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32

Electromagnetic Induction

32-1 Motion of a Wire in a Magnetic Field

When a wire moves through a uniform magnetic field of induction B,
in a direction at right angles to the field and to the wire itself, the electric
charges within the conductor experience forces due to their motion through
this magnetic field. The positive charges are held in place in the conductor
by the action of interatomic forces, but the free electrons, usually one or
two per atom, are caused to drift to one side of the conductor, thus setting
up an electric field E within the conductor which opposes the further drift
of electrons. The magnitude of this electric field E may be calculated by
equating the force it exerts on a charge q, to the force on this charge due
to its motion through the magnetic field of induction B; thus

Eq = Bqv,

from which E = Bv.

If, as a result of the motion of the wire through the magnetic field, a
charge q is moved a distance s along the wire against the internal electric
field E, a quantity of work }Y is done by the agency moving the wire,
given by the expression

}Y = Eqs = Bvqs.

Thus an electromotive force is generated within the wire as a result of its
motion through the magnetic field. The electromotive force across the
ends of the wire is the work per unit charge done by the agency moving
the wire. The emf e is thus

e =}Y = Bqvs,
q q

so that

590

Ie = Bsv·1 (32.1)
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As shown in Figure 32-1, the direction of the emf is the direction in which
positive charges are made to move by the action of the magnetic field,
and therefore is opposite to the
direction of the induced electric
field E within the wire.

To gain further insight into
the effect of moving a wire
through a magnetic field, let us
suppose that the wire of length
s slides over a fixed conductor a
consisting of two parallel tracks
which are electrically connected
at one end, as shown in Figure
32-2. As the wire moves to the
right with velocity v, the induced
emf in the wire produces a cur­
rent I in the closed circuit, in
the direction of the emf If in the moving wire. We have seen in Section
31-4 that a wire carrying current in a direction perpendicular to the mag­
netic field experiences a force given by

F = BIs.

In the figure this force is directed to the left. In order to satisfy the princi­
ple of conservation of energy, the agency moving the wire to the right
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Fig. 32-2

must exert a force equal and opposite to the force F above, and expend
mechanical power t? such that

t? = Fv = BIsv.
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At the same time the electrical power generated is

t? = 61.

Equating the mechanical power expended and the electrical power gener­
ated, we find

c = Bsv,

which is Equation (32-1).
In calculating the emf developed by a wire moving through a magnetic

field, we have used two different points of view. The first calculation
was made from essentially a microscopic point of view in which our atten­
tion was directed to the forces on isolated charges within the wire. The
second calculation was made from a macroscopic viewpoint, in which our
attention was directed to the force on the wire and to the emf. The same
result was obtained in each case.

Many practical devices, such as electric generators and motors, are
designed so that conductors move across magnetic fields. In using Equa­
tion (32-1) to discuss the operation of these devices, it must be remembered
that B, s, and v were all considered to be perpendicular to one another.
If they are not mutually perpendicular in a particular case, then only the
components of the three quantities which are mutually perpendicular are
to be considered. As the wire moves through the magnetic field, it is
often described as "cutting" the lines of magnetic induction. Equation
(32-1) then shows that the emf induced in a wire depends upon the number
of lines of magnetic induction cut per unit time.

32-2 Magnetic Flux and Flux Density

It is convenient to represent the magnetic induction B by lines of magnetic
induction, sometimes called lines of magnetic flux. The direction of the
magnetic induction is tangent to the flux lines, and the magnitude of the
magnetic induction is given in the usual way by the number of lines per
unit area passing through a surface perpendicular to the flux lines. The
total number of lines passing perpendicularly through an element of area
is then called the magnetic flux <I> (capital phi) through that area. If the
area of an element perpendicular to B is ~A, then the flux ~<I> through
that element is given by

~<I> = B ~A. (32-2)

In the mks system of units, the magnetic induction is stated in units of
webers per square meter, and the area is stated in units of square meters.
The flux is expressed in units of webers. For this reason the magnetic
induction B is often referred to as the flux density.
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In the Gaussian system of units, the magnetic induction B is expressed in
gausses, the area in square centimeters, and the flux in maxwells. We have
already seen that

so that

or

1 weber/m2 = 104 gausses,

1 weber = 104 gausses X 104 cm2,

1 weber = 108 maxwells.

Following the procedure we have used throughout the development of
electricity and magnetism, unless otherwise indicated all equations are expressed
in the mks system of units, and the principal ones will be restated in the Gaussian
system of units in a table at the end of this chapter.

The magnetic flux ep is a scalar quantity, but the magnetic induction B
is a vector quantity; the area t..A may be considered as a vector quantity.
In dealing with closed surfaces, as in Gauss's theorem in electrostatics,
we considered the direction of an area as that of an outward drawn normal.
Although in the present instance the area is not part of a closed surface, it
may be thought of as a film or a cap bounded by a closed conducting
boundary. In choosing the direction of the area vector, we must associate
a positive direction of circulation around the boundary of the area in
accordance with a right-hand rule. Thus if in Figure 32-2 the direction of
the area vector is chosen as pointing toward the reader, the positive
direction of the current in the wire may be found by directing the thumb
of the right hand in the direction of the area vector. The curled fingers
of the right hand indicate the positive direction of the current or the emf
as in the counterclockwise direction. If the area vector is pointing into
the paper, the positive direction of the current is clockwise. Following
this convention, we may rewrite Equation (32-2) in vector form as the
scalar product of Band t..A as

(32-2a)

32-3 Faraday's Law of Electromagnetic Induction

The phenomenon of electromagnetic induction was discovered in 1831 by
Michael Faraday (1791-1867) in England and independently by Joseph
Henry (1797-1878) in the United States. One example of electromagnetic
induction is the emf generated in a wire moving through a magnetic field,
as discussed in Section 32-1. In Faraday's original experiment the appa­
ratus consisted essentially of two neighboring circuits, shown in Figure
32-3; one cirCUit, which we shall call the primary circuit, contained a
battery B, a coil P, and a key K, for opening and closing the circuit; the
second circuit, or secondary circuit, consisted of a coil S and a galvanome­
ter G. Faraday observed that when the key was closed, the galvanometer
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in the S circuit gave a momentary deflection and then returned to its zero
position and remained there as long as the key was closed. When the key
was opened, there was another momentary deflection of the galvanometer,
opposite in direction to the previous deflection, and then the galvanometer
needle returned to its zero position.

Analyzing this simple experiment, we find that when the key in the
primary circuit was closed, a current started flowing through the primary
coil P. This current produced a magnetic field in the neighborhood of P
and also around the coil S; that is, a change was produced in the magnetic
field around the coil S in the secondary circuit. The fact that the galva-

Fig. 32-3 Faraday's experiment on
electromagnetic induction.

nometer showed only a momentary deflection can be interpreted by saying
that a current was induced in the secondary circuit momentarily and that
this induced current was due to the change in the magnetic field around
the secondary circuit. As long as the current in the primary circuit re­
mained constant, the magnetic field around both P and S remained con­
stant, but the galvanometer read zero during this time. But when the
magnetic field was again changed, say by opening the key, a current was
again induced in the secondary circuit, this time in a direction opposite to
that produced when the key was closed.

The results of the above experiment on electromagnetic induction can
be explained qualitatively by stating that the change in the magnetic field
around the secondary coil induced an electromotive force in the coil, and,
since the coil is part of a closed circuit, this induced emf produced a current
in the secondary circuit.

There are many ways in which the magnetic field around the coil S may
be varied Suppose, for example, that the key of the primary circuit is
kept closed so that a steady current flows through the coil P. As long as
the magnetic field around the secondary coil S remains constant, there will
be no emf induced in it, and the galvanometer will read zero. But if we
move S away from P so as to decrease the magnetic field around S, the
galvanometer will show a deflection; similarly, if we move S toward P, the
galvanometer will show a deflection but now in the opposite direction.

If we put a variable resistor in the primary circuit so that the current
in it may be varied, and keep the distance between Sand P constant, there
will be an induced emf and hence an induced current in the secondary
circuit whenever the current in the primary circuit is changed. When the
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current in the primary coil is increased, the induced current in the second­
ary coil will be in one direction; when the current in the primary coil is
decreased, the induced current in the secondary coil will be in the opposite
direction.

Fig. 32-4 Michael Faraday (1791­
1867). Chemist and physicist.
Discovered the laws of electrolysis
and electromagnetic induction.
Introduced the concept of lines of
force to help understand the phe­
nomena associated with electric and
magnetic fields. (Courtesy of
Scripta Mathematica,)

The results of many experiments on electromagnetic induction can
be stated in the form of a law known as Faraday's law of electromagnetic
induction as follows:

The electTOmotive force induced in each turn of wire in any circuit is
equal to the time rate of decrease of the magnetic flux through it, or, in the form
of an equation:

(32-3)

Faraday's law may be considered as one of the fundamental empirical
laws of electromagnetism, or it may be derived by applying Ampere's law
and the principle of conservation of energy to typical cases, To show this,
let us reconsider the case of a wire moving perpendicularly with constant
velocity through a magnetic field of flux density B, as shown in Figure 32-2.
If the wire moves a distance /lx to the right, the change in area is

/lA = s /lx,

In accordance with the sign convention, the positive direction of the normal
to M is upward toward the reader. The flux density B is directed down-
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ward, so that B o 6A, the change in flux 6<1> through this area, is

6<1> = -Bs 6x.

If this change in flux takes place in a short time interval 6t, then

6<1> 6x
- = -Bs-,
6t 6t

and, in the limit of short time intervals, we find

d<l> dx
- = -Bs- = -Bsv.
dt dt

Substituting for the quantity on the right-hand side of the ahove equation
from Equation (32-1), we find

d<l>

dt
(32-3)

Although we have derived the result for a moving wire, Equation
(32-3) has been found to be true for the emf induced in any closed circuit
when the flux through that circuit changes with time.

Whenever the magnetic flux passing through a single turn of wire is
changing, the instantaneous emf developed in the loop is given by Equation
(32-3), regardless of the reason for the change in the flux. If the coil con­
sists of N turns of wire, an emf will be induced in each turn by the changing
magnetic flux. The turns of a coil may be considered as connected in series,
so that the emf in the coil will be the sum of the emf's induced in the in­
dividual turns. If the rate of change of magnetic flux is the same through
each turn, then the total emf induced in the coil will he given by

(32-4)

Illustrative Example. A coil containing 750 turns of wire is wound on a
rectangular frame 20 cm by 30 cm. The magnetic induction normal to the area
of the coil is 0.3 weber/m 2• The magnetic field is reduced to zero at a uniform
rate in 0.25 sec. Determine the magnitude of the emf induced in the coil.

The total flux through the coil is

<I> = BA

= 0.3 weber X 0.06 m 2

m 2

= 0.018 weber



§32-4

The rate of change of flux is given by

d<l> O.Olk weber

dt 0.25 sec

= 0.072 weber/sec.

LENZ'S LAW 597

Since N = 750 turns, we have, from Equation (32-4), neglecting the sign of
the emf,

6' = 750 X 0.072 volts,

c~ = 54 volts.

32-4 Lenz's Law

The method for determining the direction of the current in a coil produced
by an induced emf was first clearly stated by H. F. E. Lenz (1804-1864) in
1834; it is based upon the application of the principle of conservation of
energy to the process of electromagnetic induction. Lenz's law states that
the induced current is in such a direction as to oppose, by its magnetic action,
whatever change produces the current.

Fig. 32-5 An emf is indueed in the
coil by the motion of a bar magnet.
Direction of the indueed eurrent is
shown by the arrows on the wire.

L--_--{ G

s]

Another way of stating Lenz's law is that the direetion of the induced
current is such as to oppose the change in the magnetic flux in the circuit.
If for any reason whatever there is an increase in the magnetic flux through
the circuit, the induced current will be in such a direction as to set up a
magnetic field to oppose the increase in the magnetic flux through it.
Similarly, if there is a decrease in the magnetic flux through the circuit, the
induced current will be in such a direction that it will set up a magnetic
field which will oppose the decrease in the flux through it. In the case of
the moving wire of Figure 32-2, the motion of the wire to the right tended
to increase the magnetic flux enclosed within the closed circuit. The in­
crease in magnetic flux was directed into the plane of the paper. According
to Lenz's law the induced current in this circuit had to be in the counter­
clockwise direction, as shown in the figure. The magnetic field generated
by the induced current was directed out of the plane of the paper, so as to
oppose the change in the flux through the circuit.
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Let us suppose that a bar magnet is brought near a coil whose terminals
are connected to a galvanometer, as shown in Figure 32-5. When the north
pole of the magnet approaches the coil, the galvanometer registers a current
in one direction. When the magnet is removed from the coil, the galva­
nometer registers a current in the opposite direction. We may find the
direction of the induced currents by the application of Lenz's law. When
the north pole of the bar magnet is brought near one end of the coil, the in­
duced current in the coil will be in such a direction as to set up a magnetic
field which will oppose the motion of the north pole toward it; that is, the
magnetic field caused by the induced current will repel the north pole of
the bar magnet. If the north pole of the magnet is moved away from one
end of the coil, the induced current will set up a magnetic field so as to
attract the north pole of the bar magnet and oppose its motion away from
the coil. Thus work must be done in moving the bar magnet with respect
to the coil because of the force which is generated when the magnet is
moved. This work is transformed into electric energy, as evidenced by the
existence of an induced current in the coil, and the conversion of this energy
into heat.

32-5 Electric Dynamo or Generator

A

Fig. 32-6

B More practical forms of generators
are usually constructed so that the
motion of the conductor is rota-

----~<-----_v'------~ tional rather than translational. In
the simplest case a coil of N turns
is rotated about an axis in the
plane of the coil, in a magnetic

B field which is perpendicular to the
axis of rotation, as shown in Figure
32-6. The two ends of the coil are
connected to two insulated conduct­
ing rings called slip rings, mounted
on the axis and rotating with the
coil. Two blocks of carbon, called

brushes, press against these rings as they rotate and provide electrical con­
tact with the external circuit.

Let us suppose that the coil of area A is rotating in a field of uniform
flux density B. If the coil is oriented so that the normal to the plane of the
coil makes an angle () with the lines of flux, the component of the magnetic

The moving wire of Figure 32-2 is a simple form of electric generator. In
this illustrative dynamo, mechanical work is done on the wire, and this is

converted into electrical energy.,.
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field which is normal to the plane of the coil is B cos 8, so that the flux
passing perpendicularly through the coil is

ep = BA cos 8.

The emf 6' generated in a coil of N turns, as a result of the changing flux
through the coil as it rotates, may be obtained from Equation (32-4) as

6' = -N dep
dt

d
-NBA - (cos 8)

dt

= NBA sin8
d8

.
dt

Let us assume that the coil rotates with uniform angular velocity w, and
that at time t = 0, the angle 8 = 0°. We have

8 = wt,

and

so that

d8
- = w
dt '

6' = NBAw sin wt. (32-5)

The emf is zero at time t = 0 and varies as a sine function of the time.
The emf changes direction after each half revolution of the coil. The emf
is said to be an alternating emf. The maximum value of the emf occurs
when 8 = wt = 90°; that is, when the plane of the coil is parallel to the

Fig. 32-7 Graph of the alternating
emf induced in the coil of the genera­
tor during one revolution.

magnetic field. The emf is zero when the plane of the coil is perpendicular
to the magnetic field (8 = 0°). The variation in the emf induced in the
coil is one revolution, as shown in Figure 32-7. The rate of change of the
magnetic flux through the coil is greatest when it is passing through the
position where it is parallel to the field, and is zero when the coil is perpen­
dicular to the field.

In some small generators, such as those operated by hand and used
to supply current to ring bells in rural telephones, the magnetic field may
be supplied by a nermanent magnet; these generators are called magnetos.
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Fig. 32-8 Split-ring eommutator.
P and Q are brushes in eontaet with
the segments of the eommutator.

In mOtit generators the magnetic field is produced by current in field coil!;.
This current may be supplied by a battery or it may be supplied by the
generator itself. Instead of a single rotating coil of wire, there are usually
several coils, each consisting of many turns of wire, wound on an iron core,
rotating in the magnetic field. The whole assembly is called an armature.
Most large generators have a complicated field structure, with two or more

pairs of poles. The induced emf in the
coils of an armature is always an alter­
nating emf, and the current in these
coils is always an alternating current.

For some purposes it is desired to
have a current which does not reverse its
direction, as in electroplating baths. For
such cases it is necessary to change the
alternating current developed in the ar­
mature to current which is always in the
same direction in the outside circuit. In
a simple form of d-c generator, this is
accomplished by a split-ring commutator,
shown in Figure 32-8. The two ends of
the armature are connected to the two in­

sulated halves of the split ring. As the coil rotates, a given brush is always
connected to that part of the coil moving in a particular direction through

Fig. 32-9 Direet eurrent from a
single eoil.

the field, so that one of the brushes is always the positive terminal of the
generator and the other brush is always the negative terminal. The current
from an armature with a single turn is not constant but is pulsating, as
shown in Figure 32-9. The wave form is essentially a sine wave with the
negative half cycles reversed.

In modern d-c generators the armature consists of many coils con­
nected in series, and the commutator contains many segments. Figure
32-10 shows the current from a generator containing two coils. The small
variations in the current are referred to as commutator ripple.

A simple generator coil rotated in an unknown magnetic field may be
used to measure the magnetic induction, using Equation (32-5), if the
dimensions of the coil and the speed of rotation are known, and the emf
generated by the rotation of the coil is measured.
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Fig.32-10 Direct current from a d-c generator having a commutator with many
segments. The dotted lines show the current from the two pairs of segments, while the
solid line shows the current from such a generator. Note that the current is not constant
but fluctuates about some average value shown as a dashed horizontal line.

32-6 Self-Inductance

The law of electromagnetic induction states that an emf is induced in any
circuit in which the magnetic flux is changing. The manner in which the
change in the magnetic flux is produced does not matter; the changes may
be induced by external currents or magnets, or by changes in the circuit
itself. The coil of a motor is caused to rotate by current passing through
the armature, and as a result of the rotation of the armature, the flux
through the coil is changed and a back emf is developed. When current is
sent through a coil, a magnetic field is established through it, and any
changes in the current generate changes in the magnetic flux through the
coil. These changes in flux induce an emf in the coil, which, according to
Lenz's law, must be in such a direction as to oppose the change in current.
The emf induced in the coil is proportional to the rate of change of current
in it, or, in the form of an equation,

I I
j di I

: 6'= -L-· I

L_~J
(32-6)

The constant of proportionality L represents a property of the coil which
depends upon its dimensions and its geometrical shape; L is called the self-

Fig. 32-11 Schematic representa­
tion of an inductor.

inductance of the coil. The minus sign is used to express the fact that the
emf induced in a coil by a change in current is opposite to the direction of
the change. In the mks system the unit of inductance is the henry, after
Joseph Henry. Thus a coil has an inductance of 1 henry if an emf of 1 volt
is induced in the coil when the current through it is changing at the rate of
1 amp/sec. A device having inductance is called an inductor and is repre­
sented schematically in Figure 32-11.
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Another interpretation of the self-inductance L of a circuit may be
obtained by comparing Equations (32-4) and (32-6), yielding

L di = N dip ,
dt dt

from which

so that

Li = Nip,

Nip
L=-..

t
(32-7)

(30-5)

The quantity Nip is called the flux linkage of the circuit, hence the self­
inductance L is the flux linkage per unit current of a circuit.

Let us determine the self-inductance of a uniformly wound toroid of
N turns, mean length s, and cross-sectional area A. The magnetic field
intensity within the toroid is uniform and given by

Ni
H=-·

s

When a toroid is in vacuum, th~ magnetic induction within the toroid is
given by the equation

B = }J.oNi,
s

and the flux of magnetic induction within the toroid is

}J.oNiA
ip=--.

s

Since

we get

Nip
L=-,

i

}J.oN2A
L=--·

s

(32-7)

(32.8)

Thus the self-inductance of a toroid in air is a property of the geometry
of the toroid, just as the capacitance of a capacitor is a property of its
geometry. Any conducting element in an electrical circuit has the property
of inductance. The conductors which connect the various parts of an
electric circuit also generate a magnetic field when current passes through
them. The inductance associated with the leads is often called stray in­
ductance or distributed inductance.

From Equation (32-8) we see that }J.O may be expressed in terms of the
unit of inductance as

7 henry
}J.O = 47l" X 10- --,

meter
(32-9)

and, indeed, these are the units in which }J.O is most commonly expressed.
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32-7 Inductive Transients

Let us consider the simple circuit of Figure 32-12 in which an inductor L
and a resistor R are connected in series to a battery B. Initially the switch
S is open. We may analyze the behavior of the circuit by applying Kirch­
hoff's laws (Section 27-6) to the circuit at any instant after the switch is
closed. Let us suppose that at a particular time t the current in the circuit

Fig. 32-12

t~ ~ B

-----lII------""'<-:~~----1
a ~v S

is in the clockwise direction, as shown in the figure, and that the current
is increasing so that the direction of the rate of change of current is in the
same direction as the current itself. Starting at the point a and applying
Kirchhoff's laws by moving a probe charge around the circuit in the direc­
tion of the current, we find

di .
-L- - IR + V = ° (32-10)

dt '

where V is the emf of the battery, and -L (dildt) is the back emf in the
inductor.

Equation (32-10) is a differential equation whose solution is given by

V _!it
i = - (1 - e L). (32-11)

R

We may verify this solution by differentiation of Equation (32-11) and
substitution into Equation (32-10).

di V R _!it
- = - - e L. (32-12)
dt R L

Substituting for i and for dildt from Equations (32-11) and (32-12) into
Equation (32-10), we find

_LY-e(-R/L)t - V + Ve(-R/LH + V = 0,
L

establishing the correctness of the solution.
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The current in the circuit is zero at the instant the switch is closed, and
gradually increases to a maximum value which is determined only by the
magnitude of the resistance and the emf of the cell, as shown in Figure
32-13. Initially, the rate of change of current is very large, and the emf
induced in the inductor limits the flow of current. At the instant the switch
is closed, the emf of the inductor is equal and opposite to the emf of the

i
. V
1=7'[

t=..l.
R

t
Fig.32-13 Growth of current in a circuit containing inductance and resistance.

battery, so that the current is zero. ~When the current reaches a steady
value and is no longer changing, there is no induced emf, and the current
is determined by Ohm's law. At a time t = LIR, called the time constant
of the circuit, the current has reached to within lie of its maximum value.

Fig.32-14 A spark-gap G placed
across the terminals of an inductor.

B
I-----;r/.

The curve describing the current as a function of time is called a transient,
for it describes the current shortly after the switch is closed rather than the
steady-state current that is established after a long interval of time.

In the process of establishing a current in the circuit, a magnetic field
is established in the inductor. If the switch is suddenly opened after the
current has reached a steady value, an emf will be induced in the inductor
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(32-6)

whose value will depend upon the rate of change of current. The more
quickly the current is intermpted, the greater will be the induced emf. If
a spark gap is placed across the terminals of the inductor, as shown in
Figure 32-14, a spark may pass between the terminals of the spark gap when
the switch is opened, because of the large induced emf in the inductor.
The energy of the magnetic field is then dissipated into the heat, sound,
and radiant energy generated at the spark gap. The emf generated upon
opening a circuit containing inductance is often called a switching transient,
and is responsible for the large arcs which are often observed when electrical
switches are opened.

32-8 Energy Stored in an Inductor

Let us calculate the energy of an inductor when there is a steady-state
current I in it. During the transient interval when the current is changing
from zero to the maximum value I, the emf of the inductor is given by

die = -L-·
dt

An amount of power (p is expended by an external source of electrical
energy to establish this current. The applied potential difference is opposite
to the direction of the induced emf so that

di
(P = -ei = Li - .

dt

The work dJY done by an outside agency in driving current through the
inductor against the induced emf in a time dt is

• /i) [didJr = II dt = ~i -- rit,
dt

or

riJY = Li rii.

Integrating between the limits of i = 0 and i = I, the final current through
the inductor, we have,

yielding

JY = 11

Li di,

JY = !LI2 (32-13)

for the energy of an inductor. When L is in henrys and I is in amperes,
JY is in joules.

When the current in a circuit builds up from zero to a value I, energy
is supplied to the magnetic field, its value being !LI2

. As long as the
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current remains constant, no additional energy is supplied to the magnetic
field. In the circuit of Figure 32-12, all of the energy supplied during the
steady state is transformed into heat. When the current decreases from
I to zero, the magnetic field also decreases to zero; the energy that was
stored in the magnetic field is returned to the circuit.

We can use the equation for the energy of an inductor to determine
the energy per unit volume W v in a magnetic field by considering an induc­
tor in the form of a toroid. Its magnetic field is confined entirely to the
volume within the toroid. The inductance of a toroid is given by

!J.oN2A
L = --~ , (32-8)

S

hence the energy stored in the magnetic field of the toroid is, from Equation
(32-13),

The magnetic field intensity within the toroid is given by

NI
H=-·

s
(30-5)

(32-15b)

Substituting for N from Equation (30-5) into the above equation for the
energy of the toroid, we have

W = !!J.oH2As.

The volume within the toroid is given by the product of its cross-sectional
area A by its mean circumference s. Thus the energy per unit volume W v
of the magnetic field is given by

W v = !!J.oH2 = !BH. (32-14)

Notice that our procedure for finding the energy stored in the magnetic
field has been very similar to the caleulation by which we found the energy
per unit volume stored in the electric field. In the case of the magnetic
field, we utilized the energy in the field of a toroid, while in the electric field
we utilized the energy in the field of a capacitor. Recalling that result
from Equation (25-5), we may write the energy per unit volume W v in
the electromagnetic field as

W v = !(~OE2 + !J.oH2 ). (32-150)

This formula may be rewritten as

W v = !(DE + BH).

In the mks system of units, the energy density W v in the electromagnetic
field is in joules per cubic meter when the electric field is expressed in volts
per meter and the magnetic field intensity is expressed in amperes per metAL
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TABLE 32-1 PRINCIPAL EQUATIONS IN MKS AND GAUSSIAN UNITS

Equation I MRS Gaussian

e=

Same form as mks(32-2)

(32-3)

(32-4)

~<I> = B ~A

d<l>

dt

e = -N d<l>
dt

e=

e=

1 d<l>

c dt

N d<l>

c dt

Flux change

Electromagnetic
induction

N-turn coil

(32-6)

(32-8)

(32-13)

(32-14)

(32-15b)

e=-LrJi
dt

L = J.l oN2A
s

Jr v = ~(DE + BH)

Same form as mks

L = 471"N2A
sc2

Same form as mks

H2 BH
Jrv = - =-

871" 871"

1
Jrv = -(DE + BH)

871"

Inductance

Toroid or long
solenoid

Energy

Energy density
in vacuum

Energy density

TABLE 32-2 CONVERSION FACTORS RElATING MKS AND GAUSSIAN UNITS

= 10- 4 statvolt = 10- 4 dyne (esu)
3 cm 3 stcoul

I_nt = lamp = 471" X 1O-a oersted
weber m

Quantity

Flux

Inductance

Pole

Magnetic
intensity

Magnetic
induction

Electric
intensity

Electric
displacement

Symbol

L

H

B

E

])

MRS Unit

1 weber

1 henry

1 weber

1 weber/m2

llt volt
1-=1-

coul m

1 coul/m2

Gaussian Unit

= 108 maxwells

1
= --- stathenry

9 X 1011 .

108

= - unit pole
471"

= 104 gausses

= 3 X 105 statcoul/cm2

(emu)

(esu)

(emu)

(emu)

(emu)

(esu)
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Problems

32-1. The magnetic flux in a coil having 40 turns changes steadily from
zero to 20,000 maxwells in 2 sec. Find the induced emf in the coil.

32-2. The magnetic flux through a coil of 125 turns is changed at a constant
rate from zero to 0040 weber in 2.5 sec. Determine the emf induced in this coil.

32-3. A circular coil of 50 turns and radius 15 cm lies in the x-v plane. The
magnetic induction is changed in 0.001 sec at a constant rate from zero to a
value whose x component is 0.3 weber/m 2, whose y component is 004 weber/m 2,

and whose z component is 0.5 weber/m 2
. Find the emf induced in the coil.

32-4. A wire 50 cm long is at rest along the x axis. A large magnet generating
a uniform field directed along the +y direction of 0.2 weber/m 2 is moved in the
+z direction with a speed of 30 m/sec. Find the magnitude and the direction
of the emf induced in the wire.

32-5. A wire 75 cm long is moved in the y direction at a speed of 25 m/sec,
so that the wire is always parallel to the x axis. The magnetic field has com­
ponents B x = 0.2 weber/m 2

, By = -0.3 weber/m 2
, and B z = 004 weber/m 2

•

Find the emf induced in the wire.
32-6. A short solenoid, connected to ,a galvanometer, stands on one end

upon a table. The north pole of a long bar magnet is brought down from above
into the solenoid. Apply Lenz's law to find if the direction of the current in­
duced in the solenoid is clockwise or counterclockwise, as viewed from above.

32-7. A rectangular coil of wire having 10 turns with dimensions of 20 em
by 30 em is rotating at constant speed of 600 rpm in a magnetic field in which
the magnetic induction is 600 gausses. The axis of rotation is perpendicular to
the field. Find the maximum value of the emf produced.

32-8. Part of a closed circuit consists of a straight wire 1.5 m long moving
at a speed of 2 m/sec perpendicular to a magnetic field of 10,000 gausses. (a)
What is the emf induced in the circuit? (b) What is the force on the wire when
the induced current is 5 amp?

32-9. A coil of 300 concentrated turns and an area of 800 em 2 is lying flat
on a, horizontal table. When the coil is turned over through 180° in 0.10 sec,
the average induced emf is 0.024 volt. What is the vertical component of the
magnetic intensity of the earth's magnetic field'!

32-10. A rectangular coil 12 cm by 25 cm and containing 15 turns is rotating
at a constant speed of 1,800 rpm in a magnetic field in which the magnetic
induction is 0.15 weber/m 2 • The axis of rotation is perpendicular to the field.
(a) Determine the maximum emf induced in this coil. (b) If the zero of time is
taken at the point where the coil is parallel to the magnetic induction, find the
emf in the coil when it has rotated by 53°.

32-11. When the current in a coil is changed at ,a constant rate of 5 amp/sec,
the emf induced in the coil is 0.25 volt. Determine the self-inductance of the coil.

32-12. Derive a formula for the self-inductance of a long solenoid. Assume
that the field is uniform everywhere within the solenoid.

32-13. What is the self-inductance of a solenoid 50 cm long and 5 cm in
diameter, wound with 400 turns of wire?
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32-14. What is the self-inductance of a toroid of mean circumference 25 Clll,

wound with 500 turns of wire, if the cross-sectional area of each turn is 2 cm 2?
32-15 An inductor has an inductance of 0.01 henry and an internal resistance

of b ohms. The inductor is connected to the terminals of a battery having an
emf of 12 volts. What will be the current in the circuit (a) in 0.001 sec? (b) In
0.01 sec? (c) In 0.1 sec? (d) Determine the time constant of this circuit.

32-16. An inductor of inductance 0.1 henry is connected in series with a
50-ohm resistor. This series combination is connected across the terminals of
a 100-volt battery. What will be the energy stored in the magnetic field of the
inductor when the current reaches a steady value?

32-17. Solve Equation (32-10) by separating the variables so that it becomes

~= _!i dt
. V L'

L --
R

and integrating to obtain Equation (32-11). Evaluate the constant of integra­
tion, letting i = 0 when t = O.

32-18. Suppose that a switching arrangement is used in the circuit of
Figure 32-12 so that the battery is removed from the circuit and a connecting
wire is substituted in its place. (a) Show that Equation (32-10) becomes

L t!i + iR = O.
dt

(b) Solve this equation for the current as a function of the time. Evaluate the
constant of integration letting i = I when t = O. (c) Plot a graph of this equation
and compare it with the graph of Figure 32-13.

32-19. Referring to the toroid of Problem 32-14, calculate (a) the energy
in the magnetic field when the current is 10 amp and (b) the energy per unit
volume of this field.
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