
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department
of

1-4-2007

CVRetrieval: Separating Consistency Retrieval from Consistency CVRetrieval: Separating Consistency Retrieval from Consistency

Maintenance Maintenance

Yijun Lu
University of Nebraska-Lincoln, yijlu@cse.unl.edu

Hong Jiang
University of Nebraska-Lincoln, jiang@cse.unl.edu

Ying Lu
University of Nebraska-Lincoln, ying@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/csetechreports

 Part of the Computer Sciences Commons

Lu, Yijun; Jiang, Hong; and Lu, Ying, "CVRetrieval: Separating Consistency Retrieval from Consistency
Maintenance" (2007). CSE Technical reports. 59.
https://digitalcommons.unl.edu/csetechreports/59

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17238187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csetechreports
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csetechreports/59?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F59&utm_medium=PDF&utm_campaign=PDFCoverPages

CVRetrieval: Separating Consistency Retrieval from Consistency
Maintenance

Yijun Lu, Hong Jiang, and Ying Lu
Department of Computer Science and Engineering

University of Nebraska-Lincoln
{yijlu, jiang, ylu}@cse.unl.edu

Abstract

In distributed online collaboration applications,
such as digital white board and online gaming, it is
important to guarantee the consistency among
participants’ views to make collaboration meaningful.
However, maintaining even a relaxed consistency in a
distributed environment with a large number of
geographically dispersed participants still involves
formidable communication and management cost
among them.

In this paper, we propose CVRetrieval (Consistency
View Retrieval) to solve this scalability problem.
Based on the observation that not all participants are
equally active or engaged in distributed online
collaboration applications, CVRetrieval differentiates
the notions of consistency maintenance and
consistency retrieval. Here, consistency maintenance
implies a protocol that periodically communicates with
all participants to maintain a certain consistency level;
and consistency retrieval means that passive
participants (those with little updating activity)
explicitly request a consistent view from the system
when the need arises in stead of joining the expensive
consistency maintenance protocol all the time. The
rationale is that, if a participant does not have
updating activities, it is much more cost-effective to
satisfy his or her needs on-demand.

The evaluation of CVRetrieval is done in two parts.
First, we theoretically analyze the scalability of
CVRetrieval and compare it to other consistency
maintenance protocols. The analytical result shows
that CVRetrieval can greatly reduce communication
cost and hence make consistency control more
scalable. Second, a prototype of CVRetrieval is
developed and deployed on the Planet-Lab test-bed to
evaluate its performance. The results show that the
active participants experience a short response time at
some expense of the passive participants that may

encounter a longer response time depends on the
system setting. Overall, the retrieval performance is
still reasonably high.

1. Introduction

Consistency control among participants in
distributed online collaboration applications has been
an active research area [4, 8, 9, 12, 15, 17, 19, 20].
Recently, applying relaxed, but not overly loose,
consistency control to achieve a more scalable system
has become a mainstream method [20]. For example,
in a distributed digital white board in which multiple
participants draw on the same virtual white board, a
perfect consistency (everyone sees exactly the same
picture) is too costly to maintain and too slow to
respond, and an unbounded optimistic consistency (its
inconsistency level is unbounded) is too loose to
facilitate the collaboration as it causes confusion (think
about two users draw different figures on the same
place at the white board). Thus, providing relaxed
consistency with certain consistency level guarantee
(for example, two users can have overlap of several
lines but not the overlap of a whole figure) is
commonly used in this scenario to strike a balance
between scalability and accuracy.

While we agree with this kind of tradeoff, we
believe that the current mode of consistency
maintenance is still not efficient enough because most
consistency control schemes in use today still rely on
applying the same protocol on all participants, which
could induce high communication overhead [4].

To address this limitation, we propose a new low-
overhead, hence more scalable, consistency control
architecture called consistency retrieval and
differentiate it from the notion of consistency
maintenance.

In this paper, consistency maintenance refers to the
enforcement of consistency through communication

 1

University of Nebraska–Lincoln, Computer Science and Engineering
Technical Report TR-UNL-CSE-2007-003
Issued Jan. 4, 2007

among all the participants. The maintenance cost
grows with the number of participants and, in a truly
large system, such as online gaming, the consistency
maintenance cost can be formidable. There are a
number of systems available to support consistency
maintenance, such as our own related work IDEA [17]
and others [4, 19].

A straightforward way to reduce the maintenance
cost is to reduce the number of participants that a
consistency maintenance module needs to include. We
believe that this is both doable and preferable. First,
this is doable because not all participants in a
collaboration application are equally active or
engaged. In one digital white board scenario where
students listen to a lecture, for example, the lecturers
are more likely to issue updates while a majority of the
students are observers—they monitor the white board
and rarely issue updates. From a consistency
maintenance point of view, the lecturers are more
important than passive students. So there is really no
real need to consider the passive students group as far
as consistency maintenance is concerned at most of the
time. The rationale is that, if a participant does not
have updating activities, it is far more cost-effective to
satisfy his or her needs on-demand. Second, this is
preferable because it does not change the way most
current consistency control protocol work, and hence
is easier to be adopted. In this paper, we refer to this
on-demand-based mechanism as consistency retrieval.

We present Consistent View Retrieval (CVRetrieval)
that supports the functions of consistency retrieval. To
support the retrieval functions, CVRetrieval deploys
publishers and subscribers in the system to serve as
rendezvous points, similar to the publish-subscribe
schemes [1]. CVRetrieval chooses publishers and
subscribers based on applications’ semantics to capture
the common interest (with the consistent view of a
particular application) among participants.

To evaluate CVRetrieval, we deploy IDEA, our
previous developed adaptive consistency maintenance
protocol, as the consistency maintenance component
for CVRetrieval (for active participants) and the
evaluation is done in two parts. First, we theoretically
analyze the scalability of CVRetrieval and compare it
to other consistency maintenance protocols. The
analytical result shows that CVRetrieval can greatly
reduce communication cost and hence make
consistency control more scalable. Second, a
prototype of CVRetrieval is developed and is deployed
on the Planet-Lab test-bed for performance
evaluattion. The results show that active participants in
CVRetrieval have faster response times than pure
consistency maintenance protocols at the slight
expense of passive participants that can experience

longer response times depends on the system setting,
although the retrieval performance is still reasonably
efficient for the latter. Thus, based on the evaluation
results, we believe that CVRetrieval makes a sensible
tradeoff.

The rest of the paper is organized as follows.
Section 2 discusses the background of and challenges
faced by CVRetrieval. Section 3 discribes the targeted
applications. Section 4 outlines the IDEA
infrastructure and detailed design of CVRetrieval is
presented in Section 5. The scalability of CVRetrieval
is evaluated analytically in Section 6 and its
performance is evaluated through prototyping in
Section 7. Then, Section 8 presents related work.
Finally, Section 9 concludes this paper and discusses
future work.

2. Background of and Challenges Faced by
CVRetrieval

In the following discussion, we briefly discuss the

definition of consistency we adopt, the IDEA
infrastructure we use as a consistency maintenance
protocol for active participants, and the challenge
faced by CVRetrieval.

2.1. What is consistency and how to measure
it?

Depending on the contexts, the meaning of
consistency has many interpretations. In this paper, we
deal with file or object consistency in the context of a
replica-based distributed system. More specifically, we
deal with the file consistency in a wide-area online
sharing system in which the file/object (for simplicity
and without the loss of generality, we talk about one
file only) is replicated for both availability and fault
tolerance.

A good example to think about this is a distributed
digital white board. In this scenario, a group of
participants communicate with one another via a white
board, which is replicated on each participant’s site. If
we treat the white board as one single file (it is only a
matter of granularity if the white board contains
multiple files), then this file is replicated in each
participant’s site and we need to maintain its
consistency by making sure all the participants have
the same view, i.e. if an update appears in one site, it
should appear in other sites too. Also, multiple updates
should appear in the same order in different sites.

According the TACT [20], a pioneer research on
defining metrics to quantify consistency degrees, there

 2

are three metrics that can be used to evaluate and
quantify consistency in this context:

• Delay. A remote update should appear on a

participant’s site with very little delay.
• Order preservation. Multiple updates should

appear on all the sites in the same order.
• Correctness. The content of an update should be

the same on all sites, including the site where it
originated.

These three metrics, as shown in previous research,

are able to capture a wide range of applications,
including the distributed online collaboration
applications that CVRetrieval targets.

2.2. IDEA

Because CVRetrieval uses IDEA [17] as the
consistency maintenance module, we briefly discuss
the IDEA infrastructure, our previously developed
adaptive consistency maintenance protocol, as follows.

IDEA is a detection-based two-layer infrastructure
that checks the consistency level of a file and resolves
the inconsistency among all potential writers to that
file. Further, IDEA divides the writers into two groups:
active writers and passive writers. This differentiation
is based on each writer’s updating frequency: if its
frequency is above a pre-defined threshold, it is
classified as an active writer and is put into the top
layer. Other writers are classified as passive writers
and are put into the bottom layer. The rationale behind
this distinction is that, by focusing primarily on active
writers in the top layer where most inconsistencies
arise, IDEA can detect and resolve inconsistencies
more efficiently. Our previous study has shown that,
under a variety of conditions, the two-layer
infrastructure can capture most inconsistencies in the
top layer with minimal delays [18].

Based on this efficient inconsistency detection
mechanism, IDEA maintains consistency of a system
in the following manner: (1) IDEA resolves
inconsistency in the background periodically to
improve the consistency level continuously; and/or (2)
upon any participant’s request, IDEA can actively
resolve the inconsistency on demand. CVRetrieval
uses IDEA to guarantee the consistency level of the
retrieved view of a distributed online collaboration
application.

2.3. Challenges faced by CVRetrieval

The main function of CVRetrieval is to retrieve a
consistent view for passive participants on demand.
Because the consistency level of a view is ultimately
determined by the active writers who issue updates (we
focus on active writers here because, comparing with
casual writers, active ones cause much more
inconsistencies), CVRetrieval needs to reach active
writers in order to retrieve a consistent view. However,
because we use IDEA, CVRetrieval only needs to
reach any one of the active writers for the retrieval
purpose due to its ability of resolving inconsistencies
from any active writer, as explained previously. While
this greatly simplifies the design of CVRetrieval, the
locations of the retrieved objects (where the relevant
active writers are) are not fixed and their number of the
to-be-retrieved objects could be fairly large, as
explained below.

• The member of active writers is not fixed. This

is because the participants’ updating patterns
change from time to time. Current active writers
may not be active writers a moment later. While
history data can be collected, it is still not clear
how they can help predict future active writers.

• The number of active writers is potentially
large when multiple files are considered. While
the number of active writers for a particular file is
usually small, the number can quickly add up
when we consider hundreds or even thousands of
files in a truly large system. The challenge is to
handle this large number of active writers without
incurring high communication cost.

Only after solving these two challenges, can

CVRetrieval build a mechanism to efficiently retrieve
the updates for the passive participants.

3. Applications and Their
Characterizations

We consider four representative distributed online

collaboration applications, as summarized in Table 1
that lists some key application characteristics.

White board. In this application, participants
appear online at the same time to collaborate. For
example, a group of people can draw on the same
white board to communicate with one another.

Online gaming. Online gaming has become more
and more popular. Popular games, such as World of
Warcraft [16] and SecondLife [13], have hundreds of

 3

 White Board Online Game Bulletin Board E-Business
Collaboration type Synchronous Synchronous Asynchronous Asynchronous
of active writers Small Large Small Small
of passive writers Medium Large Large Medium
of observers Large Large Large Medium
of shared objects Small Large Small Medium
Order preservation Low Low High High
Low latency High High Low Medium
Correctness Low Medium High Very high

Table 1: Four representative distributed online collaboration applications

Figure 1: Three classes of participants

thousands of paid subscribers. While people usually
think games as leisure activities, it has in fact become a
common platform for people to interact. A recent
Business Week cover story reported that people earn
big real money from online gaming, such as
SecondLife, and even traditional companies are
entering the gaming arena for both advertisement and
direct sale [7].

Bulletin board. People read the post in a bulletin
board and post messages when they want to
communicate with one another.

E-business. Think about an airline ticket booking
system that is handled by multiple servers. The content
of an update should be the same on all sites. In e-
business applications, the writers are indeed the servers
that handle transactions because they issue updates on
behalf of the customers.

In Table 1, we characterize qualitatively the four
applications based on eight metrics. First of all, white
board and online gaming are synchronous
collaborations because the participants usually appear
online at the same time; bulletin board and e-business
are asynchronous collaborations because the
participants come and go: people post on the bulletin
board and check back later; in e-business, each

business center has different request pattern, thus
issuing updates asynchronously [6].

The number of active writers for a given object is
large in online gaming because, due to the usually
large number of participants, even a small portion of
them acting as active writers can result in a large
number comparing with that of other three applications.
The white board application has a small number of
active writers because there are usually a small number
of participants who lead the collaboration (think the
lecturers in the remote education scenario). The other
two applications have small numbers of active writers
because, due to the nature of an asynchronous
collaboration, not all writers are active at the same time.
The numbers of passive writers in white board and e-
business are medium comparing with that of online
game and bulletin board for the following reasons. For
white board, the total number of participants is usually
small because it is intended for a not-so-large group of
people to communicate, hence the number of passive
writers. For e-business applications, as mentioned
before, the servers that handle transactions are the
writers. Thus, at least currently, the number of these
servers is not large, so we conclude that the number of
passive writers will be small too.

In terms of the number of observers, all, except for
e-business, the other three have a large number of
observers. In e-business, unlike the other three
applications in which participants communicate with
one another and a lot of people care about the
perceived qualify of consistency, only stakeholders
who can earn serious money from the e-business are
interested in the consistency of the e-business
application and that number is relatively small. Finally,
the numbers of shared objects are large in online game
as modern games become more and more sophisticated.
White board and bulletin board have smaller numbers
of shared objects than that of e-business because these
two applications serve special features for sharing (i.e.
dedicated white board and bulletin board) while it is

 4

possible for an e-business application to run multiple
types of transactions at the same time.

In terms of the consistency requirement, white
board and online gaming have relatively low
requirement of order preservation because people
prefer fast responses and are usually willing to figure
out the errors by themselves. For example, a recent
study of online gaming shows that in chat room people
prefer to receiving conversation word-by-word (faster
speed) than receiving the finished sentence at once
(slower speed) [3]. For the same reason, white board
and online gaming require low latency than bulletin
board and e-business. With the increased emphasis on
accuracy—for example, an error in e-business can cost
a lot of money for the company—the requirement of
correctness increase from the left to the right side in
Table 1.

Before we end this discussion, we need to mention
that CVRetrieval can potentially benefit all these four
applications for the following reasons. First, the white
board, online gaming, and bulletin board applications
all have a large number of observers, which makes
reducing the consistency control overhead for these
observers a significant reduction in consistency control
overhead for the system as a whole. Second, while the
absolute number of observers is small in e-business
comparing to those of other three applications, it is still
larger than, or at least comparable to the number of
writers (both active and passive ones), which are
essentially the e-business servers. Thus, CVRetrieval
can also benefit an e-business application in that it can
significantly reduce the consistency control overhead.

4. Architecture

CVRetrieval is designed to improve the efficiency of
consistency control by providing a consistent view
retrieval service for the observers of an application
while letting an existing consistency maintenance
protocol to maintain the consistency for writers.
Theoretically, CVRetrieval can work with any
consistency maintenance protocol. This is because, to
use CVRetrieval, a consistency maintenance protocol
only needs to differentiate observers and other active
participants: the observers use CVRetrieval and the
consistency maintenance protocol enforces consistency
among the rest of the participants. Further, the
consistency maintenance protocol has to define the
entry point for CVRetrieval to retrieval the consistent
view. In the case of IDEA, the active writers are the

Figure 2. The Architecture of CVRetrieval

entry points. Once the entry point is defined, the
information about it will be published by CVRetrieval.
 In this paper, we choose IDEA, a detection-based
consistency maintenance protocol that was developed
by the authors previously and briefly described in
Section 2.2, as the consistency maintenance protocol
for CVRetrieval. Using IDEA as the consistency
maintenance module, the architecture of CVRetrieval
is depicted in Figure 2.

As shown in the figure, CVRetrieval is between the
application layer and a general distributed operating
system. When the application needs to guarantee
consistency, it interacts with CVRetrieval.
CVRetrieval depends on a consistency maintenance
module—in this case, IDEA—to maintain consistency
among writers and to guarantee the consistency level
of the retrieved view. Finally, applications interact
with the distributed operating system directly when no
consistency issue is involved.

5. System Design

We try to address several design issues in this
design section:

• How do participants join the system and how to

map the participants to the IDEA infrastructure?
• How does IDEA communicate with the publishers

so that the publishers have the updated
information of the top layer nodes (that includes
all active writers) for different object?

• How do ISPs subscribe on behalf of their clients?

 5

• How does the publish-subscribe scheme work?

Throughout this section, we use a virtual white

board application to make the discussion concrete.

5.1. A virtual white board scenario

We consider a distance education scenario in which

several lecturers give lectures and a group of students
join the discussions by manipulating a virtual white
board (logically centralized and physically distributed
on each participant’s site). Other students who are not
part of the discussion group will passively observe the
discussion by watching the virtual white board.

In this scenario, the lecturers and the students in the
discussion group conduct active discussions by issuing
updates on the white board. Due to the nature of
discussion, not all the members in the discussion group
will speak up at the same time. During the discussion,
membership of the active white-board-based speaker
goup will change constantly, and such change is
usually unpredictable because the spontaneity of an
active discussion.

5.2. Participants join the system

We assume that there is a mechanism for

participants to know the ID of the white board session
and the time when the session starts. In practice, this
can be done by some offline method, such as through
an email list.

After all the participants log in, they form a group.
Each participant modifies his or her own white board
and those updates will show on others’ white boards.

5.3. Mapping between participants and the
IDEA infrastructure

As illustrated in Figure 1, we differentiate three

types of participants: active writers, passive writers,
and observers. They are mapped to IDEA as follows.

First of all, CVRetrieval differentiate observers
from writers. When participants log in the white board
application, they are required to indicate whether they
are members of the discussion group. If yes, they are
characterized as writers; if no, they are classified as
observers.

Second, IDEA differentiates active writers from
inactive writers after the system starts to run. IDEA
tracks active writers (by its top layer) and passive
writers (by the bottom layer) based on their updating
frequency as explained in Section 2.2.

Figure 3. Use pointers to handle stale information

5.4. Communication between IDEA and
publishers

 In CVRetrieval, each object has a designated
publisher, which is responsible for publishing the top
layer nodes’ information on behalf of the objects.
There are two issues here: (1) how to map an object to
a publisher? (2) how do publishers learn the top layer
nodes’ information from IDEA?

There are two ways to map an object to a publisher
based on the total number of shared objects. If the
number of shared objects is small in an application,
such as in the white board application, the shared
objects can be mapped to a single publisher. If the
number of shared objects is large, such as in online
gaming, certain mechanism is needed to balance
multiple publishers’ load. Hashing table based scheme
(choose publishers based on the hashed value of the
object IDs), such as DHT [10, 11, 14], is desirable for
both its load balancing and its easy lookup (subscribers
can find the right publishers by hashing the object IDs
themselves).

The publishers learn the top layer nodes through
communication with them. From the mapping
procedure, the top layer nodes of an object know
where their corresponding publisher is. The top layer
nodes will communicate with their publisher whenever
a node joins or leaves the top layer. The publisher will
publish these updates to its subscribers subsequently.

However, this published information may become
obsolete due to the propagation delay. For example, a
subscriber could have old information (it states that A
is in the top layer of object f but A is in fact no longer
in the top layer anymore). We use pointers to solve this
problem. In an example illustrated in Figure 3, we let A
keep two pointers of its fellow members when it is in
the top layer of object f (left half of Figure 3) and,
when A is no longer in the top layer, it can at least
forward the request to the other top layer nodes (B or C
in this case, see the right half of Figure 3). Because it
is very unlikely that all three nodes are leaving the top
layer during the time of the propagation delay, this
kind of old information will be transparent to users. In
the case that this mechanism does not work, the

 6

request can always be returned back to the subscriber,
who can then pull updated information from the
publisher (see Section 5.6).

5.5. ISPs subscribe on behalf of their clients

We use ISPs (Internet Service Providers), instead of

the clients themselves, as the subscribers for two
reasons. First, the ISPs, as the Internet entry point for
its clients, are much more stable than its clients. Hence,
using ISPs as the subscribers makes the publish-
subscribe structure (i.e. the positions of publishers and
subscribers) much more stable too. Second, while
clients change their interests rather frequently,
which—if we use clients as subscribers—causes
frequent membership change for a publisher and the
publisher that in turn needs to adjust its publishing
scheme to reflect that change, ISPs’ interests are
relatively stable because their interests do not change
with respect to how many and which clients are
interested in an object, as long as some client is
interested in that object.

When a client becomes interested in an object, it
informs its ISP, which will subscribe the object’s
information if it hasn’t done so. If the ISP has already
subscribed for that object, it will just add the client into
its client list and inform the client about all the future
updates about that object’s top layer nodes. When a
client becomes uninterested in an object, it informs its
ISP too. If, after this client’s exit, the ISP has no client
for that object, it will unsubscribe this object;
otherwise, it simply deletes the client from its client list
quietly.

In CVRetrieval, subscribers have two
responsibilities. First, it informs a writer to periodically
push new updates to it at a predefined rate and, when a
new update arrives, immediately forwards the update
to its clients. Second, when a client is in need of a
consistent view immediately, the client can explicitly
ask the subscriber to retrieve the view on its behalf.
When a subscriber receives the retrieval request, it
either returns a view from its cache (if it has one
because other clients have just retrieved it before) or
retrieves the view directly from the writer.

5.6. The publish-subscribe scheme

We use a multicast tree and filters to sent

information from publishers to their subscribers. In this
scheme, each publisher builds a multicast tree and an
interior node forwards the packets further down the
tree only if there are some nodes in its subtree that
have subscribed it. While there are other publish-

subscribe schemes available, such as shared tree or
structure-less schemes, we choose the multicast tree
structure because it provides a stable infrastructure that
is suitable for our targeted applications that usually last
a long period of time.

In the naïve form, the publisher sends the whole top
layer information down the tree structure and all the
subscribers will receive that information. To improve
the system’s scalability and efficiency, CVRetrieval
incorporates the following optimizations.

First, a publisher in CVRetrieval only sends a
subset of the list of the top layer nodes to each
subscriber to preserve the network bandwidth. This
raises two questions: how to choose a subset for a
given subscriber and how to disseminate different
subset of top-layer node information through a
multicast tree (by definition, a multicast tree
disseminates the same information to all the nodes)?

When choosing the subset, the publisher has several
factors to consider. First, the active writers in the
subset should be physically close to the subscribers so
that the retrieval can be done efficiently. Second, one
or two remote active writers can be included in each
subset to provide redundancy because physically close
machines tend to go down at the same time (for
example, a power outrage). Third, the publisher needs
to consider load balance so that no active writer is
overwhelmed by retrieval requests.

Now we illustrate how to disseminate the different
subsets via a multicast tree. First of all, the subscribers
report their physical locations to the root in a bottom-
up fashion and the messages are aggregated at each
interior node. Second, the publisher chooses different
subsets for its immediate children in the multicast tree
based on these children’s subtree’s interests (i.e. the
collective interest of the nodes in its children’s subtree)
and disseminate the subsets. For each interior node, it
further divides the subset for its own immediate
children. This process continues until the leave nodes
are reached.

When a client explicitly retrieves a consistent view,
as explained in Section 5.5, its subscriber will either
return one view from its cache (if one exists) or pull a
request from a writer. While rare, there is a possibility
that the writer is no longer an active one and it has no
way of reaching another one. In this case, the
subscriber will need to contact its publisher for the
most up-to-date information about the active writer
list.

One key challenge is that the shared objects, unlike
mp3 music files, are perishable—as time goes by, a
perfectly consistent view can potentially become very
inconsistent. Thus, directly sharing a previously
retrieved view without the consideration of its

 7

timeliness is pointless. In CVRetrieval, the sharing can
be done with timeliness-conscious caching: when a
subscriber receives a new consistent view, it caches the
view after it has forwarded the view to the interested
clients; later, when another client is asking for this
view, the subscriber decides whether the cached view
it received previously is still satisfactory for this new
request by considering the time gap. In this way,
participants can share a retrieved consistent view
through local subscribers without putting much burden
on the top layer nodes.

6. Scalability of CVRetrieval

In this section, we compare the communication cost
of the CVRetrieval approach with other consistency
maintenance approach. This analysis is crucial because
the main hypothesis of CVRetrieval is that it can save
communication cost, thus make the consistency control
as a whole more scalable.

However, due to the long history of research on
consistency maintenance, there exist a large number of
consistency maintenance protocols that are suitable for
various scenarios. This is a challenge to this analysis
because the dynamism makes it hard, if not impossible,
to compare CVRetrieval with all of them under one
unified evaluation framework. To cope with this
challenge, we simplify the analysis as follows without
the loss of generality.

First, we classify the consistency maintenance
protocols into four major categories by extending
previous work in this area (categorizing consistency
maintenance protocols for distributed collaboration
systems) and compare CVRetrieval with each category.

Second, we realize that, to accurately compare
communication cost of the protocols, we need to
consider a group of factors, including the average
communication message size, the traveling distance of
each message, and the total number of messages.
However, considering such details will make the
analysis intractable because of dynamism in a large
scale distributed system. Thus, in this analysis, we
assume that all the protocols incur the same average
message size and, on average, each message travels the
same distance. Hence, the differentiator of the
protocols is reduced to the total number of messages
incurred by each protocol.

6.1. Categorization of consistency maintenance
protocols

Our categorization follows the research work by

Yang and Li [19], but extending their work in two

aspects. First, it covers more recent research work,
including our previously developed detection-based
IDEA protocol. Second, this categorization focuses
primarily on consistency maintenance protocols in the
online distributed collaboration systems, which make it
more focused than theirs. In this analysis, we consider
four categories: locking, serialization, operational
transformation, and detection-based consistency
maintenance.

Locking. Locking mechanism controls consistency
by locking a data object and only allowing one user to
modify the data at a time. Depending on whether the
mechanism allows users to continue their work while a
lock is requested and released, locking can be further
divided into three types: pessimistic (work is blocked
in both lock requesting and releasing), semi-
pessimistic (work is blocked only in lock releasing),
and optimistic (work in not blocked in either case).
While locking is widely used in small networks, we
believe that it is not suitable for distributed online
collaborations because users usually do not tolerate
long delay caused by the locking operation.

Serialization. In this mechanism, all the users are
allowed to modify their replicas, but their updates need
to be serialized at a single point to maintain a
consistency state. There are two flavors of serialization:
pessimistic serialization and optimistic serialization.
While users are not allowed to continue their work
until their previous updates are serialized in the former,
the latter allows users to continue their work and will
rollback their inconsistent updates when needed.
Because we consider a replica-based distributed
system, we assume that this is a distributed
serialization. An example of this model is Deno [4], a
peer-to-peer voting protocol in which each writer’s
update travels across the whole replica group to detect
and resolve any inconsistency. During Deno’s
serialization process, further updates are allowed, so
this is an optimistic serialization. While the
enforcement mechanism of a bounded inconsistency
level by TACT [20] can be generally considered as an
optimistic serialization because they let each server
loose its consistency control to the degree that the total
inconsistency across the server group is still within a
predefined inconsistency bound, its enforcement
mechanism is not a unified one. Rather, TACT
developed a set of schemes to enforce the bound for
different aspects of consistency. For this reason, the
mechanism of TACT is not directly comparable to that
of CVRetrieval because the latter targets at a unified
consistency maintenance protocol.

Operational Transformation. This mechanism
differs from optimistic serialization in how it reacts to
inconsistencies. While optimistic serialization repairs

 8

inconsistency when it arises by rolling back
inconsistent updates, operational transformation does
not undo the effects to reduce overhead. This operation
is useful when the inconsistency is either not repairable
or it is insignificant. Essentially, this is an extreme
optimistic operation and, because it does not guarantee
any level of consistency, we believe that it is not
suitable for distributed online collaborations in which
unbounded inconsistency can cause confusion and
make meaningful collaboration impossible.

Detection-based scheme. We previously presented
IDEA as the first detection-based consistency
maintenance protocol for large-scale distributed
systems. Instead of enforcing a fix consistency
protocol beforehand, IDEA detects inconsistencies
when they arise and resolve them based on the
applications’ ongoing need for consistency. IDEA
achieves adaptability for the applications and supports
flexibility for the end users to adjust their consistency
level on the fly. IDEA is suitable for distributed online
collaboration because it allows the users control to
adjust the perceived consistency level.

Among the above four categories, locking and
operational transformation are not comparable to
CVRetrieval since the former causes long delay and
the latter does not guarantee consistency level at all.
Thus a meaningful comparison will be among the
optimistic serialization (we use Deno as a
representative protocol), IDEA, and CVRetrieval with
the goal of determining whether the added
communication overhead of CVRetrieval is much
smaller than the communication cost it saves by
decreasing the communication cost of consistency
maintenance.

6.2. Assumptions

To analytically evaluate the communication cost

savings by CVRetrieval, we make the following
assumptions and definitions.

[1] c: the average number of simultaneous writers.
[2] n: the total number of nodes in the system that

join the consistency control process.
[3] n1: number of writers.
[4] nhot: number of hot writers among the n1

writers.
[5] f1: number of updates of hot writers during a

given period of time t.
[6] npass: number of passive writers among the n1

writers, where nhot + npass = n1.
[7] f2: number of updates of passive writers

during a given period of time t.
[8] n2: number of observers, where n2 = n – n1.

[9] p: total number of publishers in CVRetrieval.
[10] s: total number of subscribers in CVRetrieval.
[11] q1: number of publishings during a given

period of time t.
[12] q2: number of retrievals during a given period

of time t.
[13] C_deno: total number of messages exchanged

in Deno.
[14] C_idea: total number of messages exchanged

in IDEA.
[15] C_r: number of messages exchanged in

CVRetrieval.

As shown above, we use the number of messages
exchanged as a metric to analyze the communication
cost saving by CVRetrieval.

6.3. The Analysis

We conduct the analysis in three steps. First, we
derive the communication cost associated with the
consistency maintenance protocol Deno, followed by
the derivation of communication cost of IDEA.
Second, we derive the communication cost associated
with CVRetrieval. Finally, we compare the three
mechanisms. In this analysis, we consider the
consistency control for one single object because this
simplifies the analysis and, based on its result, it is
easy to extend the analysis to multiple objects.

6.3.1. Communication cost of Deno

In Deno, each update travels the whole group and,

when it meets another conflicting update, the update
will be resolved at that time. In this analysis, each time
an update reaches a node, we consider it as a new
message because the node that is reached essentially
regenerates the original message by relaying it. Thus,
given an update, it only stops traversal when it meets
another conflicting update. From the assumption 1, we
know that there are c conflicting updates in the system
at one time on average. For simplicity, we further
assume that the updates propagate along a linear
structure (without this assumption, the updating
process becomes intractable). Then, on average, an
update travels 1/c of the network to meet a conflicting
update and stops.

While observers do not issue updates, they are
certainly able to keep the updates when they pass by.
There is no promise that those kept updates are a
complete set of all the updates for a particular object.
Thus it is reasonable to assume that there must be
some mechanism for an observer to retrieve a

 9

consistent view of this object. Unfortunately, this
mechanism is not defined in Deno, not least because it
is intended to be used in a server cluster environment
where the observer group is not a concern. To make its
comparison with IDEA and CVRetrieval both fair and
complete, we make two assumptions. First, we
consider that each observer has to connect to some
other node to request for a consistent view and the
requested node has to send the view back, which
results in two messages for each request. Second, when
a node receives a request, it is able to use some
mechanism to find a consistent view if there is no such
one available. However, we choose to omit this
overhead in our analysis because: (1) Deno has not
defined such a mechanism and it is unfair to assume a
random one for it; and (2) this overhead is rather a one
time overhead as it can be cached for a while for later
use, which make it an insignificant part of the total
communication cost. Since each observer will issue q2
requests in time t, the total communication overhead is
2*n2*q2.

Now we calculate the communication cost as
follows. Because there are n nodes in the system, each
update needs to travel n/c hops, which equals to n/c
messages in total. In a given period of time t, there are
nhot*f1 + npass*f2 updates, so the total number of
messages generated in a given period of time t is:

2221 2)(_ qnfnfn
c
ndenoC passhot ××+×+××=

 (1)

6.3.2. Communication cost of IDEA

In IDEA, the updates from hot writers will be

detected among the hot writers and those from the
passive writers will need to go through the whole
network to be detected.

Similarly to the analysis in Deno, we assume the
existence of c concurrent conflicting updates at one
time. However, in the case of IDEA, the updates from
hot writers stay at the top layer, implying that the hot
writers actually see less than c concurrent updates
because the updates from passive writers won’t show
up in the top layer at the same time. So, while passive
writers still see c concurrent updates, we assume that
the active writers sees only chot concurrent updates,
where chot < c. Then an update from a hot writer will
generate nhot/chot messages, and that from a passive
writer will generate n/c messages. There are nhot*f1
updates from hot writers and npass*f2 updates from
passive writers in a given period of time t.

For the communication cost associated with
observers, we follow the calculation used in the Deno
case and conclude that the overhead is two messages
(one for request, one for reply) for each retrieval-type
request. Then, because we have assumed that, on
average, each observer will issue q2 requests in time t,
the total communication overhead is 2*n2*q2.

Putting the communication cost of writers and
observers together, the communication cost of IDEA
is:

2221 2_ qnfn
c
nfn

c
nideaC passhot

hot

hot ××+××+××=

 (2)

6.3.3. Communication cost of CVRetrieval

The communication cost of CVRetrieval involves

three parts: (1) the detection of inconsistency among
hot and passive writers; (2) the cost associated with the
publish-subscribe scheme, which includes the
communication cost between writers and publishers,
between publisher and subscriber, and between
subscribers and their clients; and (3) the retrieval
operation for observers.

First, CVRetrieval detects inconsistency among hot
writers in the same manner with that of IDEA because
it depends on IDEA to maintain consistency. Thus the
communication cost incurred by hot writers is
(nhot/c)*nhot*f1. For passive writers, however, they need
not to go through the whole network; instead, they
only need to detect among the writers’ group (with n1
writers) that excludes the observers. Thus, the
communication cost associated with the updates from
passive writers is (n1/c)*npass*f2.
 Second, for the communication cost associated with
publish-subscribe scheme, we first derive the cost for
one round of publish and then multiply it by the
publish rate q1 to get the total communication cost in a
given period of time t. Because a hot writer only
notifies its publisher when it becomes a hot writer and
when it becomes a passive writer. Here we
conservatively assume that, in one round of publish,
half of the hot writers are new ones (this is indeed a
very extreme scenario because we essentially assume
50% of the hot writers leave the group and the same
number of new hot writers join the group). Thus, in
one round of publish, there are nhot messages
exchanged between writers and publishers because
each old hot writer or new hot writer needs to inform
exactly one publisher.

 10

Sets n n1 nhot c chot f1 f2 q1 q2 s Deno IDEA CVRetrieval

1 1000 50 10 4 3 5 3 2 5 19 52000 39667 13125
2 1000 100 20 4 3 5 3 2 5 18 94000 69667 17543
3 1000 200 50 4 3 5 3 2 5 16 183000 124667 36399

Table 2: Analytical Results

Then, there are s messages exchanged between
publisher and subscribers because there are s
subscribers in total and each needs to be informed
exactly once. Finally, let’s conservatively assume that
all the n2 observers will need to be informed about its
subscription. Then we know that n2 messages are
exchanged in one round. Adding the three parts of
cost together and then multiplying the publishing
frequency, we get the total communication cost
associated with the publish-subscribe scheme in time
t is q1*(nhot+s+n2).

Third, each observer will retrieve a consistent
view for the object he or she is interested in, which
results in n2 retrievals. Because each retrieval
consists of two messages (one request, one reply),
there are 2*n2 messages exchanged in one retrieval
operation. Finally, because we assume that each
observer retrieve q2 consistent views in time t, the
total number of message exchanged in t is 2*q2*n2.

So the total communication cost in a given period
of time t, incorporating all three parts, is:

22

21

2
1

1

2
)(

_

nq
nsnq

fn
c
nfn

c
nrC

hot

passhot
hot

hot

××+
++×+

××+××=

 (3)

 Note that parameter s is related to n2 because there
are s subscribers serving the n2 clients (recall that
each observer subscribes k objects). Although there is
no ground rule about how many clients a subscriber
should have, it is intuitive that the number of clients
should not overwhelm the subscribers. Considering
that the information that is being published is rather
small in quantity (it is only a list of active writers and
the message is maybe only a few KBs), we believe
that each subscriber can support at least up to 50
clients, which incurs less than 1MB data traffic and
should not be a burden for a subscriber. Thus, in the
following analysis, we use n2 /50 as the value for s.
 Further, the value of q1 is associated with how
frequent the active writer group changes and q2 is

associated with the observers’ interests. Because
CVRetrieval deals with loosely coupled distributed
online collaboration applications, we believe that, in
a short period time of t, it is sufficient to assign a
small numerical value for q1. For q2, we believe that
it should be reasonably large so that it can satisfy
observers’ need of consistent view. However, q2
cannot be too large, which implies smaller inter-
retrieval time, because there is no point of issuing the
second retrieval before response of the first request
has arrived. Thus, we believe that it should be
reasonable to make q2 two to three times as large as
q1.

6.3.4. The comparison

We now can compare C_deno, C_idea, and C_r

by assigning real numbers to the parameters in their
respective expressions. In particular, we set s = n2/50
and assign 2 and 5 to q1 and q2, respectively. We also
set chot as 3*c/4, which is actually quite conservative
and put IDEA and CVRetrieval in disadvantage
considering that most updates should come from hot
writers. The analytical results are summarized in
Table 2.

As shown in Table 2, CVRetrieval incurs much
lower communication cost than pure consistency
maintenance protocols in all three sets of data. This
observation indicates that the majority overhead of
CVRetrieval comes from the consistency
maintenance of writers, which validates our
hypothesis that, by separating observers from writers,
the consistency control overhead can be substantially
reduced.

Additionally, the overhead of CVRetrieval
increases in a slightly slower speed than those of
Deno and IDEA when the number of updates
increases (reflected by the number of active writers).
Comparing the results of set 1 and set 3 and we can
see that the overhead of CVRetrieval in set 3 is 2.8
times as large as that in set 1, while that ratio is 3.5
for Deno and 3.1 for IDEA. We believe that this is an
indication that CVRetrieval scales better than the
other methods.

 11

7. Experimental Results

We implement a prototype of CVRetrieval on top
of the Planet-lab and use it to evaluate the
performance of CVRetrieval. More specifically, we
want to evaluate the response time of CVRetrieval in
comparison with other consistency maintenance
protocols. This measurement is important because it
determines how fast an end user can perceive a
certain level of consistency and naturally the faster
the response time, the higher the user’s satisfaction.

The response time is defined as follows. For a
consistency maintenance protocol, it is defined as the
time difference between the point when an update of
an object is first committed and that when a
participant receives that update (with a certain level
of consistency guarantee). In the case of CVRetrieval,
however, the response time has different definition
for writers and observers. For writers, the definition
of response time is the same as that in a consistency
maintenance protocol. For observers in CVRetreivals,
however, the response time is between the point of
time when an observer issues a retrieval request for a
consistent view of an object and that when it receives
the view.

Our hypothesis is that, on the one hand, the
response time for writers will be smaller in
CVRetrieval than that in other consistency
maintenance protocols because CVRetrieval has a
smaller writers group. On the other hand, the
response time for observers could be longer than that
for writers in other consistency protocols because of
the added publisher-subscribe scheme and that it only
receives updates periodically or on demand.

7.1. Experiment setup

We emulate a white board application for
evaluation purposes. The application is emulated by
following its operational sequences. More
specifically, we abstract the distributed white board
as a set of objects that are replicated on each
participating node. Then, we treat each update on the
white board (from the writers group) as a write
operation on its local replica. After updates are
issued, IDEA works to maintain the overall
consistency level of the virtual white board above a
certain degree. Because our purpose of the
experiments is to evaluate the consistency control, we
assume that these updates are

Type Max
(seconds)

Min
(seconds)

Average
(seconds)

active writer 1.73 1.41 1.59
passive writer 11.8 10.2 10.98

Table 3: Response time for writers

all conflicting with one another (otherwise, users
need not to care about them).
 In the current setting, each writer informs its
publisher when it becomes or ceases to be a hot
writer. The publisher then informs its subscribers (the
ISPs who subscribe on behalf of their clients)
periodically. Through the publish/subscribe
infrastructure, subscribers get the list of the hot writer
group, which, with a very high probability, have the
most consistent view of the shared application. For
observers, they specify their interest and inform their
subscribers about that. The subscribers, based on the
information received from publishers (the hot writer
list), choose a nearby hot writer as the source for
retrieval purposes. When an observer is not satisfied
with the retrieved view, it can issue a “retrieval”
request directly to the subscriber and the subscriber
will then retrieve the most recent consistent view
from the hot writers on behalf of the observer.

We conduct the experiment on the Planet-Lab
test-bed. In the current setting, there are ten writers
among which four are active writers and the other six
are passive ones. There are one publisher and four
subscribers. Each subscriber serves three observers.
In other words, this is a 22-nodes system, excluding
publisher and subscribers.

At the beginning of the experiment, each hot
writer issues one update every 5 seconds until the
experiment ends. These updates got disseminated
among active writers immediately and, once it starts
to propagate to passive writers, each hop will only
disseminate the updates once every 5 seconds (to
save bandwidth by combining multiple updates). We
let each observers retrieve the consistent view every
20 seconds during the experiment. The experiment
runs 300 seconds.

We also implemented a Deno-like protocol for
comparison. In the Deno-like protocol, we organize
the 22 participants (here, we don’t consider the
publisher and subscribers as participants because they
are only facilitating CVRetrieval) in a linear fashion
in which the updates are propagated from one to the
other. To make the results comparable, we assume
the same updating patterns for the ten writers.

 12

7.2. Response time for writers

We measure response times for active writers and
that for passive writers. The experiment was run ten
times and the average response time, as well as
maximum and minimum values, are measured and
shown in Table 3.

From the result, we can see that the response time
of active writers is very small. This is because the
dissemination of updates is instant among active
writers. While it is usually very costly to disseminate
update instantly among participants, CVRetrieval can
afford to do so because, via classification, there are
only a relatively small number of active writers in
existence.

As shown here, the average delay for passive
writers is over 10 seconds, which looks rather high.
However, this is because we set a five-second delay
between the dissemination of updates among passive
writers. In practice, system administrators can choose
a shorter delay to improve the response time for
passive writers at the expense of increased bandwidth
overhead.

7.3. Response time for observers

There are two aspects of response time for
observers. First, the time that it takes for them to
receive the periodically published updates. Because
this part of delay primarily depends on the publishing
rate, we do not measure it here. Second, the response
time for an explicit retrieval operation, i.e. when the
observers actively retrieve the most updated view
from the subscribers, the time it takes to get the view.

The delay of explicit retrieval depends on whether
the observer can find the view in its subscriber’s
local cache (because another observer retrieved the
same view a moment ago). Intuitively, the more
retrievals can be satisfied with the subscriber’s cache
(a higher cache hit rate), the smaller the response
time is. In this experiment, we give three settings of
the cache hit ratio: 50%, 66.7%, and 75%. For each
setting, we run ten experiments and the results are
summarized in Table 4.

The result shows that the retrieval process is
indeed very efficient and this efficiency increases
with cache hit rate in subscribers.

7.4. Comparison to consistency maintenance
protocols

We now compare the performance of CVRetrieval
with a pure consistency maintenance protocol. For a

Cache hit
rate

Max
(seconds)

Min
(seconds)

Average
(seconds)

50% 0.48 0.33 0.37
66.7% 0.3 0.24 0.28
75% 0.16 0.12 0.14

Table 4: Response time for observers

Max
(seconds)

Min
(seconds)

Average
(seconds)

2.45 1.77 2.07

Table 5: Response time of a pure
consistency maintenance protocol with

active update dissemination

Figure 4: Response time for different hops

pure consistency maintenance protocol, we assume
that all participants are treated equal. In terms of
updates dissemination, there are two types: active
ones that disseminate a received update to other
participants as soon as it arrives and passive ones that
only periodically disseminate all the updates it
received so far. Because the passive ones work
similarly to the way CVRetrieva/IDEA treats passive
writers, but with more participants, it is doubtless that
CVRetrieval/IDEA will have a better performance.
For this reason, we only experimentally compare
CVRetreival to the active ones.
 The consistency maintenance protocol we
considered here has all the 22 participants (not
including the publisher and subscribers because they
are add-on features of CVRetrieval) we used in the
CVRetrieval evaluation. Because this protocol
actively disseminates updates, each participant relays
a received update as soon as it is received. Finally,
the writers have the same updating patterns as in
previous experiments. We run this experiment ten
times and the results are shown in Table 5.

 13

From this table, we can see that the response time
of the pure maintenance protocol is larger than that of
CVRetrieval’s active writers (comparing to the data
in Table 3). However, the absolute value of the
response time is not that large. We suspect that is
because, due to the heavy load of planet-lab nodes,
the write operation alone needs too much time to be
committed. To validate our hypothesis, we profile
one run of the experiment and record the response
time for all 21 participants (this does not include the
writer who committed this update) and the result is
depicted in Figure 4.

From this figure, we can clearly see that the first
hop delay dominates the system’s response time.
With greater computing power that can minimize the
cost of committing updating operations, we expect
the advantage of the CVRetrieval approach to be
much more obvious.

It is worth noting that most current protocols uses
passive update dissemination method, with which the
advantage of CVRetrieval will become more
pronounced. Furthermore, the most important
advantage of CVRetrieval is its saving of
communication cost, especially in a system with a
large number of participants, as analyzed in Section
6. We believe that the two features—efficiency and
scalability—together make CVRetrieval a viable
alternative to pure consistency maintenance
protocols.

8. Related Work

Most collaboration applications nowadays
originate from single-user applications. For example,
MS Word was previously used by a single user to
edit his or her file and then is modified to incorporate
collaboration capabilities. A straightforward way to
share these applications is to place a central control
for consistency maintenance. In MS NetMeeting, for
example, only one participant can operate on the
shared object; all other participants will be blocked
[2].

To prevent blocking, which causes access delay,
the granularity of sharing is always adjusted to make
the sharing unit small enough to prevent blocking to
some extent. However, this approach is inherently
not scalable for two reasons. First, for any given
system, the granularity cannot be spited indefinitely.
Second, it is still a centralized system and, in the
presence of a hot unit, the blocking cannot be
prevented and that makes it not suitable for a large-
scale system with a large number of participants.

Newly developed distributed online collaboration
applications use replication-based scheme to improve
scalability and availability. However, as all the
replicas have a copy of the collaboration application,
inconsistency level among them hence is relaxed [9,
12]. While this scheme works well in many
applications and helps distributed collaboration
applications scale to large-scale distributed networks,
relaxed consistency does not guarantee the QoS.

Recently, researchers have been trying to achieve
relaxed inconsistency for distributed online
collaboration applications. Yu and Vahdat defined
metrics to evaluat consistency level for a wide range
of applications [20]. Chang et. al. derived an
algorithm to support different consistency level for
different users in an online conference application
[5]. Also, Local-lag and Timewarp were developed
by Vogel and Mauve to eliminate short term
inconsistencies and repair inconsistency, thus prevent
unbounded inconsistencies [15]. A more recent work
extended Vogel and Mauve’s work by considering
the same problem in a larger network [8]. However,
these works are still use consistency maintenance for
all participants, which cause high overhead for a
system with a large number of participants.

CVRetrieval differs from previous work because it
considers the consistency retrieval aspect, not just
consistency maintenance, in distributed online
collaboration applications. To the best of our
knowledge, CVRetrieval is the first work to explicitly
consider the retrieval aspect of consistency control in
distributed online collaboration applications.

9. Conclusions and Future Work

In this paper, we presented the design, analysis,

implementation, and evaluation of CVRetrieval, a
system that improves the scalability of consistency
control in large-scale distributed online collaboration
applications by separating consistency retrieval from
consistency maintenance.

CVRetrieval is fully evaluated by both analytical
modeling and prototyping measurement. The analysis
result showed that, comparing to pure consistency
maintenance protocols, CVRetrieval incurs
significantly less communication overhead and hence
improves the scalability of consistency control in
general. Through prototyping on the Planet-Lab test-
bed, we evaluated the response time of CVRetrieval
and the results showed that CVRetrieval achieves a
sensible tradeoff: it achieves shorter response times
for writers at the expense of a longer response time

 14

for observers and, more importantly, improves the
system’s scalability as a whole.

In the future, we plan to improve the scalability
and performance of CVRetrieval further by exploring
more ways to optimize it. For example, we can drive
active writer information towards the most needed
subscribers by controlling the publish rate along
different paths. For example, the subscribers (the
ISPs) report their interests (in terms of frequency of
issued requests) to the publisher, which in turn
adjusts the publishing rate by publishing at a higher
rate to a path that can reach subscribers that reveals
higher interest than others.

References

[1] G. Banavar, T. Chandra, B. Mukherjee, J.

Nagarajarao, R.E. Strom, and D. C. Sturman, An
Efficient Multicast Protocol for Content-based
Publish-Subscribe Systems, In International
Conference on Distributed Computing Systems 1999

[2] J. Begole, M. B. Rosson, and C. A. Shaffer, Flexible
Collaboration Transparency: Supporting Worker
Independence in Replicated Application-Sharing
Systems, ACM Trans. On Computer-Human
Interaction, Vol, 6, No. 2, June 1999. pp. 95-132.

[3] B. Brown and M. Bell, ‘There’ as a collaborative
virtual environment, in ACM conf. on Computer
Supported Cooperative Work (CSCW 2004). Chicago,
Illinois, Nov. 2004.

[4] U. Cetintemel, P. J. Keleher, B. Bhattacharjee, and
M. J. Franklin, Deno: A Decentralized, Peer-to-Peer
Object-Replication System for Weakly-Connected
Environments, IEEE Transactions on Computers,
52(7), 2003

[5] T. Chang, G. Popsecu, and C. Codella, Scalable and
Efficient Update Dissemination for Interactive
Distributed Applications, in Proc. ICDCS 2002,
Viena, Austria, July, 2002.

[6] H. Chandler, The Complexity of Online Groups: A
Case Study of Asynchronous Distributed
Collaborations, ACM Journal of Computer
Documentation, 2001, 25, (1): 17-24.

[7] Robert D. Hof, My Virtual Life, Business Week,
May 1st, 2006.

[8] F. Li, L. Li, and R. Lau, Supporting Continuous
Consistency in Multiplayer Online Games, ACM
Multimedia 2004, Oct. 2004, New York, New York,
USA. pp. 388-391.

[9] A. Prakash and H. S. Shim, DistView: Support for
Building Efficient Collaborative Applications using
Replicated Objects, ACM CSCW 94, Chapel Hill, NC,
USA. pp. 153-164.

[10] Sylvia Ratnasamy, Paul Francis Mark Handley,
Richard Karp, and Scott Shenker. A Content
Addressable Network. In Proceedings of SIGCOMM
2001.

[11] A. Rowstron and P. Druschel, Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems, IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware), Heidelberg, Germany, pages 329-350,
November, 2001.

[12] C. Schuckmann, L. Kirchner, J. Schummer, and J. M.
Haake, Designing Object-oriented Synchronous
Groupware with COAST, ACM CSCW 96,
Cambridge, MA, USA. pp. 30-38.

[13] Second Life, http://secondlife.com/
[14] Ion Stoica, Robert Morris, David Karger, M. Frans

Kaashoek, and Hari Balakrishnan, Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications,
ACM SIGCOMM 2001, San Deigo, CA, August
2001, pp. 149-160.

[15] J. Vogel and M. Mauve, Consistency Control for
Distributed Interactive Media, ACM Multimedia
2001, 2001, Ottawa, Canada. Pp. 221-230.

[16] World of Warcraft, http://www.worldofwarcraft.com/
[17] Y. Lu, Y. Lu, and H. Jiang, IDEA: An Infrastructure

of Detection-based Adaptive Consistency Control,
Technical report, TR-UNL-CSE-2007-0001,
University of Nebraska-Lincoln, January, 2007.

[18] Y. Lu, X. Li, and H. Jiang, IDF: an Inconsistency
Detection Framework – Performance Modeling and
Guide to Its Design, Technical report, TR-UNL-CSE-
2006-0003, University of Nebraska-Lincoln, March,
2006.

[19] Y. Yang and D. Li, Separating Data and Control:
Support for Adaptable Consistency Protocols in
Collaborative Systems, ACM CSCW 2004, Chicago,
Illinois, Nov. 2004, pp. 11-20.

[20] H. Yu and A. Vahdat, Design and Evaluation of a
Continuous Consistency Model for Replicated
Services, In. Proc. OSDI 2000.

 15

	CVRetrieval: Separating Consistency Retrieval from Consistency Maintenance
	

	1. Introduction
	2. Background of and Challenges Faced by CVRetrieval
	2.1. What is consistency and how to measure it?
	2.2. IDEA
	2.3. Challenges faced by CVRetrieval

	3. Applications and Their Characterizations
	4. Architecture
	5. System Design
	5.1. A virtual white board scenario
	5.2. Participants join the system
	5.3. Mapping between participants and the IDEA infrastructur
	5.4. Communication between IDEA and publishers
	5.5. ISPs subscribe on behalf of their clients
	5.6. The publish-subscribe scheme

	6. Scalability of CVRetrieval
	6.1. Categorization of consistency maintenance protocols

	6.2. Assumptions
	6.3. The Analysis
	6.3.1. Communication cost of Deno
	6.3.2. Communication cost of IDEA
	6.3.3. Communication cost of CVRetrieval
	6.3.4. The comparison

	7. Experimental Results
	7.1. Experiment setup
	7.2. Response time for writers
	7.3. Response time for observers
	7.4. Comparison to consistency maintenance protocols
	8. Related Work
	9. Conclusions and Future Work
	References

