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Abstract
An explicit solution for a moving screw dislocation in a piezoelectric bimaterial is given by means of complex vari-
ables. The electroelastic fields and forces acting on the moving dislocation are obtained in closed form. As special 
cases, solutions for a moving screw dislocation in a piezoelectric half-plane with a free or rigid surface are obtained 
explicitly. 

1 Introduction 

Due to their intrinsic electromechanical coupling phenomena, piezoelectric materials are finding exten-
sive electromechanical applications in actuators, sensors, and transducers, etc. Piezoelectric materials such 
as ferroelectric ceramics are brittle and liable to cracking on all scales from domain to device. Defects such 
as dislocations, micro-cracks, cavities, and inhomogeneous inclusions, etc., may be embedded in piezo-
electric materials during manufacturing process and service. Under external electromechanical loadings, 
the proper functions and service lifetime of piezoelectric devices may be dramatically reduced due to in-
teractions of these defects and resulting macro-cracking. Theoretically, dislocation models play an im-
portant role in the study of defects and macro-cracks in solid materials [1–4]. In the past three decades, a 
number of investigations have been conducted concerning dislocations in piezoelectric materials. To men-
tion a few, Barnett and Lothe [5] first discussed the dislocation-induced electroelastic fields in anisotropic 
piezoelectric materials by means of the Stroh formalism. Pak [6] determined the forces acting on a screw 
dislocation in transversely isotropic piezoelectric materials using the generalized Peach–Koehler formula. 
These results indicate the effect of the material electromechanical coupling property on the electroelas-
tic fields. Recently, further investigations have been performed on a screw dislocation interacting with 
an elliptical inhomogeneity [7], a free boundary [8] in homogenous piezoelectric materials, and an inter-
face in piezoelectric bimaterials [9, 10]. In the case of a screw dislocation interacting with cracks, various 
crack configurations in homogenous piezoelectric materials have been considered such as a semi-infinite 
crack [11, 12], Griffith crack [13], and so on. Furthermore, detailed investigations have been achieved on 
the electroelastic fields and the fracture parameters of a screw dislocation interacting with a semi-infinite 
crack [8, 14], Griffith crack [8], edge crack [8, 15], and wedge crack [16, 17] between two bonded dissimi-
lar piezoelectric materials. These results still keep the fundamental characteristics of dislocation–crack in-
teractions and also indicate the electromechanical coupling and geometric boundary effects on the electro-
elastic fields and the fracture parameters. In the limiting cases, the above interfacial solutions cover those 
for homogenous materials. 



Mo v i n g s c r e w d i s l o c a t i o n s i n p i e z o e l e c t r i c b i m a t e r i a l s       121

Although stationary dislocations in piezoelectric materials have been discussed thoroughly, moving 
dislocation problems have not yet attracted much attention. The simplest case of a moving screw dislo-
cation in homogenous piezoelectric materials was considered recently [18]. In this paper, we study the 
fundamental solution of a moving screw dislocation in a piezoelectric bimaterial by means of complex 
variables. The electroelastic fields and forces acting on the moving dislocation are obtained explicitly. As 
special cases, solutions for a moving screw dislocation in a piezoelectric half-plane with a free or rigid sur-
face are derived explicitly. 

2  Basic equations 

Consider two dissimilar piezoelectric half-planes bonded along the x1-axis, as shown in Figure 1. The 
piezoelectric materials are assumed to be transversely isotropic, with the isotropic basal planes parallel to 
the (x1, x2)-plane and the poling directions along the x3-axis. 

The dynamic boundary value problem of the piezoelectric materials is constructed assuming only non-
trivial out-of-plane mechanical displacement and in-plane electric field such that 

u1 = u2 = 0,           u3 = u3(x1, x2, t),                                                                                                (1)

E1 = E1(x1, x2, t),      E2 = E2(x1, x2, t),      E3 = 0.                                                                           (2)

In this case, the constitutive relations become 

σ13 = c44u3,1 + e15f,1,    D1 = e15u3,1 – ε11f,1,   σ23 = c44u3,2 + e15f,2,   D2 = e15u3,2 – ε11f,2            (3)

where σk3 is the stress tensor, Dk (k = 1, 2) the electric displacement vector, c44 the elastic modulus mea-
sured at constant electric field, e15 and ε11 the piezoelectric and dielectric constants, and f the electric 
potential. 

The electric field is given by 

E1 = –f,1,     E2 = f,2.                                                                                                                       (4) 

The governing equations are 

σ13,1 + σ23,2 = ρü3,      D1,1 + D2,2 = 0,                                                                                              (5) 

where ( ¨ ) = ∂2/∂2t, and ρ is the mass density of the related material. Substituting (3) into (5) yields 

c442u3 + e152f = ρü3,            e152u3  – ε112f = 0,                                                                    (6) 

where 2 = ∂2/∂x1
2 + ∂2/∂x2

2  is the Laplace operator. 
When c44ε11 + e2

15 ≠ 0, the governing equations in (6) can be rewritten as

 (7)

Figure 1. Moving screw dislocation in a piezoelectric bimaterial. 
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Following Bleustein [19], we introduce an auxiliary function φ such that 

 (8) 

Substitution of (8) into (7) leads to two decoupled equations as 

(9) 

where 

 (10) 

The stresses and electric displacements can be expressed in terms of two independent functions u3 and 
φ as 

 (11) 

where 

(12) 

The analysis presented above shows that the electroelastic solutions for piezoelectric materials sub-
jected to dynamic antiplane mechanical and in-plane electrical loadings can be represented by two inde-
pendent functions u3 and φ satisfying the boundary conditions. 

3  Moving screw dislocation in two bonded dissimilar piezoelectric materials 

Consider an infinitely long screw dislocation moving constantly in a piezoelectric bimaterial. Without 
loss of generality, at time t = 0, assume the transient location of the screw dislocation z0 (z0 = x10 + ix20, x20 
< 0) in the lower half-plane. The dislocation is characterized by a Burgers vector b, an electric potential 
jump Δf, and moving parallel to the x1-axis with constant speed V (V < c), as shown in Figure 1. By means 
of the superposition scheme [1–3], the overall solution of this problem can be constructed from the solu-
tion for a moving screw dislocation in an infinite homogenous piezoelectric medium and an auxiliary po-
tential (interface image) satisfying the interface continuity conditions. The electroelastic solutions, u3(z) 
and f(z), for a moving screw dislocation in an infinite homogenous piezoelectric medium have been ob-
tained by Wang and Zhong [18]. 

By a coordinate translation, we introduce a new coordinate system (x, y) such that 

x = x1 – Vt,   y = x2.                                                                                                                       (13)

In this new coordinate system, Equation (9) can be rewritten as 

2u3,xx + u3,yy = 0,      φ,xx + φ,yy = 0,                                                                                            (14) 

where 

 (15) 
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The general solutions to Equations (14) can be expressed in terms of two modified holomorphic functions 
such that 

u3 = Im [U(z1)] ,       φ = Im [Φ(z)],                                                                                             (16) 

where z1 = x + iy, z = x + iy, and Im[ ] stands for the imaginary part of an analytic function. 
In the new coordinate system, by using the Cauchy-Euler conditions for analytic functions, the stress 

and electric displacement relations in (11) can be rewritten as 

 (17)

where C is defined in (12), L is defined as 

 (18) 

and Re[ ] is the real part of an analytic function. 
The screw dislocation is defined as 

 (19) 

or in the form of u3 and φ as 

(20) 

where Γ is a closed contour surrounding the dislocation core z = z0 in the physical plane. 
The electroelastic solutions U(z1) and Φ(z) for a moving screw dislocation with constant speed V paral-

lel to the x1-axis in an infinite homogenous piezoelectric medium can be expressed as [18] 

 (21)

where z10 = x0 + iy0 and z0 = x0 + iy0. 
Now let us construct the solution for the current bimaterial problem. In the following procedure, in-

dices 1 and 2 denote material constants, displacements, electric potentials, stresses, and electric displace-
ments of the upper and lower half-planes, respectively. The x1(x)-axis is directed along the interface, as 
shown in Figure 1. The electroelastic solutions U(z1) and φ(z) can be expressed as 

 (22)

and 

 (23)

Here U1(z1), U2(z1), Φ1(z), and Φ2(z) are unknown analytic functions to be determined, and U0(z1) and 
Φ0(z) are solutions for a moving screw dislocation in an infinite homogenous piezoelectric material as ex-
pressed in (21) with material constants related to the lower half-plane. 
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In order to simplify the derivation, we introduce the five vectors 

(24)

and

 (25) 

With the aid of (8), (11), and (16), (25) can be rewritten as 

(26)

and 

 (27) 

where 

 (28) 

and ( ‾ ) denotes the conjugate of an analytic function. 
Now let us determine the unknown U1(z1), U2(z1), Φ1(z), and Φ2(z) by enforcing continuity of the out-

of-plane displacement, electric potential, mechanical force, and electric displacement across the interface 
(x2 = 0). It should be noted that U1(z1) and Φ1(z) are analytic in the upper half-plane, while U2(z1) and Φ2(z) 
are analytic in the lower half-plane. By using the relations (24)–(27), the continuity of the out-ofplane dis-
placement and electric potential across the interface requires 

 (29)

Rearranging (29), we obtain 

 (30)

Equation (30) holds along the whole x-axis. Moreover, the functions on the left-hand side are analytic in 
the upper half-plane, while those on the right-hand side are analytic in the lower half-plane. With the 
standard analytic continuity arguments, we have 

 (31)

With the same arguments, the stress and electric force continuity across the interface leads to 

 (32)

Relations (31) and (32) yield 

(33)

where I is a second-order identity matrix, and the subscripts 1 and 2 behind B and L stand for the material 
matrices corresponding to the upper and lower half-planes, respectively. 

In the above, by letting L1 = L2 and B1 = B2, results in (33) cover the known solutions in (21). Further-
more, the moving screw dislocation in a half-plane (y < 0) with a traction-free and electrically imperme-



Mo v i n g s c r e w d i s l o c a t i o n s i n p i e z o e l e c t r i c b i m a t e r i a l s       125

able surface, y = 0, can be described by 

 (34) 

Another interesting case is the moving screw dislocation in the half-plane (y < 0) with a rigid and elec-
trically impermeable surface, y = 0. The corresponding solutions are 

 (35) 

4   Electroelastic fields 

The electroelastic fields excited by the moving screw dislocation can be obtained by substituting (22), 
(23), (24), and (33) into (17) as 

 (36)

 (37)

in the upper half-plane and 

 (38)

 (39) 

in the lower half-plane, where Bj, Cj, and Lj (j = 1, 2) are the material matrices defined in (12), (18), and (28). 
By letting B1 = B2, C1 = C2, and L1 = L2, the above solutions cover those in the literature [18]. 

From the electroelastic solutions (36)–(39), it is found that the electroelastic solutions are dependent on 
the ratios B2/B1 and L2/L1 When the electromechanical properties of two component materials are highly 
mismatched, the electroelastic fields excited by the moving screw dislocation are modified significantly, in 
which two limiting cases are the moving screw dislocation in a half-plane with rigid or free surface as dis-
cussed in Section 3. 
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The above solutions also cover the static ones by letting the dislocation speed V → 0. Furthermore, if 
letting e15 = 0 and Δf = 0, the aforementioned solutions will reduce to those for a moving screw disloca-
tion in two bonded dissimilar elastic media. 

The image forces acting on the screw dislocation can be obtained straightforwardly using the general-
ized Peach–Koehler formula [6] and the whole electroelastic field solutions (36)–(39). 

5   Conclusion 

The electroelastic solutions for a moving screw dislocation in a piezoelectric bimaterial are obtained in 
this paper. The obtained solutions indicate the effects of material mismatch and coupling electromechan-
ical property on the electroelastic fields. These fundamental solutions can be further used as the Green’s 
functions to solve the dynamic electroelastic problems in piezoelectric materials with defects. The given 
solutions can be also used to determine the dynamic electroelastic fields of defects in a piezoelectric/non-
piezoelectric material/strip bonded to another piezoelectric/non-piezoelectric material/strip, which is 
very common in piezoelectric applications such as acoustic sensors. 
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