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We report the electrical characteristics of metal-ferroelectric-insulator-semiconductor structures,
where the ferroelectric layer is a Langmuir-Blodgett film of a copolymer of 70% vinylidene fluoride
and 30% trifluoroethylene. The 36-nm thick copolymer films were deposited on thermally oxidized
�10 nm SiO2� p-type silicon and covered with a gold gate electrode. Polarization-field hysteresis
loops indicate polarization switching in the polymer film. The device capacitance shows hysteresis
when cycling the applied voltage between ±3 V, exhibiting a zero-bias on/off capacitance ratio of
over 3:1 and a symmetric memory window 1 V wide, with little evidence of bias that can arise from
traps in the oxide. Model calculations are in good agreement with the data and show that film
polarization was not saturated. The capacitance hysteresis vanishes above the ferro-
electric-paraelectric transition temperature, showing that it is due to polarization hysteresis. The
retention time of both the on and off states was approximately 15 min at room temperature, possibly
limited by leakage or by polarization instability in the unsaturated film. These devices provide a
basis for nonvolatile data storage devices with fast nondestructive readout. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2218463�

INTRODUCTION

If the gate insulator of a conventional metal-oxide field-
effect transistor �MOSFET� is replaced by a ferroelectric ma-
terial, a so-called ferroelectric field effect transistor �FeFET�
is obtained. The reversible polarization of the ferroelectric
layer is used to switch the resistance of the semiconductor
source-drain channel at zero gate bias between low and high
values representing “0” and “1” logic states. Since the polar-
ization of the ferroelectric layer is bistable, the device retains
its state even when power is removed and is therefore suit-
able for integration into nonvolatile ferroelectric random-
access memory �NV-FRAM�. The attractive features of the
FeFET as a memory element include nondestructive readout,
nanosecond write, read and erase times, a small device area,
and low energy consumption.1 Although the FeFET was pro-
posed in 1963,2 no commercial products incorporating
FeFETs have yet been realized. Most studies have focused on
complex inorganic oxide ferroelectrics, e.g., PbZrxTi1−xO3,
SrBa2Ta2O9, or BiMgF4, integrated with complementary

metal oxide semiconductor �CMOS� silicon technology.1 The
high deposition temperatures and oxygen pressures required
in preparation of the oxide ferroelectrics promote chemical
reactions and layer interdiffusion that degrade the semicon-
ductor and insulator layers and create charge traps. These
processes reduce the performance of a FeFET and lead to
degradation of state contrast �fatigue�, drift in the device
states �imprint�, and ultimately device failure. The incorpo-
ration of additional high-k oxide buffer layers and other fab-
rication features in metal-ferroelectric-insulator-
semiconductor �MFIS� structures has helped mitigate these
problems, but this has the disadvantage of increasing device
complexity and fabrication cost.3 Moreover, insufficient
compensation of the ferroelectric bound charge leads to a
high depolarization field4 and probably to electron injection,
which both contribute to the low retention times of MFIS
and FeFET device states. Recent reports give retention times
of a few days at best.5–7

Ferroelectric polymers are promising alternatives to per-
ovskites for use in NV-FRAMs because of their chemical
stability and low dielectric constants. The most extensively
studied ferroelectric polymer system is based on vinylidene
fluoride and its copolymers with trifluoroethylene
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P�VDF-TrFE�.8 These polymers have moderately high rema-
nent polarization Pr�100 mC/m2, enabling large device
contrast, low dielectric constants ��10, which can reduce
operating voltages compared to the high-� ferroelectric
oxides.9 There have been encouraging laboratory demonstra-
tions of nonvolatile memory elements made by adding a
P�VDF-TrFE� layer to the gate dielectric of silicon MFIS
�Refs. 10–13� and FeFET �Ref. 10� structures. Two groups
have recently demonstrated all-organic FeFET devices incor-
porating a P�VDF-TrFE� gate and with an organic semicon-
ductor of pentacene14 or a polyphenylene vinylene variant
�MEH-PPV�.12,15 These are very encouraging developments,
but operating voltages for ferroelectric polymer memories
made by solvent spin coating are still quite high ��50 V�
because of the relatively high coercive field
��50 MV/m� and the relatively thick films ��1 �m�. Much
lower operating voltages, and higher film quality, can be
achieved by using Langmuir-Blodgett deposition to make ul-
trathin ferroelectric films.16 We recently demonstrated MFIS
devices consisting of a 170-nm thick P�VDF-TrFE�
Langmuir-Blodgett �LB� film and a 100-nm-thick silicon ox-
ide layer on n-type silicon, which operate between ±25 V.17

Here we report the fabrication and characterization of a
p-type silicon MFIS device containing a 36-nm-thick ferro-
electric polymer layer and operating between ±3 V.

EXPERIMENTAL METHODS

The MFIS devices, which are shown schematically in
the inset to Fig. 1, were made as follows. The substrates of
commercial p-type Si with �100� crystal orientation, a diam-
eter of 2.5 cm, and a resistivity of 1–10 � cm were pre-
treated by the Radio Corporation of America �RCA� cleaning
method18 to remove metal and organic contaminants from
the silicon surface. The SiO2 insulating layer was thermally
grown to a thickness of 10±2 nm, as determined by ellip-
sometry. The substrates were then annealed in forming gas
�90%N2+10%H2� at 450 °C for 10 min to saturate dan-
gling bonds and minimize charge-trapping defects. The
ferroelectric films consisted of the copolymer P�VDF-TrFE

70:30� deposited by LB deposition from a water subphase
held at a surface pressure of 5 mN/m and a temperature of
25 °C. Under these conditions, the 20-layer LB films should
be 36±1.4 nm thick.19 The substrate with LB film was an-
nealed at 130 °C for 1 h to improve the polymer
crystallinity.20 Further details of the ferroelectric LB film
preparation are given elsewhere.16,21 A circular Au gate elec-
trode with diameter of 60 �m was deposited by vacuum
evaporation through a shadow mask. An Ohmic contact was
made on top of the silicon substrate to one side of the gate by
scratching into the silicon and contacting with a
Ga�85%�In�15%� liquid eutectic. The Au gate electrode was
also covered with the GaIn eutectic. For electrical measure-
ments two Au tips were inserted into the liquid eutectics. In
this way the mechanical force on the device, especially on
the PVDF film, was minimized. This quasi-stress-free con-
tacting method avoids piezoelectric perturbations of the
ferroelectric film polarization and mechanical damage to the
film. All measurements were made at room temperature un-
less otherwise noted.

The MFIS device capacitance C is given by the series
combination,

1

C
=

1

CF
+

1

CI
+

1

CS
, �1�

where CS is the �variable� capacitance of the semiconductor,
CI is the capacitance of the insulating layer, and CF

=��0A / t is the capacitance of the ferroelectric film. Here A
is the area of the gate electrode and t is the thickness of the
LB film. The device capacitance C was measured with an HP
LCR4284A impedance analyzer as a function of frequency,
gate bias voltage Vg, and temperature I. The small signal
excitation amplitude was fixed at 50 mV for all measure-
ments and the gate bias voltage slew rate was less than
2 V ”min.

The ferroelectric state of the LB film in the MFIS was
probed by measuring the device capacitance as a function of
temperature at a rate of 2–3 °C/min at a constant gate bias
of −3.0 V. The p-type semiconductor was in the accumula-
tion region where CS�CF, CI so that the semiconductor
made a negligible contribution to the device capacitance. The
device temperature was controlled by thermally contacting it
to a temperature-stabilized hot plate. The capacitance CI of
the SiO2 insulating layer has only a weak temperature depen-
dence, so the dependence of the device capacitance on tem-
perature is due mostly to the changing dielectric constant of
the LB copolymer film.16 The capacitance of the MFIS de-
vice exhibits distinct peaks at 110 °C on heating and 80 °C
on cooling �see Fig. 1�, corresponding to the ferroelectric-
paraelectric and paraelectric-ferroelectric phase transitions,
respectively. The large thermal hysteresis is also typical of
VDF copolymers and is due to metastability of the two
phases near the transition temperature Tc in the case of a first
order phase transition.9

RESULTS

The operation of the MFIS differs from an ordinary
metal-oxide-semiconductor �MOS� diode because the rema-

FIG. 1. The MFIS capacitance measured as the temperature was cycled
across the ferroelectric-paraelectric phase transition �line, left axis� and the
memory window as a function of temperature �stars, right axis�. Inset: Sche-
matic cross section of the MFIS showing the locations of the GaIn ground
and gate contacts.
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nent polarization Pr of the ferroelectric film produces an ad-
ditional potential drop across the ferroelectric �VF

= ± Prt /��0, where the � sign denotes the direction of the
polarization with respect to the gate electrode. The ferroelec-
tric film polarization can be set to either state by applying a
sufficiently large positive or negative gate bias ±Vg. Figure 2
shows a set of C-Vg curves recorded at a frequency of
100 kHz and an amplitude of 50 mV as the gate bias Vg was
cycled between ±1, ±2, and ±3 V. At −3 V, the semiconduc-
tor is in accumulation mode, and therefore CS�CF, CI and
the device capacitance is highest. At +3 V, the semiconduc-
tor develops a depletion layer under the gate, and therefore
has a finite capacitance, reducing the device capacitance. The
capacitance cycled counterclockwise, which is consistent
with a polarization switching mechanism and contrary to the
hysteresis developed by charge injection. The shape of the
curves follows that of an ideal MOS capacitor and can be
fully understood in terms of MOS physics,22 except for the
hysteresis due to the reversal of the ferroelectric film polar-
ization. The size of the hysteresis VM, the so-called memory
window, was calculated from the difference between the flat-
band voltages measured in the two device states,

VM = VFB
+ − VFB

−, �2�

where the flatband voltage VFB
± was determined by using the

peak in the ac loss and verified by a linear extrapolation of a
1/C2 vs V plot in the depletion region.

The C-Vg hysteresis memory window is centered at 0 V,
indicating that there is negligible voltage offset due to, e.g.,
charge trapping in the oxide layer.17 In addition, there was no
evident smearing on the depletion side �negative� of the
cycle, indicating a low interface state density.19 The low pro-
cessing temperature during copolymer deposition as well as
the low annealing temperature of approximately 130 °C did
not affect the SiO2 interface. This is an important advantage
compared to oxide ferroelectrics, which must be annealed at
much higher temperatures that alter the other device
components.23 The counterclockwise C-Vg hysteresis became

larger with increasing bias voltage due to the increase in the
remanent polarization of the ferroelectric polymer layer.

One temperature-dependent quantity is the memory win-
dow VM, which should be proportional to the remanent po-
larization of the ferroelectric film.24 The memory window
should decrease with increasing temperature as the remanent
polarization decreases, vanishing in the paraelectric state.
The memory window of the MFIS device decreased steadily
as the device was heated, as shown in Fig. 1, vanishing well
below the ferroelectric-paraelectric phase transition tempera-
ture of 110 °C. It is likely that the vanishing of the memory
window well below the transition temperature is due to the
lack of polarization saturation, so that the remanent polariza-
tion goes to zero even though the film is still ferroelectric,
because it is unstable against formation of opposing do-
mains. This is probably connected with the short retention
time, as will be discussed below. Therefore, we conclude that
the memory window is due to the switchable remanent po-
larization of the ferroelectric film.

The polarization of the ferroelectric film in the MFIS
structure was obtained from P-V measurements made at a
frequency of 0.1 Hz with a variable triangular voltage sweep.
This measurement was made with an Aixacct model TF 2000
ferroelectric device analyzer. Figure 3 depicts a set of
polarization-voltage P�V� measurements recorded with var-
ied gate voltage sweep amplitudes. The kinks in the middle
of the hysteresis loops are caused by the abrupt change of the
silicon capacitance as it crosses into the depletion region.24

The polarization hysteresis increased with increasing volt-
age, but even at the highest voltage sweep amplitude of
±15 V, the hysteresis was not saturated. This is consistent
with polarization measurements on similar MFM
structures,25 where 30 V was needed to completely switch
ferroelectric films of comparable thickness. In addition, we
focused on simulations of the polarization in a MFIS system
using a FeFET model programed into the ferroelectric device
analyzer.26 The simulation of the polarization hysteresis
P�Vg� as the device voltage is cycled between ±15 V is
shown in Fig. 4 �dotted curve� and is in good agreement with
the measurements. The simulation parameters were

FIG. 2. C-V measurements of a MFIS structure at room temperature as a
function of the gate bias voltage with respect to the ground contact �see Fig.
1, inset�, cycled with amplitudes of 1, 2, and 3 V. The capacitance was
measured with a small signal amplitude of 50 mV and a frequency of
100 kHz.

FIG. 3. P-V measurements for gate voltage sweep amplitudes of 3.75, 7.5,
and 15 V �solid line� at a sweep frequency of 0.1 Hz. For the P-V curve
with ±15 V gate bias amplitude. The results of the simulation with sweep
amplitude 15 V are indicated by the dotted line.
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1016 cm−3 for the silicon doping level and 17 nm for the
oxide thickness, which is somewhat thicker than the values
determined from ellipsometry �10 nm�, but it does result in a
better fit to the device properties. The copolymer layer prop-
erties used in the model fit were Ps=5 �C/cm2, Pr

=4 �C/cm2, EC=500 kV/cm, �=13, and t=36 nm for the
spontaneous polarization, remanent polarization, coercive
field, dielectric constant, and thickness, respectively.

Another important parameter for FeFETs is the state re-
tention time, which is defined as the longest time after the
end of a state-setting pulse that the on and off states are
distinguishable. The retention measurements were performed
by applying either a positive or negative voltage pulse to set
the device state and subsequently measuring the capacitance
in the middle of the memory window, which happens to be at
zero gate bias for this device �see Fig. 1�. Because of the
large initial on:off ratio of 3:1 at zero bias, it is possible to
distinguish the two states. Figure 4 shows an exemplary re-
tention measurement for the MFIS structure. A voltage pulse
of positive or negative 4 V was applied for 1000 s to set the
device in the on or off states, respectively. The retention
times recorded under these conditions were typically in the
range of 15–20 min. The relatively short retention time may
be a result of polarization instability of the unsaturated ferro-
electric film or to leakage currents that charge up the
ferroelectric-insulator interface.17 Polarization instability is
the spontaneous formation of opposing domains, thus reduc-
ing the net polarization in a single-domain film due to un-
compensated surface charge at the ferroelectric-oxide inter-
face. Charge leakage through the oxide would compensate
this surface charge by charging the ferroelectric-oxide inter-
face. Either mechanism would reduce the voltage across the
ferroelectric layer and therefore reduce hysteresis as zero
bias. Charge trapped in the oxide could contribute to screen-
ing, but this would also produce a horizontal offset in the
capacitance-voltage hysteresis, whereas the data in Fig. 2
show no significant shift.

CONCLUSIONS

We have described measurements of the electrical prop-
erties of MFIS structures consisting of 20 deposited layers of

ferroelectric P�VDF-TrFE 70:30� copolymer LB film and a
10 nm thin SiO2 insulating layer on a p-type silicon sub-
strate. Liquid metal contacts were used to reduce mechanical
stress on the PVDF during measurements. The P-V and C
-V measurements exhibit counterclockwise hysteresis indica-
tive of ferroelectric polarization reversal. The capacitance
hysteresis widens with increasing cycle voltage due to the
increase of remanent polarization. The memory window at
room temperature was approximately 1 V, with a corre-
sponding zero-bias on:off ratio of 3:1, for an operating volt-
age of ±3 V. The films exhibit key features of the first order
ferroelectric-paraelectric phase transition, which is evident in
the thermal hysteresis of the device capacitance in accumu-
lation mode. Hysteresis in both C-V and P-V curves vanishes
at higher temperature, as it should, when the samples are
heated into the paraelectric phase. Retention measurements
indicate relatively short storage times, likely due to instabil-
ity of the unsaturated film polarization. We will next focus on
alternative high-k gate oxides with high dielectric constants
such as HfO2, DyScO3, or CeO2 to keep the operation volt-
age below 10 V while increasing the oxide thickness in order
to reduce leakage currents. The low phase transition tem-
perature, approximately 80 °C,25 of the copolymer films,
makes it easy to show that the C-Vg hysteresis is due to
polarization hysteresis. However, this will limit the operating
temperature range of the device. The operating range can be
extended by using a copolymer with higher VDF content,
which would raise the transition temperature to 145 °C.
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