evaporative concentration
can then cause drainage to reach saturation with respect to
morenosite and (or) retgersite.

The addition of phase-equilibrium data for the system
NiSO4-H2O improves the “hydrogenetic” grid that can be con-
structed for terrestrial ambient conditions by supplementing
data from Chou et al. (2002), Chou and Seal (in review), and
Chou and Seal (in press) (Fig. 3). The location of many of these
dehydration reactions in the middle of the field of relative hu-
midity and temperature conditions, and their rapid kinetics un-
derscore the challenges of mineralogical characterization of
samples as they relate to field conditions (Hammarstrom et al.
2002). Iron, Cu, and Zn sulfate salts are common in many
surficial settings, particularly around abandoned mines. Nickel
may be relatively common in solid solution within these salts.
The melanterite group can contain up to 46 mol% Ni; knowl-
edge of the maximum solubility limits of Ni in the hexahydrite
group is limited (Jambor et al. 2000). The dissolution of these
salts during summer storm events or spring-melt in snow-cov-
ered regions can have a significant impact on watersheds. The
mineralogical controls on the partitioning of trace metals be-
tween dehydration products is poorly understood, as is how
differential partitioning may affect surface runoff. Clearly, the
location of the morenosite-retgersite dehydration reaction at
higher relative humidities compared to other systems investi-
gated should distinguish the effect of Ni relative to other trace
metals such as Cu and Zn with regard to solid-solution effects
among end-members in the same space groups.
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