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Inland, coastal, and estuarine waters, which are often turbid and biologically 

productive, play a crucial role in maintaining global bio-diversity and are of immense 

value to aquatic life as well as human-beings. Concentration of chlorophyll-a (chl-a) is a 

key indicator of the trophic status of these waters, which should be regularly monitored to 

ensure that their ecological balance is not disturbed. Remote sensing is a powerful tool 

for this. 

Due to the optical complexity of turbid productive waters, standard algorithms 

that use blue and green reflectances are unreliable for estimating chl-a concentration.  

Algorithms based on red and near-infrared (NIR) reflectances are preferable. Three-band 

and two-band NIR-red models based on the spectral channels of MODIS and MERIS 

satellites have been tested for numerous datasets collected with field spectrometers from 

inland, coastal, and estuarine waters. The NIR-red models, especially the two-band model 

with MERIS wavebands, gave consistently highly accurate estimates of chl-a 

concentration in waters from different geographic locations with widely varying 

biophysical characteristics, without the need to re-parameterize the algorithms for each 

different water body. The MODIS NIR-red model can be used to estimate moderate-to-

high chl-a concentrations.  

The NIR-red models were applied to airborne AISA data acquired over several 

lakes in Nebraska on different days with non-uniform atmospheric conditions. Without 

atmospheric correction, the NIR-red models showed a close correlation with chl-a 

concentration for each image. With an effective relative correction for the non-uniform 

atmospheric effects on the multi-temporal images, the NIR-red models were shown to 

have a close correlation with chl-a concentration, with uniform slope and offset, for the 

whole dataset.  



 

The models were also applied to MODIS and MERIS images. Reliable results 

were obtained from the MERIS NIR-red models. Calibrated MERIS NIR-red algorithms 

were validated using data from the Taganrog Bay and Azov Sea (Russia) and lakes in 

Nebraska. The calibrated NIR-red algorithms have the potential for universal application 

to estimate chl-a concentration from satellite data routinely acquired over turbid and 

productive waters from around the globe. 
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Chapter 1. Introduction 

Researchers in the last two decades have been, with varying degrees of success, 

attempting to use remotely sensed data to study the inland, estuarine, and coastal water 

ecosystems. The objective of almost all of these studies has been to explore the 

possibilities of using remote sensing as a tool to assess the water quality in these 

ecosystems by detecting and monitoring the density and the condition of algae in the 

water bodies. This research is an attempt to develop satellite-based spectral algorithms to 

estimate algal densities in turbid and biologically productive inland, estuarine, and 

coastal waters. 

1.1 The Need for Monitoring Algal Biomass 

Algae are microscopic phytoplanktonic organisms that photosynthesize and thus 

form the base of aquatic food chains. Inasmuch as scarcity of free-floating algae (also 

called phytoplankton) can damage an ecosystem, over-abundance can also cause damages 

of equal proportions to the ecosystem. Over-abundance of phytoplankton and their 

subsequent decomposition affect the aquatic biota in a number of different ways, such as, 

blocking the sunlight from reaching the lower layers of water and thus depriving the 

under-water aquatic life of the much needed solar radiation, causing a severe depletion of 

dissolved oxygen in the waters, and producing toxins that fatally affect aquatic life and 

cause several diseases such as respiratory and skin disorders in human beings 

(Carmichael 1997). Inland, estuarine, and coastal water bodies, which are mostly turbid 

and productive, are home to a wide variety of flora and fauna that are crucial to not only 

maintaining global biodiversity but also providing the biotic resources that are essential 
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for human sustenance (Revenga and Kura 2003). Apart from being a pool of biodiversity, 

inland, estuarine, and coastal waters also serve as valuable resources for tourism, 

transportation, energy supply, and recreation. Specific instances of damage caused by 

harmful algal blooms to humans and the flora and fauna of an ecosystem have been very 

well documented in the literature, and it goes without saying that the need for prediction, 

early detection, and quantification of these algal blooms is of paramount importance. 

Even though it is possible to monitor aquatic ecosystems through laboratory 

analysis of water samples collected from water bodies, it is extremely tedious and 

virtually impossible to do so on a frequent basis in a large ecosystem. The multi-temporal 

coverage and the synoptic view offered by remotely sensed data make remote sensing a 

suitable tool for this purpose (Gitelson et al. 2000). 

 
1.2. Remote Sensing as a Tool for Real-time Algal Monitoring  

Remote sensing was initially targeted by water resource scientists as a tool to 

detect algal blooms. With proven success in the realm of detection abetted by the 

improved spatial and spectral resolutions offered by the sensors and enhanced 

understanding of the bio-physical properties of water bodies, scientists have been pushing 

the technology to use it as a tool to obtain a quantitative measure of water quality by 

estimating the concentrations of different algal pigments that can be used as indicators of 

the bio-physical condition of water bodies. Whereas accurate detection of algal biomass 

has been proven achievable with not much difficulty, estimation of pigment 

concentrations has been more challenging.  
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Chlorophyll-a (chl-a) is a green pigment found in phytoplankton. The 

concentration of chl-a in water is a key indicator of phytoplankton biomass (Schalles et 

al. 1998; Honeywill et al. 2002). 

Estimation of chl-a concentration by remote sensing is based on the effect of chl-

a on the optical properties of water (which define the way water reacts to incident light), 

and is done by direct or indirect measurement of these optical properties. The optical 

properties are classified as Inherent Optical Properties (IOPs) and Apparent Optical 

Properties (AOPs). The IOPs depend strictly on the characteristics of the water medium 

alone whereas the AOPs depend on the geometry of the light field interacting with the 

water medium also. Refractive index, absorption coefficient, and scattering coefficient 

are some of the examples of IOPs; the radiance reflectance and the diffuse attenuation 

coefficient are examples of AOPs. Ideally it would be best to estimate chl-a concentration 

from direct measurements of the IOPs. However, this requires sophisticated 

instrumentation and meticulous analysis, making it virtually impossible to make regular 

routine measurements of the IOPs on a frequent basis. Thus the directly measured data of 

IOPs are difficult to obtain and hence scarcely available, which lends to the use of AOPs 

instead, specifically, the radiance reflectance. 

The radiance reflectance, or remote sensing reflectance ( ), is defined as the 

ratio of the upwelling radiance ( ) reflected from a body to the downwelling irradiance 

( ) incident on it. 
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Chl-a is a photoactive pigment that causes distinct changes in the color of water 

by absorbing and scattering at specific wavelengths the light incident on water. These 

spectral features are evident in the reflectance spectrum at specific wavelengths and can 

be related to the concentration of chl-a. The ease of this procedure depends on the optical 

characteristics of the water body. 

In deep ocean waters, phytoplankton is usually the predominant constituent and 

the concentrations of other constituents co-vary with chl-a concentration. Thus, the 

optical properties of these waters are dominated by phytoplankton and the observed 

spectral features in the reflected light can be directly related to chl-a concentration. Such 

waters are commonly referred to as Case I waters (Morel and Prieur 1977). Chl-a is 

primarily responsible for the strong absorption in the blue region and the peak reflectance 

in the green region of the reflectance spectrum from Case I waters. For these waters, 

spectral algorithms that use reflectances in the blue and green regions can be used to 

accurately estimate chl-a concentration (Gordon and Morel 1983; Gordon et al. 1988; 

O'Reilly et al. 1998; O'Reilly et al. 2000). 

In most inland, estuarine, and coastal waters, constituents such as inorganic 

suspended solids and dissolved organic matter occur in abundance and their 

concentrations do not co-vary with chl-a concentration. Thus phytoplankton does not 

solely dominate the optical properties of such turbid productive waters, which are 

commonly referred to as Case II waters (Morel and Prieur 1977). Due to the optical 

complexity of Case II waters, specifically, the overlapping and uncorrelated absorptions 

by non-algal particles and dissolved organic matter in the blue region of the spectrum, 

algorithms that rely on blue-green ratios cannot be reliably used to estimate chl-a 
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concentration (Carder et al. 2004; Darecki and Stramski 2004; Dall'Olmo et al. 2005). 

When the chl-a concentration is considerably high, as it is in turbid productive waters, 

there is a prominent valley in the red region of reflectance spectrum caused due to strong 

absorption by chl-a. There is also a reflectance peak in the near-infrared (NIR) region 

around 700 nm (Vasilkov and Kopelevich 1982; Gitelson and Kondratyev 1991; Gitelson 

1992; Han et al. 1994) caused by the combination of decreasing absorption by chl-a and 

increasing absorption by water. Since the absorption by non-algal particles and dissolved 

organic matter is significantly lower in the red and NIR regions than in the blue and green 

regions (Dekker 1993; Ruddick et al. 2001; Dall'Olmo et al. 2005), spectral algorithms 

that are based on reflectances in the red and NIR regions are preferable for estimating 

chl-a concentration in turbid productive waters (Gitelson 1992; Han and Rundquist 1997; 

Gons 1999; Gower et al. 1999; Dall'Olmo and Gitelson 2005) 

 In addition to the challenge of developing spectral algorithms that can reliably 

isolate chl-a induced spectral features from recorded reflectances and accurately relate 

those features to chl-a concentration, the problem of estimating chl-a concentration 

through remote sensing has another challenge in the form of atmospheric interference on 

the radiance signal recorded by the sensor. 

 Light has to pass through the Earth’s atmosphere twice (sun-to-surface [sensor-to-

surface for active sensors] and surface-to-sensor) before it is recorded by the remote 

sensor and is thus inevitably subject to atmospheric interference in the form of absorption 

and scattering of light by atmospheric gases and particles. Due to high absorption by 

water, on average, the water-leaving radiance is only about 10% or less of the total 

radiance recorded by the sensor (Siegel et al. 2000; Brivio et al. 2001). Thus it is 
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imperative that the atmospheric effects on remotely sensed data be first removed before 

any meaningful spectral analysis can be done for quantitatively estimating biophysical 

parameters in water. The process of removing atmospheric effects on the recorded 

radiance and retrieving the surface reflectance is called atmospheric correction. The low 

magnitude of water-leaving radiance makes atmospheric correction very difficult. 

 Absorption by the principal and trace atmospheric gases is accounted for by using 

well established databases of their spectral properties. Scattering by molecules is treated 

using the Rayleigh theory of scattering. Thus atmospheric effects due to gaseous 

absorption and molecular scattering and their seasonal and latitudinal variations can be 

adequately accounted for using look-up tables with computed values for different 

geographic locations and illumination conditions (Gordon et al. 1983; Gordon and Wang 

1994). However, scattering by aerosol particles is difficult to correct for. This requires a 

determination of the variable aerosol optical depth, which is then used to determine the 

concentration of aerosol, its type, and its particle size distribution. 

 Original atmospheric correction procedures for ocean color data assumed zero 

water-leaving radiance at the NIR wavelengths. The at-sensor radiance at the NIR 

wavelengths, after being corrected for gaseous absorption and molecular scattering, were 

assumed to have been entirely due to atmospheric aerosol particulate scattering and were 

used to calculate the aerosol parameters (Gordon et al. 1983; Andre and Morel 1991; 

Gordon and Wang 1994). The assumption of zero water-leaving radiance in the NIR 

region (commonly referred to as black-pixel assumption), though valid for clear open 

ocean waters, is not valid for turbid waters due to scattering by suspended particles in the 

water, which results in appreciable water-leaving radiance in the NIR region (Moore 
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1980; Stumpf and Tyler 1988; Stumpf and Pennock 1989; Han and Rundquist 1994; Han 

and Rundquist 1996; Hu et al. 2000; Ruddick et al. 2000; Siegel et al. 2000; Stumpf et al. 

2003). This results in over-estimation of the aerosol contribution and subsequent over-

correction of the radiances, resulting in invalid and often negative reflectances throughout 

the spectrum, especially at the shorter wavelengths. Thus the accurate characterization of 

aerosol scattering is the most challenging aspect of atmospherically correcting remotely 

sensed data from turbid waters.  

Researchers have tried various methods to account for the non-zero water-leaving 

radiance from turbid waters. Some methods use assumptions of empirically pre-defined 

relationships between the water-leaving radiances at specific wavelengths and attribute 

observed deviations from the relationships to atmospheric contribution, which is factored 

out iteratively (Smith 1981; Mueller 1984; Gould and Arnone 1994).  The main problem 

with this approach is that the empirical relationships which are often based on regional 

data may not be applicable to waters from different geographic locations, with different 

biophysical and optical characteristics. Hu et al. (2000) used neighboring non-turbid 

water pixels to retrieve aerosol properties and extended them to turbid water pixels. This 

approach presumes the presence of clear water pixels in the image and spatial 

homogeneity of the aerosol type over the area considered, both of which may not be valid 

in many circumstances. Several approaches that combine the basic aerosol retrieval 

procedure in Gordon and Wang’s (1994) atmospheric correction model (which was based 

on black-pixel assumption) with bio-optical reflectance models that explicitly account for 

non-zero water reflectance in the NIR region and calculate the water-leaving radiance 

iteratively or in a single step, have been shown to yield reliable water-leaving radiances 



 8

from MERIS (Medium Resolution Imaging Spectrometer) and MODIS (Moderate 

Resolution Imaging Spectroradiometer) data (Moore et al. 1999; Ruddick et al. 2000; 

Siegel et al. 2000; Stumpf et al. 2003; Wang and Shi 2005). Neural-networks that are 

trained using large datasets of observed radiances and radiances simulated by radiative 

transfer models for a wide range of atmospheric and illumination conditions for different 

geographic regions have been also used to derive water-leaving radiance from the at-

sensor radiance (Doerffer and Schiller 2007; Doerffer and Schiller 2008). Atmospheric 

correction procedures of the latter two kinds have been used in this research. 

Thus, successfully estimating chl-a concentration from satellite data has 

challenges on two fronts – (i) the spectral algorithm should be maximally sensitive to 

variations in chl-a concentrations and minimally sensitive to absorption and scattering of 

light by constituents other than chl-a, (ii) the radiance recorded by the sensor should be 

adequately corrected for atmospheric effects, resulting in reasonably valid reflectance 

values, so that the spectral algorithm can be applied reliably. The first challenge is 

addressed in Chapter 2, wherein NIR-red models designed for MODIS and MERIS 

sensors were tested using reflectance data collected through field spectrometers from 

several lakes in Nebraska, the Chesapeake Bay, and Lake Kinneret, Israel. These waters 

constitute a wide range of biophysical characteristics. The objective was to test whether 

the NIR-red models yield consistently high accuracies over a wide range of chl-a 

concentrations, especially in the low-to-moderate range. It was also tested whether the 

models have a steady correlation with chl-a concentration in spite of variations in the 

biophysical characteristics of the water body.  
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Chapters 3 and 4 deal with the second challenge. The problem of reliable 

atmospheric correction has not been dealt with in an absolute sense but in a relative sense 

in terms of their effects on the performance of the NIR-red models. Chapter 3 contains 

the results of applying the NIR-red models to aircraft data, which was done as an 

intermediate step before applying the models to satellite data. At a low-flying aircraft 

altitude of about 10,000 ft above ground, the sensor sees through a far less amount of the 

Earth’s atmosphere than a space-borne satellite would see through. Moreover, the 

flexibility offered by aircraft image acquisition in terms of flight planning and the 

adjustability of spectral characteristics, as well as high spatial resolution, make aircraft 

data an useful and essential platform for testing the NIR-red spectral models before 

applying them to satellite data.  

The first half of Chapter 4 illustrates the close correlations that the NIR-red 

models have with phytoplankton biophysical characteristics in general and chl-a 

concentration in particular, when the models were applied to MODIS and MERIS data. 

The second half of the chapter describes the development of NIR-red algorithms to 

estimate chl-a concentration from MERIS data, the validation of the algorithms, and the 

issues and challenges involved in developing such algorithms for universal application to 

satellite data routinely acquired over inland, estuarine, and coastal waters around the 

globe. The summary and intended future work are presented in Chapter 5. 
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Chapter 2. Accuracy Assessment of NIR-red Models with 

MODIS and MERIS Wavebands 

The objective of this chapter was to test the accuracy of the NIR-red models (with 

wavebands that match the spectral channels of MODIS and MERIS sensors) in estimating 

a wide range of chl-a concentrations, using reflectance data collected with field 

spectrometers, with special attention given to low-to-moderate chl-a concentrations. The 

excellent results from the NIR-red models as reported in previous studies (Dall'Olmo and 

Gitelson 2005; Dall'Olmo et al. 2005; Gitelson et al. 2007; Gitelson et al. 2008) were 

largely due to the moderate-to-high chl-a concentrations in the respective datasets, while 

uncertainties still remained in the low-to-moderate range. In this chapter, particular focus 

has been given to the low-to-moderate chl-a concentrations, which are typical for inland, 

estuarine, and coastal waters. In addition, the ability of the NIR-red models to account for 

biophysical and bio-optical variability in water has also been analyzed.  

Thus, the specific question addressed was whether the MODIS and MERIS NIR-

red models can consistently explain variations in chl-a concentrations for waters with 

widely varying biophysical characteristics so as to enable the development of robust 

algorithms that can be universally applied to satellite data for estimating chl-a 

concentration in inland, estuarine, and coastal waters.  

2.1. The MODIS and MERIS NIR-red Models 

 The MODIS and MERIS NIR-red models are based on the NIR-red model 

developed by Dall’Olmo and Gitelson (2005). The model is based on a fundamental 
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relationship between the remote sensing reflectance ( ) and the optical properties of 

water, given by Gordon’s model (Gordon et al. 1975) 

rsR

b

b
rs ba

bR
+

∝ ,  

where, a is the absorption coefficient, and  is the back-scattering coefficient. bb

 The absorption coefficient a is the sum of the absorption coefficients of water 

(aw), phytoplankton (aph), non-algal particles (anap), and colored dissolved organic matter 

(aCDOM). 

 Using Gordon’s model as the foundation, the NIR-red model was designed by 

choosing three optimal wavelengths such that the contributions due to absorption by 

constituents other than chl-a and the back-scattering by particular matter are kept to a 

negligible minimum and the model output is maximally sensitive to variations due to 

spectral contributions from chl-a. The three-band NIR-red model is of the form 

(Dall’Olmo and Gitelson 2005), 

  chl-a ∝ ( )
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1λ  is in the red region at around 670 nm where there is maximal absorption by 

chl-a and some absorption by other constituents. 2λ  is at a longer wavelength than 1λ , 

where absorption by chl-a is minimal and absorption by other constituents is about the 

same as at 1λ . Thus  is a measure of the absorption due to chl-a and other 

constituents and  is a measure of the absorption due to constituents other than chl-a. 

The back-scattering coefficient is considered spectrally uniform across the range of 
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wavelengths considered – 1λ  through 3λ  (Dall'Olmo and Gitelson 2005). The subtraction 

of  from  isolates the absorption by chl-a as shown below: 1
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3λ  is at a wavelength beyond 2λ , in the NIR region, where there is no absorption 

by any constituent and the absorption by water is much greater than the total back-

scattering such that >>  and a ~ .  
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Considering the fact that aw is independent of the concentrations of the 

constituents in water and ignoring its dependence on the temperature of water (thus, aw is 

constant at each wavelength), the equation for the spectral algorithm becomes, 

  ( ) ph
11   

321
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λλλ . 

aCaa -chl
*
phph    ×= , where  is the specific absorption coefficient 

of phytoplankton, and is the concentration of chl-a. Thus, 

*
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For waters that do not have significant concentrations of non-algal particles and 

colored dissolved organic matter, the subtraction of  in the model can be dropped 

(Dall'Olmo and Gitelson 2005), leading to a special case two-band NIR-red model 

(Stumpf and Tyler 1988), given by, 

1
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                                                                          (2.2) -aRR chl  
31
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MERIS has spectral bands centered at 665 nm (band 7), 681 nm (band 8), 708 nm 

(band 9), and 753 nm (band 10) in the red and NIR regions. MODIS has spectral bands 

centered at 667 nm (band 13), 678 nm (band 14) and 748 nm (band 15) in the red and 

NIR regions. The 681 nm MERIS band and 678 nm MODIS bands were not considered 

because of their proximity to chl-a fluorescence wavelength, which might affect the 

accuracy of chl-a estimation due to the variable quantum yield of fluorescence 

(Dall'Olmo and Gitelson 2006). Thus, for MERIS, 1λ , 2λ , and 3λ  were 665 nm, 708 nm, 

and 753 nm, respectively. For MODIS (with no spectral band available at 2λ ), 1λ  and 3λ  

were 667 nm and 748 nm, respectively.  

Considering the spectral band locations for MERIS, another case of a two-band 

model was considered, which takes advantage of the reflectance peak around 700 nm, 

which is in the region of the MERIS 2λ  band. This peak is caused by the combination of 

diminishing absorption by chl-a and increasing absorption by water (Vasilkov and 

Kopelevich 1982; Gitelson 1992). This model is fundamentally different from the 

previously mentioned two-band model (equation (2.2)) and is of the form, 

                       (2.3) -aRR chl  
21

1 ∝×−
λλ

Thus the NIR-red models used in this study were formulated as follows: 

Three-Band MERIS NIR-red Model: ( ) 753
1

708
1

665-Chl RRRa ×−∝ −−        (2.4) 

Two-Band MERIS NIR-red Model: ( )708
1

665-Chl RRa ×∝ −                   (2.5) 

Two-Band MODIS NIR-red Model: ( )748
1

667-Chl RRa ×∝ −                  (2.6) 
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2.2. Field Measurements 

  In situ reflectance data were collected from repeated data collection campaigns at 

several lakes in Nebraska, viz., Fremont State Lakes 01, 03, 05, and 20, Lake 

Christensen, Copper Dollar Cove, Cedar Creek, and Lake Benak, in the summer of 2005, 

and Fremont State Lakes 01, 02, 03, 04, 05, 16, 17, 18, and 20 in the summer of 2008. 

The upwelling radiance and downwelling irradiance spectra were collected using two 

Ocean Optics® USB2000 radiometers deployed from a boat. The radiometers recorded 

radiances over the wavelength range of 349 nm – 1017 nm, at 0.3 nm sampling intervals, 

with a spectral resolution of 1.5 nm and a signal-to-noise ratio of 250:1. 

Radiometer #1 was connected to a 25° field-of-view optical fiber that was taped 

to a measurement stick and pointed towards nadir to measure the upwelling radiance. The 

stick was held such that the tip of the optical fiber was just beneath the water surface and 

as far away from the boat as possible on the sun-lit side in order to avoid light rays 

reflected from the boat and the effects of the boat shadow. Windy and choppy conditions 

on the water bodies affected the ability to hold the measurement stick such that the tip of 

the optical fiber was just beneath the water surface. As a result, on several occasions, the 

tip of the optical fiber was actually a few centimeters below the surface instead of being 

‘just-below’. However, errors in estimated chl-a concentrations due to such unavoidable 

variations in the depth of the tip position were small (Gitelson et al. 2008).  

Radiometer #2 was connected to an optical fiber that was equipped with an almost 

180° field-of-view cosine collector that was mounted on a mast and held vertically up at 

the highest possible spot on the boat such that the cosine collector had a clear 180° field-

of-view of the downwelling solar irradiance. The upwelling radiance and the 
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downwelling irradiance were recorded simultaneously. At each station, several sets of 

measurements were taken such that there were at least six virtually overlaying upwelling 

radiance spectra, the median of which was taken as the representative spectrum. The 

radiometers recorded the radiances and irradiances as digital counts. Measurements were 

also taken over a flat Spectralon® calibration panel with a known reflectance in order to 

account for the differing solar/sky illumination conditions and convert the digital counts 

to reflectance values.  

In addition to radiance data, ancillary data such as the Secchi disk depth, turbidity, 

and water temperature were also taken. Water samples were collected at each station and 

kept in an ice-cooler in the boat during data collection. These samples were analyzed in 

the laboratory immediately after the crew returned from the field campaign. 

 

2.3. Laboratory Measurements 

Water samples collected at each station were filtered through Whatman GF/F 

glass filters. Chl-a was extracted in hot ethanol and its concentration was determined 

fluorometrically (Welschmeyer 1994). The concentration of total suspended solids (TSS) 

was measured by gravimetric analysis (Dall'Olmo and Gitelson 2005; Gitelson et al. 

2008). 

2.4. Application of the NIR-red models 

The measured radiance data were converted to remote sensing reflectance, , 

as, 
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where,  is the upwelling radiance from the water,  is the downwelling solar 

irradiance,  is the upwelling radiance from the calibration panel,  is the 

downwelling solar irradiance at the time of calibration measurements,  is the known 

reflectance of the calibration panel, t is the transmittance of water (0.98), n is the 

refractive index of water (1.33), and  is the immersion factor, which accounts for the 

difference between the in-air and in-water absolute response of the radiometer (Austin 

1976; Mueller and Austin 1995; Zibordi 2006), and was calculated using the formula 

used in (Ohde and Siegel 2003). The in situ measured reflectance data were averaged to 

match the bandwidths (~ 10 nm) of the MERIS and MODIS spectral channels. 

uL dE

calL calE

calR

iF

2.4.1. 2005 Nebraska Lakes Data 

The dataset collected in 2005 showed significant variations in biophysical 

parameters of lakes, such as the concentrations of chl-a and TSS, the turbidity, and the 

Secchi disk depth (Table 2.1). Chl-a concentrations ranged from 1.2 mg m-3 to 202.8 mg 

m-3 and there was up to a sixteen-fold variation in TSS concentration. The concentrations 

of chl-a and TSS varied almost independent of each other (figure 2.1), confirming that 

the waters sampled were Case II waters (Morel and Prieur 1977). The remote sensing 

reflectance spectra were similar in shape and magnitude to those from typical turbid 

productive waters (Lee et al. 1994; Gitelson et al. 2000; Dall'Olmo and Gitelson 2005; 

Schalles 2006), with significant variations in the visible and near-infrared regions (figure 

2.2). The reflectances were characterized by (i) low values in the blue region (400 – 500 

nm) due to high absorption by chl-a, TSS, and CDOM, (ii) a local maximum in the green 

region (around 550 nm) due to decreased absorption by all constituents, (iii) a local 

minimum around 625 nm due to absorption by phycocyanin in lakes where phycocyanin 
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was present, (iv) a local minimum in the red region (around 670 nm) due to absorption by 

chl-a, (v) a local maximum in the region between 690 nm and 720 nm due to the 

combined effect of decreasing absorption by chl-a and increasing absorption by water, 

and (vi) low values in the NIR region beyond 750 nm due to high absorption by water. 

The coefficient of variation of reflectance was highest in the 700 – 800 nm region. In this 

region, reflectance is controlled mostly by scattering by particulate matter. The high 

magnitude of the coefficient of variation in the 700 – 800 nm region suggests a wide 

variation in the concentration of suspended particulate matter. 

 
 
Parameter 

 
Min. 

 
Median

 
Max. 

 
Mean

Standard 
Deviation

Coefficient 
of 
Variation 

Number 
of 
Samples 

Secchi Disk 
Depth (m) 

0.23 0.94 3.71 1.08 0.74 0.7 81 

Turbidity 
(Nephelometric 
Turbidity Units) 

1.57 6.71 52.5 13.24 12.6 0.95 83 

TSS (g m-3) 2 7.6 32.5 11.28 8.73 0.77 64 
ISS (g m-3) 0 1.2 10.8 1.77 2.24 1.27 35 
Chl-a (mg m-3) 1.2 15 202.8 41.15 50.11 1.22 83 
 

Table 2. 1. Summary of the ancillary data for 2005. 
 

Chl-a  = 4.2758*TSS - 8.0244
r2 = 0.56
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Figure 2. 1. Plot of TSS concentration versus chl-a concentration for waters sampled 
from Nebraska lakes in 2005. 
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Figure 2. 2. Remote sensing reflectance (Rrs) spectra for waters sampled in 2005. The 
coefficient of variation of reflectance is plotted in red. 
 
 

The three-band and two-band model values (equations (2.4) – (2.6)) were 

calculated for the reflectance data collected at 83 stations (figures 2.3(a) through 2.5). 1λ  

(at 665 nm for the MERIS models (equations (2.4) and (2.5)); at 667 nm for the MODIS 

model (equation (2.6)) was chosen such that  is a measure of absorption that is 

primarily due to chl-a. However, chl-a absorption was not the only factor that influenced 

. Factors such as scattering due to suspended solids (figure 2.3(b)) and absorption 

due to non-algal particles and dissolved organic matter also contributed to . Because 

of this, even though the absorption due to chl-a increased with increase in chl-a 

concentration,  did not have a steady positive linear correlation with chl-a 

concentration. The relationship, in fact, had a negative slope (figure 2.3(a)). A positive 

correlation was seen for chl-a above 160 mg m

1
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-3, where the absorption due to chl-a is so 

strong as to mask the contributions from the other factors. The reciprocal reflectance at 
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2λ  (708 nm), , which is influenced by absorption due to non-algal particles and 

colored dissolved organic matter, and scattering by suspended solids, was related to the 

concentration of total suspended solids (figure 2.3(b)). The subtraction of  from  

yielded a positive correlation with chl-a concentration (figure 2.3(c)). However, in 

addition to absorption by chl-a, the relationship was also strongly affected by 

backscattering by suspended solids. Multiplication by , which accounts for scattering 

by suspended solids, resulted in a close linear relationship between the three-band model 

values and chl-a concentration, with a coefficient of determination (r
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Figure 2. 3. Plots of (a) chl-a concentration versus the reciprocal reflectance at 665 nm, 
(b) TSS concentration versus the reciprocal reflectances at 665 nm and 708 nm, (c) chl-a 
concentration versus ( )1

708
1

665
−− − RR , (d) chl-a concentration versus the three-band MERIS 

NIR-red model, for the 2005 Nebraska lakes dataset. 
 

The reflectance in the MERIS 708 nm band is highly affected by the reflectance 

peak around 700 nm (Vasilkov and Kopelevich 1982). The magnitude of this peak 
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depends on the concentrations of chl-a and suspended solids and its position shifts toward 

longer wavelength as chl-a concentration increases (Gitelson 1992). The two-band 

MERIS NIR-red model,  took advantage of the effect of this reflectance peak 

and the reflectance minimum around 665 nm due to maximal absorption by chl-a. The 

model values had a close linear relationship with chl-a concentration (figure 2.4), with a 

coefficient of determination of 0.93. 
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Figure 2. 4. Plots of (a) chl-a concentration versus reflectance in the MERIS 708 nm 
band, and (b) chl-a concentration versus the two-band MERIS NIR-red model, for the 
2005 Nebraska lakes dataset. 
 

The two-band MODIS NIR-red model does not involve the subtraction of , 

which accounts for the absorption due to constituents other than phytoplankton 

(Dall'Olmo and Gitelson 2005; Gitelson et al. 2008). Nevertheless, for the whole range of 

chl-a concentrations considered (1.2 mg m

1
2

−
λR

-3 to 202.8 mg m-3), the two-band MODIS 

NIR-red model had a close linear correlation with chl-a concentration (figure 2.5), with a 

coefficient of determination of 0.92, which is comparable to that for the three-band 

MERIS NIR-red model and the two-band MERIS NIR-red model. The subtraction of  

became critical for low-to-moderate chl-a concentrations. Compared to the three-band 

and the two-band MERIS NIR-red models, the two-band MODIS NIR-red model was 

1
2

−
λR
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virtually insensitive to chl-a concentrations less than 25 mg m-3 (figure 2.6) and proved 

unreliable for estimating chl-a concentration below 25 mg m-3. This is because the 

reflectance at 748 nm ( 3λ  for the two-band MODIS NIR-red model) is mostly influenced 

only by scattering due to suspended particles and is not affected by changes in chl-a 

concentration. Moreover, the reflectance in MODIS 1λ  waveband is affected by 

contribution from other constituents and is not closely related to chl-a concentration 

(figure 2.3(a)). Thus the numerator and the denominator in the two-band MODIS NIR-

red model are strongly affected by factors other than chl-a absorption, which is especially 

the case at low-to-moderate chl-a concentration.  
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Figure 2. 5. Plot of chl-a concentration versus two-band MODIS NIR-red model for the 
2005 dataset. 
 
2.4.2. 2008 Nebraska Lakes Data 

 Similar to the 2005 dataset, the 2008 dataset also had significant variations in 

biophysical parameters such as the concentrations of chl-a and TSS, the turbidity, and the 

Secchi disk depth (Table 2.2). The chl-a concentration ranged from 2.07 mg m-3 to 103.4 

mg m-3, whereas TSS concentration varied from 1.19 g m-3 to 15 g m-3. The high 

concentrations of chl-a and TSS and the weak correlation between them (figure 2.7) 

confirmed that the waters sampled were turbid and productive Case II waters. Figure 2.8 
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shows the reflectance spectra for the waters sampled. As with the 2005 Nebraska lakes 

data, there were significant variations in reflectance in the visible and NIR regions. There 

were fewer lakes with significant concentrations of phycocyanin. 
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Figure 2. 6. Plots of chl-a concentration versus (a) three-band MERIS NIR-red model, 
(b) two-band MERIS NIR-red model, and (c) two-band MODIS NIR-red model, for the 
2005 dataset. 
 
 
 
Parameter 

 
Min. 

 
Median

 
Max.

 
Mean

Standard 
Deviation 

Coefficient 
of 
Variation 

Number 
of 
Samples 

Secchi Disk 
Depth (cm) 

0.51 0.96 4.2 1.21 0.71 0.59 85 

Turbidity 
(Nephelometric 
Turbidity Units) 

1.51 6.95 19.2 7.7 4.45 0.58 85 

TSS (g m-3) 1.19 6.8 15 7.22 3.22 0.45 85 
ISS (g m-3) 0.15 0.80 3.5 0.98 0.64 0.66 84 
Chl-a (mg m-3) 2.07 23.07 103.4 26.28 18.13 0.69 85 
 

Table 2. 2. Summary of the ancillary data for 2008 
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Figure 2. 7. Plot of TSS concentration versus chl-a concentration for waters sampled 
from Nebraska lakes in 2008. 
 

 

Figure 2. 8. Remote sensing reflectance (Rrs) spectra for waters sampled in 2008. The 
coefficient of variation of reflectance is plotted in red. 
 

Figures 2.9(a) through 2.9(d) show the step-by-step plots for each term in the 

three-band MERIS NIR-red model for the 2008 data. As it was with the 2005 data, the 

reciprocal reflectance at 665 nm was affected by absorption by constituents other than 

chl-a and scattering by suspended solids (figure 2.9(b) in addition to absorption by chl-a. 

This resulted in a negative correlation between  and chl-a concentration, which was 

more pronounced at low-to-moderate chl-a concentrations (figure 2.9(a)).  

1
665
−R
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The reciprocal reflectance at 708 nm, , had a strong correlation with TSS 

concentration (figure 2.9(d)). The subtraction, – , resulted in the removal of the 

effects due to absorption by constituents other than chl-a, leading to a better correlation 

with chl-a concentration (figure 2.9(c)) than  had (figure 2.9(a). But the relationship 

was still affected by backscattering by suspended solids. This was rectified by 

multiplying ( – ) with , leading to a very close relationship with chl-a 

concentration, with a coefficient of determination of 0.94 (figure 2.9(d)). 
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Figure 2. 9. Plots of (a) chl-a concentration versus the reciprocal reflectance at 665 nm, 
(b) TSS concentration versus the reciprocal reflectances at 665 nm and 708 nm, (c) chl-a 
concentration versus ( )1

708
1

665
−− − RR , (d) chl-a concentration versus the three-band MERIS 

NIR-red model, for the 2008 dataset. 
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Figure 2. 10. Plots of (a) chl-a concentration versus reflectance at 708 nm, and (b) chl-a 
concentration versus the two-band MERIS NIR-red model, for the 2008 dataset.   
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Figure 2. 11. Plot of chl-a concentration versus two-band MODIS NIR-red model for the 
2008 dataset. 
 

The two-band MERIS NIR-red model and the two-band MODIS NIR-red model 

also had close linear relationships with chl-a concentration, with coefficients of 

determination 0.95 and 0.78, respectively (figures 2.10 and 2.11). However, as it was for 

the 2005 dataset, the two-band MODIS NIR-red model was less sensitive to low-to-

moderate chl-a concentrations (< 25 mg m-3) than the three-band and the two-band 

MERIS NIR-red models were (figure 2.12), as evidenced by the looser fit of data points 

around the regression line, re-establishing the fact that the two-band MODIS NIR-red 

model is not reliable for estimating low-to-moderate chl-a concentrations. Due to the low 



 26

accuracy and unreliability of the two-band MODIS NIR-red model at low-to-moderate 

chl-a concentrations, no attempt was made to calibrate this model for potential use with 

satellite and aircraft data. 
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Figure 2. 12. Plots of chl-a concentration versus (a) three-band MERIS NIR-red model, 
(b) two-band MERIS NIR-red model, and (c) two-band MODIS NIR-red model, for the 
2008 dataset. 
 

2.5. Choosing the Best NIR-red Model 

The three NIR-red models (equations (2.4) through (2.6)) were compared against 

each other in order to choose the most suitable model for application to aircraft and 

satellite data. 
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2.5.1. Comparison between the two-band MODIS and the two-band MERIS NIR-

red models 

 The two-band MODIS NIR-red model and the two-band MERIS NIR-red model 

have virtually the same denominator (  and  respectively). The models differ in 

their numerator (  for the two-band MODIS NIR-red model and  for the two-

band MERIS NIR-red model).  

667R 665R

748R 708R

A fundamental assumption in the NIR-red models is the spectral independence of 

backscattering by suspended particles (Dall'Olmo and Gitelson 2005) throughout the 

wavelengths considered ( 1λ  through 3λ ). However, the absorption by water at 748 nm is 

much higher than that at 667 nm, and with the exponential decrease in particulate 

backscattering toward longer wavelengths, the reflectance at 748 nm had a very different 

relationship with inorganic suspended solids (ISS) concentration than did the reflectance 

at 667 nm (figure 2.13).  For instance, for the 2008 Nebraska lakes data, the linear 

regression of  versus ISS concentration had a slope of 0.001 and an intercept of 

0.0022 Sr

667R

-1. The corresponding figures were 0.0003 and 0.0007 Sr-1 respectively for , 

thus indicating that the effect of scattering by ISS on the recorded reflectance is 

significantly different at 748 nm than at 667 nm. Thus, in the two-band MODIS NIR-red 

model, the multiplication by  does not produce the desired outcome of removing the 

effects of scattering by suspended particles. This makes the two-band MODIS NIR-red 

model susceptible to random variations due to scattering by inorganic suspended 

particles, which is pronouncedly seen at low-to-moderate chl-a concentrations (figure 

2.12). 

748R

748R
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Due to the proximity of the 665 nm and 708 nm bands, the effects of scattering by 

inorganic suspended solids were almost similar at these two wavebands. The slopes and 

offsets of the relationships between the reflectances at 665 nm and 708 nm and ISS 

concentration were very similar (figure 2.13). Thus, the ratio 665708 RR  essentially 

cancelled out the effect of scattering by ISS, thereby making the two-band MERIS NIR-

red model maximally sensitive to variations in chl-a concentration and minimally 

sensitive to scattering by ISS.  
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Figure 2. 13. Plots of ISS concentrations versus reflectance at (a) 665 nm (MERIS 1λ ), 
(b) 667 nm (MODIS 1λ ), (c) 708 nm (MERIS 2λ ), and (d) 748 nm (MODIS 3λ ) for the 
2008 Nebraska lakes data. 
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2.5.2. Comparison between the three-band and the two-band MERIS NIR-red 

models 

The two-band MERIS NIR-red model was more reliable than the three-band 

MERIS NIR-red model for estimating chl-a concentration. This is because the reflectance 

at 3λ  (753 nm), which does not depend on chl-a concentration, is susceptible to 

variations due to scattering by inorganic suspended solids. The reflectance at 753 nm 

bears a significantly different relationship with the concentration of ISS than do the 

reflectances at 665 nm and 708 nm (figures 2.13 (a) and (b) and figure 2.14), thereby 

invalidating the assumption of spectral independence of scattering by suspended particles 

in the wavelength range from 1λ  through 3λ . Thus the effects of scattering by ISS are not 

fully removed in the three-band MERIS NIR-red model. This introduces uncertainties in 

chl-a estimation by the three-band MERIS NIR-red model, especially at low-to-moderate 

chl-a concentrations, where (i)  is greatly affected by scattering by suspended solids, 

and (ii)  is very small and minor differences in its magnitude cause significant 

changes in the output of the three-band model.  

665R

3λR

The two-band MERIS NIR-red model takes full advantage of the reflectance 

trough around 665 nm due to absorption by chl-a and the reflectance peak near 700 nm 

which is related to both chl-a and suspended solids concentrations. Thus the two-band 

MERIS NIR-red model is very sensitive to variations in chl-a concentration and is stable, 

reliable, and accurate over a wide range of chl-a concentrations, and is the best suited 

model for application to satellite data. 
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Figure 2. 14. Plot of ISS concentrations versus reflectance at 753 nm for the 2008 
Nebraska lakes data. 

 

2.6. Universal Applicability of Chl-a Algorithms Derived from MERIS 

NIR-red Models 

 With the ultimate goal being the development of NIR-red algorithms that can be 

universally applied to satellite data, it was of particular interest to test whether the 

parameters of the relationship between the NIR-red models and chl-a concentrations 

obtained from the data collected from Nebraska lakes are valid for waters from different 

geographic locations with widely varying biophysical characteristics. Given the limitation 

of the two-band MODIS NIR-red model for low-to-moderate chl-a concentrations, only 

the three-band and the two-band MERIS NIR-red models were tested. 

The three-band and two-band MERIS NIR-red models had a much closer 

correlation with chl-a concentration for the 2008 dataset than for the 2005 dataset 

(figures 2.3 through 2.5 and 2.9 through 2.11). This can be attributed to the significant 

improvements implemented in 2008 in the techniques for collecting the reflectance data 

and measuring chl-a concentration from water samples. 
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The instrument set-up was kept the same for the whole season of data collection 

in 2008 by using the same calibration panel and the same set of Ocean Optics radiometers 

and optical fibers was used for measuring the upwelling radiance and downwelling 

irradiance. Thus the uncertainties in the data due to differences in the reflectance of the 

calibration standard and different transmission functions of the radiometers and the 

optical fibers were eliminated. In 2005, different calibration panels, and different sets of 

radiometers and optical fibers were used throughout the season. This meant that the data 

were subject to non-uniform effects due to the different transmission functions of the 

instruments.  

The fluorometer readings were not completely stable and precise during the data 

collection season. There were random variations up to 5% due to instrument imprecision. 

The instrument was calibrated about every two-three months. However, the fluorometer 

readings were not stable across different calibrations. For example, when the same water 

samples were fluorometrically analyzed with successive calibrations, a difference up to 

30% was found in the measured chl-a concentration between the two calibrations. In 

2008, in order to account for this difference, Daniela Gurlin at the School of Natural 

Resources, University of Nebraska-Lincoln, measured a chl-a standard curve for each 

calibration and applied a correction factor to all the readings. Such a correction was not 

applied to the 2005 dataset because the errors resulting from successive calibrations were 

not monitored.  

Thus the reflectance measurements and in situ chl-a concentrations were more 

accurate and reliable in the 2008 dataset than in the 2005 dataset, leading to a closer 

correlation between the NIR-red models and chl-a concentration for the 2008 dataset. 
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The potential universality of the relationships obtained from the 2008 Nebraska lakes 

dataset for the three-band and two-band MERIS NIR-red models were tested using data 

from the 2005 Nebraska lakes dataset and data from the Chesapeake Bay and Lake 

Kinneret, Israel.  

 The three-band and the two-band MERIS NIR-red models had the following 

linear relationships with chl-a concentration for the whole range of chl-a concentrations 

measured in 2008 (figure 2.15). 
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Figure 2. 15. Plots of the (a) three-band and the (b) two-band MERIS NIR-red models 
versus chl-a concentrations for 2008 Nebraska lakes data set. 
 

2.6.1. Comparison with 2005 Nebraska Lakes Data 

2.6.1(a). Three-Band MERIS NIR-red Model: 

The slope and offset of the relationship between the three-band MERIS NIR-red 

model and chl-a concentration for the 2005 Nebraska lakes dataset were 179.86 and 

16.037 mg m-3 respectively (figure 2.16), which were quite different than the 

corresponding figures for the 2008 Nebraska lakes dataset (equation (2.8)). When the 

algorithm derived from the 2008 dataset (equation (2.8)) was applied to the 2005 data, 
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which had chl-a concentrations ranging from 1.2 to 202.8 mg m-3, the Root Mean Square 

Error (RMSE) of chl-a estimation was 19.74 mg m-3 (figure 2.17).  
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Figure 2. 16. Plot of the three-band MERIS NIR-red model versus chl-a concentration 
for the 2005 dataset. The red dashed line is the line of linear regression of the three-band 
MERIS NIR-red model with chl-a concentration for the 2008 dataset. 
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Figure 2. 17. Plot of chl-a concentrations measured in situ in 2005 versus chl-a 
concentrations estimated using the 2008 three-band MERIS NIR-red algorithm. 
 

2.6.1(b). Two-Band MERIS NIR-red Model: 

 The slope and offset of the relationship between the two-band MERIS NIR-red 

model and chl-a concentration for the 2005 dataset, 64.038 and -48.46 mg m-3 

respectively (figure 2.18), were quite close to the corresponding figures for the 2008 

dataset (equation (2.9)). When the algorithm derived from the 2008 dataset (equation 
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(2.9)) was applied to the 2005 data, the RMSE was 13.13 mg m-3 (figure 2.19), which is 

much lower than that for the three-band MERIS NIR-red model (figure 2.17). 
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Figure 2. 18. Plot of the two-band MERIS NIR-red model versus chl-a concentration for 
the 2005 dataset. The red dashed line is the line of linear regression of the two-band 
MERIS NIR-red model with chl-a concentration for the 2008 dataset. 
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Figure 2. 19. Plot of chl-a concentrations measured in situ in 2005 versus chl-a 
concentrations estimated using the 2008 two-band MERIS NIR-red algorithm. 
 

2.6.2. Comparison with 2009 Lake Kinneret Data 

 Measurements of in situ chl-a concentration and surface reflectance were taken at 

Lake Kinneret on 13th May, 26th May, 31st May, and 15th June of 2009 by Dr. Yosef 

Yacobi and the crew at the Kinneret Limnological Laboratory, Israel. The lake, which is 
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usually eutrophic in this season, was uncharacteristically not productive during the time 

of data collection, resulting in chl-a concentrations less than 21 mg m-3.  

For the 2008 Nebraska dataset, the relationships between the three-band and two-

band MERIS NIR-red models and chl-a concentration were not perfectly linear for the 

whole range of chl-a concentrations. A slight change in slope can be observed for chl-a 

concentration less than 25 mg m-3 (figure 2.15). Considering the low chl-a concentrations 

in the Lake Kinneret dataset, regression equations from the 2008 dataset for chl-a 

concentrations in the range 0-25 mg m-3 (equations (2.10) and (2.11); figure 2.20) were 

chosen instead of the regression equations for the entire range of chl-a concentrations.  
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Figure 2. 20. Plots of the (a) three-band and the (b) two-band MERIS NIR-red models 
versus chl-a concentrations for the 2008 Nebraska lakes dataset for chl-a < 25 mg m-3. 
 

The linear regression equations for the three-band and two-band MERIS NIR-red 

models from the 2008 dataset were, 

For chl-a < 25 mg m-3, 

      (2.10) 516.19]redNIR MER BandThree[27.142Chl += ---a

       (2.11) 895.25]redNIR MER BandTwo[535.45Chl −= ---a
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2.6.2(a). Three-Band MERIS NIR-red Model:

 The overall relationship between the three-band MERIS NIR-red model and chl-a 

concentration was reasonably good, with a coefficient of determination of 0.89. Figure 

2.21 shows a plot of three-band MERIS NIR-red model values versus chl-a 

concentration. The red dotted line represents the linear regression line for the relationship 

between the model values and chl-a concentration for the 2008 Nebraska lakes dataset.  

The plot was characterized by (i) a horizontal scatter of points for chl-a concentration 

below 7 mg m-3 (these points show large variations in model values for virtually the same 

chl-a concentration), (ii) a close correlation between the model values and chl-a 

concentration but a distinctly lower slope than that for the 2008 Nebraska lakes data, for 

chl-a concentrations between 7 and 15 mg m-3, and (iii) a close correlation and a similar 

slope to that for the 2008 Nebraska lakes data, for chl-a concentrations higher than 15 mg 

m-3.  

The horizontal scatter of points for chl-a concentrations below 7 mg m-3, which 

was observed for the two-band MERIS NIR-red model as well (figure 2.23), could be due 

to uncertainties in the fluorometric measurements of chl-a concentration. The effect of 

these uncertainties, which could amount up to 3 mg m-3 (Y. Z. Yacobi, personal 

communication), is more pronounced at low chl-a concentrations and can greatly affect 

the relationship between the model values and low chl-a concentrations. 

The lower slope observed for chl-a concentrations between 7 and 15 mg m-3 could 

be due to the inherent behavior of the three-band NIR-red model at low chl-a 

concentrations. The reflectance at 3λ  depends only on scattering by suspended matter 

and absorption by water, and has no correlation with chl-a concentration. As described in 
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section 2.5.2, the effect of particulate scattering on reflectance is different at 3λ  than at 

1λ  and 2λ . This makes the three-band NIR-red model quite susceptible to variations in 

backscattering coefficient, especially at low chl-a concentrations. It is plausible that the 

suspended particles in Lake Kinneret might have been of a different size distribution than 

those in Nebraska lakes, resulting in distinctly different values for backscattering 

coefficient than those for Nebraska lakes for similar chl-a concentrations. This probable 

difference in backscattering coefficient could explain the difference in slope for chl-a 

concentrations between 7 and 15 mg m-3. Nevertheless, with a lack of actual 

measurements of backscattering coefficient, this reason cannot be affirmed definitely.  

 Due primarily to the performance of the model at low chl-a concentrations, the 

overall slope and offset, 82.804 and 18.089 respectively, were significantly different than 

those from the 2008 Nebraska lakes dataset (equation (2.10)). The algorithm from the 

2008 Nebraska lakes dataset, when applied to the Lake Kinneret dataset, resulted in 

negative chl-a concentrations for several stations. The overall RMSE was 4.78 mg m-3 

(figure 2.22). 

Chl-a  = 82.804x + 18.089
r2 = 0.89
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Figure 2. 21. Plot of the three-band MERIS NIR-red model versus chl-a concentration 
for the Lake Kinneret dataset. The red dashed line is the line of linear regression of the 
three-band MERIS NIR-red model with chl-a concentration for the 2008 dataset. 
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Figure 2. 22. Plot of chl-a concentrations measured in situ in Lake Kinneret versus chl-a 
concentrations estimated using the 2008 three-band MERIS NIR-red algorithm. 
 

2.6.2(b) Two-Band MERIS NIR-red Model:

 The relationship between the two-band MERIS NIR-red model and chl-a 

concentration for the Lake Kinneret data was similar to that for the 2008 Nebraska lakes 

data (figure 2.23). The slope and offset were 42.509 and -23.81 mg m-3, respectively, 

which were similar to the corresponding figures, 45.535 and -25.895 mg m-3, respectively 

(equation 2.11), for the 2008 Nebraska lakes data. As with the plot for the three-band 

MERIS NIR-red model (figure 2.21), there is a horizontal scatter of points for chl-a 

concentrations below 7 mg m-3. In addition to the possibility of uncertainties in 

fluorometric measurements of chl-a concentration, another reason for poorer performance 

of the two-band MERIS NIR-red model at this low chl-a range is that, at low chl-a 

concentrations, the reflectance peak occurs at a much shorter wavelength than 708 nm (at 

around 690-685 nm (Gitelson 1992)).This results in the model benefiting less from the 

reflectance peak, which is crucial to the performance of the two-band MERIS NIR-red 

model. 
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When the algorithm developed using the 2008 Nebraska lakes dataset (equation 

(2.11)) was applied to the Lake Kinneret data, the RMSE was 1.46 mg m-3 (figure 2.24).  
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Figure 2. 23. Plot of the two-band MERIS NIR-red model versus chl-a concentration for 
the Lake Kinneret dataset. The red dashed line is the line of linear regression of the two-
band MERIS NIR-red model with chl-a concentration for the 2008 dataset. 

 

y = 0.9618x + 0.8356
RMSE = 1.46 mg m-3

0

5

10

15

20

25

0 5 10 15 20 25

Measured Chl-a  (mg m-3)

C
hl

-a
 (m

g 
m

-3
) F

ro
m

 2
00

8 
Eq

ua
tio

n 1:1 Line

 

Figure 2. 24. Plot of chl-a concentrations measured in situ in Lake Kinneret versus chl-a 
concentrations estimated using the 2008 two-band MERIS NIR-red algorithm. 
 

2.6.3. Comparison with 2006 Chesapeake Bay Data 

 In April 2006, measurements of in situ chl-a concentration and surface reflectance 

were taken on Choptank River and a few tributaries of the Chesapeake Bay. The dataset 
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contained 11 stations with chl-a concentrations ranging from 6.21 to 34.89 mg m-3. The 

linear regression equations from the 2008 Nebraska lakes data for chl-a concentration 

less than 35 mg m-3 (equations (2.12) and (2.13); figure 2.25) were applied. 

For chl-a < 35 mg m-3, 

      (2.12) 012.21]redNIR MER BandThree[33.166Chl += ---a

       (2.13) 977.29]redNIR MER BandTwo[693.50Chl −= ---a
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Figure 2. 25. Plots of the (a) three-band and the (b) two-band MERIS NIR-red models 
versus chl-a concentrations for the 2008 Nebraska lakes dataset for chl-a < 35 mg m-3. 
 

2.6.3(a). Three-Band MERIS NIR-red Model:

 The three-band MERIS NIR-red model had a very close relationship with chl-a 

concentration, with a coefficient of determination of 0.98 (figure 2.26). The linear 

regression line was almost parallel to that for the 2008 Nebraska lakes data, with an offset 

of about 4 mg m-3 between the two regression lines. When the algorithm developed from 

the 2008 Nebraska lakes data (equation 2.12) was applied to the Chesapeake Bay data, 

the RMSE was 3.63 mg m-3 (figure 2.27). 
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Figure 2. 26. Plot of the three-band MERIS NIR-red model versus chl-a concentration 
for the Chesapeake Bay dataset. The red dashed line is the line of linear regression of the 
three-band MERIS NIR-red model with chl-a concentration for the 2008 dataset. 
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Figure 2. 27. Plot of chl-a concentrations measured in situ in Chesapeake Bay versus chl-
a concentrations estimated using the 2008 three-band MERIS NIR-red algorithm. 
 

2.6.3(b). Two-Band MERIS NIR-red Model:

 The two-band MERIS NIR-red model also had a very close relationship with chl-

a concentration, with a coefficient of determination of 0.97. The linear regression line 

was virtually parallel to the regression line for the 2008 Nebraska lakes data, with an 

offset of about 2 mg m-3 (figure 2.28). When the algorithm developed using the 2008 
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Nebraska lakes data (equation 2.13) was applied to the Chesapeake Bay data, the RMSE 

was 3.42 mg m-3 (figure 2.29). 
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Figure 2. 28. Plot of the two-band MERIS NIR-red model versus chl-a concentration for 
the Chesapeake Bay dataset. The red dashed line is the line of linear regression of the 
two-band MERIS NIR-red model with chl-a concentration for the 2008 dataset. 
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Figure 2. 29. Plot of chl-a concentrations measured in situ in Chesapeake Bay versus chl-
a concentrations estimated using the 2008 two-band MERIS NIR-red algorithm. 
 

2.7. Conclusion 

 The results presented in the preceding sections lead to the following conclusions: 
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1. The MERIS NIR-red models have a high potential for universal applicability 

The data used in the previous section came from waters with widely varying 

biophysical characteristics and from different geographical locations. Yet the MERIS 

NIR-red models, especially the two-band MERIS NIR-red model, had a very stable 

relation with chl-a concentration. The algorithms developed from the 2008 Nebraska 

lakes dataset, when applied to data collected from different water bodies, gave 

accuracies (calculated as ( ) 100ionconcentrat chl of rangeRMSE accuracy ×= -a ) 

higher than 80% for the three-band MERIS NIR-red model and 90% for the two-band 

MERIS NIR-red model. This shows that the algorithms do not need to be re-

parameterized for each different water body. The universal applicability of the 

algorithms needs to be further tested with data from many more turbid productive 

water bodies from different geographic locations and under different climatic 

regimes. Most of the suspended matter in the lakes sampled in 2005 and 2008 was of 

organic nature. On average, ISS composed less than 19% of TSS in the lakes that 

were used to develop the algorithms. The algorithms need to be tested using data 

from lakes with higher proportions of ISS concentration. Nevertheless, the results 

obtained so far provide a firm basis for developing algorithms that can be routinely 

applied to satellite data. 

2. The two-band MODIS NIR-red model is unreliable for estimating low-to-

moderate chl-a concentrations 

This is because the reflectance at 748 nm is not sensitive to variations in chl-a 

concentration since it depends mostly only on scattering by suspended particles in 

addition to absorption by water. The sensitivity of the model to random variations due 
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to scattering by suspended particles is more pronounced at low-to-moderate chl-a 

concentrations (< 25 mg m-3), where the magnitude of reflectance at 748 nm is very 

low. Thus, this model includes one term ( ) that is affected by absorption by chl-a 

and other constituents as well as scattering by suspended particles, and another term 

( ) that is affected only by scattering by suspended particles, in addition to 

absorption by water, which is independent of the concentrations of constituents. The 

ratio, 

667R

748R

667748 RR , does not eliminate the effects of scattering, especially at low-to 

moderate chl-a concentrations. This is because the values of backscattering 

coefficient at 667 nm and 748 nm might be different. Moreover, the two-band 

MODIS NIR-red model does not take advantage of the effect of reflectance peak 

around 700 nm (Gitelson 1992), which is related to chl-a concentration. Nevertheless, 

the model gives reasonably good accuracies for moderate-to-high chl-a 

concentrations and can be applied to satellite data to detect algal bloom conditions 

and also estimate chl-a concentration in such conditions. 

3. The two-band MERIS NIR-red model is more reliable than the three-band 

MERIS NIR-red model 

Due to reasons described in section 2.5.2, the two-band MERIS NIR-red model 

has a definite advantage over the three-band MERIS NIR-red model and is the most 

suitable NIR-red model for application to satellite data. 
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Chapter 3. Application of Satellite-based NIR-red Models to 

Aircraft Data 

 
Testing the NIR-red models using data collected by sensors mounted on low-

flying aircrafts is a good and essential intermediary step before applying the models to 

satellite data. Aircraft data provide several advantages over satellite data for the purpose 

of testing the models. Data acquisitions can be planned to coincide with in situ data 

collections in fine weather conditions. This minimizes the effect of temporal variations in 

the water body between the in situ data collection and the remotely sensed data 

acquisition, and eliminates the loss of remotely sensed data due to adverse atmospheric 

conditions such as cloud cover and haze. At low-flying altitudes, data can be acquired at 

high spatial resolutions in continuously placed narrow spectral bands. With 

programmable scanners, the spectral channel locations can be adjusted to match the 

specific spectral model that is being analyzed. 

This chapter contains results obtained in applying the NIR-red models to data 

from airborne sensors as a prelude to applying the models to satellite data. First, models 

based on optimal spectral bands suggested by Dall’Olmo and Gitelson (2005) were 

tested. Then models based on spectral bands that match the MERIS spectral channels 

were tested. The objective was to test whether the MERIS NIR-red models, which were 

shown to be reliable and accurate for data collected with field spectrometers, yield 

comparable reliability and accuracy for data from airborne sensors. Since an airborne 

sensor sees through a lesser portion of the Earth’s atmosphere than does a space-borne 

sensor, the atmospheric effect on aircraft data will be lesser than on satellite data, but still 
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significant. The sensitivity of the models to non-uniform atmospheric effects on different 

days in a multi-temporal dataset was also analyzed. 

3.1. Data 

In 2008, five images were acquired by Rick Perk, (manager of CALMIT 

Hyperspectral Airborne Monitoring Program at the University of Nebraska-Lincoln), 

over the Fremont State Lakes using the hyperspectral sensor, AISA-Eagle (Airborne 

Imaging Spectrometer for Applications), mounted on a Piper Saratoga aircraft that was 

flown at an altitude of about 3 km above ground. The images were acquired on 02nd July, 

14th July, 26th September, 25th October, and 19th November of 2008, with in situ 

reflectance and chl-a concentrations measured coincidentally on all these days except for 

25th Oct 2008, when the in situ data were collected a day earlier (on 24th Oct 2008). The 

overall dataset contained 35 stations, with a wide range of chl-a concentrations (Table 

3.1). 

 
Date 

 
Min. 

 
Median 

 
Max. 

 
Mean 

Standard 
Deviation 

Coefficient 
of 

Variation 

Number 
of 

Stations 
02 July 08 4.35 16.20 22.68 14.04 6.68 0.48 7 
14 July 08 6.59 13.54 20.80 13.80 5.98 0.43 6 
26 Sep 08 8.47 31.06 68.62 31.11 19.04 0.61 8 
25 Oct 08 9.42 27.02 69.23 32.23 21.33 0.66 6 
19 Nov 08 2.07 20.25 74.19 26.85 25.11 0.94 8 

 
Table 3. 1. Descriptive statistics of chl-a data (in mg m-3) from the five campaigns. 
 

AISA is a programmable imaging spectrometer. A maximum of 256 continuous 

spectral channels are possible in the 400 – 970 nm wavelength range, with spectral 

resolution as high as 2.3 nm. The central wavelength location and the bandwidth of the 

spectral channels are programmable, enabling the acquisition of data with the desired 
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spectral characteristics based on the specific research need. The sensor has a peak signal–

to–noise ratio of 490, obtained for a typical vegetation target. At a flight altitude of about 

10,000 ft (~ 3 km) above ground, the sensor acquires data at a spatial resolution of 2 m. 

More detailed information on the sensor characteristics can be obtained at 

www.specim.fi. The images used in this research had a spectral resolution of 10 nm and a 

spatial resolution of 2 m. 

 

 

Figure 3. 1. Screen-shot of a true-color composite of an AISA image acquired over the 
Fremont State Lakes.  
 
3.2. Application of the NIR-red models 

The at-sensor radiance recorded by the AISA sensor was processed using the 

software CaliGeo (which is the default software for processing raw AISA data) and 

converted to remote sensing reflectance, and the NIR-red models were applied to the 

reflectance data.  
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A three-band model, 

  ( ) 740
1

710
1

671Chl RRR-a ×−∝ −−           (3.1) 

and a two-band model, 

  ( )705
1

675Chl RR-a ×∝ −            (3.2) 

suggested by Dall’Olmo and Gitelson (2005) were considered. The AISA data suffered 

heavily from instrument noise in the NIR region. As a result, reflectances at wavelengths 

beyond 730 nm (where there is high absorption by water) were uncharacteristically high 

and thus unreliable. This is illustrated in figure 3.2, where the AISA at-sensor reflectance 

is plotted together with the reflectance measured in situ with the Ocean Optics® 

radiometers for the same station. Apart from the strong oxygen absorption feature at 760 

nm, there is no spectrally significant atmospheric phenomenon taking place in the range 

730 nm – 800 nm. Therefore, atmospheric correction could not correct the abnormally 

high reflectance values at wavelengths beyond 730 nm (figure 3.2 (b)). Thus the 

abnormally high reflectance values recorded by the AISA sensor are attributable to 

instrument noise, which is particularly more pronounced due to very low signal at this 

spectral region.  

Due to this high influence of instrument noise, the three-band model had to be 

modified with 3λ  at 723 nm, which is within the range recommended by Dall’Olmo and 

Gitelson (2005). For 1λ  and 2λ , AISA spectral channels closest to Dall’Olmo and 

Gitelson’s wavebands were used. Thus, the three-band and two-band NIR-red models 

applied to AISA data were, 

 The Three-Band AISA NIR-red Model: ( ) 723
1

704
1

676Chl RRR-a ×−∝ −−      (3.3) 
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 The Two-Band AISA NIR-red Model: ( )704
1

676Chl RR-a ×∝ −       (3.4) 
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Figure 3. 2. Plots comparing in situ reflectance measured just below the water surface 
using Ocean Optics ® radiometers with (a) AISA at-sensor reflectance and (b) 
atmospherically corrected (using FLAASH (section 3.2.1)) AISA surface reflectance. 

 

When data from the five individual campaigns were plotted separately, both the 

three-band and the two-band NIR-red models (equations (3.1) and (3.2)) consistently had 

very close correlations with chl-a concentrations. The coefficient of determination was 
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higher than 0.85 for the three-band model and higher than 0.87 for the two-band model 

(figures 3.3 and 3.4).  
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Figure 3. 3. Plots of three-band AISA NIR-red model versus in situ chl-a concentration 
for (a) 02nd July, (b) 14th July, (c) 26th Sep, (d) 25th Oct, and (e) 19th Nov 2008 data. 
 



 51

y = 72.764x - 63.855
r2 = 0.93

0

5

10

15

20

25

0.9 1 1.1 1.2

C
hl

-a
 (m

g 
m

-3
)

704
1

676 RR ×−

(a)

 

y = 70.718x - 62.001
r2 = 0.89

0

5

10

15

20

25

0.9 1 1.1 1.2

C
hl

-a
 (m

g 
m

-3
)

704
1

676 RR ×−

(b)

 
y = 131.63x - 117.5

r2 = 0.9

0

20

40

60

80

0.9 1.1 1.3 1.5

C
hl

-a
 (m

g 
m

-3
)

704
1

676 RR ×−

(c)

 

y = 108.15x - 88.981
r2 = 0.87

0

20

40

60

80

0.9 1.1 1.3 1.5 1.7

C
hl

-a
 (m

g 
m

-3
)

704
1

676 RR ×−

(d)

 

y = 156.06x - 132.17
r2 = 0.92

0

20

40

60

80

0.8 1 1.2 1.4

C
hl

-a
 (m

g 
m

-3
)

704
1

676 RR ×−

(e)

 
Figure 3. 4. Plots of two-band AISA NIR-red model versus in situ chl-a concentration 
for (a) 02nd July, (b) 14th July, (c) 26th Sep, (d) 25th Oct, and (e) 19th Nov 2008 data. 
 

However, the slope and offset of the relationships between the model values and 

chl-a concentration varied significantly across the different dates (figures 3.3, 3.4, 3.5(a) 

and 3.6(a)). Thus, for both models, when data from all five campaigns were plotted 

together, the overall relationships between the model values and chl-a concentration were 

significantly poorer (figures 3.5(b) and 3.6(b)) than what was obtained for each 

individual campaign. The overall coefficient of determination was 0.73 for the three-band 
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AISA NIR-red model and 0.72 for the two-band AISA NIR-red model. The data points 

were quite scattered away from the regression lines for chl-a concentrations in the range 

15 – 50 mg m-3. Such inconsistencies in the slope and offset of the relationships impede 

the development of a reliable algorithm that can be routinely applied to remotely sensed 

data acquired on different days. Considering the fact that the NIR-red models, when 

applied to in situ measured reflectance data, had a consistent relationship with chl-a 

concentration for multiple datasets from different water bodies (Chapter 2), these 

differences in slope and offset across the different days are not due to variations in the 

biophysical properties of water. Rather, they are attributable to non-uniform atmospheric 

effects on the AISA images on these different days. Hence, the AISA images were 

atmospherically corrected. 
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Figure 3. 5. Plots of the three-band AISA NIR-red model versus chl-a concentration, 
showing (a) the regression lines for the individual campaigns and (b) the overall 
regression line. 
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Figure 3. 6. Plots of the three-band AISA NIR-red model versus chl-a concentration, 
showing (a) the regression lines for the individual campaigns and (b) the overall 
regression line. 
 

3.2.1. Atmospheric Correction of AISA Images 

 The AISA images were atmospherically corrected using the program FLAASH 

(Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes; developed by Spectral 

Sciences Inc.), which can be obtained as an add-on to the image processing software, 

ENVI (Environment for Visualizing Images), from ITT – VIS (International Telephone 

and Telegraph – Visual Information Solutions). The objective was to test whether 

atmospheric correction could remove the non-uniform atmospheric effects on the AISA 

images and produce results such that the slope and offset of the relationships between the 

NIR-red models and chl-a concentration are similar for all five images. 
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Atmospheric Correction by FLAASH 

FLAASH is a ‘first-principles’ atmospheric correction program. First-principles 

atmospheric correction typically involves three steps, viz., (i) Retrieval of atmospheric 

parameters (primarily, visibility/ optical depth, aerosol type, and column water vapor 

amount), (ii) Solution of the radiative transfer equation using the retrieved/derived 

atmospheric parameters and conversion of the radiance values into reflectance values, 

and (iii) Spectral polishing to remove spectral artifacts that may have been introduced 

during the correction process (Matthew et al. 2002). 

FLAASH is based on the radiative transfer code, MODTRAN 4 (MODerate 

spectral resolution atmospheric TRANsmittance). MODTRAN is an improvement from 

the earlier code, LOWTRAN (LOW resolution TRANsmission). MODTRAN 4 was 

jointly developed by Spectral Sciences Inc. and the Air Force Research Laboratory 

(AFRL). It has all the features and capabilities of the latest version of LOWTRAN, 

LOWTRAN 7, with some upgrades. One of the important upgrades implemented in 

MODTRAN is the higher spectral resolution for calculating gaseous absorption. Spectral 

resolution for absorption measurements is normally expressed in the frequency domain 

(as wavenumbers). LOWTRAN 7 has a spectral resolution of  over the entire 

spectral range of  (or 

120 cm−

10 - 50,000 cm− 0.2 mµ - infinity) (Abreu and Anderson 1996). 

MODTRAN 2/3 had a spectral resolution of  over the range,  (> 

440 nm) and  over the range,  (200 – 440 nm). The latest 

release of MODTRAN 4 has an even higher resolution of (Adler-Golden et al. 

1999). 

12 cm− 10 - 22,680 cm−

120 cm− 122,680 - 50,000 cm−

11 cm−
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Some of the other upgrades include the addition of the multi-stream DISORT 

(DIScrete Ordinate Radiative Transfer) method to handle multiple scattering (Berk et al. 

1998), a Bidirectional Reflectance Distribution Function (BRDF) with adjacency effect 

modeling to account for reflections from adjacent pixels on non-uniform surfaces 

(Acharya et al. 1999; Berk et al. 2000) , and the ability to handle spherical refractive 

geometry for limb observations (Berk et al. 2000). The algorithms for calculating 

multiple scattering have been improved, resulting in better performance of the model for 

data with cloudy or heavy aerosol loading conditions (Berk et al. 1998). 

For the purpose of describing atmospheric profiles for the spectral modeling of 

atmospheric radiative processes and for calculating the atmospheric gaseous absorption, 

MODTRAN takes into consideration the seven principal atmospheric gases, viz., 

, and also trace gases, such as, NO, ,  , 

,   , etc. (Abreu 

and Anderson 1996). The importance of atmospheric gases is judged not based on their 

concentrations but on their contribution to atmospheric radiative processes. 

2 2 3 2 4H O, CO , O , N O, CO, CH ,  and O2 2SO 2NO

3NH 3HNO , OH, HF, HCl, 3HBr, HOCl, CH Cl, 2 2 2 2 2H O , C H , H S, 3PH

FLAASH essentially serves as a user-interface to MODTRAN 4. As such, with 

the way the program is designed, it gives limited control to the user to choose and change 

the processing parameters. FLAASH is rather simple to execute in terms of the 

procedures as long as the user is able to specify appropriate input parameters. Default 

values or appropriate guesses (based on theoretical estimates or information from the 

literature) are used as input parameters when user-supplied data are not available. 

Atmospheric correction is implemented as an iterative process in which the spectral 

information from the image is used to determine atmospheric parameters. The input 
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parameters that describe the atmosphere serve as initial values that direct the iterative 

processes towards convergence. Accurate input parameters are helpful in achieving quick 

convergence, by way of reducing the number of iterations, but do not generally change 

the spectral shape of the final output reflectance significantly. Figures 3.7 and 3.8 show 

screen-shots of the Graphical User Interface (GUI) windows that FLAASH uses to accept 

the input parameters. 

 

 

Figure 3. 7. Screen-shot of FLAASH GUI for feeding basic input parameters 
 

 The visibility, aerosol scale height, carbon-di-oxide (CO2) mixing ratio are the 

basic atmospheric data parameters required by FLAASH. Since actual measurements of 

these parameters were not available, FLAASH was executed with default values for these 

parameters (visibility 40 km, aerosol scale height 2 km, and CO2 mixing ratio 390 ppm) 
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for all five AISA images. Based on the guidelines from the FLAASH User Manual, the 

atmospheric model was chosen as ‘Mid-Latitude Summer’. Since the AISA data did not 

include strong water absorption channels, the option of retrieving vertical column water-

vapor on a pixel-by-pixel basis was not possible. Thus the program had to assume 

uniform column water-vapor over the whole image. Based on the guidelines from the 

FLAASH User Manual, the atmospheric model, which depends on the geographic 

location and the season of the year, was chosen as ‘Mid-Latitude Summer’ for the 02nd 

July, 14th July, 26th Sep, and 25th Oct images, and ‘Sub-Arctic Summer’ for the 19th Nov 

image.  

The program was executed repeatedly with a different choice each time for the 

aerosol model type. The aerosol types considered were, ‘No Aerosol’, Rural Aerosol, and 

Tropospheric Aerosol. Rural aerosol model represents aerosols in areas that are not 

strongly affected by urban or industrial sources. The particle sizes are a blend of two 

distributions – one large and one small. The tropospheric aerosol model represents clear 

and calm conditions over land, and it consists of the small-particle component of the rural 

model (Gordon and Morel 1983) (FLAASH Module User's Guide 2008). 

As noted earlier, adjusting the input parameters had virtually no effect on the 

spectral shape of the output reflectances. The choice of aerosol model and the initial 

visibility value, which is a measure of the aerosol loading on a given day, affected the 

program’s assumption of the amount of contribution from particulate scattering to the 

input radiance. Accordingly, varying these parameters affected the magnitude of the 

output reflectance, with the shape remaining virtually the same. 
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Figure 3. 8. Screen-shot of FLAASH GUI for feeding advanced input parameters 
 

For each of the three aerosol models considered (No Aerosol, Rural Aerosol, and 

Tropospheric Aerosol), FLAASH was executed on all five AISA images by keeping the 

rest of the input parameters the same. When the input parameters were kept the same for 

all the images, the results were similar to those before atmospheric correction. The NIR-

red model values were closely related to chl-a concentration for each individual image 

but the slope and offset varied across the different images, similar to the pattern observed 

in the results from the uncorrected AISA images. This suggested that FLAASH 

atmospheric correction with the same input parameters for all five images did not 

effectively remove the non-uniform atmospheric effects in the images. Figure 3.9 shows 
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the results for the ‘No Aerosol’ model with initial visibility set as 40 km. A similar 

pattern was obtained for the rural and tropospheric aerosol models as well.  
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Figure 3. 9. Plots of (a) three-band AISA NIR-red model and (b) two-band AISA NIR-
red model versus chl-a concentration for AISA images atmospherically corrected through 
FLAASH with the ‘No Aerosol’ model setting and initial visibility 40 km for all five 
images. 
 

 Based on the uncorrected at-sensor reflectance spectra from the five images 

(figure 3.10), it is apparent that the aerosol loading was not the same on all five days. The 

high values of reflectance in the blue region and the apparent slant tilt of the reflectance 

curves indicate a higher amount of particulate scattering on 26th Sep, 25th Oct, and 19th 

Nov than on 02nd July and 14th July. Hence it was decided to adjust the initial visibility 

and aerosol model settings independently for each image and thus feed input parameters 
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to FLAASH that were indicative of the different amounts of atmospheric particulate 

scattering in the images.  
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Figure 3. 10. At-sensor remote sensing reflectance spectra acquired by AISA over 
Fremont State Lakes on (a) 02nd July, (b) 14th July, (c) 26th Sep, (d) 25th Oct, and (e) 19th 
Nov of 2008.  
 

Incidentally, the slope and offset of the relationships were similar for the 02nd July 

and 14th July images before atmospheric correction (figures 3.5 and 3.6) and after 

atmospheric correction with the same input parameters (figure 3.9), indicating that the 
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atmospheric effects on both these images were similar if not exactly the same. Hence the 

initial visibility and aerosol model settings were kept the same for both these images. 

Since radiations with shorter wavelengths get scattered the most, the magnitude of at-

sensor reflectance in the blue region was used as a coarse relative indicator of the amount 

of atmospheric particulate scattering in each image. Thus the input parameters were 

adjusted such that, among the five images, FLAASH was to assume the highest amount 

of atmospheric particulate scattering in the 26th Sep image, followed by 19th Nov image, 

the 25th Oct image, and the 02nd & 14th July images.  

In general, FLAASH tended to over-correct for atmospheric particulate scattering, 

resulting in negative reflectances, especially at shorter wavelengths. Hence, the input 

parameters for the five images were set conservatively and adjusted judiciously (table 

3.2) so as to minimize the occurrence of negative reflectances in the output and still 

capture the relative variations in the atmospheric particulate scattering among the five 

images. When the images were corrected using the input parameters shown in table 3.2, 

the linear relationships between the NIR-red model values and chl-a concentration for the 

five images got remarkably close to each other in their slope and offset (figure 3.11). 

However, this uniformity in the relationship between the NIR-red models and chl-a 

concentration for images acquired on different days cannot be used to reliably calibrate 

the models to estimate chl-a concentration from airborne hyperspectral data because of 

the lack of actual measurements of atmospheric parameters to corroborate the input 

parameter settings for the atmospheric correction procedure. Nevertheless, the results 

strongly suggest that with an accurate correction procedure for atmospheric effects, 
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which accounts for non-uniform atmospheric effects on multi-temporal data, the NIR-red 

models can be calibrated for hyperspectral data from airborne sensors. 

 

Date Aerosol Model Initial Visibility (km) 
02 Jul 08 No Aerosol 40 
14 Jul08 No Aerosol 40 

26 Sep 08 Rural 30 
25 Oct 08 Rural 60 
19 Nov 08 Rural 40 

 
Table 3. 2. Relatively adjusted input settings for aerosol model and initial visibility used 
in FLAASH atmospheric correction of AISA images 
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Figure 3. 11. Plots of (a) three-band AISA NIR-red model and (b) two-band AISA NIR-
red model versus chl-a concentration after atmospheric correction, with the input 
parameters as shown in table 3.2. 
 



 63

3.3. Application of the MERIS NIR-red Models 

 Because of the unreliability of AISA reflectance values beyond 730 nm, the three-

band MERIS NIR-red model was not tested. Selecting the spectral bands closest to 

MERIS spectral channels, the two-band MERIS NIR-red model for AISA data was 

formulated as follows: 

Two-band AISA-MERIS NIR-red model: ( )704
1

666Chl RR-a ×∝ −       (3. 5) 

y = 85.593x - 72.438
r2 = 0.84
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Figure 3. 12. Plots of two-band AISA-MERIS NIR-red model versus in situ chl-a 
concentration for (a) 02nd July, (b) 14th July, (c) 26th Sep, (d) 25th Oct, and (e) 19th Nov 
2008 data before atmospheric correction. 
 



 64

The results for the two-band AISA-MERIS NIR-red model had a similar pattern 

as did the results from three-band and two-band AISA NIR-red models. When applied to 

AISA data before (figure 3.12) and after (figure 3.13) atmospheric correction with the 

same input parameters for all images, the two-band AISA-MERIS NIR-red model had 

close correlations with chl-a concentration for each individual image. But the slope and 

offset of the relationship varied significantly across the images (figures 3.14 and 3.15). 
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Figure 3. 13. Plots of two-band AISA-MERIS NIR-red model versus in situ chl-a 
concentration for (a) 02nd July, (b) 14th July, (c) 26th Sep, (d) 25th Oct, and (e) 19th Nov 
2008 data after atmospheric correction with the ‘No Aerosol’ model setting and initial 
visibility 40 km. 



 65

0

20

40

60

80

0.9 1 1.1 1.2 1.3 1.4 1.5

C
hl

-a
 (m

g 
m

-3
)

02-Jul

14-Jul

26-Sep

25-Oct

19-Nov

704
1

666 RR ×−

 

Figure 3. 14. Plot of the two-band AISA-MERIS NIR-red model versus chl-a 
concentration showing the linear regression lines for the individual campaigns, for AISA 
data before atmospheric correction. 
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Figure 3. 15. Plot of the two-band AISA-MERIS NIR-red model versus chl-a 
concentration for AISA images atmospherically corrected through FLAASH with the ‘No 
Aerosol’ model setting and initial visibility 40 km. 
 

 When the input parameters for FLAASH were adjusted relative to the apparent 

atmospheric particulate scattering in each image, with the input parameters set as shown 

in table 3.2, linear relationships between the NIR-red models and chl-a concentration for 

the five images got close to each other in their slope and offset (figure 3.16).  
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Figure 3. 16. Plot of two-band AISA-MERIS NIR-red model versus chl-a concentration 
after atmospheric correction, with the input parameters for atmospheric correction 
adjusted relatively. 
 

3.4. Conclusion 

The output from the three-band and two-band NIR-red models based on optimal 

spectral bands for AISA and the two-band NIR-red model based on AISA spectral bands 

that were closest to MERIS spectral bands had close correlations with chl-a 

concentrations, consistently for each of the five AISA images. However, the slope and 

offset of the linear relationship varied from image to image, which was attributed to the 

non-uniform atmospheric effects on the different days of image acquisition. Atmospheric 

correction of the AISA images was attempted in order to account for the non-uniform 

atmospheric effects and result in similar slope and offset for all five images. The input 

parameters were adjusted relatively such that the initial assumptions of the atmospheric 

correction procedure reflected the observed differences in the atmospheric particulate 

scattering in the five images. Atmospheric correction with relative adjustment of input 

parameters resulted in slopes and offset that were similar for all five images, suggesting 

that provided the atmospheric correction procedure can effectively remove the non-
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uniform atmospheric effects on multi-temporal images, then the NIR-red models can be 

calibrated to estimate chl-a concentration from multi-temporal dataset.  

Nevertheless the uniform slope and offset obtained by the relative atmospheric 

adjustment procedure in this study could not be used to calibrate the NIR-red model for 

estimating chl-a concentration from aircraft data because the input parameters fed into 

the atmospheric correction program were not based on actual measurements but on 

educated guess. In situ measurements of aerosol optical thickness taken at the time of 

image acquisition using a sun photometer should be used to set the input parameter 

values. If the atmospheric correction program is reliable and consistent, feeding input 

parameters based on actual measurements of aerosol optical thickness should result in 

atmospherically corrected output that lend to uniform relationships between the model 

values and chl-a concentrations for multi-temporal data. If slopes and offsets still vary 

across the images, then there might be a problem with the atmospheric correction 

procedure itself, which will have to be evaluated using coincidentally measured in situ 

radiance data. This, of course, assumes that the other relevant issues such as the quality 

and reliability of the spectral data from the airborne sensor have been sufficiently dealt 

with. If FLAASH does not uniformly remove the non-uniform atmospheric effects, then 

other atmospheric correction programs such as TAFKAA (The Algorithm Formerly 

Known As TAFKAA (Gao et al. 2000; Montes et al. 2001)) that are based on radiative 

transfer models should be tried. The other alternative would be procedures such as the 

Empirical Line Method (Kruse et al. 1990) that rely on calibrated references targets 

within each image.  
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A uniform slope and offset, resulting from a consistent and effective removal of 

non-uniform atmospheric effects, can be used to calibrate the two-band MERIS NIR-red 

model. Often, atmospheric correction procedures do not result in complete removal of 

atmospheric effects. The corrected output often carries some residual atmospheric effects 

or effects introduced by the atmospheric correction procedure and effects due to any 

spectral anomaly inherent in the radiance data from the sensor. The influence of these 

factors (which are specific to the atmospheric correction procedure and the type of 

sensor) on the performance of the NIR-red models should be assessed before a universal 

algorithm can be developed for multi-temporal data from other airborne sensors. 

The results illustrate the ability of the two-band MERIS NIR-red model to estimate chl-a 

concentration in turbid productive waters using remotely sensed data from airborne 

sensors. With a robust atmospheric correction procedure that effectively removes the 

non-uniform atmospheric effects on multi-temporal data, a reliable two-band MERIS 

NIR-red algorithm can be developed, which can be applied to multi-temporal data from 

airborne as well as space-borne sensors.  
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Chapter 4. NIR-red Spectral Algorithms for Satellite Data – 

Results, Limitations, and Challenges 

 The ultimate objective of this research has been to develop NIR-red spectral 

algorithms that can be routinely applied for accurately estimating chl-a concentration 

from multi-temporal satellite data acquired over turbid productive waters with varied 

biophysical characteristics and from different geographic locations around the globe. 

Achieving this objective has challenges on several fronts. First, the spectral algorithm, 

which should be maximally sensitive to variations in chl-a concentration and minimally 

sensitive to absorption and scattering of light by constituents other than chl-a, must have 

a stable relationship with chl-a concentration irrespective of variations in the 

concentrations of other constituents. The results shown in chapters 2 and 3 confirm that 

the MERIS NIR-red models (especially the two-band MERIS NIR-red model) meet this 

condition. Furthermore, the radiance recorded by the sensor should be adequately 

corrected for atmospheric effects, resulting in reasonably valid reflectance values so that 

the spectral algorithm can be applied reliably, or, the spectral algorithm should be 

sufficiently resistant to atmospheric effects so that it precludes the need for a rigorous 

atmospheric correction procedure. The problem of calibrating and validating spectral 

algorithms for satellite data is further compounded by the differences in the spatial 

resolutions of the satellite data and in situ ‘ground truth’ data and the temporal difference 

between the times of satellite data acquisition and in situ data collection. This chapter 

contains the results and the issues encountered in developing MERIS NIR-red spectral 

algorithms for satellite data.  
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 This chapter has four parts. The first part (section 4.2) deals with the description 

and significance of atmospheric correction procedures. The second part (section 4.3) 

illustrates the close relationships that the NIR-red models have with phytoplankton 

biophysical characteristics. The third part (section 4.4) deals with the calibration and 

validation of three-band and two-band MERIS NIR-red algorithms for estimating chl-a 

concentration and their comparisons with a few other standard algorithms. The 

limitations and challenges encountered in developing a reliable satellite algorithm are 

described in the fourth part (section 4.5).  

 
4.1. Data 

 The in situ data consisted of analytical measures of the concentrations of chl-a 

and TSS from the Kremenchug Reservoir and the Dnieper Estuary in Ukraine, and the 

Taganrog Bay and the Azov Sea in Russia. The data were collected by the crews at the 

Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia, 

and the Institute for Environmental Quality, Kiev, Ukraine. Water samples were collected 

at each station, filtered through Whatman GF/F glass filters, and analyzed for chl-a and 

TSS. Chl-a was extracted in hot ethanol and its concentration was quantified 

spectrophotometrically. TSS concentrations were determined gravimetrically. 

 MODIS and MERIS images acquired up to two days before or after the date of in 

situ data collection were used. 

4.2. Satellite Data Processing 

 The MODIS and MERIS images were atmospherically corrected to convert the at-

sensor radiance to surface reflectance values. Four different options were considered for 

atmospherically correcting MODIS images and two different options for MERIS images. 
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4.2.1. Atmospheric Correction of MODIS Images 

 The following four options of atmospheric correction were executed on MODIS 

images through the software, SeaDAS (SeaWiFS Data Analysis System), developed at 

the NASA Goddard Space Flight Center, Maryland. 

(i) NIR Bands Procedure

 This is an iterative procedure (Stumpf et al. 2003) based significantly on the 

atmospheric correction procedure developed by Gordon and Wang (1994), with a 

modification that explicitly recognizes scattering from suspended sediments in water in 

the NIR region. Gordon and Wang’s approach assumed zero water-leaving radiance at 

748 nm and 869 nm. The radiance recorded by the sensor at these wavelengths, after 

being corrected for Rayleigh (molecular) scattering, was considered to have entirely 

come from atmospheric particulate scattering. The at-sensor radiances at 748 nm and 869 

nm were used to determine the aerosol type and size parameters and choose the pre-

defined aerosol model. Thus, for turbid waters where there is a considerable amount of 

back-scattering by suspended particles that cause appreciable water-leaving radiance in 

the NIR region (Moore 1980; Stumpf and Tyler 1988; Stumpf and Pennock 1989; 

Ruddick et al. 2000; Siegel et al. 2000), Gordon and Wang’s approach overestimates the 

atmospheric particulate scattering. This results in over-correction of atmospheric 

contribution, thereby yielding negative reflectances at shorter wavelengths.  

Stumpf et al (2003) suggested an iterative procedure that takes into account the 

non-zero water-leaving radiance at 748 nm and 869 nm. The first iteration is essentially 

the same as Gordon and Wang’s procedure. The Rayleigh-corrected at-sensor radiances 

at 748 nm and 869 nm are input as atmospheric particulate scattering into Gordon and 
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Wang’s model, which corrects the radiances at all wavelengths using radiative transfer 

equations. The corrected radiance at 667 nm is fed into a semi-analytical bio-optical 

model that accounts for particulate scattering in water at the NIR region and estimates the 

water-leaving radiance at 748 nm and 869 nm (Stumpf et al. 2003). The estimated water-

leaving radiances at 748 nm and 869 nm are propagated to the top of the atmosphere by 

correcting for atmospheric transmission. The top of the atmosphere water-leaving 

radiances at 748 nm and 869 nm are deducted from the Rayleigh-corrected at-sensor 

radiances at 748 nm and 869 nm, and the result is fed into Gordon and Wang’s model for 

the second iteration. The process is continued iteratively until the successive estimates of 

the water-leaving radiance (from the bio-optical model) at 748 nm differ by less than 10-5 

Sr-1. The iterations successively lower the magnitude of at-sensor radiance fed as input 

into Gordon and Wang’s model, thereby diminishing the overestimation of atmospheric 

particulate scattering and resulting in improved determination of the aerosol type and size 

parameters. This method significantly reduces the occurrences of negative reflectances in 

the shorter wavelengths but does not eliminate them completely. 

(ii) SWIR Bands Procedure:

 This method, developed by Wang and Shi (2005), is essentially the same as 

Gordon and Wang’s (1994) approach except that the Short wave Infrared (SWIR) bands 

centered at 1240 and 2130 nm are used instead of the NIR bands centered at 748 nm and 

869 nm for aerosol model selection. At the SWIR wavelengths, the absorption by water is 

extremely high so that even turbid productive waters can be safely presumed to have zero 

reflectance (Wang and Shi 2005). Thus the measured at-sensor radiance at 1240 nm and 

2130 nm are considered to be entirely due to atmospheric contribution. In a similar 



 73

manner as with Gordon and Wang’s model, the atmospheric particulate scattering is 

extrapolated to shorter wavelengths and the water-leaving radiance is determined for the 

whole spectral range. Even though the SWIR bands are theoretically better suited than the 

NIR bands for aerosol model selection, the magnitude of reflectance is much lower at the 

SWIR wavelengths than at the NIR wavelengths. Hence the SWIR Bands Procedure is 

more susceptible to detector noise issues. Wang and Shi (2005) originally suggested 

SWIR bands centered at 1240 nm and 1640 nm. Because of high noise effects in the 

MODIS 1640 nm band, the band centered at 2130 nm was used. In order to correct for 

the effect of detector noise, Wang and Shi (2005) vicariously calibrated the SWIR bands 

using the radiance at the NIR bands. The calibration coefficients were obtained from a 

linear regression of the MODIS-measured radiance at the SWIR bands with the radiance 

simulated at the SWIR bands. The MODIS-measured radiance at the NIR bands over an 

open ocean region (where there is virtually no reflectance from water at the NIR 

wavelengths) was input into Gordon and Wang’s (1994) model to simulate the at-sensor 

radiance at the SWIR bands. 

 Though this method circumvents the problem of particulate scattering from turbid 

water, it is quite susceptible to detector noise due to the very low magnitude of signal at 

the SWIR wavelengths. 

(iii) Wang-Shi Procedure:

 This is the same as the SWIR Bands Procedure except that the SWIR bands are 

vicariously calibrated with a different set of coefficients. 
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(iv) MUMM Procedure:

 MUMM stands for the Management Unit of the North Sea Mathematical Models, 

a department of the Royal Belgian Institute of Natural Sciences. Ruddick et al. (2000) 

developed this atmospheric correction procedure. This is essentially a modification of 

Gordon and Wang’s (1994) procedure for turbid waters. For turbid waters, Ruddick et al. 

(2000) replaced the black-pixel assumption at the NIR wavebands with an assumption of 

spatial homogeneity of the ratios of aerosol reflectance and water reflectance at 748 nm 

and 869 nm. For each image, a scatterplot of Rayleigh-corrected radiances at 748 nm and 

869 nm is used to determine the ratio of aerosol reflectances at 748 nm and 869 nm. The 

slope of the relationship between the Rayleigh-corrected reflectances at 748 nm and 869 

nm at the lower part of the scatterplot (i.e., at lower magnitudes of Rayleigh-corrected 

reflectances, which correspond to clear water pixels with minimal water reflectance at 

748 nm and 869 nm) gives the ratio of aerosol reflectances at 748 nm and 869 nm. The 

ratio of water reflectances at 748 nm and 869 nm is set at a default value of 1.945, which 

was determined based on a marine bio-optical reflectance model (Gordon et al. 1988) and 

previously published data (Palmer and Williams 1974). Ruddick et al. (2000) tested the 

sensitivity of the water reflectance ratio to factors such as absorption from other 

constituents in water, spectral variation of particulate back-scattering, internal reflection 

of the upwelling radiance field by the sea surface, and second-order scattering in the 

marine bio-optical reflectance model. They found that the ratio varied by less than 0.8%. 

The aerosol reflectance and water reflectance ratios are used in radiative transfer 

equations to deduce the reflectance due to aerosol multiple-scattering at 748 nm and 869 

nm, which are then used to calculate the single-scattering aerosol reflectances at 748 nm 
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and 869 nm. The ratio of the single-scattering aerosol reflectances at 748 nm and 869 nm 

is used to determine the aerosol type and its particle size distribution. The multiple-

scattering aerosol reflectance is extrapolated to the shorter wavelengths and factored out 

of the Rayleigh-corrected reflectance at each waveband to give final corrected surface 

reflectances for all the wavebands. 

 The MUMM procedure presents a theoretically solid way of avoiding the 

assumption of zero water reflectance in the NIR region. A significant drawback, 

however, is that the procedure assumes a single aerosol type for the whole image. This 

can be a significant source of error in images with mixed aerosol types, especially in 

coastal areas that are adjoined by industrial developments. 

 The two-band MODIS NIR-red model was applied to the atmospherically 

corrected surface reflectance data as, 

  Two-Band MODIS NIR-red Model: ( )748
1

667-Chl RRa ×∝ −                  (4.1) 

  
4.2.2. Atmospheric Correction of MERIS Images 

MERIS images were obtained from the European Space Agency and processed 

through BEAM (the Basic ENVISAT and ERS (A)ATSR and MERIS toolbox), which 

was developed by Brockmann Consult, Germany. Two types of atmospheric correction 

were considered. 

(i) Bright Pixel Atmospheric Correction: 

This is a modification of the standard atmospheric correction procedure routinely 

applied to MERIS images (Moore et al. 1999; Aiken and Moore 2000). This involves 

classifying the pixels into Case I and Case II water pixels based on the radiance recorded 

by the sensor at 708 nm. The Case I pixels have zero water-leaving radiance in the NIR 
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region. For these pixels, the at-sensor radiance recorded at 708 nm is assumed to have 

been entirely due to atmospheric contribution and these pixels are subjected to the 

conventional atmospheric correction procedure according to Gordon and Wang (1994). 

For the Case II pixels, the radiances recorded at three NIR wavebands, centered at 708 

nm, 778 nm, and 865 nm, are used in an iterative procedure to isolate the water-leaving 

radiance and estimate the single-scattering aerosol reflectance. The single-scattering 

aerosol reflectance is input into an open ocean processing chain (Antoine and Morel 

1998) to determine the aerosol type, thickness, and path radiance. The estimated measure 

of aerosol scattering is then used in the same procedure as Gordon and Wang’s (1994) to 

extrapolate the aerosol scattering at shorter wavelengths and retrieve the water-leaving 

radiance and subsequently the remote sensing reflectance at all wavelengths. 

(ii) Case 2 Regional Processing:

This method is a neural-network-based procedure developed specifically for 

inland and coastal Case II waters that are very turbid (Doerffer and Schiller 2007; 

Doerffer and Schiller 2008), where even the Bright Pixel Atmospheric Correction 

procedure yields negative reflectances, especially in the blue region. It is implemented as 

a two-step procedure – (i) a forward neural-network for the retrieval of water-leaving 

radiances and subsequently the remote sensing reflectances from the at-sensor radiances 

(atmospheric correction) and (ii) a backward neural-network for the retrieval of the 

inherent optical properties of water and subsequently the concentrations of constituents 

by inverting the remote sensing reflectances. Both the forward and the backward neural-

networks were trained based on radiances simulated by radiative transfer solutions and 

built to parameterize the relationships between the top-of-atmosphere radiances and the 
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water-leaving radiances (for the forward model) and between the remote sensing 

reflectances and the inherent optical properties (for the backward model). The recorded 

radiances at 12 wavebands (at visible and NIR wavelengths) are used in the neural-

network. 

The three-band and two-band MERIS NIR-red models were applied to the 

atmospherically corrected surface reflectance data as, 

Three-Band MERIS NIR-red Model: ( ) 753
1

708
1

665-Chl RRRa ×−∝ −−        (4.2) 

Two-Band MERIS NIR-red Model: ( )708
1

665-Chl RRa ×∝ −                   (4.3) 

 Unless specifically stated, the MERIS results shown here are from the Bright 

Pixel Atmospheric Correction procedure. 

 
4.2.3. Effects of Atmospheric Correction 

The wavebands in the NIR-Red model are located close enough to each other that 

the atmospheric effects can be assumed to be almost uniform at the wavelengths 

considered. Thus, in principle, the models are not very sensitive to atmospheric effects. 

However, the water-leaving radiance is very low in the NIR region and the NIR 

reflectance is a multiplicative term in the models (equations (4.1) – (4.3)). Hence the 

models are very sensitive to changes in the magnitude of the NIR reflectance. Thus, good 

atmospheric correction, resulting in accurate retrievals of NIR reflectance, is crucial to 

the success of the models. 

The atmospheric correction procedures differed in how the aerosol reflectance 

was approximated. As a result, the retrieved reflectances differed in their shape and, to a 

greater extent, their magnitude (figure 4.1). Consequently, the relationship between the 

NIR-red model values and chl-a concentration also varied widely for reflectances 
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retrieved through different atmospheric correction procedures for the same set of stations 

(figure 4.2). Thus it is evident that the accuracy obtained from the NIR-red models 

depends on the particular atmospheric correction applied to retrieve surface reflectance 

and any NIR-red algorithm is specific to the particular atmospheric correction procedure 

employed. 

-0.004

0

0.004

0.008

0.012

0.016

400 500 600 700 800 900

Wavelength (nm)

R
ef

le
ct

an
ce

 (S
r-1

)

NIR
SWIR
MUMM
Wang-Shi
MERIS

 

Figure 4. 1. Reflectance spectra for the same station (chl-a 39.17 mg m-3) retrieved using 
different atmospheric correction procedures. 
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Figure 4. 2. Plot of Chl-a concentration versus two-band MODIS NIR-Red model 
(equation (4.1)) values for different atmospheric correction procedures for MODIS data. 
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4.3. Correlations between NIR-red Models and Phytoplankton 

Biophysical Characteristics 

4.3.1. Chlorophyll Fluorescence Estimation 

 Continuous measurements of chl-a fluorescence were made from a ship along a 

transect on the Azov Sea on 17th June 2005. Figure 4.3 shows comparisons between 

fluorometer readings and the two-band and three-band model values for MERIS data 

acquired on the same day. The results show that both the two-band and the three-band 

models are able to explain about 70% of the variation in chl-a fluorescence. 
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Figure 4. 3. Comparison of fluorometer readings and NIR-Red model values retrieved 
from MERIS data: (a) two-band MERIS NIR-red model, (b) three-band MERIS NIR-red 
model. 
 

4.3.2. Phytoplankton Biomass Estimation 

 Water samples were collected from the Azov Sea on 30th June and 01st July of 

2006 and the phytoplankton biomass was analytically measured. Satellite images were 

acquired between 29th June and 01st July of 2006. Comparisons of phytoplankton biomass 

with the NIR-Red model values calculated for MODIS and MERIS images are shown in 

figure 4.4.  The slope and offset of the relationship and the coefficient of determination 
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were different for the different atmospheric correction procedures. The two-band MERIS 

NIR-red model was able to explain about 97% of the variation in phytoplankton biomass.  
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Figure 4. 4. Plots of Phytoplankton biomass versus NIR-Red model values. (a) - (d): 
two-band MODIS NIR-red model, (e): two-band MERIS NIR-red model. 
 

4.3.3. Chlorophyll-a Estimation 

 The correlation between the NIR-red model (equations (4.1) – (4.3)) values and 

analytically measured in situ chl-a concentrations varied in their slope, offset, and 

coefficient of determination, based on the type of atmospheric correction procedure 

executed on the satellite images (figure 4.5).   

Figures 4.5(a) through 4.5(d) show the results of comparisons for the two-band 

MODIS NIR-red model (equation 4.1). The in situ and satellite data were acquired on the 

same day (27th Aug 2003) from the Dnieper Estuary. The number of data points in each 

plot is not the same because not all station pixels were equally retrievable for the 

different procedures. Among the different atmospheric correction procedures for MODIS 
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data, in terms of the ability of the model to explain the highest percentage of the variation 

in chl-a concentration, no one procedure stood out consistently better than the rest. 

However, in general, the model values from the SWIR Bands Procedure and the MUMM 

Correction had a closer correlation with chl-a concentration than did the model values 

from the other two procedures.  

Also, in general, the results from the MERIS NIR-red models, especially the two-

band MERIS NIR-red model, were better than those from the two-band MODIS NIR-red 

model. This is due to the availability of a spectral channel centered at 708 nm in the 

MERIS sensor and the higher spatial resolution of MERIS (260 m x 290 m) compared to 

MODIS (1 km x 1 km). The reflectance at 708 nm well represents the chlorophyll-

induced reflectance peak in the NIR region. With increase in chl-a concentration, the 

magnitude of the peak also increases (Gitelson 1992), resulting in a consequent increase 

in the value of the ratio, 665708 RR . Whereas, the reflectance at 748 nm is not affected by 

chl-a absorption as it depends only on scattering by suspended particles and absorption 

by water. Moreover, the magnitude of the water-leaving radiance at 748 nm is much 

lower than that at 708 nm due to increased absorption by water at longer wavelengths. 

Thus, the uncertainties of the atmospheric correction procedure due to low signal-noise 

ratio are less pronounced at 708 nm than at 748 nm. Furthermore, with 708 nm being 

closer to λ1 (665 nm) in the two-band MERIS NIR-red model than 748 nm is to λ1 (667 

nm) in the two-band MODIS NIR-red model, the differential atmospheric effects at the 

two wavebands in the model are less pronounced with the two-band MERIS NIR-red 

model than with the two-band MODIS NIR-red model. This makes the two-band MERIS 

NIR-red model less sensitive to spectrally non-uniform atmospheric effects. Figures 
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4.5(e) and 4.5(f) show the results from MERIS imagery for data collected from the Azov 

Sea during the period 17 – 19 June 2008. MERIS image was not available for 27th Aug 

2003 from the Dnieper Estuary. As illustrated in the figure, in general, the model values 

derived from MERIS data were able to account for more than 90% of the variation in chl-

a concentration, whereas the results from MODIS rarely accounted for more than 60%. 
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Figure 4. 5. Plots of chl-a concentration versus NIR-Red model values. (a) – (d): the 
results from MODIS data for 27th Aug 2003 from the Dnieper Estuary; (e) and (f): the 
results from MERIS data for Jun 2008 from the Azov Sea. 
 

4.4. Development of MERIS NIR-red Algorithms for Estimating Chl-a 

Concentration 

For reasons described in chapter 2 and in section 4.3.3, the two-band MODIS 

NIR-red model is less suitable than the MERIS NIR-red models for estimating chl-a 

concentrations, especially at low-to-moderate chl-a concentrations (Gitelson et al. 2009). 

Hence efforts were made to calibrate only the MERIS NIR-red models. 
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4.4.1. Data 

Five data collection campaigns were undertaken (in April, July, September, and 

October of 2008 and March of 2009) on the Taganrog Bay and the Azov Sea by the crew 

at the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, 

Russia. Water samples were collected at each station, filtered through Whatman GF/F 

glass filters, and analyzed for chl-a and TSS (Total Suspended Solids). Chl-a was 

extracted in hot ethanol and its concentration was quantified spectrophotometrically. TSS 

concentrations were determined gravimetrically 

MERIS images acquired up to two days before or after the date of in situ data 

acquisition were used in cases where same-day images were not available. For the whole 

dataset, the average temporal difference between the times of in situ and satellite data 

acquisitions was less than a day. The remote sensing reflectance was retrieved through 

the Bright Pixel Atmospheric Correction procedure and the Case 2 Regional Processing. 

After the retrieval of surface reflectances, the three-band (equation (4.2)) and two-band 

(equation (4.3)) MERIS NIR-red models were applied. 

4.4.2. Calibration and Validation of the MERIS NIR-red Algorithms 

Of all the stations where in-situ data were collected, the stations that satisfied the 

following criteria were considered for the comparisons: 

• the station is at least at a two-pixel length from the shoreline; 

• the station is on a cloud/haze–free pixel in an image acquired within 2 days 

before/after the date of in-situ data collection; 

• the atmospheric correction procedure did not produce reflectance spectra with 

negative values beyond 443 nm; 
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• the reflectance spectrum is not inconsistent in its spectral shape with the observed 

in-situ data. 

Outliers of the latter kind, which were very few, were identified by comparison 

with reflectance spectra from stations with similar chl-a concentration (figure 4.6). The 

reflectance spectra in figure 4.6 correspond to stations with chl-a concentrations between 

23.3 mg m-3 and 26.5 mg m-3. In contrast to the solid-line spectra, the dashed-line 

spectrum at the bottom has a distinct lack of the typical chl-a absorption in the red region 

(around 665 nm) and the peak reflectance in the NIR region (near 708 nm). Such outliers 

are deemed to have resulted from any one or a combination of the following factors: (i) 

within-pixel spatial heterogeneity of chl-a distribution, resulting in the point in-situ 

observation being not representative of the satellite pixel, (ii) an actual change in chl-a 

concentration in the water body between the time of in-situ data collection and time of 

the satellite image acquisition, and (iii) erroneous retrieval of the remote sensing 

reflectance.   
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Figure 4. 6. Reflectance spectra from stations with chl-a concentrations between 23 and 
26 mg m-3. The spectrum shown as a dashed line has a distinct lack of spectral features in 
the red and NIR regions, in contrast to the rest of the spectra. 
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Altogether from the five in-situ data collection campaigns, there were 18 stations 

from the 2008 dataset and 8 stations from the 2009 dataset that satisfied the above 

criteria. The stations from the 2008 dataset were used to establish and calibrate the 

relationship between the chl-a concentrations and the model values, and the stations from 

the 2009 dataset were used to test the validity of the algorithms. The minimum, 

maximum, median, and mean in situ chl-a concentrations of the 18 stations for 

calibration were 0.63 mg m-3, 65.51 mg m-3, 24.35 mg m-3, and 26.97 mg m-3 

respectively. The corresponding figures for the 8 stations for validation were, 

respectively, 18.37 mg m-3, 47.86 mg m-3, 26.44 mg m-3, and 28.56 mg m-3. The TSS 

concentration ranged from 0.4 g m-3 to 27.4 g m-3 for the entire dataset. 

(i) Bright Pixel Atmospheric Correction: 

For the stations chosen for calibration, the three-band and the two-band model 

values had very close linear relationships with in-situ chl-a concentrations, with a 

coefficient of determination (r2) higher than 0.95 (figure 4.7). 
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Figure 4. 7. Calibration of (a) the three-band and (b) the two-band MERIS NIR-red 
models for the Bright Pixel Atmospheric Correction procedure. 
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The calibrated NIR-Red MERIS algorithms were: 

Three-band MERIS NIR-red algorithm: ( ) 174.23]   232.29[ chl 753
1

708
1

665 +×−= −− RRR-a  (4.4) 

Two-band MERIS NIR-red algorithm:                   

(4.5) 

94.37][324.61  chl 708
1

665 −×= − RR-a

The slope and intercept of both MERIS NIR-red algorithms compared well with 

the slope and intercept of the relationships derived from in situ reflectances collected in 

2008 from several lakes in Nebraska, USA (Gitelson et al. 2009) for chl-a concentrations 

in the range similar to that of the calibration data. The slope and intercept of the three-

band MERIS NIR-red algorithm (equation (4.4)) were 232.29 and 23.174 mg m-3, 

respectively, whereas the corresponding figures for the in situ three-band algorithm were 

207.34 and 22.175 mg m-3, respectively. Similarly, the slope and intercept of the two-

band MERIS NIR-red algorithm (equation (4.5)) were 61.324 and -37.94 mg m-3, 

respectively, whereas the corresponding figures for the in situ two-band algorithm were 

61.22 and -39.615 mg m-3, respectively.  

Further work needs to be done to test the stability of the slope and offset of the 

relationship between the model values and chl-a concentration. The quality of 

atmospheric correction is bound to have an impact on the magnitude of these parameters. 

Dall’Olmo et al. (2005) analyzed the propagation of systematic errors due to atmospheric 

correction in the NIR-Red models and concluded that the models are reasonably resistant 

to such errors. 

The algorithms thus calibrated were used to estimate the chl-a concentration at the 

8 stations from the 2009 dataset, which was marked for validation. The validation 

procedure included (a) the estimation of chl-a concentrations by applying the calibrated 
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algorithms (equations (4.5) and (4.6)) to the remote sensing reflectances retrieved for the 

stations in the validation data set, and (b) the comparison between the estimated chl-a 

concentrations and the in situ chl-a concentrations. The comparison showed that the chl-a 

concentrations estimated using the calibrated algorithms were remarkably accurate 

(figure 4.8). The three-band MERIS NIR-red algorithm yielded an RMSE of 5.02 mg m-3 

(figure 4.8(a)), while the two-band MERIS NIR-red algorithm had an even smaller 

RMSE of 3.65 mg m-3 (figure 4.8(b)). 
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Figure 4. 8. Validation of the MERIS NIR-Red algorithms developed using data taken in 
2008: relationships between the chl-a concentrations estimated by (a) the three-band and 
(b) the two-band MERIS NIR-red algorithms for the Bright Pixel Atmospheric 
Correction procedure and the chl-a concentrations measured in situ. 
 

3λ  in the three-band MERIS NIR-red model (equation (4.2)) is at a longer 

wavelength (753 nm) than 2λ  in the two-band MERIS NIR-red model (equation (4.3)). 

Hence, the three-band MERIS NIR-red model was more sensitive than the two-band 

MERIS NIR-red model was to uncertainties in the atmospheric correction procedure due 

to low signal-noise ratio, especially for stations with low chl-a concentrations and low 

magnitudes of reflectance in the NIR region. This, in addition to the reasons described in 

chapter 2, may explain the looser fit of points with chl-a concentration below 10 mg m-3 
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(figure 4.7(a)) and the slightly higher RMSE for the three-band MERIS NIR-red model. 

Hence even though both the algorithms yield high accuracies, the two-band MERIS NIR-

red algorithm is preferred over the three-band MERIS NIR-red algorithm. 

(ii) Case 2 Regional Processing:

The three-band and the two-band MERIS NIR-red model values derived from the 

Case 2 Regional Processing method did not have as close a correlation with in situ chl-a 

concentrations as did the model values from the Bright Pixel Atmospheric Correction 

procedure. In this procedure, with increase in chl-a concentration, the spectral reflectance 

features in the red and NIR regions (specifically, the reflectance peak around 700 nm 

(Gitelson 1992)) were not proportionally increasingly pronounced as much as they should 

be (see in situ reflectance spectra: figure 2 in Dall’Olmo and Gitelson (2005)) and as they 

were in the reflectance spectra from the Bright Pixel Atmospheric Correction procedure 

(figure 4.9).  Thus for both models, the relationship between the in situ chl-a 

concentrations and the model values were not uniform for the whole range of chl-a 

concentrations. The relationships were quite close for chl-a below 35 mg m-3, with the 

coefficient of determination as high as 0.9 for both the models. However, the 

relationships broke and the models lost their sensitivity to chl-a above 35 mg m-3 (figure 

4.10). For this reason, the output from the Case 2 Regional Processing method could not 

be used for estimating chl-a concentrations above 35 mg m-3 using the MERIS NIR-red 

algorithms. Thus no attempt was made to calibrate the MERIS NIR-red models for data 

processed by the Case 2 Regional Processing method.  
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Figure 4. 9. Reflectance spectra of two stations retrieved using (a) the Bright Pixel 
Atmospheric Correction procedure and (b) the Case 2 Regional Processing; the spectral 
features in the red and NIR regions are better pronounced in proportion to increase in chl-
a concentration in the reflectance spectra from the Bright Pixel Atmospheric Correction 
procedure than those from the Case 2 Regional Processing method. 

 

The neural-network procedure is applied as a two-step process – (i) the retrieval 

of water-leaving radiances from the at-sensor radiances (atmospheric correction) and (ii) 

the inversion of the water-leaving radiances for the retrieval of the concentrations of the 

constituents in water. Both these steps have to be independently investigated to identify 

the reason for the apparent suppression of the spectral features in the red and NIR 

regions, which renders the procedure as yet unreliable for estimating chl-a concentrations 

over a wide range. 
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Figure 4. 10. Plots of in situ chl-a concentrations versus (a) the three-band and (b) the 
two-band NIR-Red MERIS model values for the Case 2 Regional Processing method. 
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4.4.3. Comparison of the MERIS NIR-red Algorithms with other Standard 

Algorithms 

 The results of chl-a estimation from the MERIS NIR-red algorithms (equations 

(4.4) and (4.5)) were compared with the results from a few other commonly used 

algorithms.  

(i) OC4 Algorithm:

OC4 (Ocean Chlorophyll 4-band algorithm) is a standard algorithm (O'Reilly et 

al. 1998; O'Reilly et al. 2000) that is often used globally for estimating chl-a 

concentration from ocean color data. Its latest version, the OC4v4 algorithm is given by, 

  ,   (4.6) 
432 532.1 649.0 93.1  067.3   366.010Chl RRRR-a −++−=

       where, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ >>
=

555

510490443
10log

R
RRR

R     (4.7) 

When tuned to the MERIS spectral bands, the corresponding algorithm (OC4E) is 

(O'Reilly et al. 2000), 

  ,  (4.8) 
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The accuracies of both the NIR-Red MERIS algorithms were significantly better 

than what was obtained from the OC4v4 algorithm. For example, when the OC4v4 

algorithm was applied to a MODIS image processed by the MUMM atmospheric 

correction procedure for the March 2009 dataset, the coefficient of determination of the 

relationship between the estimated and measured chl-a concentrations was as low as 0.11, 

with an RMSE of 19.89 mg m-3. Processing the MODIS data through the other available 
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atmospheric correction procedures did not yield better results. For the corresponding 

dataset, the two-band MERIS NIR-red algorithm yielded an RMSE of 3.65 mg m-3, and 

the three-band MERIS NIR-red algorithm yielded an RMSE of 5.02 mg m-3. 
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Figure 4. 11. Plot of in situ chl-a concentration versus chl-a concentration estimated by 
the two-band MERIS NIR-red algorithm and the OC4E algorithm. 
 

The OC4E algorithm, when applied to the MERIS images for the entire dataset 

that was used to calibrate and validate the MERIS NIR-red algorithms, showed poor 

correlation with the in situ chl-a concentrations (figure 4.11), with an RMSE of 18.8 mg 

m-3. For the same dataset, the two-band MERIS NIR-red algorithm had an RMSE of 3.58 

mg m-3 and the three-band MERIS NIR-red algorithm had an RMSE of 4.54 mg m-3. 

(ii) Gons’ Algorithm:

 Gons proposed an algorithm that uses reflectances at three MERIS spectral 

channels centered at 708 nm, 665 nm, and 778 nm to estimate chl-a concentration (Gons 

1999; Gons et al. 2002; Gons et al. 2005; Gons et al. 2008). The algorithm takes 

advantage of the maximal absorption by chl-a in the red region and the reflectance peak 

in the NIR region. The reflectance at 778 nm is used to approximate the effect of back-

scattering by suspended particles in water. The algorithm is given by, 
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  ( )( ){ } 016.0  4.0    7.0Chl 06.1
665708 bb bbRR-a −−+= ,   (4.10) 

      where, ( )778778 6.0  082.061.1 RRbb −=      (4.11) 

 The chl-a concentrations estimated using Gons’ algorithm were very closely 

correlated to the two-band MERIS NIR-red ratio values (figure 4.12). This indicates that 

the ratio 665708 RR  dominates Gons’ algorithm and that the contribution by the back-

scattering term ( ) is rather insignificant. Moreover, the reflectance at 778 nm is prone 

to uncertainties due to the very low magnitude of reflectance from water in the NIR 

region. Thus the two-band MERIS NIR-red model is more reliable than Gons’ algorithm. 

When applied to the entire dataset that was used to calibrate and validate the MERIS 

NIR-red algorithms, Gons’ algorithm had an RMSE of 6.88 mg m

bb

-3, compared to 3.58 mg 

m-3 for the two-band MERIS NIR-red algorithm and 4.54 mg m-3 for the three-band 

MERIS NIR-red algorithm (figure 4.13). 
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Figure 4. 12. Plot of two-band MERIS NIR-red ratio values versus chl-a concentration 
estimated by Gons’ algorithm. 
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Figure 4. 13. Plot of in situ measured chl-a concentration versus chl-a concentration 
estimated by the two-band MERIS NIR-red algorithm and Gons’ algorithm. 
 
(iii) MERIS algal_2 Algorithm:
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Figure 4. 14. Plot of in situ measured chl-a concentration versus chl-a concentration 
estimated by the two-band MERIS NIR-red algorithm and the MERIS algal_2 algorithm. 
  

The standard procedure for processing MERIS data (with Bright Pixel 

Atmospheric Correction procedure for turbid pixels) includes a neural-network-based 

approach for estimating chl-a concentration from reflectance values. The chl-a product is 

named algal_2. When compared with in situ data collected from Azov Sea in 2008 and 
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2009 (figure 4.14), the algal_2 estimates had an RMSE of 11.74 mg m-3, which is worse 

than that of the two-band (RMSE 3.58 mg m-3) and three-band (RMSE 4.54 mg m-3) 

MERIS NIR-red algorithms. 

(iii) MERIS Case 2 Chl-a Neural-Network Algorithm:

 The Case 2 Regional Processing method for MERIS images involves a two-step 

neural-network procedure, which uses the at-sensor radiances at 12 wavebands (at visible 

and NIR wavelengths) to calculate the surface reflectance values at each wavelength and 

subsequently biophysical products such as chl-a concentration. Based on the relationships 

obtained between the measured radiances and the training dataset, the chl-a concentration 

is estimated by the formula, 

  ,       (4.12) 1.043 a_pig21)m (mg concChl ×=--

  where, a_pig is the phytoplankton pigment absorption at 443 nm. 

While analyzing data from multiple MERIS images, it was found that the two-

band MERIS NIR-Red model values (equation 4.3) had a consistently close correlation 

with chl-a concentrations estimated by the neural-network-based algorithm. The slope 

and offset of the relationship remained remarkably consistent for data from multiple 

images from the Chesapeake Bay, the Delaware Bay and the Azov Sea (figure 4.15). The 

Chesapeake Bay dataset contained a total of 318 data points from 10 different images; the 

Delaware Bay dataset contained 136 data points from 7 different images; the Azov Sea 

dataset contained 345 data points from 4 different images. This remarkably tight and 

consistently close relationship implies that the reflectances at 665 nm and 708 nm heavily 

influence the neural-network model and the neural-network model that takes into account 
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the radiances at 12 wavebands converges closely to the two-band ratio, 665708 RR . 

Further investigation is needed to understand the reason for this close relationship. 
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Figure 4. 15. Comparison between chl-a concentrations estimated by the Case 2 
Regional Processing procedure and the two-band MERIS NIR-red values. 
 

 In spite of the close correlation with two-band MERIS NIR-red model values, the 

MERIS chl-conc values were much lower in magnitude when compared to actual chl-a 

concentrations measured in situ. This severe underestimation is due to the strong 

suppression of chl-a-related spectral features in the reflectance spectrum from the Case 2 

Regional Processing method (see section 4.4.2(ii)). When MERIS chl-conc values were 

compared with chl-a concentrations measured in situ on the Azov Sea in 2008, the RMSE 

was 16.24 mg m-3 (figure 4.16). 

 The results indicate that the MERIS NIR-red algorithms, especially the two-band 

MERIS NIR-red algorithm, compare favorably with other standard algorithms for 

estimating chl-a concentration from satellite data. The two-band MERIS NIR-red 

algorithm is simple in its formulation, less susceptible to spectrally dependent 
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atmospheric effects, takes full advantage of the absorption trough in the red region and 

the reflectance peak in the NIR region, and has proven suitable for a wide range of chl-a 

concentrations from inland, estuarine, and coastal turbid productive waters with a wide 

range of biophysical characteristics. 
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Figure 4. 16. Plot of in situ chl-a concentration versus chl-a concentration estimated by 
the MERIS Case 2 Regional Processing method. 
 
4.5. Limitations and Challenges in Developing Satellite Algorithms 

 The results presented here illustrate the high potential of the three-band and the 

two-band NIR-Red models to accurately estimate chl-a concentration in turbid productive 

waters using MERIS data. It has been already shown that the 708 nm MERIS band can be 

used for the detection of phytoplankton bloom (Gower et al. 2005). However, to the best 

of my knowledge, this is the first time that the MERIS NIR-Red models have been 

successfully calibrated and validated to quantitatively estimate chl-a concentration using 

satellite data. Nevertheless, challenges still remain in calibrating the models for their 

universal application to satellite data (Moses et al. 2009a). The MERIS NIR-red 

algorithms were developed and validated with a rather small dataset (18 stations for 

calibration and 8 stations for validation). The algorithms need to be tested using a larger 



 97

set of data from water bodies with a wider variability of constituent composition and 

from different geographic locations. Some of the limitations and challenges involved in 

developing such a universal algorithm are discussed here. 

4.5.1. Atmospheric Correction 

 A successful correction for atmospheric effects on satellite data and an accurate 

retrieval of surface reflectance are crucial to the success of the NIR/Red model. The slope 

and offset of the relationship between chl-a concentration and the NIR-red model values 

are affected by atmospheric effects on the satellite images. This is pronouncedly seen in 

multi-temporal datasets in which the atmospheric effects are not uniform on all the 

images. A reliable atmospheric correction procedure that is able to uniformly correct the 

non-uniform atmospheric effects across multi-temporal data from multiple geographic 

locations is necessary prior to applying the NIR-red algorithms universally. 

 The NIR Bands Procedure, even though it is an improvement over Gordon and 

Wang’s (1994) atmospheric correction model, still overestimates the aerosol contribution, 

resulting in severe underestimation of water-leaving radiance (yielding negative values) 

in turbid waters. This results in lower number of retrievable pixels per image, which is a 

significant problem when attempting to calibrate the NIR-red models by comparing with 

in situ data. Procedures that rely on SWIR bands for aerosol model selection should, in 

theory, work reasonably well because even turbid waters are quite dark at the SWIR 

region. However, the higher level of detector noise at SWIR (and the consequent lower 

signal-to-noise ratio) significantly reduces the advantage gained by using the SWIR 

bands for aerosol model selection. The MUMM Correction, which was developed to 

prevent negative reflectances at the shorter wavelengths, often overestimated surface 
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reflectances. The assumption of a single aerosol type over the whole image may prove 

costly in narrow water bodies that are adjoined by urban and industrial developments. 

 Figure 4.17 shows reflectances retrieved through the NIR Bands Procedure from 

the same water body for very similar values of chl-a concentration on three different 

days. Granted that the variations in the concentration of suspended particles can result in 

differences in the magnitude of reflectance, a consistently effective atmospheric 

correction procedure should still yield reflectances that are similar in shape (especially, 

the spectral features due to chl-a absorption in the red and the reflectance peak in the NIR 

region). The significant differences in the shape and magnitude of the retrieved 

reflectances (especially, the chl-a absorption in the red and the reflectance peak in the 

NIR region) mean that the NIR-Red model values will be very different for these data 

points with very similar chl-a concentrations. 
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Figure 4. 17. Reflectance spectra retrieved through the NIR Bands Procedure from 
MODIS data from different dates for stations with similar chl-a concentrations. 
 

Judging by the shape of the retrieved reflectance spectra, particularly the spectral 

features at the red and NIR wavebands caused by the presence of chl-a in water, the 
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Bright Pixel Atmospheric Correction procedure implemented in the standard processing 

of MERIS data looks good. However, inconsistencies still exist and the procedure often 

yields negative reflectances, especially for very turbid waters. The atmospheric correction 

procedure implemented in the Case 2 Regional Processing scheme does a better job of 

preventing negative reflectances. However, it was found in several instances that the chl-

a-induced spectral features in the red and NIR wavebands were less pronounced in the 

output from the Case 2 Regional Processing compared to the output from the Bright 

Pixel Atmospheric Correction (Moses et al. 2009b).  

For the purpose of developing a reliable universal NIR-red algorithm, the burden 

of effective atmospheric correction is not necessarily in yielding absolutely accurate 

surface reflectance values at all wavelengths, which can be validated by in situ measured 

reflectances. But the non-uniform atmospheric effects on images acquired on different 

dates from different geographic locations need to be uniformly corrected such that even if 

the atmospheric effects are not completely removed, their residual effects are uniform 

across multiple datasets. For the data analyzed for this research, the Bright Pixel 

Atmospheric Correction procedure has given the most consistent and reliable results. 

Nevertheless, the images used in this research were acquired over the Taganrog Bay and 

the Azov Sea, and the procedure needs to be tested for data from other geographic 

locations with variations in the type and quantity of aerosol loading. In situ reflectances 

measured at the time of satellite image acquisition will help analyze the consistency of 

atmospheric correction procedures and their effect on the performance of the NIR-red 

models. 

 



 100

4.5.2. Temporal Variation of Water Quality 

A satellite captures its entire swath within a matter of a few seconds whereas it 

takes several hours to collect in situ data. With the inland, estuarine, and coastal waters 

being quite dynamic, it is conceivable that the water might have undergone appreciable 

changes in its biophysical and optical characteristics during these few hours. In our 

studies, differences in chl-a concentration of up to a factor of two have been observed 

within a matter of a few hours. Thus it is important that the temporal variations in the 

concentrations of optically active constituents such as chl-a, TSS, inorganic suspended 

matter and colored dissolved organic matter be accounted for. This problem is magnified 

when there is no cloud-free satellite image available for the date of in situ data collection 

and one has to use the image acquired a day or two before/after. 

With the in situ stations spread quite far from each other, considering the satellite 

pixel dimension and the necessity to have stations separated by at least two pixel lengths, 

it has been rather difficult to collect in situ data using a single vessel at more than 10 – 12 

stations within a time frame of a few hours surrounding the satellite overpass. As stated 

above, the biophysical and optical characteristics at some of these stations might be 

different at the time of measurement from what they were at the time of satellite 

overpass. Furthermore, some of these stations might happen to fall under cloud cover or 

haze. Thus the number of stations available for comparison with same-day images is 

quite few, thereby making it difficult to develop reliable calibration equations for the 

model. 

The effect of temporal variability is not uniform for all water bodies but is rather 

case-specific. As such, as indicated in some of our results, there have been cases where a 
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temporal difference up to two days did not adversely effect the estimation of chl-a 

concentration due to the stable biophysical condition of the water body. Nevertheless, it 

is still essential to account for the temporal variations in water quality between the time 

of in situ data collection and the time of satellite image acquisition when attempting to 

calibrate or validate chl-a algorithms. 

4.5.3. Within-Pixel Spatial Heterogeneity 

Often, the spatial heterogeneity in the water body might be such that the point in 

situ station may not be truly representative of the satellite pixel area (260 m x 290 m for 

MERIS and 1 km x 1 km for MODIS) surrounding the station. In analyzing fluorescence 

measurements taken continuously along a transect on the Azov Sea in June 2005, 

significant variations were found in fluorescence values within every 300 m and 1 km 

lengths along the transect (figure 4.18). When the water within each satellite pixel is not 

truly homogeneous, it becomes difficult to confidently and reliably compare the satellite-

derived values to point in situ observations. 
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Figure 4. 18. Fluorescence measurements taken continuously along a transect on the 
Azov Sea plotted against the distance from the starting point. 
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4.5.4. Need for Modified In situ Data Collection Strategy 

The significance of the effects of the factors mentioned above and the difficulty in 

isolating them necessitate the development of in situ data collection techniques that help 

understand and account for these factors. In order to reliably assess the accuracy of 

atmospheric correction procedures and its effect on the performance of the NIR-red 

models, it is necessary to have actual measurements of water-leaving radiance collected 

in situ at the time of satellite overpass. Within-pixel spatial heterogeneity and temporal 

variation have to be accounted for by taking multiple measurements around each station 

so as to characterize the spatial variation within the satellite pixel area around the station 

and repeated measurements (at least twice, covering the length of time elapsed between 

the satellite overpass and the in situ data collection) at each station to characterize the 

temporal variation. If these factors are not accounted for, they present inherent hurdles to 

the development of reliable regression equations to calibrate the NIR-Red models. Of 

course, the rigor and the extent to which the in situ data collection procedures need to be 

adapted depend on the particular conditions at the water body. 

 
4.6. Conclusion 

 The NIR-red models were applied to MODIS and MERIS data acquired over 

different water bodies and processed through different atmospheric correction 

procedures. The NIR-red models were closely correlated to phytoplankton biophysical 

characteristics. The MERIS NIR-red models with the Bright Pixel Atmospheric 

Correction, especially the two-band MERIS NIR-red model, were more reliable and 

accurate than the MODIS NIR-red model. Three-band and two-band MERIS NIR-red 

algorithms were developed, tested, and shown to compare favorably with other standard 
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chl-a algorithms. Nevertheless, the MERIS NIR-red algorithms need to be tested using a 

larger dataset before being recommended for universal application. The limitations and 

challenges involved in developing such a universal algorithm have been described. The 

primary factors are: (i) atmospheric correction of satellite images, (ii) temporal variation 

of water quality, and (iii) within-pixel spatial heterogeneity. Provided that these limiting 

factors can be effectively accounted for, robustly calibrated algorithms can be developed 

for applying the NIR-Red models to satellite data for real-time quantitative measures of 

chl-a concentration, which will greatly benefit scientists and natural resource managers in 

making informed decisions on managing the inland, coastal, and estuarine ecosystems. 

 



 104

Chapter 5. Summary and Future Work 

5.1. Summary of Results 

The objective of this research was to explore the feasibility of developing a 

spectral algorithm based on reflectances in the red and NIR wavelengths for estimating 

chl-a concentration in turbid and productive inland, estuarine, and coastal waters using 

satellite data. Three-band and two-band NIR-red models were formulated with 

wavebands that matched the spectral channels of MERIS and MODIS satellites. When 

applied to multiple datasets from lakes in Nebraska, Chesapeake Bay, and Lake Kinneret 

in Israel, the NIR-red models had a close and steady correlation with chl-a concentration. 

For reasons described in chapter 2, the two-band MODIS NIR-red model was unreliable 

for estimating low-to-moderate chl-a concentrations and the two-band MERIS NIR-red 

model was more consistent, accurate, and reliable than the three-band MERIS NIR-red 

model. The results from the close-range data established the ability of the NIR-red 

models to account for biophysical variability in water and accurately estimate chl-a 

concentration, without the need to re-parameterize the algorithms for each different water 

body.  

 The two-band MERIS NIR-red model was applied to five images acquired by the 

airborne sensor AISA over lakes in Nebraska. The model had very close relationships 

with in situ chl-a concentration for each of the images. The slope and offset of the 

relationship varied from image to image due to non-uniform atmospheric effects on the 

five days of image acquisition. By judicious relative adjustment of input atmospheric 

parameters based on apparent atmospheric particulate scattering, the five AISA images 

were relatively adjusted for atmospheric effects using the atmospheric correction 
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program, FLAASH. The relative atmospheric adjustment resulted in conformity of the 

slope and offset of the relationships between the two-band MERIS NIR-red model values 

and chl-a concentrations. Nevertheless, since there were no actual measurements of 

atmospheric parameters on those five days to substantiate the absolute values of the 

parameters that were fed as input to the atmospheric correction program, the uniform 

slope and offset obtained could not be used to calibrate the two-band MERIS NIR-red 

model. With their high spatial resolution and adjustability of spectral characteristics, 

aircraft sensors offer tremendous flexibility. Aircraft missions can be planned to 

effectively overcome the issues of within-pixel spatial heterogeneity in water and 

temporal variation of water quality between the times of in situ data collection and image 

acquisition.  

The non-uniform atmospheric effects in multi-temporal images pose the biggest 

hurdle to calibrating the model for aircraft data. In situ measurements of aerosol optical 

thickness need to be taken at the time of image acquisition using a sun photometer so that 

the input parameters for atmospheric correction could be correctly supplied. If the 

atmospheric correction program is reliable and consistent, feeding input parameters based 

on actual measurements of aerosol optical thickness should result in properly 

atmospherically corrected output that lend to uniform relationships between the model 

values and chl-a concentrations for multi-temporal data, provided other issues such as the 

quality and reliability of the spectral data from the airborne sensor are sufficiently dealt 

with. Such a uniform slope and offset of the relationship between model values and chl-a 

concentrations, derived from multi-temporal images taken in different atmospheric 

conditions, can be used to calibrate the two-band MERIS NIR-red model. However, such 
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an algorithm will be specific to the sensor (AISA) and the atmospheric correction 

program (e.g., FLAASH). An independent assessment of the spectral quality of AISA 

data and the quality of FLAASH atmospheric correction (by comparison with in situ 

measured radiance data) and their effect on the model values need to be done before an 

universal algorithm can be developed for estimating chl-a concentration using data from 

other airborne sensors. 

 When applied to data from MODIS and MERIS, the NIR-red models had close 

correlations with phytoplankton biophysical characteristics such as chlorophyll 

fluorescence, phytoplankton biomass and chl-a concentration. The problem of 

atmospheric correction remains a major hurdle to developing algorithms for routinely 

estimating chl-a concentration from satellite data. Three-band and two-band MERIS 

NIR-red algorithms were developed and successfully tested using MERIS images 

acquired over the Taganrog Bay and Azov Sea, Russia, and processed by the Bright Pixel 

Atmospheric Correction procedure. Both algorithms were able to explain more than 90% 

of variation in chl-a concentration, with the two-band MERIS NIR-red algorithm 

performing slightly better, for reasons described in chapters 2 and 4. The accuracy and 

reliability of the MERIS NIR-red algorithms, especially the two-band MERIS NIR-red 

algorithm, promise a great potential for universal application to satellite data routinely 

acquired over turbid and productive waters around the globe. Nevertheless, further needs 

to be done in order to establish such a universal algorithm. This will be the focus of 

future work. 
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5.2. Towards a Universal NIR-red Algorithm 

 The results shown in Chapter 2 illustrate that there is no need to re-parameterize 

the MERIS NIR-red algorithms for each different water body. The slopes and intercepts 

of the three-band and two-band MERIS NIR-red algorithms derived from MERIS 

satellite data (equations (4.4) and (4.5)) were similar to the corresponding figures for the 

two-band and three-band MERIS NIR-red algorithms derived from the 2008 Nebraska 

lakes data (see section 4.4.2(i)). When the two-band MERIS NIR-red algorithm 

developed using the 2008 Nebraska lakes data (reflectance spectra measured using field 

spectrometers) were applied to MERIS data acquired over the Azov Sea in 2008 and 

2009, the estimated chl-a concentrations closely matched the in situ measured chl-a 

concentrations, with a very low RMSE of 3.64 mg m-3 (figure 5.1). This remarkable 

result illustrates the insensitivity of the algorithm to the differences in remote sensor and 

the type of processing and strongly presents the case for the universal applicability of the 

two-band MERIS NIR-red algorithm. This is further illustrated in figure 5.2, which 

shows plots of in situ measured chl-a concentration versus chl-a concentrations estimated 

by the two-band MERIS NIR-red algorithm developed using the 2008 Nebraska lakes 

data for Lake Kinneret, Chesapeake Bay, Azov Sea, and Nebraska lakes (see also table 

5.1). The algorithm is remarkably consistent and highly accurate for data from different 

waters and different remote sensors (field spectrometers and satellite sensors). 
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Figure 5. 1. Plot of in situ measured chl-a concentration in Azov Sea versus chl-a 
concentration estimated from MERIS data using the two-band MERIS NIR-red algorithm 
developed using the 2008 Nebraska lakes data. 
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Figure 5. 2. Plots of in situ measured chl-a concentration versus chl-a concentration 
estimated by the two-band MERIS NIR-red algorithm developed using the 2008 
Nebraska lakes data for Lake Kinneret, Chesapeake Bay, Azov Sea, and Nebraska lakes. 

 

 



 109

Chl-a 
Concentration 

(mg m-3) 

 
Water Body 

 
Number of 

Stations 
Min. Max. 

 
RMSE 

(mg m-3) 

 
Coefficient of 

Variation of RMSE 

Lake Kinneret 58 4.6 20.75 1.46 0.13 
Chesapeake 

Bay 
11 6.2 34.89 3.42 0.24 

Azov Sea 26 0.63 65.51 3.64 0.13 
Nebraska lakes 83 2.56 103.4 4.08 0.15 
 
Table 5. 1. Accuracy statistics for the estimation of chl-a concentration using the two-
band MERIS NIR-red algorithm developed based on the 2008 Nebraska lakes data. 
  
 

5.3. Suggestions for Future work  

Work in the future towards further establishing a universal NIR-red algorithm will 

revolve around the following three issues: 

5.3.1. A broader test of the sensitivity of the calibrated NIR-red algorithms to 

variations in biophysical characteristics of water 

 The results shown in chapter 2 demonstrate the ability of the NIR-red models, 

particularly the two-band MERIS NIR-red model, to account for biophysical variations in 

water, thereby establishing their potential for universal applicability. However, the NIR-

red models need to be further tested for waters with higher concentrations of inorganic 

suspended solids, wider variation in composition of optically-active constituents and 

from different geographic locations. When applying the models to data from different 

campaigns, diligent care has to be taken to ensure that the techniques for measuring in 

situ reflectance data and chl-a concentrations remain consistent. The upwelling radiance 

measurements should be taken just below the water surface. Above-water measurements 

are very susceptible to the effects of random specular reflection from the water surface, 

especially in windy and choppy conditions. 
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5.3.2. Further tests of the sensitivity of the NIR-red algorithms to the type of sensor 

and the type and quality of atmospheric correction procedure 

 Uncertainties due to the quality of spectral data and the quality of atmospheric 

correction can affect the accuracy yielded by the NIR-red algorithms. The results 

obtained in applying the two-band MERIS NIR-red algorithm developed from the 2008 

Nebraska lakes data to the data acquired by MERIS over the Azov Sea illustrated the 

insensitivity of the algorithm to the type of sensor and the effect of atmospheric 

correction. Nevertheless, it is essential to further test the sensitivity of the algorithms to 

these factors by applying the algorithms to data acquired by a few different sensors such 

as AISA, CASI (Compact Airborne Spectrographic Imager), and PHILLS (Portable 

Hyperspectral Imager for Low Light Spectroscopy), and corrected by different 

atmospheric correction procedures such as FLAASH and TAFKAA (The Algorithm 

Formerly Known As ATREM). 

5.3.3. Tests to see if the NIR-red models can be tuned with different wavebands than 

the MERIS wavebands to yield better results 

 This research resulted in calibrated three-band and two-band MERIS NIR-red 

algorithms. Nevertheless, the MERIS spectral channels may not be the most optimal 

wavebands for the NIR-red models. For instance, for low-to-moderate chl-a 

concentrations, the reflectance peak occurs at a shorter wavelength than 708 nm (Gitelson 

1992). Moreover, since the spectral channel centered at 753 nm is quite prone to 

uncertainties arising from very low magnitudes of water-reflectance (which magnifies the 

effect of detector noise and the effect on the three-band NIR-red model due to random 

variations in particulate scattering), a spectral channel in the 720 – 740 nm region might 
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be preferable for the three-band NIR-red model. The flexibility and continuous spectral 

coverage offered by aircraft sensors provide a platform to test and choose the most 

optimal wavebands for the NIR-red models. If the NIR-red models give consistently 

better results for a particular set of wavebands that are different from the MERIS 

wavebands, then these wavebands will be strongly recommended for consideration when 

designing the next space-borne ocean color sensor. 
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