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1. Introduction

It is well recognized that fluid flow in subsurface porous 
media is strongly influenced by spatial variability and 
heterogeneity [1]. Proper modeling of groundwater flow 
within this environment thus involves capture of mul-
tiscale phenomena, including microscale- (molecular), 
mesoscale- (single pore), macroscale- (multiple pores), 
and megascale- (field) level systems. A central chal-
lenge arising from this situation is to understand how 
macroscale characteristics of fluid flow depend on mi-
croscale geometry of pore spaces and physical charac-
teristics of the fluid and solid [2].

Specific permeability is an important macroscale pa-
rameter representing averaged microscale characteris-
tics of fluids and porous media. At the macroscale, spe-
cific permeability for single-phase flow can be described 
within the context of Darcy’s law for low Reynolds 
numbers:

(1)

where k [L2] is the specific permeability, q [L/T] is the 
specific flow rate, μ [M/LT] is the viscosity of the fluid, 
Ñp [M/L2T2] is the pressure gradient, ρ is the fluid den-
sity [M/L3], g is the gravitational acceleration [L/T2], 
and z [L] is the vertical coordinate. Furthermore, many 
empirical methods, such as the Hazen method and 
Kozeny theory [1], have related specific permeability 
with microscale properties of porous media, including 
particle size, sorting level, and porosity. For example, 
the Kozeny equation may be expressed as:

(2)

where f[–] is the porosity, c [–] is the Kozeny coefficient, 
and S [1/L] is the specific surface area defined by the 
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ratio of particle surface area exposed to fluid per unit 
volume.

The heterogeneous nature of soils derived in part 
from the randomness of particle size distributions, po-
rosities, and pore structures, however, suggests that soil 
and sediment permeability is also subject to randomness 
and uncertainty. This uncertainty is well recognized, and 
numerous studies have employed stochastic methods to 
model groundwater flow in subsurface porous media by 
assuming a permeability probability density function, 
including the use of normal [4], lognormal [3, 5, 6], and 
gamma [7, 8] distributions. Although it is widely under-
stood that the selection of a particular probability den-
sity function will markedly influence simulation results 
[8, 9], few studies [9–11] describe the manner in which 
to construct a permeability probability density function. 
These studies primarily focus on experimental determi-
nation of probability density functions for permeability 
at the field scale. Developing numerically-dervied dis-
tributions will be more economically efficient, although 
such efforts face several technical challenges, namely: 
(i) restriction on the computational resources available 
to employ numerous Monte-Carlo-type statistical sim-
ulations and (ii) difficulty in accurately capturing influ-
ences of microscale uncertainties on macroscale permea-
bility uncertainty.

Recently, several analytical reliability approximation 
methods, e.g., first-order reliability method (FORM) 
and second-order reliability method (SORM), have 
been used in the environmental field to model ground-
water flow and contaminant transport [4, 12, 13], and 
surface water quality [14, 15]. Possessing greater effi-
ciency than traditional Monte-Carlo-type simulations, 
these methods can greatly decrease computational de-
mands. In addition, lattice Boltzmann methods (LBM) 
have been applied to estimate the permeability of po-
rous media [16–20]. Due to its ability to address fluid 
flow in complex micropore geometries, researchers 
have used LBM to help to relate microscale uncertain-
ties with macroscale permeability uncertainty. In this 
paper, we present a mathematical framework to con-
struct a probability density function for permeability 
that (i) employs LBM to estimate permeability based 
on fluid flow in complex micropore geometries, and 
(ii) utilizes FORM to derive the stochastic characteris-
tics of porous media permeability. In this way, prob-
ability density functions for permeability can be con-
structed with reasonable computational efforts based 
on more easily obtained media properties, e.g., poros-
ity and particle size distribution. Although permeabil-
ity CDFs constructed by LBM FORM in this study fo-
cus on the pore scale, this effort has the potential to 
provide valuable information for correctly construct-
ing permeability CDFs at the field scale [21].

Descriptions of numerical methods employed in this 
work follow this introduction. This discussion includes 
a brief introduction to porous media generation meth-
ods, the theoretical basis for use of LBM to model fluid 
flow, and the statistical basis for FORM, concluding 
with a general description of the proposed algorithm. 
The subsequent section exemplifies implementation of 
LBM FORM in several example domains of interest, in-
cluding discussion of statistical properties of the gen-
erated permeability density function, and the accuracy 
and efficiency of the new method. Following a brief 
summary, the manuscript concludes by highlighting 
directions for further enhancements of the proposed 
method.

2. Numerical methods

2.1. Porous media generation

Accurate numerical simulation of fluid flow in porous 
media requires detailed descriptions of porous media 
morphology, which should include geometric proper-
ties such as particle or pore shape and volume, and to-
pological properties such as pore interconnectivity. In 
many cases, however, the type of model that can be em-
ployed is dependent on the modeling method, and more 
importantly, limited computational resources. It is thus 
important to construct models that are able to closely 
mimic the heterogeneity of actual porous media, and at 
the same time are sufficiently efficient to allow simula-
tion of flow and transport phenomena with reasonable 
computational effort. In this study, porous media are en-
visioned as a statistical distribution of non-overlapping 
circular disks representing soil particles distributed in a 
rectangular two-dimensional uniform continuum repre-
senting the pore space through which a fluid flows.

As first proposed by Gardner, particle size distribu-
tions in soil are often assumed to be lognormal in na-
ture [22]. Buchan noted that approximately one-half of 
the US Department of Agriculture (USDA) textual clas-
sification triangle could be adequately modeled by a 
lognormal distribution. Since a standard lognormal dis-
tribution implies zero and infinity for the smallest and 
largest particle sizes, respectively, modified lognormal 
distributions were developed to constrain the upper and 
lower extremes of the particle size. Recently, Fredlund 
et al. [23] proposed a new model based on a unimodal 
mathematical function, which is believed to provide im-
proved representations of particle size distributions rela-
tive to lognormal distributions. This model’s ease of use, 
however, is limited by its employment of five fitting pa-
rameters; our study thus employs a modified lognormal 
distribution to describe particle size distribution, assum-
ing that all particle sizes reside in a 95% confidence in-
terval to eliminate extremely large or small particles.
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Modifying the algorithm proposed by Yang et al. [24] 
for a three dimensional sphere packing, a two-step col-
lective rearrangement technique is developed to gener-
ate random porous media. First, particles with size dis-
tributions following a modified lognormal distribution 
are generated until the required porosity is satisfied. The 
particles are then assigned to a two dimensional domain 
by assuming a uniform distribution of particle locations. 
Based on this initial, possibly overlapped configuration 
(i.e., one particle may overlap another particle), an itera-
tive arrangement process is applied to achieve an over-
lap-free condition. During each iteration, the largest 
particle is selected for relocation if there is any overlap 
with another particle; if overlap occurs, its spatial loca-
tion is adjusted until the overlap is removed, and then 
registered in the final non-overlap location. The proce-
dure continues with the next largest particle, etc. until 
all particles are registered in their final non-overlap lo-
cation. Periodic boundary conditions are maintained at 
all boundaries throughout the iteration process. Figure 1 
provides an illustration of several of the generated ran-
dom porous media employed in this study.

2.2. LBM simulation

LBM [16, 25, 26] is a mesoscopic approach for simu-
lating computational fluid dynamics by solving a dis-
cretized Boltzmann equation. An attractive feature of 
LBM is the ease of addressing complex boundary condi-
tions by implementing very simple schemes. Numerous 
works have successfully applied LBM in modeling fluid 
flow in porous media and quantification of porous me-
dia permeability [16, 17, 27, 28].

LBM models fluids as particle distributions residing 
on a discrete lattice, propagating to their adjacent lattice 
nodes, and colliding with other particles to redistribute 
momentum. In this study, a two-dimensional, nine-ve-
locity lattice model (D2Q9) [26] is employed. The evolu-
tion process can be expressed by the equation:

(3)

where fi represents the particle distribution in position 
x→ at time t, moving with velocity  →ci, τ is the relaxation 
time which controls the rate of approach towards equi-
librium, and fi

eq is an equilibrium distribution parame-
ter. It has been shown [29] that the Navier–Stokes equa-
tion can be recovered from this discretized Boltzmann 
equation for incompressible flow, with a truncation er-
ror proportional to the square of the Mach number 
(Ma = u/cs, where u is the characteristic flow velocity, 
and cs is the speed of sound (usually set to 1/√3‾ for the 
D2Q9 model)). The density per node, ρ, the macroscopic 
velocity, u→, the fluid pressure P, and the kinematic vis-
cosity ν are defined by

(4)

A non-slip boundary condition is imposed at the 
solid and liquid interfaces by implementing a bounce-
back rule that reverses the momentum of particles ap-
proaching the solid wall. Periodic boundary conditions 
are maintained at the inlet and outlet of the domain. A 
pressure gradient is imposed by maintaining a density 
difference between the inlet and the outlet of the sim-
ulation domain; thus at very small Reynolds numbers, 
the permeability of simulated porous domains can be 
estimated by Darcy’s law based on the imposed pres-
sure gradient and specific flow rate derived from LBM 
simulation.

2.3. FORM

FORM originated from reliability analysis in structural 
engineering, and is an attractive alternative to compu-
tationally intensive Monte Carlo methods [4]. In this pa-
per, we implement FORM to construct permeability cu-
mulative distribution functions (CDFs) for randomly 
generated porous media. A description of the FORM 
procedure is presented below.

In reliability analysis, a function M(x1,x2, … , xn) is of-
ten formulated to describe the performance of a system. 
The system performance is considered in terms of two 

Figure 1. Example randomly generated porous media at porosity 0.45: (a) geometric mean diameter is 25 μm and coefficient of 
variation (COV) 0.01; (b) geometric mean diameter is 50 μm and COV 0.6; (c) geometric mean diameter is 50 μm and COV 0.3.
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states, ‘failure’ or ‘safe’, depending on whether the per-
formance function is less than or greater than zero, re-
spectively. A limit state surface may then be defined as 
the boundary between the failure and safe regions, i.e., 
M(x1, x2, … , xn) = 0. In this study, the performance func-
tion evaluates whether the calculated permeability of a 
simulation domain is smaller than some selected target 
value gi:

M(x1,x2,…,xn)=G(x1,x2,…,xn)-gi                                          (5)

The limit state surface may thus be defined as G = gi. 
The probability of failure, i.e., G is less than gi, can be 
defined:

(6)

where fX(x1, x2, … , xn) is the joint probability density 
function for random variables x1, x2, … , xn. Equation 
(6) is difficult to evaluate for many reasons, including 
(i) difficulty of evaluating multidimensional integration; 
(ii) lack of statistical information for the joint probability 
density function, f; and (iii) the complexity in evaluating 
the performance function. The objective of FORM is to 
derive an estimation of FG based on a first-order Taylor 
series expansion of the performance function.

If random variables, xis, are correlated non-nor-
mal functions, they should be transformed to the space 
of uncorrelated reduced normal functions [30]. On the 
transformed limit state surface, the point closest to the 
origin is defined as the “design point,” representing the 
most likely failure point. This minimum distance from 
the origin in the transformed space can be computed as

(7)

where α is a unit vector normal to the limit state surface 
and directed toward G < gi, and x* is the design point. 
The first-order approximation of the failure probability 
can be obtained as

p(G ≤ gi)=Φ(-β)                                                 (8)

where Φ(·) is the standard normal cumulative probabil-
ity operator [30]. This approximation is accurate if the 
limit state surface is nearly flat in the neighborhood of 
the design point.

The design point is determined by solving an optimi-
zation problem that minimizes the distance from the or-
igin in the reduced normal space to the limit state sur-
face. A Newton–Raphson-type recursive algorithm, 
proposed by Rackwitz and Fiessler [31], as described in 
Equation (8), is implemented here:

(9)

where k denotes the iteration number, and ÑG(x→′
k) rep-

resents the gradient vector of the performance function 

at x→′
k. The Rackwitz–Fiessler method linearizes the per-

formance function at each iteration point, and uses the de-
rivatives to find the next iteration point. The entire CDF 
can be constructed by repeating this FORM procedure to 
estimate the probability of the calculated permeability is 
smaller than a series of gi values in Equation (8).

In many applications, FORM requires only a small 
number of iterations for convergence. When the perfor-
mance function is in implicit or numerical form, how-
ever, extra effort, for example, a finite difference scheme 
(Equation 10), may be required to derive the gradient of 
the performance function.

(10)

Here, the step, Δxi, is chosen as a small fraction of the 
standard deviation of random variables. Thus, the num-
ber of function evaluations required by each iteration of 
FORM will be 2n + 1, where n is the number of random 
variables.

2.4. Proposed algorithm

Since porosity data are widely available for many soil 
types and it can be accurately and routinely determined 
in laboratories, porosity statistics are generally easier to 
obtain than statistics for porous media permeability. An 
underlying assumption of this work is that the porosity 
of the simulated domain is a random variable.

Figure 2 presents a summary flowchart describing 
the proposed algorithm, as detailed below. First, an ini-
tial value for porosity is generated based on the proba-
bility distribution of the random variable porosity; it is 
then combined with a given particle size distribution to 
generate a random porous medium. LBM is then imple-
mented to estimate the permeability of the generated do-
main. Based on the particular porosity and the particle 
size distribution, the resulting micropore configuration 
is subject to uncertainty. With sufficiently large num-
bers of samples, however, the average permeability of 
randomly generated porous media will approach a con-
stant value dependent only on the porosity and the par-
ticle size distribution [32]. The simulation is considered 
converged if the relative error of the average permeabil-
ity corresponding to the value derived from the previous 
number of samples is consistently less than 1% for five 
consecutive iterations. In this study, we found at least 25 
samples were required to achieve a stable average per-
meability. Upon determination of an average permeabil-
ity, the Rackwitz–Fiessler formula is employed to calcu-
late the probability that the average permeability of the 
randomly generated porous media is smaller than a gi. 
As illustrated in Figure 2, a particle size distribution is 
employed, but it is utilized to generate porous medium 
configurations as part of the performance function. Po-
rosity is thus the only random variable for FORM input. 
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In this situation, the Rackwitz–Fiessler iteration scheme 
[31] becomes a one dimensional Newton formula as ex-
pressed in Equation (11):

(11)

Points on the CDF curve corresponding to gi are gen-
erated when the Rackwitz–Fiessler iteration scheme 
achieves convergence. Repeating this procedure for a 
series of gi values enables the construction of the entire 
CDF.

3. Illustrative examples

3.1. Example model domains

Simulations included use of randomly generated po-
rous media with domain size 1 mm × 1 mm, and geo-

metric mean particle diameters of 25, 50, and 100 μm, 
depicting particle sizes representative of very coarse silt 
to very fine sand. The particle size distribution employs 
a modified lognormal distribution, using a 95% confi-
dence interval for particle size to eliminate extreme val-
ues. The influence of particle sorting characteristics on 
permeability was also examined by varying the coeffi-
cient of variance (COV) of the particle diameters, i.e., 
COV of 0.01, 0.31 and 0.66, which correspond to very 
well sorted, moderately sorted, and poorly sorted sed-
iments. Summaries of the particle size distributions for 
simulated domains are listed in Table 1, while illustra-
tions of the domains are presented in Figure 1.

3.2. Evaluations of the LBM model

A series of numerical simulations were conducted to 
evaluate LBM accuracy, its ability to estimate permea-
bility, and numerical resolution requirements for the 

Figure 2. Flow chart for the LBM FORM algorithm.
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aforementioned example domains. Poiseuille flow was 
first simulated to test the accuracy of the LBM model. 
Numerical experiments with different channel widths 
were performed while holding the relaxation time, τ, 
and Reynolds number, Re, constant. Relative errors for 
the whole channel are calculated as

(12)

where N is the number of lattice nodes along the chan-
nel width, and ui

(n)  and ui
(a) are the numerical and ana-

lytical solutions, respectively. The relative error and the 
channel width present a linear relationship with a slope 
of −2.1 on a log graph, which indicates a second-order 
convergence of this LBM model in the spatial discretiza-
tion, as described elsewhere [17, 26, 33]. The influence of 
τ on the accuracy of the LBM model was verified by nu-
merical experiments employing different τ values from 
0.6 to 1.2 with a step size of 0.2, which provide a local 
minimum of the relative error at τ = 0.8.

To investigate the ability of LBM to accurately estimate 
permeability, LBM was employed with the randomly 
generated porous media under varying pressure gradient 
conditions. A linear relationship between pressure gra-
dient and specific rate is identified with a low Reynolds 
number, i.e., Re < 0.01, which is consistent with applica-
ble regions for Darcy’s law [16, 34]. In this study, Re is re-
stricted to values less than 0.01, and permeability is esti-
mated as the ratio of flow rate and pressure gradient.

Effects of spatial discretization on permeability esti-
mation for randomly generated porous media were in-
vestigated by varying the density of numerical grids on 

simulation domains. Results indicate that estimated per-
meability converges to a stable value with increasing 
spatial resolution, as stated elsewhere [17, 33]. For COV 
of 0.01 and 0.31, the number of grids per mean particle 
diameter, m, should be greater than 20 to achieve con-
vergence on ks, while m should be greater than 27 to 
achieve convergence for COV of 0.66. Specific lattice 
sizes employed in LBM simulations are listed in Table 1.

4. Numerical results

4.1. Permeability statistics

For the purpose of simplicity, a normal distribution with 
mean of 0.5 and COV of 0.12 is assumed for the random 
variable porosity. Under this condition, the probability 
of a negative porosity is as small as 1.5E−5. A summary 
of statistical properties of the derived CDFs for the sam-
ple domains is presented in Table 2. The influence of 
particle size distributions on permeability CDFs are fur-
ther illustrated in Figure 3 and Figure 4.

First, it is observed that domains with larger particle 
mean diameters or higher particle diameter COVs pos-
sess larger mean permeability values and higher prob-
abilities of achieving larger permeability values. This 
phenomenon can be explained in terms of specific sur-
face area, or the ratio of particle surface area in contact 
with fluid per unit volume. Specific surface areas are 
larger for the domains, which are well sorted or possess 
smaller particle mean diameters. Higher specific surface 
areas suggest greater surface area in contact with fluid, 
causing increased frictional resistance to fluid flow, thus 
leading to a reduction in permeability.

Second, it is shown in Table 2 that permeability COVs 
of all domains generally lie in the range of 1.0–1.5, which 
is about 10 times larger than the porosity COV of 0.12. 
This suggests that permeability is subjected to greater 
uncertainty than porosity. In addition, permeability 
COVs of domains with mean diameter 50 μm range from 
1.0 to 1.3, although the particle diameter COVs change 
66 times from 0.01 to 0.66. This indicates that, although 
the particle diameter COV will influence the permea-
bility mean value, it will not directly affect the uncer-
tainty of permeability. We believe it is the uncertainty of 

Table 1. Particle size distribution parameters employed in this 
work

Geometric mean   COV  Rmax/Rmin   Sorting                             Lattice 
diameter (μm)                      size

25 0.01 1.04 Very well sorted 800 × 800
50 0.01 1.04 Very well sorted 400 × 400
 0.31 3.24 Moderately sorted 400 × 400
 0.66 10.51 Poorly sorted 540 × 540
100 0.01 1.04 Very well sorted 300 × 300

Table 2. Statistical properties of derived permeability CDFs

Geometric mean                  Diameter                            Permeability                Permeability          Chi-square test significance level 
diameter (μm)                         COV                                 mean (Darcy)                       COV
                                Normal      Lognormal       Gamma

25 0.01 1.54 1.36 0.04 0.001 0.11
50 0.01 6.22 1.30 0.007 1E−05 0.015
 0.31 8.71 1.10 0.002 2E−06 0.002
 0.66 12.11 1.00 0.02 1E−04 0.16
100 0.01 17.36 1.54 0.048 0.0004 0.01
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micropore structure configurations derived from poros-
ity and particle size distributions that actually lead to 
the larger uncertainties in permeability.

4.2. Applicability of permeability distributions

Chi-square tests were applied to the derived permeabil-
ity CDFs based upon normal, lognormal, and gamma 
distributions. The chi-square test significance levels are 
listed in Table 2, where a smaller significance level sug-
gests that the model result is less significantly different 
from the given probability function, representing a bet-
ter model fit. In this work, a lognormal distribution ap-
pears to provide the lowest significance level for all five 
modeling domains.

Further exploration of the ability of normal, lognor-
mal, and gamma distributions to describe permeability 
is provided in Figure 5, which illustrates correspond-

ing CDFs utilizing LBM FORM derived mean and COV. 
It is clear that normal distributions fail to represent the 
LBM FORM results at low probability, which can be at-
tributed to normal distributions’ allowance for the neg-
ative permeability values at extremely low probabil-
ity. Although the Gamma distribution is limited to only 
positive values of permeability, it appears to overesti-
mate the probability for the lower permeability. The fail-
ure of the Gamma distribution is likely associated with 
the constant nature of COV, i.e., the Gamma distribu-
tion COV = 1/√‾2, regardless of the mean value, which 
is incapable of fully describing the high uncertainty of 
porous media permeability. In this study, the lognor-
mal distribution performs very well in describing the 
FORM-derived permeability CDF both at low and high 
probability regions, which are actually implied from 
two important characteristics of the lognormal distribu-
tion (i) exclusion of negative values and (ii) high right 
skewness. The applicability of the lognormal distribu-
tion to permeability in this study also agrees well with 
Woodbury and Sudicky [9], who evaluated more than 
1000 samples for the Borden aquifer, suggesting that the 
lognormal distribution can be employed to describe the 
permeability distribution.

4.3. Comparison with Monte Carlo simulations

Monte Carlo simulation is a useful tool capable of ad-
dressing stochastic problems when only a basic work-
ing knowledge of probability and statistics is available. 
Given sufficient simulations, the Monte Carlo method 
can provide accurate simulation results in a simple but 
computationally demanding manner [30]. Evaluation of 
the necessary number of simulations required to guar-
antee the accuracy is thus critical in the proper employ-
ment of the Monte Carlo method. As opposed to com-
mon approaches that establish the number of model 
runs based upon experience or simplified tests, this 
study determined the required number of simulations 
by relating it to the relative error and probability based 
on equation [30],

(13)

where ε is the error, p is probability and N is the number 
of simulations required. This equation was derived by 
considering the number of failures in N trials as a bino-
mial distribution, then approximating the binomial dis-
tribution with a normal distribution, and estimating the 
95% confidence interval of the estimated probability of 
failure.

For the purpose of validation, Monte Carlo simu-
lations were implemented on the domain with a par-
ticle mean diameter of 25 μm and COV = 0.01. Equa-
tion (13) indicates that, for p = 0.1, at least 14,400 Monte 

Figure 3. Influence of particle mean diameter on porous media 
permeability CDF for domains with geometric mean particle 
diameter D = 50 μm and differing COV.

Figure 4. Influence of particle sorting on porous media perme-
ability CDF for domains with geometric mean particle diame-
ter D = 50 μm and differing COV.
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Carlo runs are required to achieve an error less than 
5%. As discussed in Section 2.4, the uncertainty of mi-
cropore structures for a given porosity and particle size 
distribution necessitates at least 25 simulations of dif-
ferent configurations to achieve a stable average perme-
ability. 360,000 LBM simulations will thus be required 
to construct a CDF for p > 0.1. In this study, the com-
puting time required for LBM modeling of permeabil-
ity depended on permeability values, varying from 0.5 
to 10 h on a Dell Precision 650 Workstation; with lon-

ger convergence times associated with higher permea-
bility domains or denser numerical discretization reso-
lutions. It is thus not feasible to perform all 360,000 LBM 
simulations due to computational limitations. Our ap-
proach to overcome this problem included (i) perform-
ing a smaller number of simulations based on available 
computing resources and (ii) quantitatively defining the 
relative error of Monte Carlo results based on Equation 
(12), which serves as a basis to evaluate the relative ac-
curacy of LBM FORM results.

Figure 5. Comparison of FORM-derived permeability CDF with most commonly used Normal distribution CDF, Gamma distri-
bution CDF, and Lognormal distribution CDF on the simulation domains with differing geometric mean particle diameter and 
COV. (a) D = 25 μm, COV = 0.01; (b) D = 50 μm, COV = 0.01; (c) D = 50 μm, COV = 0.3; (d) D = 50 μm, COV = 0.6; (e) D = 100 μm, 
COV = 0.01.



st o c h a s t i c M o d E L i n g o f t h E P E r M E a B i L i t Y o f  r a n d o M L Y g E n E r a t E d P o r o u s M E d i a  843

One thousand and six hundred Monte Carlo runs 
were computed, corresponding to 40,000 LBM simu-
lations. Constructed CDFs are plotted in Figure 6 and 
compared well with FORM results. When the proba-
bility exceeds 0.4, the largest relative error between the 
two methods is approximately 3.4%. The largest relative 
error for the entire CDF is 8.5%, occurring at the point 
p = 0.12, the smallest probability point simulated. Based 
on Equation (12), 1600 Monte Carlo runs will provide 
an error of less than 6% for probabilities larger than 0.4, 
and an error of 13.5% for p = 0.12. LBM FORM results 
are thus within the relative error range of the Monte 
Carlo method, suggesting the relatively high accuracy 
of this method.

The FORM method employed in this work can 
achieve convergence within 2–6 iterations. Each itera-
tion involves three function evaluations to calculate av-
erage permeability and gradient values. Although 15 
points were used to construct the CDF employed in this 
work, 10 points are usually sufficient to generate a CDF 
[30]. Assuming an average of four FORM iterations to 
achieve convergence, three function evaluations for cal-
culating average permeability and its gradient values, 
and 10 points on a CDF, approximately 120 averaged 
permeability values must be computed to construct a 
CDF through FORM. This is approximately 1/13 times 
the 1600 Monte Carlo simulations used in this study, and 
approximately 1/120 times the required 14,400 Monte 
Carlo simulations needed to construct a CDF possessing 
an error less than 5% when p > 0.1, indicating the rela-
tively high efficiency of LBM FORM relative to Monte 
Carlo simulations.

5. Summary and conclusion

Permeability, as a function of particle size distribution, 
porosity, and packing, is often the greatest source of un-
certainty in simulating fate and transport of contami-
nants in the subsurface environment. Although permea-

bility has previously been assumed as a random variable 
in groundwater modeling, the restriction on computa-
tional resources and the difficulty in relating microscale 
and macroscale uncertainties have resulted in reduced 
efforts to construct probability density functions for per-
meability. In this study, we proposed a new approach, 
LBM FORM, based on more easily derived porosity sta-
tistics and particle size distribution, to construct per-
meability CDFs through the combination of LBM and 
FORM.

LBM FORM was implemented to construct permea-
bility CDFs of five randomly generated porous media; 
each possessing different particle size distributions. Re-
sults show that the domains with larger mean particle 
diameter or higher particle diameter COV tend to pos-
sess a higher probability of achieving larger permeabil-
ity. Permeability values are subjected to higher uncer-
tainty than the porosity and particle diameters because 
of the uncertainty of the micropore structure configu-
rations. Lognormal distributions modeled well the per-
meability CDF constructed for a variety of domains ex-
amined in this study. Accuracy of the proposed method 
was confirmed by comparison with Monte Carlo simu-
lations for one example simulation domain. The largest 
relative error is approximately 3.4% when the probabil-
ity exceeds 0.4, and is 8.5% when probability is less than 
0.4, both of which are within the relative error associ-
ated with the Monte Carlo method. Further, this work 
demonstrated that the Monte Carlo method is severely 
limited by computational requirements, making it ex-
tremely difficult to accurately construct an entire perme-
ability CDF curve by Monte Carlo; LBM FORM, how-
ever, was found to be approximately 13–120 times more 
efficient than traditional Monte Carlo simulations.

The primary contribution of this effort derives from 
the development of a new approach to calculate perme-
ability CDFs by combining LBM and FORM. Although 
it provides higher accuracy and efficiency than Monte-
Carlo simulations, it is worthy to note several directions 
for enhancements of the method. First, the LBM method 
implemented in this study is in the BGK form [35] with 
a linear collision operator. The accuracy of permeability 
based on BGK LBM is dependent on the fluid viscosity 
and thus on the relaxation time. We chose an optimized 
value of the relaxation time τ (τ = 0.8) to eliminate this 
dependency. In the future, we suggest the use of more 
sophisticated LBM schemes to simulate fluid flow in po-
rous media. For example, a two relaxation time (TRT) 
LBM [36, 37] will be able to annihilate the permeabil-
ity dependence on the viscosity with a specific choice of 
the free eigenvalues. Further, the convergence rate is ac-
celerated when using higher viscosity values for a TRT 
LBM. A second potential enhancement of the method 
is associated with the reliability method employed. 
While FORM performed well in example domains in 
this study, more advanced methods, such as SORM or 

Figure 6. A comparison of Monte Carlo simulation results and 
FORM results for the simulation domain with particle mean 
diameter D = 25 μm and COV = 0.01.
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other modified forms of FORM, might be required for 
situations that are more complicated. Finally, the simu-
lation results in this work are based on randomly gener-
ated, two-dimensional simplified porous media. Future 
modeling efforts will benefit from use of more sophisti-
cated porous media packing modules to more closely re-
flect actual field situations. Applications of the proposed 
framework with more sophisticated LBM and reliabil-
ity methods for three-dimensional porous media should 
greatly assist future researchers in advancing funda-
mental understanding of the primary factors influenc-
ing permeability within porous media.
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