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Unlike most Lactobacilus acidophilus strains, a specific strain, L. acidophilus F0 3532, was found to grow
in rich medium containing 1 M sodium acetate, KCI, or NaCl. This strain could also grow with up to 1.8 M
NaCl or 3 M nonelectrolytes (fructose, xylose, or sorbitol) added. Thus, this strain was tolerant to osmotic
pressures up to 2.8 osM. A search for an intracellular solute which conferred osmoprotection led to the
identification of glycine betaine (betaine). Betaine was accumulated to high concentrations in cells growing in
MRS medium supplemented with 1 M KCI or NaCl. Uptake of [14C]betaine by L. acidophilus 3532 cels
suspended in buffer was stimulated by increasing the medium osmotic pressure with 1 M KCI or NaCl. The
accumulated betaine was not metabolized further; transport was relatively specific for betaine and was
dependent on an energy source. Other lactobacilli, more osmosensitive than strain 3532, including L.
acidophilus strain E4356, L. bulgaricus 8144, and L. delbrueckii 9649, showed lower betaine transport rates in
response to an osmotic challenge than L. acidophilus 3532. Experiments with chloramphenicol-treated L.
acidophilus 3532 cells indicated that the transport system was not induced but appeared to be activated by an
increase in osmotic pressure.

Many species of bacteria respond to high medium osmotic
pressures by accumulating low-molecular-weight solutes to
high intracellular concentrations (for reviews, see references
5, 21, 33, and 52). The resulting increase in the cytoplasmic
osmolarity acts to maintain the osmotic equilibrium between
the intracellular and extracellular environments, that is, to
prevent the decrease in turgor pressure which would arise
when the extracellular osmotic pressure is increased. The
osmotically active solutes accumulated by microorganisms
include amino acids and amino acid derivatives (1, 9, 33, 36,
45, 47, 48), carbohydrates (3), and potassium (13). The
quaternary amine N,N,N-trimethylglycine (betaine) has
been reported to be an important osmoprotective molecule
in several groups of gram-negative eubacteria, including
halotolerant bacteria (28), extreme (14) and moderate
halophiles (22), and nonhalophilic bacteria (5, 6, 30-32).
Betaine is a metabolically inert compound, and because of
its dipolar nature, no counterions need to be accumulated to
maintain electroneutrality. Thus, betaine appears to be par-
ticularly suitable as a compatible solute (3), as it does not
inhibit cytoplasmic enzyme activity even when present at
high concentrations and can protect the cell against the
deleterious effects of high salt concentrations (40, 52).
Betaine accumulation in response to osmotic stress has been
demonstrated primarily in gram-negative bacteria.

In this communication we report that Lactobacillus
acidophilus IAM 3532 is significantly more resistant to
osmotic stress than most strains of L. acidophilus (25). The
osmoresistance can be attributed to a betaine-specific active
transport system which is activated, but not induced, by high
medium osmotic pressures.

* Corresponding author.
t Present address: Sanofi Bio Ingredients, Inc., Waukesha, WI

53186.

MATERIALS AND METHODS

Bacteria and growth conditions. L. acidophilus IAM 3532
(IFO 3532) was obtained from the Institute of Applied
Microbiology, University of Tokyo, Bunkyo-Ku, Tokyo,
Japan. L. acidophilus ATCC E4356, Lactobacillus delbru-
eckii ATCC 9649, and Lactobacillus bulgaricus ATCC 8144
were obtained from the American Type Culture Collection,
Rockville, Md. All strains were grown aerobically without
agitation at 37°C in commercially available MRS medium
(Difco Laboratories, Detroit, Mich.), and inoculum cultures
were transferred weekly. Growth was monitored by optical
density determinations at 625 nm of appropriately diluted
cultures.

Identification of intracellular betaine. L. acidophilus 3532
was grown in MRS medium containing 1.0 M NaCl or 1.0 M
KCl and harvested during exponential phase by centrifuga-
tion at 10,000 x g for 10 min at 4°C. The cells were washed
twice in 50 mM citric acid adjusted to pH 6.2 with Na2HPO4
(citrate-phosphate buffer) containing 1.0 M KCI, where
indicated. The intracellular material was extracted by incu-
bating for 1 h at 25°C with 5% (vol/vol) n-butanol and stored
at -20°C. Extracts prepared from cells disrupted by sonica-
tion, by extraction with 10% perchloric acid followed by
neutralization with KOH, or by boiling cells suspended in
water and then centrifuging to remove cell debris, gave
results similar to butanol extracts. The extracts and MRS
medium were chromatographed on silica gel thin-layer chro-
matography plates (J. T. Baker Chemical Co., Philipsburg,
N.J.) using 75% methanol-25% NH40H (vol/vol) as the
solvent (10). Two other solvent systems used were 75%
isopropanol-25% H20 (vol/vol) and 84% NH40H-8%
ethanol-8% H20 (vol/vol/vol). The plates were exposed to 12
vapor to visualize quatemary amines.
The betaine concentrations of the cell extracts were de-

termined by the periodide method (43). MRS medium was
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chromatographed on silica gel plates as described above; the
material with the same mobility as genuine [14C]betaine was
eluted with 1.0 N NaOH and assayed by the periodide
method.
NMR spectroscopy. Perchloric acid extracts were prepared

from 200-ml cultures of L. acidophilus 3532 cells grown for
21 h in either MRS medium or MRS medium supplemented
with 1.0 M NaCl. The cultures were cooled to 4°C, and the
cells were harvested by centrifugation for 5 min at 3,000 x g.
The cell pellets were suspended in 3 ml of 9.2 M ice-cold
HC104 per mg (dry weight) of cells (final HCl04 concentra-
tion, 0.25 M) and kept on ice for 10 min. The cell debris was
removed by centrifugation, the supernatants were lyophi-
lized, the residue was suspended in one-fifth volume of D20,
and the insoluble material was removed by centrifugation.
The supernatant was examined by 13C nuclear magnetic
resonance (NMR) spectroscopy.
Broad-band decoupled natural-abundance 13C NMR spec-

tra of the cell extracts and authentic glycine betaine were
obtained at 100.62 MHz on a Bruker AM-400 WB spectrom-
eter (USA Bruker Instruments, Inc., Manning Park, Bil-
lerica, Mass.) operating in a Fourier transform mode. Car-
bon-13 chemical shift assignments were made by using
internal standards (glucose and lactic acid), spectra obtained
with purified, authentic reference compounds, and the NMR
reference literature (2, 23).
For 1H NMR spectroscopy, butanol extracts of cells

grown in MRS medium with 1 M NaCl were purified further.
HCl was added to 1 N, and the solution was percolated
through Dowex 5OW-X4 cation exchange resin (Dow Chem-
ical Co., Midland, Mich.) and eluted with 1.5 N HCl. The
fractions containing periodide-reactive material were
pooled, lyophilized, and purified further by reverse-phase
chromatography on C18 Bond Elut columns (Analytichem
International, Harbor City, Calif.) prepared as specified by
the manufacturer. The eluent was lyophilized, the dry ma-
terial was dissolved in 0.5 to 1.0 ml of D20, treated with
Chelex-100 (Bio-Rad Laboratories, Richmond, Calif.), and
centrifuged, and the supernatant was examined by 1H NMR
spectroscopy at 400 MHz in the Bruker spectrometer.

Betaine transport assays. Cells were grown in MRS me-
dium, with or without 1.0 M KCl or NaCl, harvested during
late exponential phase, and washed twice in citrate-
phosphate buffer. The cells were suspended in the same
buffer, glucose (40 mM final) was added as an energy source,
and, where indicated, KCI or NaCl was added. The experi-
ment was started by addition of 2.0 mM [methyl-'4C]glycine
betaine (['4C]betaine) at a 2.0 mM final concentration (4.5
mCi/mol). The reaction mixtures were incubated at 28°C
with gentle agitation in a water bath shaker (New Brunswick
Scientific Co., New Brunswick, N.J.). Samples (1 ml) were
removed at intervals and centrifuged through a mixture of
silicone oils, as described previously (26). When the reaction
mixtures contained more than 0.8 M KCI or NaCl, a denser
oil (100% Fluid 550, Dow-Corning, Midland, Mich.) was
required. The radioactivity in the cell pellets, supernatants,
and reaction mixtures was determined by liquid scintillation
counting.
To determine the betaine content of L. acidophilus 3532

cells during growth, sterile ['4C]betaine (2.5 nmol, 0.125 ,uCi)
was added together with the inoculum (50 ,ul of a stationary-
phase culture) to 12.5 ml of 80% MRS medium supplemented
with 1.0 M KCl. Growth at 37°C without agitation was
followed by determinations of optical density at 625 nm at
intervals. Samples (1.0 ml) were taken 18 to 41 h later, and
cells were centrifuged for radioactivity counting. Portions of
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FIG. 1. Growth of L. acidophilus 3532 at high osmotic pressures.
Cells were grown in MRS medium (v) or in MRS medium supple-
mented with 1 M KCI (0), 1 M NaCl (A), 1 M sodium acetate (O),
3 M fructose (A), or 3 M sorbitol (U).

the supernatants and of the cultures were counted also. The
cellular betaine content was calculated from the
internal/external ratio of '4C radioactivity and a betaine
concentration in the medium of 0.5 mM.
Other measurements. The total amino acids in the cell

extracts were estimated from the ninhydrin-reactive material
(44). Standard methods were used to determine glycerol (4)
and reducing sugars (19). Sodium and potassium were mea-
sured by flame photometry, and the osmolality of the me-
dium was measured with an osmometer (Advanced Instru-
ments Inc., Needham Heights, Mass.). Intracellular aqueous
volumes were determined by using 3H20 to measure total
pellet aqueous volumes and [14C]polyethylene glycol (Mr,
ca. 900) for the extracellular aqueous volumes, as described
previously (26). The intracellular volume values were 1.68
and 1.37 p1/mg of cells (dry weight) for cells growing in MRS
medium and MRS medium containing 1.0 M NaCl, respec-
tively.

Chemicals. 3H20, [14C]polyethylene glycol, and [14C]be-
taine were obtained from New England Nuclear Corp.,
Boston, Mass.; [14C]betaine was purified by extraction from
silica gel thin-layer chromatography plates after develop-
ment in 75% methanol-25% ammonium hydroxide (vol/vol)
(10). All other chemicals were of reagent quality.

RESULTS

Growth of L. acidophilus 3532 at high osmotic pressure. A
specific strain of L. acidophilus, strain 3532, was able to
grow to high cell densities under conditions that did not
support growth of other lactobacilli, that is, in the presence
of 1 M sodium acetate. This strain could also grow in MRS
medium supplemented with other electrolytes, including 1.0
M NaCl and KCl (Fig. 1). Salt addition raised the medium
osmolality from 0.44 to approximately 2.35 osM. L.
acidophilus 3532 could grow in MRS broth containing up to
1.8 M NaCl. Although the growth rate decreased as the NaCl
concentration varied from 0.2 to 1.8 M, the cells achieved

APPL. ENVIRON. MICROBIOL.
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FIG. 2. Tracings of 13C NMR spectra of perchloric acid extracts
of L. acidophilus 3532 cells grown in MRS medium (A) or MRS
medium supplemented with 1 M NaCl (B). The peaks were identified
from spectra obtained with authentic compounds and are lactic acid
(L), glucose (G), and betaine (B).

final densities >60% of those of cells in unsupplemented
medium. These cells also grew when the osmotic pressure
was increased with nonelectrolytes. On addition of 1.0 M
sorbitol, fructose, xylose, or arabinose (approximately 1.2
osM) the cells grew somewhat more slowly than in MRS
medium, with 20 to 30% longer culture doubling times, but to
comparable cell densities. Growth was seen at 2.6 to 2.8 osM
in medium containing 3 M fructose, sorbitol (Fig. 1), xylose,
or glucose (not shown). At osmolalities exceeding 3.1 osM,
reached by adding 4 M sugars, there was no growth.

Effect of medium osmolality on growth of other lactobacilli.
In contrast, the other strains of Lactobacillus tested grew
only under conditions of lower osmotic pressure. L.
bulgaricus ATCC 8144 and a typical strain of L. acidophilus,
ATCC E4356, grew in MRS medium supplemented with up
to 0.3 M NaCl. L. delbrueckii ATCC 9649 was slightly more

osmoresistant, tolerating up to 0.6 M NaCl added to the
medium. L. delbrueckii 9649 also grew in MRS medium
supplemented with 0.5 M sodium acetate, sorbitol, arabi-
nose, and KCl; these cells did not grow in the presence of 1
M electrolytes or arabinose.

Identification of the intracellular osmolyte of osmotically
stressed L. acidophilus 3532. The internal aqueous volume of
cells suspended in 50 mM citrate-phosphate buffer, pH 6.2,
decreased from 1.68 to 1.37 p.l/mg of cells (dry weight) when
1 M NaCl was added. This decrease showed that cells
exposed to high salt concentrations did not shrink suffi-
ciently to concentrate the cytoplasm in response to the
increase in external solute concentration. Therefore, the

marked resistance to osmotic stress of L. acidophilus 3532
was believed to be due to the accumulation of an osmotically
active solute. To identify a potential osmoprotective com-
pound, extracts prepared from cells grown in MRS medium
with or without 1.0 M NaCl or KCI were analyzed by
standard chemical tests. There were no significant differ-
ences between the extracts in total amino acid content
(ninhydrin-positive material), carbohydrates (reducing sug-
ars), glycerol, K+, or Na+. Although cells grown with 1 M
NaCl added had a five- to sixfold increase in proline, the
cellular proline was, at most, only 20 mM.
The concentration of quaternary amines, however, was

significantly greater in extracts of 1 M KCI-grown cells than
in cells grown in unsupplemented MRS medium. This sug-
gested that betaine or a similar compound may be accumu-
lated by osmotically stressed cells. Thin-layer chromatogra-
phy of cell extracts with three solvent systems showed one
prominent spot which cochromatographed with authentic
betaine.
The natural-abundance 13C NMR spectrum obtained from

perchlorate extracts of cells grown in the presence of 1 M
NaCl revealed several peaks not seen in extracts from cells
grown in unsupplemented MRS medium (Fig. 2). Many of
these peaks represent residual glucose trapped in the cell
pellet and presumably are due to the slower rate of growth
and fermentation in the NaCl-containing medium. In addi-
tion, there was a major peak at 55 ppm in the NaCl-grown
cell extract spectrum. The compound responsible for this
peak was identified as glycine betaine on the basis of
published spectra (2, 10, 23) and comparisons with spectra
obtained with authentic betaine. Furthermore, the 1H NMR
spectrum of purified material was identical to that of authen-
tic betaine (not shown).

Betaine uptake by L. acidophilus 3532. The source of
intracellular betaine in L. acidophilus 3532 cells growing
under high osmotic pressure conditions is probably the yeast
extract component (8) of medium MRS. We therefore tested
the ability of cells to transport radioactive betaine against a
concentration gradient. Strain 3532 cells accumulated
[14C]betaine when the osmolality was raised with 0.5 and 1.0
M NaCl (Fig. 3). The rate of betaine transport was propor-
tional to the medium osmolality (Fig. 3, Table 1). The
radioactive material taken up by the cells was extracted, and
more than 90% was found to cochromatograph with genuine
betaine. Thus, betaine was not metabolized after transport
into the cells. The nature of the salt used to increase the
medium osmolality had a minor effect, as addition of 1.0 M
NaCl or KCl resulted in similar betaine transport activity.
Supplementing MRS medium with additional betaine did not
render the cells resistant to higher salt concentrations.

Betaine uptake by other lactobacilli. If the ability to accu-
mulate betaine to high intracellular levels results in the
osmotolerance of L. acidophilus 3532, one would expect
other, less osmotolerant lactobacilli not to accumulate the
osmolyte as rapidly or to equally high levels. This was found
to be the case (Table 1). L. acidophilus E4356 and L.
bulgaricus 8144, which are both more osmosensitive than L.
acidophilus 3532, transported betaine at significantly lower
rates.

Properties of the betaine transport system of L. acidophilus
3532. The betaine transport system was found to be rela-
tively specific for glycine betaine, as related amino acids
were not inhibitory. Proline a-aminoisobutyric acid, glycine,
and choline at 100-fold-higher concentrations had no effect
on the transport rate of 0.2 mM betaine (Table 2).
Dimethylglycine, however, decreased betaine transport by

VOL. 53, 1987
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FIG. 3. Effect of NaCl on betaine uptake by L. acidophilus 3532.
Cells were assayed in buffer supplemented with 40 mM glucose plus
0.5 or 1.0 M NaCl; A, no additions.

50%. The Km for betaine, measured in the presence of 1 M
KCl, was 50 F.M.
As expected of transport against a concentration gradient,

the accumulation of betaine required metabolic energy, that
is, a fermentable carbon source, such as glucose (Fig. 3,
Table 3). All the metabolic inhibitors tested reduced betaine
uptake by L. acidophilus 3532 (Table 3). Omission of the
energy source, glucose, or addition of the glycolytic inhibitor
iodoacetate abolished betaine uptake. Uptake was reduced
by protonophores such as the classical uncoupling agents
2,4-dinitrophenol, carbonyl cyanide-p-trifluoromethoxy-
phenyl hydrazone, and pentachlorophenol. Addition of car-
bonyl cyanide-p-trifluoromethoxyphenyl hydrazone (25 ,uM)
or pentachlorophenol (50 ,uM) to cells that had accumulated
['4C]betaine over 40 min of incubation stopped further
uptake, but did not cause efflux over the following 7 to 10
min (not shown). Antibiotic ionophores (41) were also inhib-
itory, including the K+-specific ionophore valinomycin
(tested in the presence of 50 mM KCl) and the K+ or Na+/H+
exchangers monensin and nigericin. The membrane poten-
tial-dissipating anion SCN- (not shown) and arsenate, which

TABLE 1. Effect of KCl concentration on betaine transport
by three Lactobacillus strainsa

Betaine transport (nmol/mg of cells [dry
Strain wt] per min) at KCI concn in medium:

0 0.3 M 1.0M

L. acidophilus 3532 1.48 1.94 7.93
L. acidophilus E4356 0.05 0.99 1.74
L. bulgaricus 8144 0 0 0.86

a The cells were grown in MRS medium supplemented with 1.0 M NaCI for
L. acidophilus 3532 and 0.3 M NaCl for the other two strains. The cells were

harvested, washed twice in buffer, and assayed in buffer supplemented with
glucose and KCI as described in the text.

TABLE 2. Effect of analogs on betaine transporta

Betaine transport
Addition (nmol/mg of cells

[dry wt) per min)

None ........................................ 8.9
Proline ......................................... 7.9
oa-Aminoisobutyric acid .............. ................ 9.4
Glycine........................................ 8.6
Choline........................................ 8.8
Dimethylglycine ...................................... 4.1

a The cells were harvested after overnight growth in MRS medium contain-
ing 1.0 M KCl and prepared for betaine uptake assays in the presence of 1.0
M KCI as described in the text. The ['4CJbetaine concentration was 0.2 mM,
and the various analogs were added to 20 mM.

inhibits reactions involving high-energy phosphate bonds,
also reduced betaine transport, as did the H+-ATPase inhib-
itor N',N'-dicyclohexylcarbodiimide (DCCD) (Table 3). The
DCCD effect would suggest that ATP, or a related high-
energy phosphate bond compound, is not sufficient for
betaine transport, since DCCD would not be expected to
decrease the intracellular ATP concentration, as has been
seen in Streptococcus lactis (35). To test whether betaine
accumulation could be driven by a proton motive force,
valinomycin was added to cells in low K+ medium in the
absence of glucose to generate a K+ diffusion potential (27).
However, no accumulation of betaine was seen.

Betaine content of growing L. acidophilus 3532 cells. Cells
growing in MRS medium without osmotic supplements were
found to contain approximately 4 mM betaine during the
exponential and stationary phases. In cells growing in 1.0 M
KCl-supplemented MRS medium, however, the accumu-
lated betaine reached approximately 430 mM during expo-
nential phase and decreased to approximately 160 mM as the
cells entered the stationary phase. Similar values were
obtained when [14C]betaine was used to assay the betaine
accumulated in growing cells. Medium MRS contained ap-
proximately 16 mM of periodide-reactive material, most of
which is not betaine, as thin-layer chromatography showed a
number of yellow spots after exposure to 12 vapor. Elution of
material with the same mobility as authentic radioactive

TABLE 3. Effect of metabolic inhibitors on betaine transport
by L. acidophilus 3532'

Addition (concn) % of uninhibited rate'

lodoacetate (1 mM) .................................. 0
Arsenatec (10 mM) ................................... 52
Arsenatec (100 mM) .................................. 40
2,4-Dinitrophenol (1 mM) ............ ................ 18
PCPd (50 ,uM) ........................................ 20
CCFPd (25 ,uM) ...................................... 32
Nigericin (10 p.g/ml) .................................. 23
Monensin (10 p.g/ml) ................................. 20
DCCD (0.1 mM) ...................................... 11
Valinomycin (10 ,ug/ml) ............... ............... 48
Valinomycin (glucose omitted) (10 ,g/ml) ...... ...... 0
Glucose omitted ...................................... 0

a The cells were prepared as described in the text and tested in the presence
of 40 mM glucose and 1.0 M KCI or NaCl. The metabolic inhibitors were
added just before ['4CJbetaine; the cells were preincubated with DCCD for 20
min.

b The uninhibited betaine transport rates were 7.2 and 3.3 nmol/min per mg
of cells (dry weight) in the presence of 1 M KCI and NaCI, respectively.

Assayed in MES buffer, pH 6.2.
PCP, Pentachlorophenol; CCFP, carbonyl cyanide-p-trifluorometh-

oxyphenyl hydrazone.

APPL. ENVIRON. MICROBIOL.
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FIG. 4. Effect of chloramphenicol (Cm) on betaine uptake by L.
acidophilus 3532. The cells were grown for 5.5 h to an optical
density at 625 nm of 1.3 (0.5 mg of cells, dry weight). The culture
was divided into two portions, and 100 ,ug of chloramphenicol per ml

of 95% ethanol or an equivalent volume of 95% ethanol was added.
After 2 h of further incubation, when the culture without drug had
grown to an optical density at 625 nm of 3.0 and the cells with drug
added had stopped growing, each flask was again divided into two
portions. KCl (1.0 M) was added to one portion from the control
culture and one from the drug-containing culture, and [14C]betaine
was added to each flask. Uptake of [14C]betaine was determined as

described in the text during the next 70 min.

betaine and quantitation by the periodide method showed
that MRS medium contained 0.5 to 1.0 mM betaine.
The intracellular betaine decreased when the cells were

washed with buffer of lower osmotic pressure. Thus, cells
grown in 1 M KCl-supplemented MRS medium and washed
with 1.0 M KCl still contained 92% of the betaine, and
successive washings had no further effect. Cells washed one

to three times with 50 mM citrate-phosphate buffer or with
50 mM MES buffer [2-(N-morpholino)ethane sulfonic acid],
pH 6.2, however, lost 60 to 75% of the internal betaine.
Adding 1.0 M KCl with or without 2 mM betaine to such
washed cells did not restore the higher betaine levels,
presumably because active transport of the osmolyte re-

quires metabolic energy as well as increased external os-

motic pressure.
The betaine transport system is not induced by high osmotic

pressure. The immediate stimulation of betaine transport
following osmotic upshock in nongrowing cells (Fig. 3)
suggested that the system was activated, rather than in-
duced, by osmotic stress. Activation, rather than induction,
was also suggested by the finding that the rate of betaine
transport (tested in buffer with 1.0 M KCI) was the same
whether the cells were grown in MRS medium with or
without 1.0 M KCI (4.7 and 4.5 nmol/min per mg of cells [dry
weight], respectively). As a further test, we assayed the
effect of chloramphenicol on betaine transport activity elic-
ited by high osmotic pressure and found no effect of the
protein synthesis inhibitor (Fig. 4). In this experiment chlor-
amphenicol inhibited growth, as the cell density did not
increase 1 h after addition of the antibiotic. However, these
cells were able to take up betaine over the next 70 min in
response to KCl addition, and the uptake was the same as

that of cells not exposed to chloramphenicol and whose
growth had not been impaired. We concluded that the
activity of the betaine transport carrier is stimulated by the
rise in extracellular osmotic pressure.

DISCUSSION
Osmotolerance generally has not been considered a phe-

notypic trait of lactobacilli (25). Recent reports that some
lactobacilli can tolerate high salt concentrations (11, 24)
suggest that members of this genus may be more halotolerant
than previously believed. L. acidophilus strains generally
tolerate 2% (0.34 M) NaCl (51). One strain, L. acidophilus
IAM 3532, possesses the cellular morphology, Gram reac-
tion, and biochemical phenotype typical of this species (25)
but was found to be relatively osmotolerant, growing in MRS
medium containing up to 1.8 M (10.5%) NaCl. Other
lactobacilli tested, including another strain of L. acidophilus
and a strain of L. bulgaricus, behaved in a more usual way;
that is, they tolerated no more than 0.3 M (1.75%) NaCl,
while a strain of L. delbrueckii grew in 0.6 M (3.5%) NaCl
added to the complex medium MRS.
The osmotolerance of strain 3532 of L. acidophilus can be

attributed to its capacity to accumulate the osmoprotective
compound glycine betaine. This conclusion is based on the
following findings. (i) Betaine was found in high concentra-
tions within cells growing in medium of high osmolarity,
reaching approximately 430 mM in exponential-phase cells,
while cells growing in low-osmolality medium contained <5
mM of the osmolyte. The internal betaine only partially
compensated for the increase in medium osmotic pressure.
Partial compensation has also been found for other bacteria
(14, 39). (ii) Cells of strain 3532 were able to accumulate
exogenous betaine both during growth and under nongrow-
ing conditions. (iii) The rate of transport was proportional to
the osmotic pressure of the incubation medium. (iv) Other,
less osmoresistant lactobacilli transported betaine signifi-
cantly more slowly. The other strains were not devoid of
activity, however, the difference among strains being quan-
titative rather than absolute. Further experiments are
needed to determine whether transport protein gene dosage
explains the difference among these lactobacilli, as has been
found in Escherichia coli, where increased proU gene dos-
age has been shown to enhance osmotolerance (17).
The source of the betaine accumulated by the lactobacilli

during growth in high osmotic pressures was the medium.
With a Km of 50 ,uM, the medium contained sufficient betaine
(0.5 to 1.0 mM) to saturate the transport carrier. It is not
known whether these lactobacilli can synthesize betaine, as
attempts to grow the cells in defined medium were not
successful. In any case, the betaine in the medium most
probably would have repressed betaine biosynthesis. Thus,
induction of the transport system by betaine could not be
determined; in enteric organisms the ProP and ProU betaine
transport systems are not induced by betaine or by proline
(5, 6).
The best-studied systems for accumulation of betaine by

bacteria in response to osmotic stress are found in gram-
negative enterics. E. coli (39, 49) and Salmonella typhimu-
rium (5, 6) transport betaine, when it is available, by two
transport systems, products of the proP and proU genes
(5-7, 49). Synthesis of both the betaine transport systems
(39) and the choline-glycine betaine pathway (30, 46) is
inducible by increased external osmotic pressure, as is the
K+ uptake system in E. coli (13). In contrast, the L.
acidophilus 3532 betaine carrier was not induced by in-
creased medium osmolality.
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In lactobacilli the HI gradient is established and main-
tained by the membrane H+-extruding ATPase, utilizing
glycolytically generated ATP (20, 37, 38). Treatments that
decrease ATP synthesis would be expected to inhibit betaine
uptake whether its transport system is proton gradient
driven or ATP energized. Similarly, agents that dissipate the
proton gradient could inhibit both ion gradient-driven and
ATP-energized transport systems; in the latter case, ATP
would be depleted by increased H+-ATPase activity com-
pensating for ion gradient dissipation. We found that betaine
transport was inhibited by a variety of metabolic poisons,
including those that inhibit ATP synthesis and those that
dissipate the proton and other ion gradients across the cell
membrane. Thus, in contrast to facultative anaerobes (42), in
intact lactobacilli it is not possible to distinguish between the
proton motive force and ATP as the energy-coupling mech-
anism for transport systems.
Once the betaine was accumulated within L. acidophilus

3532 cells it effluxed little, even in the absence of a ferment-
able energy source, unless the external osmotic pressure was
lowered. Transport thus is regulated by the osmolality of the
external medium. Activation by increased external osmolal-
ity is a possible mechanism for regulation of betaine carrier
activity. Alternatively, the turgor pressure may be the reg-
ulatory factor, in analogy to the model proposed by Epstein
and co-workers for the E. coli K+ transport systems (12, 13,
29). A mechanism could involve deformation of the cell
membrane due to a change in the turgor pressure, leading to
a change in conformation of the membrane-embedded trans-
port carrier; this, in turn, would stimulate the inward trans-
port of betaine.
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