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Abstract 

 
With the increased popularity of replica-based 

services in distributed systems such as the Grid, 
consistency control among replicas becomes more and 
more important. To this end, IDF (Inconsistency 
Detection Framework), a two-layered overlay-based 
architecture, has been proposed as a new way to solve 
this problem—instead of enforcing a predefined 
protocol, IDF detects inconsistency in a timely manner 
when it occurs and resolves it based on applications’ 
semantics. 

This paper presents a comprehensive analytical 
study of IDF to assess its performance and provide 
insight into its design. More specifically, it develops an 
analytical model to characterize IDF. Based on this 
model, we evaluate the successful rate of inconsistency 
detection within the top layer, which directly impacts 
the performance of IDF. In addition, this model helps 
derive a unified formula to characterize a wide range 
of applications, providing practitioners and protocol 
designers with quantitative insights into the IDF 
design that can be potentially optimized to specific 
applications.  

 
 
1. Introduction 
 

With the increased popularity of Internet-scale 
distributed systems, such as Grid and wide-area e-
business applications, replica-based systems have 
gained momentum. With multiple replicas, the system 
can improve both the availability—a user can access a 
nearby copy—and scalability—there is no bottleneck 
and single point of failure [10]. However, with the 
presence of multiple replicas, consistency control 
becomes an important issue.   

Conventionally, the consistency problem is solved 
as follows: before the system starts to run, the 
administrator deploys a pre-defined consistency 
protocol, such as an optimistic protocol [4, 9] or strong 
consistency protocol [1]. However, in an environment 
where multiple applications with different consistency 
requirements run concurrently, this simple approach is 
not versatile enough: sometimes a pre-defined protocol 
is insufficient, while at other times it can be overkill [2, 
6, 7].  

IDF (Inconsistency Detection Framework) provides 
an alternative [6, 7]. Instead of deploying a pre-defined 
consistency protocol, IDF lets the system run and 
detect any inconsistency of the system in a timely 
manner. When an inconsistency is detected, IDF 
resolves the inconsistency based on applications’ 
semantics: it neglects the inconsistency if the 
consistency level is still acceptable and resolves the 
inconsistency otherwise. 

In IDF, timely inconsistency detection is the key 
because it ensures the system’s performance [7]. IDF 
achieves timely detection through a two-layer system 
infrastructure. The top layer includes all the hot writers 
and the bottom layer includes all the network nodes. In 
the best case, all the inconsistency would be detected 
by the top layer, which is significantly faster than the 
bottom layer.  

While previous research has shown that IDF 
achieves the design goal with minimal bandwidth cost 
[7]—it can be supported by dial-up connections—and 
the semantic-based inconsistency resolution works 
with real applications [8], it is still not clear what the 
precise performance of IDF would be and how a 
practitioner can adjust or optimize the design for 
specific applications when adopting IDF. Addressing 
these issues will be the focus of this paper.  

In particular, this paper tries to answer two 
questions. First, what is the successful rate at which an 
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inconsistency can be detected by the top layer, which 
in turn results in much faster detection? Second, how 
can practitioners relate the successful rate to a 
particular application, so that they can determine how 
to adopt or even optimize their IDF designs for 
specific applications? 

We approach these questions by first developing an 
analytical model to characterize the main principles of 
IDF, and then deriving the successful rate of 
inconsistency detection by the top layer in all possible 
scenarios. Based on this information, a unified formula 
is then derived to relate these success rates to specific 
applications.  

The rest of the paper is organized as follows. 
Section 2 presents an overview of IDF. Then Section 3 
presents the analytical model and analyzes the success 
rate of the top-layer detection by considering all 
possible scenarios. Section 4 derives a unified formula 
to explore the implications of IDF design to particular 
applications and offers insight into possible ways to 
fine tune IDF to suit particular applications. Finally, 
Section 5 concludes the paper.  
 
2. An Overview of IDF 
 
2.1. The work flow 

 
A logical diagram of IDF is shown in Figure 1.      

In this framework, multiple applications share data and 
services through the support of the Internet-scale 
middleware and inconsistencies among them are 
detected by the detector. Upon detection, the detector 
consults with the inconsistency-level monitor (step 1 
and step 2) that reflects the consistency requirements 
of specific applications before any reaction is initiated. 
Based on applications’ semantics, if the inconsistency 
is tolerable, the detector does not react; otherwise, the 
detector informs the inconsistency resolution module 
to resolve this inconsistency (step 3).  
     The arrow from the middleware to the detector 
module signifies that the detector gets information 
from the middleware, and the arrow from the 
inconsistency resolution module to the middleware 
implies that the module can influence the middleware. 
The two arrows between the consistency-level module 
and the middleware indicate that the former can obtain 
the consistency levels for applications from the 
middleware and potentially help the applications adjust 
their consistency levels. 

As we can see, the key to this framework is the 
timely inconsistency detection mechanism, which will 
be discussed next.  

 

 
 

Figure 1. Architecture of the Inconsistency 
Detection Framework 

 
2.2. Timely inconsistency detection 

 
The basic idea of a timely detection is to build an 

overlay on top of the underlying network based on 
nodes’ updating history. Because the top layer is based 
on nodes’ updating history, or updating temperature, it 
is referred as “temperature overlay”. The bottom layer 
of gossip-based inconsistency detection [3] is used as a 
backup and only triggered when the top layer does not 
find any inconsistency.  

In the temperature overlay, each node tracks its own 
updating history and exchanges this information with 
others through the RanSub [5] protocol periodically. 
When a node commits an update, this update is 
propagated in the temperature overlay in such a way 
that the nodes that update this file most frequently are 
visited first. The rationale behind this design is that a 
user usually works on a file for a certain period of 
time. For example, he/she may edit a report for 10 
minutes, then debugs, thus updates, a C++ file for 20 
minutes. 

Protocol-wise, the top layer is formed by frequently 
running RanSub to distribute nodes’ updating history. 
Overtime, a top layer for each file will be formed and 
will keep evolving. When a node starts to modify a file 
for the first time, it will make its update visible to a 
random set of nodes, thus increasing the chance that 
other simultaneous writers will be aware of it. For 
more detailed description of the protocol, please refer 
to [6, 7].  

 
2.3. How to analyze IDF? 
 

A key measure of the performance of IDF is the 
success rate that an inconsistency can be detected by 
the top layer, thus avoiding triggering the bottom layer 
that is much slower. If the success rate is high, IDF can 
use top layer to detect most inconsistency in a timely 
manner, which translates into better performance—
faster detection.  

Another important performance issue is the impact 
of different applications. Since different applications 



may exhibit difference updating patterns as well as 
user distributions, it is highly likely that, for different 
applications, the performance of IDF can be different. 
To give practitioners better understanding of how to 
best benefit their particular applications from adopting 
IDF, we need to put the performance of IDF in the 
context of a wide range of applications.  

Thus, we will analyze IDF from two aspects: its 
success rate of the top-layer detecting an inconsistency 
and how to translate this success rate into positive 
performance impact on real applications.  

 
3. The analytical model 
 
3.1 Assumptions and definitions 

 
The goal of this analysis is to derive the success rate 

of the top-layer inconsistency detection. In this 
analysis, we assume that there are n nodes in this 
system and, after a warm-up period, the top layer 
associated with a given file f has been formed. This 
can be visually represented by Figure 2.  

For the purpose of analysis and simplicity, we 
assume that there are two concurrent writers A and B 
for file f, and each writer can be from either top layer 
or bottom layer. While there can potentially be more 
than two concurrent writers, the analysis can be 
simplified to the case of two writers without the loss of 
generality because, as far as inconsistency detection is 
concerned, it is a matter of two writers—the writer that 
triggers the detection in the first place and whether its 
inconsistency (in the form conflicting updates) is 
detected when its update conflicts with that from the 
first concurrent writer, thus all other concurrent (but 
later) writers do not matter in this case.  

Now let us first define some terms and parameters 
that we will use throughout the rest of the paper, 
starting with the following seven events.  

 
[1] E: IDF fails to detect the inconsistency 

between A and B in the top layer. 
[2] e1: writers A and B are both from the top layer. 
[3] e2: one writer comes from the top layer, and 

the other comes from the bottom layer. 
[4] 3e : A and B are both from the bottom layer. 
[5] d1: IDF fails to detect inconsistency between 

A and B in the top layer given event 1e . 
[6] d2: IDF fails to detect inconsistency between 

A and B in the top layer given event 2e . 
[7] d3: IDF fails to detect the inconsistency in the 

top layer given event 3e . 

 
Figure 2. An abstract view of the two-layer system 

for a given file 
 

It must be noted that, when we say that IDF fails 
to detect inconsistency in the top layer, we do not 
mean that IDF cannot detect the inconsistency. 
Actually, IDF can detect all the inconsistency 
eventually through the bottom layer, albeit it will be 
much slower than the detection in top layer. Thus, if 
IDF fails to detect an inconsistency in the top layer and 
the bottom layer has to be triggered, at the expense of 
performance, not the correctness of IDF. 

As a measure of the performance of IDF, we 
denote the probabilities of several events as follows.  

 
[1] The overall success rate of the top layer 

detecting the inconsistency is denoted as Psucc. 
[2] The probability of event E is denoted as P.  
[3] The probability of event ei (i = 1, 2, 3) 

occurring is denoted by hi. 
[4] The probability of event di (i = 1, 2, 3) 

occurring is denoted by pi. 
  

Clearly, Psucc is the overall success rate of the top 
layer detecting an inconsistency. Intuitively, we have 

∑
=

−=−=
3

1

11
i

iisucc phPP                             (1) 

 
3.2. The analysis 
 

In this section, we analyze the performance of IDF 
by deriving the formulas for pi (i = 1, 2, 3)—the failure 
rates—and use these values as an indicator of the 
performance of IDF (success rate = 1 – failure rate). 
We need to note that the value of pi is an abstract 
value. In other words, these values do not directly 
relate to particular applications. In order to translate pi 
to the performances with regard to particular 
applications, we need to derive Psucc as indicated in 
formula (1) in which hi (i = 1, 2, 3) is determined by 
the applications’ characteristics. The derivation of Psucc 
will be presented in Section 4.  
 
3.2.1. Derivation of p1 
 

Top Layer 

Bottom layer 



Recall that p1 is the probability of event d1, which in 
turn implies that event e1 happens. When event e1 
happens, concurrent writers A and B are both from top 
layer. According to the system design [7], the top layer 
is able to detect inconsistency whenever the two 
writers can find each other. In this case, they can find 
each other through the top layer, which is visible to 
both of them. Thus the probability that the system fails 
to detect the inconsistency is 0. So we have the: 

 
0)( 11 == dpp                                                  (2) 

 
3.2.2. Derivation of p2 
 

Note that p2 is the probability of event d2, which in 
turn implies event e2. In this case, one of the two 
writers comes from the top layer and the other is from 
the bottom layer. Without loss of generality, let us 
suppose that B is from the top layer while A is from the 
bottom layer. 

Let us assume that there is a set Sexist of n1 nodes in 
the current top layer, then, from the assumption, we 
know that B belongs to the set Sexist and A is form the 
bottom layer. After A starts the update operation, its 
update will be distributed to certain nodes in the 
network overtime. Without loss of generality, we 
assume that there is a set SAnew of n2 nodes that have 
learned that A has become an active writer of the file f 
by the time both A and B become concurrent writers.  

Because there is no particular requirement of these 
SAnew nodes, it is possible that, probabilistically 
speaking, some nodes in SAnew are from Sexist. If sets 
Sexist and SAnew do not intersect, the top layer will fail to 
detect this inconsistency because A and B cannot meet 
each other and the bottom layer has to be triggered 
(Figure 3(a)). On the other hand, if sets Sexist and SAnew 
intersect, this inconsistency can be detected in the top 
layer because, according to the protocol, as long as A 
and B can meet each other, the inconsistency can be 
detected (Figure 3(b)).  

Assuming that there are a total of n nodes in the 
system, we have  
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To calculate p2, we use the Sterling formula, which 

states that 
 

nnnenn −≈ π2!  
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Figure 3. Two cases given event e2 
 

Thus we have1  
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3.2.3. Derivation of p3 
 

The value of p3 is the probability of event d3, which 
in turn implies the occurrence of event e3,, meaning 
that both A and B are from the bottom layer. Following 
the same analysis in Section 3.2.2, we can assume the 
existence of three sets Sexist, SAnew and SBnew, because 
both A and B are from the bottom layer, 

Depending on whether the three sets intersect with 
each other, there are six cases that need to be 
considered. The six cases are illustrated in Figure 5 
(from 4(a) to 4(f)). 

For simplicity of analysis, we use n1, n2 and n3 to 
denote the sizes of Sexist, SAnew, and SBnew, respectively. 
According to the IDF protocol, the top layer will fail to 
detect any inconsistency in cases (a), (b) and (c); and 
will be able to detect inconsistency in the remaining 
cases (d, e, and f) where A and B can meet each other 
eventually. 

Let g1, g2 and g3 denote the probabilities of cases 
(a), (b) and (c), respectively. Then we have 
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1 For the purpose of easy calculation, we can use log operation, 

such as  
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At this point, logp2 is very easy to calculate and p2 can be 
calculated accordingly.  
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     To simplify the formula, we can assume that n2 is 
equal to n3, which is reasonable for analysis purpose 
because A and B have equal status and behave 
similarly. Then we have  
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     Finally, we have  
 
     32133 )( gggdpp ++==                            (4) 
 
     To calculate the final value of p3, we can 
approximate the values of g1, g2, and g3 by the Sterling 
formula and log computation as what we have done in 
Section 3.2.2. 
      
4. Application characteristics and design 
implications 

 
In this section, we explore the performance and design 
implications of IDF to specific applications. In 
particular, we relate the failure rate of the top-layer 
detection (the values of p1, p2, and p3) to real 
applications by deriving a unified formula. We then 
show how to adjust two parameters in the unified 
formula to reflect a particular application’s user 
distribution, as well as usage pattern. In this way, a 
practitioner can adjust certain IDF protocol parameters 
to potentially optimize the IDF performance for his or 
her particular applications. 

As discussed in Section 3, to derive a unified 
formula for IDF as a whole, Psucc, thus P, has to be 
derived (see formula (1) in Section 3). In turn, we have 
to derive hi (i = 1, 2, 3) first (hi is the probability that 
event di occurs).  

This analysis is conducted in three steps. In the first 
step, we assume that all nodes have the same 
probability of issuing the next update request for a 
particular file f, which implies that the updating 
operation is truly random and uniform. In the second 
step, we relax this assumption and consider different 
updating patterns. In the third and last step, we derive a  

  
 
 
 
 
 

(a) None of these sets intersect with one another 
 

 
 
 
 
 

 
(b) Sexist intersects with SAnew 

 
 
 
 
 
 

(c) Sexist interests with SBnew 

 
 
 
 
 
 
 

(d) SAnew intersects with SBnew 
 
 
 
 
 
 
 

(e) Both SAnew and SBnew intersect with Sexist, but SAnew and 
SBnew do not intersect with each other 

 
 
 
 
 
 

(f) The three sets intersect with one another 
 

Figure 4. Six cases given event e3  
 
unified formula to reflect the characteristics of 
particular applications.  

Finally, we discuss the performance and design 
implications to specific applications that can help 
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practitioners choose the best IDF parameters to suit 
their particular needs. 

 
4.1. Random and uniform updates 
 

In step 1, we assume that all nodes have an equal 
probability of updating ， thus the probability of a 
writer coming from the top layer is decided by the 
relative size of the top layer. For the same reason, the 
probability of a writer coming from the bottom layer is 
decided by the relative size of the bottom layer.  

Now we can evaluate hi (i = 1, 2, 3) as follows: 
 

[1] The event d1 means that the two concurrent 
writers A and B are both from the top layer. In 
this case, we have 
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[2] The event d2 means that one of the two 
concurrent writers comes from the top layer, 
while the other is from bottom layer. In this 
case, we have 
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[3] The event d3 means that the two concurrent 
writers are both from the bottom layer. In this 
case, we have 
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4.2. Non-uniform updates between two layers  
     
     In this step, we relax the random and uniform 
assumption made in Step 1 above by assuming that the 
updating frequency of the nodes in the top layer is F1 
and that of the nodes in the bottom layer is F2. 
However, it is implied that within each layer, all nodes 
are equally likely to issue update requests for a given 
file. 
     In practice, if F1 is larger than F2, it means that 
nodes in the top layer have more update requests than 
the nodes in the bottom layer, which is the case for 
applications like online gaming in which active gamers 
keep playing the game for a long period of time (thus 
they will form a top layer and keep issuing updating 
requests).  
     If F2 is larger than F1 instead, it means that new 
updating requests are more likely from bottom layer. 
This is possible because, while the current top layer 

reflects the history, it is still possible that the future 
pattern is different from the history. For example, if 
there is a forum in which its user base keeps changing 
and number of requests from new members is larger 
than that from current members, F2 would be larger 
than F1.  
     After incorporating the frequencies of updating 
operations of the top layer and bottom layer nodes, the 
frequency of event d1 can be expressed as 22

1 1nCF , the 

frequency of event d2 as 11
21 11 nnn CCFF − , and the 

frequency of the event d3 as 22
2 1nnCF − .  Hence, we have 

 
[1] The value of h1 can be calculated as  
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[2] The value of h2 can be calculated as  
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[3] The value of h3 can be calculated as 
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     To normalize the values of F1 and F2, We 
introduce f1 and f2, which are defined as 
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     After the normalization, both f1 and f2 are in the 
range of (0, 1). Then h1, h2, and h3 can be expressed as 
follows 
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4.3. The unified formula 
 
     We can see that, if f1 equals to f2, then the values of 
h1, h2, and h3 are exactly the same as those derived in 
step 1. In short, the formulas of step 1 are special cases 
of the formulas we derived here.       
     Now we simplify these expressions and take two 
important aspects of real applications into 



consideration. The two aspects, their meanings, and 
their relationships with the parameter of the formula 
for hi (i = 1, 2, 3) are summarized as follows. 
 
• User distribution: This aspect characterizes the 

distribution of the active writers, i.e. how many 
users are active writers in the system. This aspect 
directly affects the size of top layer (the n1 value). 

• Usage pattern: This aspect characterizes where the 
new updates are most likely coming from. For 
example, if the updating operations are highly 
concentrated on a small group of dedicated users, 
then most new updates would come from the top 
layer; otherwise, more updates would come from 
the bottom layer. This aspect determines the value 
of f1, as well as f2 because f2 = 1 – f1.  

 
     To formally represent the two aspects in the 
formulas, we do the following substitutions. First, we 
use α to substitute n1/n and n1 in the formulas can be 
then represented by nα. Second, we use β to substitute 
f1 and (1 – β) to substitute f2. Please note that now both 
α and β are in the range of (0, 1). Given the total 
number of nodes in the system—the value of n—the 
performance of IDF for different applications can be 
obtained by adjusting the α and β values. 
     Now we can finally represent h1, h2, and h3 as  
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     Now that we have h1, h2, and h3, we finally get a 
unified formula to evaluate the performance of IDF 
based on formula (1) in Section 3.1. This unified 
formula can reflect the different characteristics of 
particular applications by adjusting the values of α and 
β, which are in the range of (0, 1).  
 
4.4. Results and design implications  
 

In this section, we show results from the analytical 
model and offer insights about how much benefit 
particular applications can gain from adopting IDF 
and, more importantly, how a practitioner can tune the 
IDF’s parameters to tailor it for his or her particular 
needs.  

First of all, a set of results based on the formulas we 
derived are summarized in Table 1 that lists several 

important variables including the detection success 
rate. From this table, we can see that the lowest 
success rate is 91.4% while in the vast majority cases 
the rate is more than 98%, which we believe is very 
encouraging because it states that the top layer is 
indeed able to detect most inconsistencies.  

Now, we investigate how the parameters of IDF can 
affect the system performance for different 
applications. In the four parameters we discussed—n1, 
n2, α, and β—n1 and α correlate (n1 = n*α). Besides, β 
is entirely application-dependent. However, α is 
adjustable because the protocol can lower the threshold 
of the required temperature for the top layer 
participants, which in turn can increase the size of the 
top layer; n2 is also adjustable because it is a parameter 
in IDF.  

Now, we investigate the impact of the two values, α 
and n2, as follows. We first fix α and β, then calculate 
Psucc based on different values of n2. The result is 
shown in Figure 5(a). Two (α, β) pairs and four 
different n2 values are used in this calculation. 

Then we fix n2 and β and calculate Psucc based on 
different values of n1. The result is shown in Figure 
5(b). Two (n2, β) pairs and four different α values are 
used in this calculation.  

From the two figures, we can see that the success 
rate keeps increasing with the size of n1 and n2 values. 
This makes sense because, with the increased top layer 
size (n1) and the limited broadcasting size of a new 
writer (n2), there are more chances for concurrent 
writers to meet. But this comes at a cost as well: slower 
detection delay due to the larger top layer size (in the 
case of increased size of α) and increased network 
bandwidth overhead (in the case of increased size of 
n2).  
     Based on this information, the practitioners can fine 
tune the parameters as follows. If the system has 
enough bandwidth available, they can increase the 
value of n2; if the response time of IDF is better than 
the required value, it is also possible that they can 
increase the value of α. While simple, we believe that 
this suggestion can at least help practitioners to tune 
IDF in the best way to achieve the best performance of 
their particular applications.  
 
5. Conclusions 
 

In this paper, we presented an analytical study of 
IDF, an inconsistency detection framework. More 
specifically, it developed an analytical model to 
characterize IDF and calculates the success rate of the 
top-layer detecting an inconsistency (reflected through 
the failure rate), which directly impacts the  



  

 
Table 1: Success rate (in percentage) when n is 1000 with 18 sets of parameter values  

 

 
 

Figure 5. Tuning IDF parameters with n = 1000 
 
performance of IDF. Then, it derived a unified formula 
to model a wide range of applications and gives 
guidance to determine how much performance gain 
particular applications can achieve from adopting IDF 
and how practitioners can fine tune IDF’s parameters 
to best suit their applications’ needs. We believe that 
this analytical study provides a solid ground work for 
understanding the concept and design of IDF. 
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