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We show that observed co-variations at sub-hourly time scales between the photochemical reflectance index
(PRI) and canopy light use efficiency (LUE) over a Douglas-fir forest result directly from sub-hourly leaf
reflectance changes in a 531 nm spectral window roughly 50 nm wide. We conclude then, that over a forest
stand we are observing the direct effects of photosynthetic down-regulation on leaf-level reflectance at
531 nm. Key to our conclusion is our ability to simultaneously measure the LUE and reflectance of the
Douglas-fir stand as a function of shadow fraction from the “hot spot” to the "dark spot" and a new finding
herein, based on radiative transfer theory, that the magnitude of a normalized reflectance difference index
(NDRI) such as PRI can vary with shadow fraction only in case the reflectance of the shaded and sunlit leaves
differ in at least one of the NDRI bands.
Our spectrometer measurements over a nearly 6 month period show that at a forest stand scale, only two
NDRIs (both containing a band near 570 nm) vary with shadow fraction and are correlated with LUE; an NDRI
with a band centered at 531 nm roughly 50 nm wide, and another near 705 nm. Therefore, we are able to
conclude that only these two bands' reflectance differ between the sunlit and the shaded elements of the
canopy. Their reflectance changes on time scales of a few minutes or less. Our observations also show that the
reflectance changes at 531 nm are more highly correlated with variations in canopy light use efficiency when
only sunlit canopy elements are viewed (the hot spot), than when only shaded elements (the dark spot) are
viewed. Taken together then, these results demonstrate that the observed sub-hourly changes in foliage
reflectance at 531 nm and 705 nm can only result from corresponding variations in photosynthetic rates.
The importance of our results are as follows: (1) We show that variations in PRI with LUE are a direct result of
rapid changes in foliage reflectance at 531 nm resulting from photosynthetic down-regulation, and can be
observed at forest scales. (2) Our findings also suggest a new sensor and methodology for the direct retrieval
from space of changes in forest LUE by measuring PRI as a function of shadow fraction using a multi-angle
spectrometer simultaneously retrieving both shadow fraction and PRI.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Where vegetation on land is the dominant surface cover, the land
flux of moisture to the atmosphere depends almost entirely on
moisture transport from the soil by the plants through their stomata,
which in turn is almost completely controlled by vegetative
physiological responses to: (1) incident photosynthetically active
radiation (PAR) between 400 and 700 nm, (2) atmospheric properties

(CO2 concentration, and temperature and humidity) in the canopy air
space and, (3) root zone conditions, soil properties, soil moisture and
nutrient environment (Sellers, 1985, 1987).

Water and carbon flux to and from the atmosphere are in turn
intimately coupled through the plant's stomatal conductance and its
carbon assimilation rate (Ball et al., 1986). Assimilation rate is in turn
proportional to the incident PAR (the radiation between 400 and
700 nm), the fraction of absorbed PAR (Fapar) by the photosynthetic
elements of the plant canopy (i.e. “green” Fapar) and the efficiency ε
with which this absorbed PAR can be used to produce biomass, also
known as LUE (Monteith, 1972, 1977)—here, we will use LUE and ε
interchangeably. While 20 years of remote sensing research has honed
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the ability to accurately measure green Fapar using satellite measures
of Normalized Difference Vegetation Index (NDVI) and PAR using
satellite upwelling PAR observations, determination of ε at landscape
and global scales remains challenging (Hall et al., 2006; Running et al.,
2004; Turner et al., 2005).

LUE is a critical componentwhen calculating landscape level carbon,
water and energy exchange. Surface-atmosphere transfer models such
as the Simple Biosphere Model (SiB2) (Sellers et al., 1992) and the
Biosphere-Atmosphere Transfer Model (BATS2) (Dickenson et al., 1998)
compute carbon assimilation rate from satellite measures of PAR and
Fapar, and implicitly calculate LUE using functions limited by various
environmental factors known to inhibit plant LUE. Both SiB2 and BATS
have been evaluated against tower measurements acquired in prairie
grasslands during FIFE (Sellers et al., 1992a). While these models
perform well when accurate values of input parameters and meteor-
ological forcings are available at plot levels, Collelo et al. (1998) found
that their accuracy was degraded at the landscape level by the lack of
knowledge of some of their input parameters, primarily soil moisture
and nutrient levels in the root zone.

If vegetation LUE values across a landscape can bemeasured directly
by satellite, these values can be combinedwith satellitemeasures of PAR
and Fapar to compute vegetation carbon assimilation rates. While
possible only under cloud-free conditions, these satellite landscape
measures could be “compared” (using a data assimilation scheme) with
similar estimates from models like SiB2 or BATS during clear satellite
overpasses, to “tune” model internal parameter values or external
forcing data. Such data assimilation algorithms obtain “best estimates”
of themodel parameter values or external forcing data by iterating them
tominimize spatial differences betweenmodel predictions and satellite
measured values of carbon assimilation rates across the landscape.
Because carbon assimilation and evapotranspiration rates are closely
linked in SiB2 and BATS they will then provide improved estimates of
these rates between clear satellite overpasses.

Variations in vegetation LUE occur in a variety of ways for a variety
of reasons. Of interest to this study are “excess light” situations, that
are situations where leaves are not able to fully utilize PAR absorption
for photosynthesis. In such instances, plant biological mechanisms
down-regulate photosynthesis to preserve internal moisture and
prevent damage to photosynthetic structures. A number of studies
have described this mechanism (Adams & Demmig-Adams, 1994;
Demmig-Adams & Adams, 1992; Demmig-Adams et al., 1996; Niyogi,
1999; Osmond et al., 1999; Pfundel & Bilger, 1994) where down-
regulation is triggered by a lowering of pH in the plant thylakoid
membrane. Lower pH activates two types of changes affecting the leaf
reflectance at 531 nm, first described by Gamon et al. (1992, 1997) and
elaborated by Peñuelas et al. (1994, 1995); Filela et al., 1996; Gamon
and Surfus, 1999): (1) membrane conformational changes linked to
the pH gradient and (2) pigment conversion from violaxanthin, a
xanthophyll cycle pigment bound to the PSII light harvesting complex
(LHCII), to zeaxanthin, via intermediate antheraxanthin. This bio-

chemical conversion process is reversed when resources are again
adequate to support light levels available for photosynthesis. An
important consequence of this down-regulation is a measurable
difference in the light absorption coefficient between violaxanthin,
zeaxanthin and antheraxanthin. As violaxanthin is de-epoxidized, the
higher absorption coefficients of zeaxanthin and antheraxanthin
cause leaf reflectance to decrease between about 500 and 550 nm
centered at ~531 nm, as shown in Fig. 1. However, the reflectance
change is only 0.004 at an absolute reflectance of 0.06, a relative
change of about 7%; difficult to recover in the presence of other factors
that can cause variations in spectral reflectance of similar or larger
magnitudes.

In order to detect these relatively small changes in leaf spectral
reflectance in the presence of other confounding factors, Gamon et al.
(1992, 1993, 1997) formulated and applied the photochemical
reflectance index (PRI), a normalized difference reflectance index
(NDRI) composed of a detection band straddling the 531 nm spectral
region and a reference band relatively insensitive to the xanthophyll
signal at 570 nm.

PRI ¼ q531 � q570
q531 þ q570

ð1Þ

Gamon's pioneering study demonstrated the principal connection
between photoprotective leaf chemistry alterations and reflectance at
the both the leaf and plant level for a range of values of the
epoxidation state (ES) of the xanthophyll cycle pigments.

The relationship between ε and PRI is clearly observable at the leaf
level over a wide range of species (Filela et al., 1996; Gamon & Surfus,
1999; Peñuelas et al., 1993, 1994, 1995, 1997); however, as a result of
the relatively small changes in reflectance at 531 nm, generalization of
this relationship to forest stand scales remains difficult (Barton &
North, 2001, Rahman et al., 2001, 2004). PRI is also affected by view-
angle, soil background reflectance, leaf angle distribution (at larger
view angles) and leaf area (Asner, 1998; Barton & North, 2001; Chen &
Leblanc, 1997; Strahler & Jupp, 1990).

Nevertheless, a number of studies have demonstrated correlations
between PRI and LUE at kilometer scales by comparing aircraft and
satellite data to tower eddy flux measurements (Drolet et al., 2005;
Drolet et al., in press; Fuentes et al., 2006; Nichol et al., 2000; Rahman
et al., 2001, 2004). The first satellite demonstrations of LUE–PRI
correlations were reported by (1) Rahman et al. (2004), who explored
theMODIS PRI signal and its relation to forest LUE, (2) Asner et al. (2004)
who reportedHyperion PRI observations of anAmazonian forest and (3)
Drolet et al. (2005) over the BOREAS Old Aspen flux tower in the
Canadian boreal forest. But these studies did not demonstrate that the
correlations result from reflectance changes at the leaf level brought on
by changes in leaf xanthophyll cycle pigments. In fact, a number of other
studies have demonstrated that variations in PRI at the scale of forest
stands can be caused by other factors, for example, variations in foliage

Fig. 1. (a) Difference in reflectance as a function of stress level; (T1) Unstressed sunflower leaves at time T1; (T2) light-stressed leaves at time T2 (b) Observed change in leaf reflectance.
From Gamon et al., 1990.
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chlorophyll-carotenoid pool sizes, viewing and illumination geometry,
canopy structure and background reflectance (Barton & North, 2001;
Gamon et al., 2001; Guo & Trotter 2004; Nichol et al., 2002; Rahman
et al., 2001; Sims & Gamon, 2002).

Thus, an important question remains; with all these variations, can
the relatively small changes in reflectance at 531 nm resulting from
sub-hourly changes in light saturation be observed over forest stands?
In this study we investigate this question over a Douglas-fir forest
using analytic methods and tower-based, full-spectrum observations.

2. Methods

2.1. Inference framework

As seen in Hilker et al. (2008), tower-based spectrometer
measurements show that throughout the 2006 growing season, PRI
observed by our spectrometer is correlated to the LUE calculated from
the eddy-covariancemeasurements. But is this correlation arising from
factors other than the light-excess photosynthetic down-regulation
and its associated reductions in reflectance at 531 nm? To address this
question, we develop and execute an inference framework.

The framework is of necessity, somewhat complex, involving three
null hypotheses, the sequential rejection or non-rejection of which, on

thebasis of ourobservations, lead to our conclusions. Beforewe state the
hypotheses formally, a brief overview of the logic flow may be helpful
(see Fig. 2). The first hypothesis NH1 is based on a test of whether or not
simultaneous spectrometer measures of PRI and shadow fraction
viewed by the spectrometer co-vary. If they do not, the reflectance at
531 nm cannot differ from sunlit to shadowed leaves, as we show using
radiative transfer theory (see Section 2.1.1). There, we show that the
magnitude of any NDRI can co-vary with shadow fraction only if the
reflectance in at least one band differs from sunlit to shadowed leaves.
Hence, if our observed spectrometer PRI and shadow fraction values do
not co-vary, the reflectance in neither the reference nor the detection
band can differ between shadowed and sunlit leaves. When this is the
case, photosynthetic down-regulation via the xanthophyll cycle should
not be active since, as we discussed previously, excess light in the sunlit
leaves triggers down-regulation and a reflectance reduction at 531 nm.
As shown in the NH1 box of Fig. 2, failure to reject NH1 implies that our
observed PRI and shadow fraction values do not co-vary, and we can
conclude without further analysis that the observed PRI–LUE relation-
ship is not related to changes in the xanthophyll pigments. If we are able
to reject NH1, PRI is varying with shadow fraction, and we move to
second null hypothesis, NH2 (see Section 2.1.2) to determine if the co-
variation is a result of the 531 nm band. To test NH2 we form an NDRI
using the 570 nm reference band and a band removed from the 531

Fig. 2. Inference framework for demonstrating that the observed PRI–LUE correlations are caused only by changes in reflectance at 531 nm resulting from light-saturation induced
changes in leaf xanthophylls.
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region; we chose a chlorophyll absorption band. If this NDRI does not
vary with shadow fraction, then we can safely conclude that neither
band varieswith shadow fraction. That is, we can showby rejectingNH2
that the observed co-variation with shadow fraction is a result of
differences in the sunlit and shadowed reflectance in the 531 nm band.
Although only one NDRI would do, we will choose two chlorophyll
absorption bands and show thatwe are able to reject NH2; this not only
shows that the 570 reflectance and shadow fraction do not co-vary but
also proves that the reflectance in these two important chlorophyll
bands also do not differ from sunlit to shadowed leaves; Therefore
variations in foliage chlorophyll cannot explain our observed seasonal
variation in PRI with LUE.

With NH3 (Section 2.1.3), we test to see if the slope of the PRI–LUE
relation increases significantly from the dark spot to the hot spot. If so,
this result is consistent with photosynthetic down-regulation being
stronger in sunlit leaves than shaded ones, hence that forest LUE is
directly related to the changes in the xanthophyll cycle pigments.

Once we have completed analysis of our spectrometer observa-
tions using the inference framework in Fig. 2, one final element
remains to address broader questions; are the bands used for PRI
robust over time? Are other biological phenomena evident with other
NDRIs? This last element of the framework is described in Section 2.2.

In the next few sections, we formally state the three null
hypotheses, develop the rational for them, then evaluate them
sequentially using the data acquired at the Douglas-fir forest site.

2.1.1. NH1: The observed correlations between LUE and PRI are not
related to reflectance changes induced by xanthophyll cycle pigments

Rejection of NH1 is necessary (but not sufficient) to establish leaf-
level changes in xanthophyll cycle pigments as the proximate cause of
canopy-level changes in PRI. Sufficient conditions are to be provided
in null hypotheses 2 and 3 below.

NH1 rests on two facts;

(i) That the sunlit leaves in a canopy are much more likely to be
photosynthetically down-regulated, hence should display a
xanthophyll-induced reflectance differential to less light-
saturated, shaded leaves and,

(ii) A new result we develop and report here, that an NDRI cannot
vary with canopy shadow fraction, unless one of the band's
reflectance varies from sunlit to shaded leaves, which we prove in
the next section.

Given (i) and (ii) above, when any NDRI, including PRI, is observed
not to varywith shadow fraction (or sunlit fraction) then the reflectance
in each band must be the same for both the sunlit and shaded canopy
elements, hence the xanthophyll cycle cannot be active. On the contrary, if
a variation in NDRI with shadow fraction is observed, it follows that in
one or bothbands the sunlit to shaded leaf reflectancediffers. Rejection
of NH1 provides conclusive evidence that leaf reflectance in one or
both bands of the NDRI differ from sunlit to shaded leaves.

2.1.1.1. NH1: A proof. To prove that rejecting NH1 establishes a
relationship between PRI and changes in the xanthophyll cycle
pigments, we derive an analytic expression for the measured PRI as
a function of shadow fraction. For a given fraction of shadow viewed
by the radiometer (a function of the relative azimuth between the
radiometer and the sun and the solar azimuth) the measured
reflectance for Lambertian scatterers, is given by a sum of contribu-
tions from shadowed and sun-lit canopy elements:

qifov kð Þ ¼ ashqsh kð ÞFdif f kð Þ þ asunqsun kð ÞFt kð Þ½ �:
Ft kð Þ ð2Þ

Here, αsh, (αsun=1−αsh) is a fraction of shadowed and sun-lit
canopy, ρsh(k), ρsun(k) are respectively, shadowed and sunlit canopy
reflectance, and Fdiff and Ft is respectively, diffuse and total (diffuse

plus direct) surface irradiance. Note that the shadowed canopy is
illuminated by the diffuse light only, and sun-lit canopy is illuminated
by both direct and diffuse sunlight. The linearmixturemodel shown in
Eq. (2) is valid under the assumption that scattering among canopy
elements is negligible. Given the high absorptivity and low transmis-
sivity in the visible bands, this is a reasonable approximation.

Denoting the fraction of diffuse to total irradiance δdif =Fdiff (k)/Ft
(k), we can rewrite Eq. (2) as

qifov kð Þ ¼ ashddif kð Þqsh kð Þ þ asunqsun kð Þ ð3Þ

As the spectrometer measures spectra at a 62° zenith angle, it
encounters a wide range of shadow fraction with changing relative
azimuth φ and sees the hot spot at a solar elevation of 28° and
φ=180°. It is difficult to assess precisely the amount of shadow
fraction viewed by the spectrometer; the shadow fraction calculations
from the LiDAR model described in the next section considers only
mutual crown shading, disregarding internal needle and shoot-level
shading. This effectively increases the size of the sunlit elements and
interstitial gaps in the forest stand, resulting in broadening of the hot
spot (e.g. Gerstl & Borel, 1992). Nevertheless, we used this simplified
assessment of LiDAR-based shadow fraction to ascertain if the
variation in the observed NDRI with shadow fraction is consistent
with NH1, which can be re-stated as ρsh(k)=ρsun(k). If it is not
consistent, then there must be an additional variation in NDRI with
illumination condition (shadow fraction) due to leaf chemistry
differences causing ρsh(k)≠ρsun(k).

Under NH1, when measured PRI variations are not caused by light
saturation-induced xanthophyll cycle changes, ρsh(k)=ρsun(k)=ρ(k),
and Eq. (3) may be rewritten as

qifov kð Þ ¼ q kð Þ 1� ash 1� ddif kð Þð Þ½ �: ð4Þ

In the Results section we use Eq. (4) to compute the dependence on
each band in the NDRI with shadow fraction, and then compute the
resulting simulatedNDRI. The calculation shows thatNDRIdoes not vary
with shadow fraction unless the reflectance in at least one band differs
between the sunlit and shaded canopy elements. Before we do that, we
describe directly below ourmethod of obtaining simultaneously the PRI
and shadow fraction data necessary to test the hypotheses.

2.1.1.2. Spectrometer and LUE observations for testing NH1. To obtain the
data necessary to test NH1, an experimental setting is required in
which spectral observations include a range of sunlit and shadowed
canopy. We utilized data obtained from the AMSPEC, a spectrometer
experimental set up (Fig. 3) established at a Fluxnet Canada site
(Hilker et al., 2007), which acquires temporal full-spectrum reflec-
tance in both shadowed and sunlit canopies. The site is located
between Courtenay and Campbell River on Vancouver Island, British
Columbia, Canada (49°52 N, 125°20 W) at 300 m above sea level. The
coniferous forest consists of 80% Douglas-fir, 17% western red cedar
(Thuja plicata Donn ex D. Don) and 3% western hemlock (Tsuga
heterophylla (Raf.) Sarg.) (Humphreys et al., 2006; Morgenstern et al.,
2004) and is a second-growth stand planted in 1949, following
harvest of the original stand (Goodwin, 1937). Year round eddy
covariance fluxmeasurements have been acquired since 1997. The site
has been part of the Fluxnet-Canada research network since 2002.

A wide range of shadowed and sunlit canopy was scanned from an
automated multi-angular spectrometer platform installed at a height of
45 m (≈10 m above the tree canopy) at an open lattice type flux-tower
(Hilker et al., 2007). Continuous reflectance measurements from this
platformwere obtained from April 1st 2006, to October 15th, 2006. The
instrument features a motor driven probe that allows observations in a
330° view area around the tower (Fig. 3). The probe rotates in 11.5°
intervals every 30 s, thereby completing a full rotation every 15min. No
observations are made between an azimuth of 220° and 250° (defined
from geodetic north) due to obstruction by the tower.
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The spectro-radiometer used is a Unispec-DC (PP Systems, Ames-
bury, MA, USA) featuring 256 contiguous bands with a nominal
bandwidth of 3 nm and a nominal range of operation between 350
and 1200 nm. To allow sampling under varying sky conditions, canopy
reflectance is obtained from simultaneous measurements of solar
irradiance and radiance (Fig. 3), sampled every 5 s from sunrise to
sunset. The upward pointing probe is equipped with a cosine receptor
(PP-Systems, Fig. 3a) to correct sky irradiance measurements for
varying solar elevations. The downward looking probe is measuring
canopy reflectance at a zenith angle of 62° (Chen & Black, 1991). The
probe's instantaneous field of view (IFOV) is 20°. The outer diameter of
the instrument's footprint is approximately 62 m at canopy height,
while the elliptic instantaneous view area of the probe has a major
axis of about 17.9 m and a minor axis of around 3.5 m (Fig. 3a). A
complete description of the instrument and its setup can be found in
Hilker et al. (2007).

LUE was inferred from eddy covariance based measures of net
ecosystem production (NEP), daytime estimates of respiration,
calculated using the annual exponential relationship between night-
time net ecosystem exchange (NEE) and soil temperature at 5-cm
depth after applying a logarithmic transformation to correct for
heteroscedasticity (Black et al., 1996, Goulden & Crill, 1997), and up
and downward looking quantum sensors (Model 190 SZ, LI-COR,

Lincoln, Nebraska, USA), installed above and below the canopy. A
detailed description on the derivation of ε from eddy flux data at the
site can be obtained from Schwalm et al. (2006) and Hilker et al.
(2007).

2.1.1.3. Computing shadow fractions viewed by the spectrometer. Testing
NH1 requires estimation of shadow fraction for each spectral
measurement to establish if estimates of canopy shadow fractions
change the PRI response. Hilker et al. (2008, in press) introduced a
technique to derive canopy shadow fractions from airborne laser
scanning (LiDAR). Non-ground LiDAR returns were used to generate a
three-dimensional canopy structure model (CSM) describing the
structure of the forest canopy for the circular footprint of the
radiometer (Fig. 3a). The generated CSM was then used to simulate
the shadow fractions for a given half-hour interval using a hillshade
algorithm (ArcGIS, Esri Inc. Redlands, California, USA). This algorithm
models clear-sky canopy shadowing (but includes no needle or shoot
shadowing) for a given forest surface and view and sun position and is
commonly applied in three-dimensional mapping (Pellegrini et al.,
2003, Van Den Eeckhaut et al., 2005). A full description of the
algorithm used to obtain canopy shadow fractions can be found in
Hilker et al., in press). The output is a 256-grayscale raster of the same
size and resolution as the input CSM, where each pixel represents the
illumination conditions at its specific location. Totally shaded areas,
for instance, are assigned a pixel value of 0 while illuminated areas
contain pixel values between 1 and 255 depending on the amount of
direct solar radiation they receive. A threshold can be used to classify
pixels into either shaded or sun-lit.

2.1.2. NH2: When the reference band for an NDRI whose value varies
with shadow fraction is combined with any other band, this new NDRI
does not vary with shadow fraction

This hypothesis test is designed to show that for any NDRI for
which we fail to reject NH1, only one band of the NDRI (the detection
band) differs in reflectance between the sunlit and shaded leaves.
Here we must show that a different NDRI formed from the reference
band does not vary with shadow fraction.

If we cannot reject NH2, we can infer that the detection band and
not the reference band differs in reflectance between the sunlit and
shaded leaves.

2.1.3. NH3: The slope of the NDRI–LUE relationship does not vary with
the fraction of sunlit canopy viewed by the spectrometer

The NH3 test is designed to show that the reflectance difference
between sunlit and shaded leaves in the detection band is induced by
photo down-regulation in the sunlit leaves related to LUE variations,
as opposed to some other cause of reflectance change at 531 nm. To
execute this step, we examine the correlation between PRI for a range
of tower-observed values of LUE at both the hot spot and at the dark
spot. If a significant and positive correlation can be demonstrated
between PRI and LUE and the slope of this relationship is greater when
fully sunlit canopy is viewed than fully shaded canopy (changes in
forest-stand reflectance at 531 nm will be larger with changes in LUE
as more sunlit, light saturated leaves are viewed by the spectrometer)
then necessary and sufficient evidence has been established to prove
that changes in the PRI signal are a result of changes in the
xanthophyll cycle pigments. If we cannot reject NH3, then NDRI is
not responding to LUE changes, but to some other biological
phenomena that induces differences in the reflectance of sunlit and
shaded leaves in those particular bands.

2.2. Are the bands used for PRI robust over time? Are other biological
phenomena evident with other NDRIs?

The final element of our inference framework is to see whether or
not there are other NDRI changes with shadow fraction other than the

Fig. 3. (a) LiDAR derived canopy structure model of Douglas-fir forest at a radius of 1 km
around the tower. The height of the tower (center) is overdrawn in this diagram for
illustration purposes. (b) A dual channel radiometer is mounted on the DF49 fluxnet-
tower with a vertical zenith angle (VZA) of 62°. A motor moves the canopy sensor 360o

every 15 min. Data are recorded every 5 s, year round.
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PRI bands, and if not, whether the PRI bands are located in precisely
the right place, with the right width and stable over our observing
period. Our spectrometer configuration at the Douglas-fir site (Fig. 3)
provides an opportunity to generalize the examination of all NDRIs,
using a generalization of the inference framework described above,
that are formed from each pair-combination of spectrometer bands
between 400 and 900 nm, under the full range of illumination and
viewing conditions encountered during our observing period April 1st
2006 to October 15th, 2006. Because the hillshades algorithm does not
take into account the effects of diffuse sky radiation on shadow
fraction, we could not extend the approach described above for testing
NH1 and NH2 to cloudy periods.

Instead, we employed a parametric approach to characterize the
dependence of the observed NDRIs on view and illumination
geometry. Under similar illumination conditions, variations in view
and illumination geometry are directly related to the variation in
viewed shadow fraction. We chose the parametric characterization of
Roujean et al. (1992), and the methods of Los et al. (2005) and Hilker
et al. (2008) to parameterize the directional dependence of NDRI on
view and illumination geometry, hence viewed shadow fraction. For
kernels, we chose the commonly applied functions, Li-Sparse, Ross-
Thick (LSRT) kernels (Lucht et al., 2000; Strugnell & Lucht, 2001;
Wanner et al., 1995). This method of characterization is meaningful
only for (1) observations acquired under similar sky illumination
conditions (because the BRF is more distinct under clear skies than
under overcast conditions) and (2) restricted ranges of LUE (the LSRT
kernels do not account for sunlit to shaded leaf reflectance differences
induced by canopy physiology). Thus we grouped our observations
into different strata using the ratio of tower-measured direct to diffuse
radiation (Q) for stratification of sky conditions and the tower-based
calculated LUE. Q-LUE pairs were matched with the exact time of the
spectrometer measurements.

For strata we used 16 LUE levels, LUE=0 to LUEN3.0 in steps of 0.2
and 10 cloudiness levels Q from Q=0 to QN8.5 in steps of 0.5 (Hilker
et al., 2008). Qwas determined using a direct and diffuse PAR sensor, a
BF3, Delta-T Devices Ltd., Burwell, UK. LUE was inferred as described
earlier in Section 2.1.1.2.

Directional reflectance effects from shadow fraction were smallest
under overcast situations, increasing with increasingly clear skies.

Los et al. (2005) used the semi-empirical kernel notation to express
the NDRI BRF.

NDRI hv; hs;D/ð Þ ¼ ki þ kgKL hv; hs;D/;
h
b
;
b
r

� �
þ kvKR hv; hs;D/ð Þ ð5Þ

where

ki′ isotropic scattering coefficient
kg′ geometric scattering coefficient
KL Li-Sparse Kernel
kv′ volumetric scattering coefficient
KR Ross-Thick Kernel
θv view zenith angle
θs solar zenith angle
Δϕ relative azimuth angle
h
b crown relative height=1 (Justice et al., 1998; Wanner et al.,

1995)
b
r crown relative shape=2 (Justice et al., 1998; Wanner et al.,

1995)

Variations in ki kg kv should reflect the “shape” of the NDRI BRF
functions if their NDRI changes with spectrometer-viewed shadow
fraction as tower-measured LUE values change. The kernel values will
be affected primarily by shadow fraction viewed by the spectrometer
since crown relative height and relative shape of the mature Douglas-
fir change much more slowly (months) than tower-measured LUE

values (minutes); hence, changes in the kernel values will be driven
primarily by the difference in canopy optical properties between
shaded and sunlit leaves. As we have shownpreviously, canopy optical
properties that vary equally between sunlit and shaded leaves will
have no effect on the variation in NDRIs with shadow fraction.

Eq. (5) was fit to the observations contained in each Q-LUE stratum
using a robust linear least squares algorithm (bi-square-weighted
iterations). Changes in canopy reflectance due to different physiolo-
gical states are then manifest in the variation of the empirical kernel
weights of each Q-LUE class with LUE. Thus, if for an NDRI composed
of the 531 nm band, the kernel weights show high variation and
correlation with LUE, and other NDRIs formed from other bands show
little correlation, our analysis demonstrates a powerful and general
empirical proof of the relationship between tower-level LUE and leaf-
level reflectance changes at 531 nm.

3. Results

3.1. Testing NH1

To establish the necessary (but not sufficient) conditions that leaf-
level changes in xanthophyll cycle pigments are the proximate cause
of canopy-level changes in PRI, we compared the theoretical
simulation of NDRI as a function of shadow fraction, Eq. (4) with
NDRIs computed from our spectrometer measurements. Under NH1,
ρsh(k)=ρsun(k). For ρ(k) in Eq. (4) we used hot spot values measured by
the spectrometer (Table 1) for a given sweep (09/28/2006, 12:45
Pacific Standard Time) as well as the shadow fractions modeled by
LiDAR. The results of this analysis are plotted in Fig. 4a.

The modeled PRI values (green symbols) in Fig. 4a demonstrate
that an NDRI does not change with shadow fraction if the reflectance
in both bands does not differ between sunlit and shaded canopy
elements. However, PRI calculated from our spectrometer measure-
ments are plotted in Fig. 4b. Measured PRI values clearly co-vary with
shadow fraction. A t-test shows that NH1 can be rejected with a
confidence N95%. The question remains though as to whether the
measured change in PRI in Fig. 4b is a result of a reflectance change at
531 nm or a change in the reference band, 570 nm. To resolve this
question, test NH2, the second component of the inferential
framework.

3.2. Testing NH2

NH2 was tested using two NDRIs composed of two radiometer
simulated MODIS bands, 10 (defined as arithmetic mean of band 483
and 493 nm) and 13 (defined as arithmetic mean of band 663 and
673 nm) and the 570 nm band as reference band (although the failure
to reject NH2 for an NDRI formed from either band 10 or 13 and the
570 band would have sufficed). As can be seen in Fig. 5a and b these
NDRIs are largely independent of shadow fraction (green plotting
symbols) hence the NH2 can be rejected (again, with a confidence
N95%) and we can conclude that the reflectance of the reference band
at 570 nm and bands 13 or 10 are not different from sunlit to shaded
leaves in the Douglas-fir forest (the abrupt change in the reference
band at 50° relative azimuth is not completely understood but does
not affect the overall significance of the non-zero slope of PRI with
shadow fraction).

Table 1
Hotspot values measured by the spectro-radiometer (at direct backscatter solar
geometry) for a spectrometer sweep (09/28/2006, 12:45 Pacific Standard Time

Band MODIS 11 570 nm MODIS 10 MODIS 13

Spec Hotspot ρ 0.072 0.084 0.036 0.041
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Taking this together with the rejection of the NH1 in Fig. 4 we can
conclude that the reflectance band at 531 nm does differ significantly
from shaded to sunlit canopy elements. We also learn from Fig. 5a and
b that MODIS bands 10 and 13, both chlorophyll absorption bands, do
not vary in reflectance from the sunlit to shaded leaves, hence their
variations cannot be involved in explaining observed rapid variations
in LUE at the Doug Fir tower site.

3.3. Testing NH3

NH3 of the inference framework is designed to determine whether
or not the reflectance change we see in the 531 nm band is related to

xanthophyll-cycle induced differences between the sunlit and shaded
canopy elements and LUE.

To test NH3 we analyzed nine clear-sky spectrometer azimuthal
scans acquired on 9 different days between April 30 and August 21st
2006. During this period, LUE values ranged from 0.1 to 0.5 g C MJ−1.
We examined the correlation between spectrometer-measured PRI
and tower-inferred LUE using spectrometer reflectance acquired at the
hotspot and at the dark spot on each spectrometer scan. As discussed
earlier, the expectation was that the PRI when viewing mostly light-
saturated leaves at the hot spot would demonstrate a higher
sensitivity to LUE differences than when viewing mostly shadowed
leaves at the dark spot. As shown in Fig. 6a the slope of the LUE-PRI

Fig. 4. (a) Modeled reflectance in spectrometer-simulated MODIS band 11 and 570 nm under the null hypothesis Eq. (4) versus relative azimuth (between the solar azimuth and
spectrometer heading). (b) Actual spectrometer measurements.

Fig. 5. (a) Spectrometer reflectance at 570 nm and spectrometer-simulatedMODIS band 10 versus relative azimuth and the NDRI for these two bands. (b) Spectrometer reflectance at
570 nm and spectrometer-simulated MODIS band 13 versus NDRI for these two bands.
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relationship for shaded leaves is significantly different than for sunlit
leaves (slope less than half with a confidence N95%) compelling us to
conclude that the variation of PRI is indeed caused by the xanthophyll
cycle related response to light saturation-induced reductions in LUE.
Changes in pigment pool sizes, which were previously shown to have
a certain impact on PRI (Barton & North, 2001) are unlikely to cause
these variations in PRI, (1) as the location of sunlit and shaded leafs
varies throughout the day as the radiometer observes a large number
of different view and sun-angles, and (2) observed sub-hourly
variations in PRI imply fast adaptations of leaf biochemistry to
changing environmental conditions.

3.4. Are the bands used for PRI robust over time? Are other biological
phenomena evident from other NDRIs?

The above theoretical and experimental analysis demonstrates
that NDRI cannot vary with shadow fraction unless the reflectance of
at least one of the bands used to compute the NDRI differ from shaded
to sunlit portions of the canopy. An NDRI formed using the 531 nm
band showed a clear dependence on shadow fraction (Fig. 4). We also
demonstrated that when using two other spectral bands lying outside
the 531 nm window for the detection band, that the NDRI formed
from these bands did not vary with shadow fraction (Fig. 5).

We now turn to the parametric approach of Hilker et al. (2008)
described above to examine the dependence of the observed NDRIs on
view and illumination geometry for all combinations of NDRIs
between 400 and 900 nm, under all sky conditions. Of the 160
possible combinations of direct to diffuse sky illumination conditions,
Q, and LUE (10Q×16LUE strata) only 31 had observations (Fig. 7). The
LUE variations were largest under diffuse radiation conditions,
ranging from 0 to 3.6 g C MJ−1.

Fig. 8a and b show the results of this analysis. Fig. 8a shows the
coefficients of determination for the relationship between LUE and
isotropic, geometric and volumetric kernels weights, respectively
derived from a series of NDRIs using 570 nm as reference band and 154
different wavelengths between 400 and 900 nm as detection bands.
The relationship culminates at around 536 nm with best correlations
found for isotropic scattering component (r2=0.91, pb0.05), (r2=0.71,
pb0.05), for the geometric component and r2=0.72, pb0.05 for the
volumetric scattering component).

Fig. 8b shows the coefficients of determination for the relationship
between ε and isotropic, geometric and volumetric kernels weights
derived from a series of NDRIs using 531 nm as detection band and
154 different wavelengths between 400 and 900 nm as reference
bands. The relationship shows best results around 578 nm with
correlations for the volumetric scattering component (r2=0.93,
pb0.05), for the isotropic component (r2=0.75, pb0.05), and for the
geometric scattering component (r2=0.77, pb0.05). A high relation-
ship is also found for the volumetric scattering component between
an NDRI that includes the fluorescence band at 705 nm.

Fig. 8a clearly demonstrates the strong xanthophyll signal seen in
the 531 nm detection band at the whole canopy level, under a wide
range of illumination and viewing conditions. A signal at around
705 nm from the volumetric scattering component is also apparent,
possibly a result of chlorophyll fluorescence (Gitelson et al., 1999;
Zarco-Tejada et al., 2002).

Our analysis also shows that the 570 nm band is the optimum
reference band for PRI as seen in Fig. 8bwherewe chose 531 nm as the
detection band for the NDRI, then examined the correlations between
NDRI and LUE allowing the reference band to assume any value for the
154 different wavelengths.

Note that as predicted by NH1 and NH2, a strong correlation is also
found when 531 nm is the detection band and 705 nm is the reference
band for the volumetric scattering component, since both bands
should show reflectance differences between sunlit and shaded leaves
when the canopy is stressed. However, looking at Fig. 8b this
relationship is highest for the NDRI using 570 nm as reference and

Fig. 6. Tower-measured LUE versus PRI at (a) the hotspot and (b) at the coldspot for the same spectrometer scan acquired between April 30 and August 21st 2006. As tower-measured
LUE decreases, ρ531 also decreases (see Fig. 1) hence PRI becomes more negative. The sharply increased sensitivity of PRI to LUE when viewing the sunlit canopy is clearly evident.

Fig. 7. Number of observations made for classes of homogeneous sky conditions and
homogenous physiological states (ε). A total of 31 classes were derived having 246,276
observations.
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705 nm as detection band. Once again, we interpret the 705 nm signal
arising from chlorophyll fluorescence.

4. Discussion

Our observations and analysis lead us to conclude that observed PRI
variations over a Douglas-fir forest, acquired for a range of sunlit and
shaded canopy fractions, are directly related to physiological reductions
in LUE in the canopy's light-saturated photosynthetic elements.We also
found that simultaneous, additional reflectance changes were observed
at around 705 nm, possibly related to chlorophyll fluorescence
associated with down-regulation.

These results suggest a novel space-borne sensor configuration for
directly measuring xanthophyll-cycle induced changes in LUE. The
sensor we propose is an imaging spectrometer that would measure
the PRI at a range of shadow fractions for each landscape element and

simultaneously measure shadow fraction in the sensor field of view,
using for example mixture decomposition (Hall et al., 1995). The
sensor would need to view the landscape at multiple along-track view
angles (forward and aft of nadir). The landscape would also be imaged
in multiple cross-track directions. Along each image track parallel to
the orbital ground track, each landscape elementwould be viewed in a
matter of a few milliseconds for a range of shadow fractions. The LUE
so measured would combine both over and understory photosynthe-
tically active forest stand elements. The sensor would contain 50 nm
or narrowerwide bands at 531 nm, 570 nm, and 705 nm formeasuring
the degree of photosynthetic down-regulation as well as bands
measuring the variation of canopy shadow fraction with observation
angle, for example the bands used for Kauth–Thomas Brightness
(Kauth & Thomas, 1976). Additional bands for removal of atmospheric
effects removal could be considered, or alternatively, atmospheric
properties from other sensors used to retrieve surface reflectance in
these bands. Depending on design considerations, and other mission
information requirements, the spectrometer could be full-spectrum,
or an instrument with the selected narrow bands mentioned above.

Our results demonstrate that the variation in the PRI signal with
the fraction of canopy shadow viewed by the multi-angle spectro-
meter would result solely from canopy elements whose reflectance
differs as a function of illumination intensity (i.e. between fully sunlit
and shadow). Thus, the rate of change in the PRI signal with viewed
shadow fraction would come only from the photosynthetically active
elements of the canopy, hence for a given observation would be
directly related to the level of light saturation within these elements.
We also see from our analysis that the “curvature” of the PRI-shadow
fraction (PRI–SF) relationship is related to the light saturation levels
within the canopy. On overcast days the curvature is much less than
on sunlit days where light saturation levels are much higher. Our
results also suggest that such a relationship would be responsive only
to the level of light saturation in the viewed plant canopies, and not to
extraneous factors such as landscape variations in reflectance outside
the detection bands.

5. Conclusions

(1) We have developed an inference framework, when used in
combination with multi-view and illumination angle reflec-
tancemeasurement sets, to conclude that PRI variations are due
exclusively to changes in canopy reflectance at 531 nm and not
variations in canopy geometry, chlorophyll concentrations,
view or illumination differences.

(2) The inference framework is based in part on our finding that an
NDRI does not vary with shadow fraction unless there is a
difference in reflectance between the shaded and sunlit
components of the canopy in at least one NDRI band. This
important insight forms the basis for investigating the presence
of biological mechanisms that manifest themselves in leaf
reflectance changes.

(3) On the basis of canopy-scale full-spectrum spectrometer mea-
surements we are able to show that only NDRIs formed from the
531 and 570 nm and 705 nm bands vary with shadow fraction
and are correlated with measured values of LUE, hence
demonstrate conclusively that the spectrometer-measured var-
iation in PRI with tower-measured variation in LUE is due to
canopy-scale variations in reflectance at 531 nm. We conclude
that these variations in reflectance are caused by light saturation-
induced changes in the xanthophyll cycle pigments.

(4) A confirmation of the above conclusions comes from the
difference we observe in the PRI–LUE slope between the hot
spot and the dark spot. The slope of the LUE–PRI relationship
for the dark spot is less than half that for the hot spot.

(5) We confirmed that the spectral regions around 531 nm and
570 nm are the most suitable PRI detection and reference

Fig. 8. a: Correlations as a function of the spectral location of the detection band with
570 nm as the reference band. Coefficients of determination for the relationship
between LUE and NDRI (isotropic, geometric and volumetric kernels weights) derived
from 154 different detection bands between 400 and 900 nm. Correlation is maximum
at 536 nm with best correlations found for isotropic scattering component (r2=0.91,
pb0.05), (r2=0.71, pb0.05, for the geometric component and r2=0.72, pb0.05 for the
volumetric scattering component). b: Stability of the reference band. LUE vs NDRI
correlations as a function of the spectral location of the reference band with 531 nm as
the detection band. Coefficients of determination for the relationship between ε and
NDRIs (isotropic, geometric and volumetric kernels weights) derived from a series of
using 154 different reference bands between 400 and 900 nm. The relationship shows
maximum correlation around 578 nm with best correlations found for the volumetric
scattering component (r2=0.93, pb0.05),(r2=0.75, pb0.05), for the isotropic component
and r2=0.77, pb0.05 for the geometric scattering component, respectively).
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bands. The significant relationship between the volumetric
scattering component for the BRDF surface derived from an
NDRI using 570 nm and 705 nm as reference and detection
band, respectively shows the potential of this combination of
bands to sense ε from chlorophyll fluorescence.

(6) Our findings suggest a flux tower-based capability, as well as a
new space-borne sensor and methodology for the direct
retrieval from space of changes in light use efficiency, hence
gross ecosystem production, by measuring the PRI at a function
of shadow fraction using a multi-angle spectrometer that can
simultaneously retrieve shadow fraction and PRI. Such obser-
vations, when used in combination with physiological models
should provide a greatly improved capability tomonitor surface
atmosphere exchanges of moisture, carbon and heat.
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