
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department
of

3-6-2006

IDF: an Inconsistency Detection Framework – Performance IDF: an Inconsistency Detection Framework – Performance

Modeling and Guide to Its Design Modeling and Guide to Its Design

Yijun Lu
University of Nebraska-Lincoln, yijlu@cse.unl.edu

Xueming Li
University of Nebraska-Lincoln, xli@cse.unl.edu

Hong Jiang
University of Nebraska-Lincoln, jiang@cse.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/csetechreports

 Part of the Computer Sciences Commons

Lu, Yijun; Li, Xueming; and Jiang, Hong, "IDF: an Inconsistency Detection Framework – Performance
Modeling and Guide to Its Design" (2006). CSE Technical reports. 73.
https://digitalcommons.unl.edu/csetechreports/73

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17238347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csetechreports
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csetechreports/73?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages

IDF: an Inconsistency Detection Framework – Performance Modeling and
Guide to Its Design

Yijun Lu1, Xueming Li2,1, and Hong Jiang1
1Department of Computer Science and Engineering, University of Nebraska-Lincoln

{yijlu, jiang}@cse.unl.edu
2School of Computer Science and Engineering, Chongqing University, China

xli@cse.unl.edu

Abstract

With the increased popularity of replica-based

services in distributed systems such as the Grid,
consistency control among replicas becomes more and
more important. To this end, IDF (Inconsistency
Detection Framework), a two-layered overlay-based
architecture, has been proposed as a new way to solve
this problem—instead of enforcing a predefined
protocol, IDF detects inconsistency in a timely manner
when it occurs and resolves it based on applications’
semantics.

This paper presents a comprehensive analytical
study of IDF to assess its performance and provide
insight into its design. More specifically, it develops an
analytical model to characterize IDF. Based on this
model, we evaluate the successful rate of inconsistency
detection within the top layer, which directly impacts
the performance of IDF. In addition, this model helps
derive a unified formula to characterize a wide range
of applications, providing practitioners and protocol
designers with quantitative insights into the IDF
design that can be potentially optimized to specific
applications.

1. Introduction

With the increased popularity of Internet-scale
distributed systems, such as Grid and wide-area e-
business applications, replica-based systems have
gained momentum. With multiple replicas, the system
can improve both the availability—a user can access a
nearby copy—and scalability—there is no bottleneck
and single point of failure [10]. However, with the
presence of multiple replicas, consistency control
becomes an important issue.

Conventionally, the consistency problem is solved
as follows: before the system starts to run, the
administrator deploys a pre-defined consistency
protocol, such as an optimistic protocol [4, 9] or strong
consistency protocol [1]. However, in an environment
where multiple applications with different consistency
requirements run concurrently, this simple approach is
not versatile enough: sometimes a pre-defined protocol
is insufficient, while at other times it can be overkill [2,
6, 7].

IDF (Inconsistency Detection Framework) provides
an alternative [6, 7]. Instead of deploying a pre-defined
consistency protocol, IDF lets the system run and
detect any inconsistency of the system in a timely
manner. When an inconsistency is detected, IDF
resolves the inconsistency based on applications’
semantics: it neglects the inconsistency if the
consistency level is still acceptable and resolves the
inconsistency otherwise.

In IDF, timely inconsistency detection is the key
because it ensures the system’s performance [7]. IDF
achieves timely detection through a two-layer system
infrastructure. The top layer includes all the hot writers
and the bottom layer includes all the network nodes. In
the best case, all the inconsistency would be detected
by the top layer, which is significantly faster than the
bottom layer.

While previous research has shown that IDF
achieves the design goal with minimal bandwidth cost
[7]—it can be supported by dial-up connections—and
the semantic-based inconsistency resolution works
with real applications [8], it is still not clear what the
precise performance of IDF would be and how a
practitioner can adjust or optimize the design for
specific applications when adopting IDF. Addressing
these issues will be the focus of this paper.

In particular, this paper tries to answer two
questions. First, what is the successful rate at which an

University of Nebraska–Lincoln, Computer Science and Engineering
Technical Report TR-UNL-CSE-2006-0003
Issued 3/6/2006

inconsistency can be detected by the top layer, which
in turn results in much faster detection? Second, how
can practitioners relate the successful rate to a
particular application, so that they can determine how
to adopt or even optimize their IDF designs for
specific applications?

We approach these questions by first developing an
analytical model to characterize the main principles of
IDF, and then deriving the successful rate of
inconsistency detection by the top layer in all possible
scenarios. Based on this information, a unified formula
is then derived to relate these success rates to specific
applications.

The rest of the paper is organized as follows.
Section 2 presents an overview of IDF. Then Section 3
presents the analytical model and analyzes the success
rate of the top-layer detection by considering all
possible scenarios. Section 4 derives a unified formula
to explore the implications of IDF design to particular
applications and offers insight into possible ways to
fine tune IDF to suit particular applications. Finally,
Section 5 concludes the paper.

2. An Overview of IDF

2.1. The work flow

A logical diagram of IDF is shown in Figure 1.

In this framework, multiple applications share data and
services through the support of the Internet-scale
middleware and inconsistencies among them are
detected by the detector. Upon detection, the detector
consults with the inconsistency-level monitor (step 1
and step 2) that reflects the consistency requirements
of specific applications before any reaction is initiated.
Based on applications’ semantics, if the inconsistency
is tolerable, the detector does not react; otherwise, the
detector informs the inconsistency resolution module
to resolve this inconsistency (step 3).
 The arrow from the middleware to the detector
module signifies that the detector gets information
from the middleware, and the arrow from the
inconsistency resolution module to the middleware
implies that the module can influence the middleware.
The two arrows between the consistency-level module
and the middleware indicate that the former can obtain
the consistency levels for applications from the
middleware and potentially help the applications adjust
their consistency levels.

As we can see, the key to this framework is the
timely inconsistency detection mechanism, which will
be discussed next.

Figure 1. Architecture of the Inconsistency
Detection Framework

2.2. Timely inconsistency detection

The basic idea of a timely detection is to build an

overlay on top of the underlying network based on
nodes’ updating history. Because the top layer is based
on nodes’ updating history, or updating temperature, it
is referred as “temperature overlay”. The bottom layer
of gossip-based inconsistency detection [3] is used as a
backup and only triggered when the top layer does not
find any inconsistency.

In the temperature overlay, each node tracks its own
updating history and exchanges this information with
others through the RanSub [5] protocol periodically.
When a node commits an update, this update is
propagated in the temperature overlay in such a way
that the nodes that update this file most frequently are
visited first. The rationale behind this design is that a
user usually works on a file for a certain period of
time. For example, he/she may edit a report for 10
minutes, then debugs, thus updates, a C++ file for 20
minutes.

Protocol-wise, the top layer is formed by frequently
running RanSub to distribute nodes’ updating history.
Overtime, a top layer for each file will be formed and
will keep evolving. When a node starts to modify a file
for the first time, it will make its update visible to a
random set of nodes, thus increasing the chance that
other simultaneous writers will be aware of it. For
more detailed description of the protocol, please refer
to [6, 7].

2.3. How to analyze IDF?

A key measure of the performance of IDF is the
success rate that an inconsistency can be detected by
the top layer, thus avoiding triggering the bottom layer
that is much slower. If the success rate is high, IDF can
use top layer to detect most inconsistency in a timely
manner, which translates into better performance—
faster detection.

Another important performance issue is the impact
of different applications. Since different applications

may exhibit difference updating patterns as well as
user distributions, it is highly likely that, for different
applications, the performance of IDF can be different.
To give practitioners better understanding of how to
best benefit their particular applications from adopting
IDF, we need to put the performance of IDF in the
context of a wide range of applications.

Thus, we will analyze IDF from two aspects: its
success rate of the top-layer detecting an inconsistency
and how to translate this success rate into positive
performance impact on real applications.

3. The analytical model

3.1 Assumptions and definitions

The goal of this analysis is to derive the success rate

of the top-layer inconsistency detection. In this
analysis, we assume that there are n nodes in this
system and, after a warm-up period, the top layer
associated with a given file f has been formed. This
can be visually represented by Figure 2.

For the purpose of analysis and simplicity, we
assume that there are two concurrent writers A and B
for file f, and each writer can be from either top layer
or bottom layer. While there can potentially be more
than two concurrent writers, the analysis can be
simplified to the case of two writers without the loss of
generality because, as far as inconsistency detection is
concerned, it is a matter of two writers—the writer that
triggers the detection in the first place and whether its
inconsistency (in the form conflicting updates) is
detected when its update conflicts with that from the
first concurrent writer, thus all other concurrent (but
later) writers do not matter in this case.

Now let us first define some terms and parameters
that we will use throughout the rest of the paper,
starting with the following seven events.

[1] E: IDF fails to detect the inconsistency

between A and B in the top layer.
[2] e1: writers A and B are both from the top layer.
[3] e2: one writer comes from the top layer, and

the other comes from the bottom layer.
[4] 3e : A and B are both from the bottom layer.
[5] d1: IDF fails to detect inconsistency between

A and B in the top layer given event 1e .
[6] d2: IDF fails to detect inconsistency between

A and B in the top layer given event 2e .
[7] d3: IDF fails to detect the inconsistency in the

top layer given event 3e .

Figure 2. An abstract view of the two-layer system

for a given file

It must be noted that, when we say that IDF fails
to detect inconsistency in the top layer, we do not
mean that IDF cannot detect the inconsistency.
Actually, IDF can detect all the inconsistency
eventually through the bottom layer, albeit it will be
much slower than the detection in top layer. Thus, if
IDF fails to detect an inconsistency in the top layer and
the bottom layer has to be triggered, at the expense of
performance, not the correctness of IDF.

As a measure of the performance of IDF, we
denote the probabilities of several events as follows.

[1] The overall success rate of the top layer

detecting the inconsistency is denoted as Psucc.
[2] The probability of event E is denoted as P.
[3] The probability of event ei (i = 1, 2, 3)

occurring is denoted by hi.
[4] The probability of event di (i = 1, 2, 3)

occurring is denoted by pi.

Clearly, Psucc is the overall success rate of the top
layer detecting an inconsistency. Intuitively, we have

∑
=

−=−=
3

1

11
i

iisucc phPP (1)

3.2. The analysis

In this section, we analyze the performance of IDF
by deriving the formulas for pi (i = 1, 2, 3)—the failure
rates—and use these values as an indicator of the
performance of IDF (success rate = 1 – failure rate).
We need to note that the value of pi is an abstract
value. In other words, these values do not directly
relate to particular applications. In order to translate pi
to the performances with regard to particular
applications, we need to derive Psucc as indicated in
formula (1) in which hi (i = 1, 2, 3) is determined by
the applications’ characteristics. The derivation of Psucc
will be presented in Section 4.

3.2.1. Derivation of p1

Top Layer

Bottom layer

Recall that p1 is the probability of event d1, which in
turn implies that event e1 happens. When event e1
happens, concurrent writers A and B are both from top
layer. According to the system design [7], the top layer
is able to detect inconsistency whenever the two
writers can find each other. In this case, they can find
each other through the top layer, which is visible to
both of them. Thus the probability that the system fails
to detect the inconsistency is 0. So we have the:

0)(11 == dpp (2)

3.2.2. Derivation of p2

Note that p2 is the probability of event d2, which in
turn implies event e2. In this case, one of the two
writers comes from the top layer and the other is from
the bottom layer. Without loss of generality, let us
suppose that B is from the top layer while A is from the
bottom layer.

Let us assume that there is a set Sexist of n1 nodes in
the current top layer, then, from the assumption, we
know that B belongs to the set Sexist and A is form the
bottom layer. After A starts the update operation, its
update will be distributed to certain nodes in the
network overtime. Without loss of generality, we
assume that there is a set SAnew of n2 nodes that have
learned that A has become an active writer of the file f
by the time both A and B become concurrent writers.

Because there is no particular requirement of these
SAnew nodes, it is possible that, probabilistically
speaking, some nodes in SAnew are from Sexist. If sets
Sexist and SAnew do not intersect, the top layer will fail to
detect this inconsistency because A and B cannot meet
each other and the bottom layer has to be triggered
(Figure 3(a)). On the other hand, if sets Sexist and SAnew
intersect, this inconsistency can be detected in the top
layer because, according to the protocol, as long as A
and B can meet each other, the inconsistency can be
detected (Figure 3(b)).

Assuming that there are a total of n nodes in the
system, we have

2

2

1

21

2

1

1

)(22 n
n

n
nn

n
n

n
n

n
nn

n
n

C
C

CC
CC

dpp −− === (3)

To calculate p2, we use the Sterling formula, which

states that

nnnenn −≈ π2!

 (a) (b)

Figure 3. Two cases given event e2

Thus we have1

21

21

)(
)()(

)(
))((

)(
21

21

21

21
22 nnnn

nnnn

nnnn
nnnn

nnnn
nnnn

dpp
−−

−−

−−
−−

−−
−−

≈=

3.2.3. Derivation of p3

The value of p3 is the probability of event d3, which
in turn implies the occurrence of event e3,, meaning
that both A and B are from the bottom layer. Following
the same analysis in Section 3.2.2, we can assume the
existence of three sets Sexist, SAnew and SBnew, because
both A and B are from the bottom layer,

Depending on whether the three sets intersect with
each other, there are six cases that need to be
considered. The six cases are illustrated in Figure 5
(from 4(a) to 4(f)).

For simplicity of analysis, we use n1, n2 and n3 to
denote the sizes of Sexist, SAnew, and SBnew, respectively.
According to the IDF protocol, the top layer will fail to
detect any inconsistency in cases (a), (b) and (c); and
will be able to detect inconsistency in the remaining
cases (d, e, and f) where A and B can meet each other
eventually.

Let g1, g2 and g3 denote the probabilities of cases
(a), (b) and (c), respectively. Then we have

321

3

21

2

1

1

1 nnn

nnn

nnn

nnnnnn

CCC

CCC
g −−−=

321

2

13

1

3

2

3

1

3

3][
2 nnn

nnnnn

nnn

nnnnnnnnnn

CCC

CCCCC
g −−−−− −
=

1 For the purpose of easy calculation, we can use log operation,

such as

))log()(log(
))log()()log()((

))log(log)log()(log(
2
1log

2121

2211

21112

nnnnnnnn
nnnnnnnn

nnnnnnnnp

−−−−+
−−−+−−

+−−−−−+−=

At this point, logp2 is very easy to calculate and p2 can be
calculated accordingly.

Botto
m

SAnew
A

Sexist

Top B

Botto
m

Sexist

Top B

SAnew
A

321

3

12

1

2

3

2

1

2

2][
3 nnn

nnnnn

nnn

nnnnnnnnnn

CCC

CCCCC
g −−−−− −
=

 To simplify the formula, we can assume that n2 is
equal to n3, which is reasonable for analysis purpose
because A and B have equal status and behave
similarly. Then we have

21

)(2

2

21

2

1

321

3

21

2

1

1

n

nn

nnn

nnn

n

nnnnn

nnn

nnnnnn

C

CC

CCC

CCC
g −−−−−− ==

21

2

12

2

2

1

2
][

32 nn

nnn

nn

nnnnnnn

CC

CCC
gg −−−− −

==

 Finally, we have

 32133)(gggdpp ++== (4)

 To calculate the final value of p3, we can
approximate the values of g1, g2, and g3 by the Sterling
formula and log computation as what we have done in
Section 3.2.2.

4. Application characteristics and design
implications

In this section, we explore the performance and design
implications of IDF to specific applications. In
particular, we relate the failure rate of the top-layer
detection (the values of p1, p2, and p3) to real
applications by deriving a unified formula. We then
show how to adjust two parameters in the unified
formula to reflect a particular application’s user
distribution, as well as usage pattern. In this way, a
practitioner can adjust certain IDF protocol parameters
to potentially optimize the IDF performance for his or
her particular applications.

As discussed in Section 3, to derive a unified
formula for IDF as a whole, Psucc, thus P, has to be
derived (see formula (1) in Section 3). In turn, we have
to derive hi (i = 1, 2, 3) first (hi is the probability that
event di occurs).

This analysis is conducted in three steps. In the first
step, we assume that all nodes have the same
probability of issuing the next update request for a
particular file f, which implies that the updating
operation is truly random and uniform. In the second
step, we relax this assumption and consider different
updating patterns. In the third and last step, we derive a

(a) None of these sets intersect with one another

(b) Sexist intersects with SAnew

(c) Sexist interests with SBnew

(d) SAnew intersects with SBnew

(e) Both SAnew and SBnew intersect with Sexist, but SAnew and
SBnew do not intersect with each other

(f) The three sets intersect with one another

Figure 4. Six cases given event e3

unified formula to reflect the characteristics of
particular applications.

Finally, we discuss the performance and design
implications to specific applications that can help

Bottom
layer

Sexist

Top

SBnew
B

SAnew
A

Bottom
layer

Sexist

Top

SBnew
B

SAnew

A

Bottom
layer

Sexist

Top

SBnew
B

SAnew

A

Bottom
layer

Sexist

Top

SBnew
B

SAnew

A

Bottom
layer

Sexist

Top

SBnew
B

SAnew
A

Bottom
layer

Sexist

Top

SBnew
B

SAnew

A

practitioners choose the best IDF parameters to suit
their particular needs.

4.1. Random and uniform updates

In step 1, we assume that all nodes have an equal
probability of updating ， thus the probability of a
writer coming from the top layer is decided by the
relative size of the top layer. For the same reason, the
probability of a writer coming from the bottom layer is
decided by the relative size of the bottom layer.

Now we can evaluate hi (i = 1, 2, 3) as follows:

[1] The event d1 means that the two concurrent
writers A and B are both from the top layer. In
this case, we have

2

2

1
1

n

n

C
C

h =

[2] The event d2 means that one of the two
concurrent writers comes from the top layer,
while the other is from bottom layer. In this
case, we have

2

11

2
11

n

nnn

C
CC

h −=

[3] The event d3 means that the two concurrent
writers are both from the bottom layer. In this
case, we have

 2

2

3
1

n

nn

C
C

h −=

4.2. Non-uniform updates between two layers

 In this step, we relax the random and uniform
assumption made in Step 1 above by assuming that the
updating frequency of the nodes in the top layer is F1
and that of the nodes in the bottom layer is F2.
However, it is implied that within each layer, all nodes
are equally likely to issue update requests for a given
file.
 In practice, if F1 is larger than F2, it means that
nodes in the top layer have more update requests than
the nodes in the bottom layer, which is the case for
applications like online gaming in which active gamers
keep playing the game for a long period of time (thus
they will form a top layer and keep issuing updating
requests).
 If F2 is larger than F1 instead, it means that new
updating requests are more likely from bottom layer.
This is possible because, while the current top layer

reflects the history, it is still possible that the future
pattern is different from the history. For example, if
there is a forum in which its user base keeps changing
and number of requests from new members is larger
than that from current members, F2 would be larger
than F1.
 After incorporating the frequencies of updating
operations of the top layer and bottom layer nodes, the
frequency of event d1 can be expressed as 22

1 1nCF , the

frequency of event d2 as 11
21 11 nnn CCFF − , and the

frequency of the event d3 as 22
2 1nnCF − . Hence, we have

[1] The value of h1 can be calculated as

22
2

11
21

22
1

22
1

1
1111

1

nnnnnn

n

CFCCFFCF
CF

h
−− ++

=

[2] The value of h2 can be calculated as

22
2

11
21

22
1

11
21

2
1111

11

nnnnnn

nnn

CFCCFFCF
CCFF

h
−−

−

++
=

[3] The value of h3 can be calculated as

22
2

11
21

22
1

22
2

3
1111

1

nnnnnn

nn

CFCCFFCF
CF

h
−−

−

++
=

 To normalize the values of F1 and F2, We
introduce f1 and f2, which are defined as

21

1
1 FF

Ff
+

= ,
1

21

2
2 1 f

FF
Ff −=
+

=

 After the normalization, both f1 and f2 are in the
range of (0, 1). Then h1, h2, and h3 can be expressed as
follows

22
2

11
21

22
1

22
1

1
1111

1

nnnnnn

n

CfCCffCf
Cf

h
−− ++

=

22
2

11
21

22
1

11
21

2
1111

11

nnnnnn

nnn

CfCCffCf
CCff

h
−−

−

++
=

22
2

11
21

22
1

22
2

3
1111

1

nnnnnn

nn

CfCCffCf
Cf

h
−−

−

++
=

4.3. The unified formula

 We can see that, if f1 equals to f2, then the values of
h1, h2, and h3 are exactly the same as those derived in
step 1. In short, the formulas of step 1 are special cases
of the formulas we derived here.
 Now we simplify these expressions and take two
important aspects of real applications into

consideration. The two aspects, their meanings, and
their relationships with the parameter of the formula
for hi (i = 1, 2, 3) are summarized as follows.

• User distribution: This aspect characterizes the

distribution of the active writers, i.e. how many
users are active writers in the system. This aspect
directly affects the size of top layer (the n1 value).

• Usage pattern: This aspect characterizes where the
new updates are most likely coming from. For
example, if the updating operations are highly
concentrated on a small group of dedicated users,
then most new updates would come from the top
layer; otherwise, more updates would come from
the bottom layer. This aspect determines the value
of f1, as well as f2 because f2 = 1 – f1.

 To formally represent the two aspects in the
formulas, we do the following substitutions. First, we
use α to substitute n1/n and n1 in the formulas can be
then represented by nα. Second, we use β to substitute
f1 and (1 – β) to substitute f2. Please note that now both
α and β are in the range of (0, 1). Given the total
number of nodes in the system—the value of n—the
performance of IDF for different applications can be
obtained by adjusting the α and β values.
 Now we can finally represent h1, h2, and h3 as

221122

22

1)1()1(αααα

α

ββββ
β

nnnnnn

n

CCCC
C

h
−− −+−+

=

221122

11

2)1()1(
)1(

αααα

αα

ββββ
ββ

nnnnnn

nnn

CCCC
CCh

−−

−

−+−+
−

=

221122

22

3)1()1(
)1(

αααα

α

ββββ
β

nnnnnn

nn

CCCC
C

h
−−

−

−+−+

−
=

 Now that we have h1, h2, and h3, we finally get a
unified formula to evaluate the performance of IDF
based on formula (1) in Section 3.1. This unified
formula can reflect the different characteristics of
particular applications by adjusting the values of α and
β, which are in the range of (0, 1).

4.4. Results and design implications

In this section, we show results from the analytical
model and offer insights about how much benefit
particular applications can gain from adopting IDF
and, more importantly, how a practitioner can tune the
IDF’s parameters to tailor it for his or her particular
needs.

First of all, a set of results based on the formulas we
derived are summarized in Table 1 that lists several

important variables including the detection success
rate. From this table, we can see that the lowest
success rate is 91.4% while in the vast majority cases
the rate is more than 98%, which we believe is very
encouraging because it states that the top layer is
indeed able to detect most inconsistencies.

Now, we investigate how the parameters of IDF can
affect the system performance for different
applications. In the four parameters we discussed—n1,
n2, α, and β—n1 and α correlate (n1 = n*α). Besides, β
is entirely application-dependent. However, α is
adjustable because the protocol can lower the threshold
of the required temperature for the top layer
participants, which in turn can increase the size of the
top layer; n2 is also adjustable because it is a parameter
in IDF.

Now, we investigate the impact of the two values, α
and n2, as follows. We first fix α and β, then calculate
Psucc based on different values of n2. The result is
shown in Figure 5(a). Two (α, β) pairs and four
different n2 values are used in this calculation.

Then we fix n2 and β and calculate Psucc based on
different values of n1. The result is shown in Figure
5(b). Two (n2, β) pairs and four different α values are
used in this calculation.

From the two figures, we can see that the success
rate keeps increasing with the size of n1 and n2 values.
This makes sense because, with the increased top layer
size (n1) and the limited broadcasting size of a new
writer (n2), there are more chances for concurrent
writers to meet. But this comes at a cost as well: slower
detection delay due to the larger top layer size (in the
case of increased size of α) and increased network
bandwidth overhead (in the case of increased size of
n2).
 Based on this information, the practitioners can fine
tune the parameters as follows. If the system has
enough bandwidth available, they can increase the
value of n2; if the response time of IDF is better than
the required value, it is also possible that they can
increase the value of α. While simple, we believe that
this suggestion can at least help practitioners to tune
IDF in the best way to achieve the best performance of
their particular applications.

5. Conclusions

In this paper, we presented an analytical study of
IDF, an inconsistency detection framework. More
specifically, it developed an analytical model to
characterize IDF and calculates the success rate of the
top-layer detecting an inconsistency (reflected through
the failure rate), which directly impacts the

Table 1: Success rate (in percentage) when n is 1000 with 18 sets of parameter values

Figure 5. Tuning IDF parameters with n = 1000

performance of IDF. Then, it derived a unified formula
to model a wide range of applications and gives
guidance to determine how much performance gain
particular applications can achieve from adopting IDF
and how practitioners can fine tune IDF’s parameters
to best suit their applications’ needs. We believe that
this analytical study provides a solid ground work for
understanding the concept and design of IDF.

References

[1] U. Cetintemel, P. J. Keleher, B. Bhattacharjee, and M.

J. Franklin, Deno: A Decentralized, Peer-to-Peer
Object-Replication System for Weakly-Connected
Environments, IEEE Trans. on Computers, 52(7), 2003

[2] D. Dullmann, W. Hoschek, J. Jaen-Martinez, B. Segal,
A. Samar, H. Stockinger, and K. Stockinger, Models for
Replica Synchronization and Consistency in Data Grid,
In Proc. of 10th IEEE HPDC, Aug. 7-9, pp. 67-75, 2001

[3] P.T. Eugster, R. Guerraoui, S. B. Handurukande, A.
M. Kermarrec, P. Kouznetsov. Lightweight
Probabilistic Broadcast, In Proc of the International
Conference on Dependable Systems and Networks
(DSN 2001), July, 2001

[4] James J. Kistler and M. Satyanarayanan, Disconnected
Operation in the Coda File System, ACM Transactions
on Computer Systems, 10(1) pp. 3-25, February 1992

[5] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and
A. Vahdat. Using Random Subsets to Build Scalable
Network Servioces, In Proc. of 4th USENIX Symposium
on Internet Technologies and Systems. March 2003

[6] Y. Lu and H. Jiang, A Framework for Efficient
Inconsistency Detection in a Grid and Internet-Scale
Distributed Environment, In Proc. of HPDC-14,
Research Triangle Park, NC, July 24-27. pp. 318-319.

[7] Y. Lu, H. Jiang, and Dan Feng, An Efficient, Low-
Cost Inconsistency Detection Framework for Data and
Service Sharing in an Internet-Scale System, In Proc. of
IEEE International Conference on e-Business
Engineering, Beijing, China, Oct. 18-20, 2005

[8] Y. Lu and H. Jiang, IDEA: An Infrastructure for
Detection-based Adaptive Consistency Control,
Submitted to ICDCS 2006 for publication.

[9] D. B. Terry, M. M. Theimer, K,. Petersen, A. J.
Demers, M. J, Spreitezer, and C. H. Hauser. Managing
Update Conflicts in Bayou, a Weakly Connected
Replicated Storage System, In Proc. of the Fifteenth
ACM SOSP, 1995

[10] H. Yu and A. Vahdat, Design and Evaluation of a
Continuous Consistency Model for Replicated Services,
In. Proc. OSDI 2000

	IDF: an Inconsistency Detection Framework – Performance Modeling and Guide to Its Design
	

	Microsoft Word - icpp06_idf_final.doc

