
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department of

8-1996

Analyzing Regression Test Selection Techniques
Gregg Rothermel
University of Nebraska-Lincoln, grothermel2@unl.edu

Mary Jean Harrold
Ohio State University

Follow this and additional works at: http://digitalcommons.unl.edu/csearticles

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Rothermel, Gregg and Harrold, Mary Jean, "Analyzing Regression Test Selection Techniques" (1996). CSE Journal Articles. 13.
http://digitalcommons.unl.edu/csearticles/13

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles/13?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996 529

Analyzing Regression Test
Selection Techniques

Gregg Rothermel, Member, /€E€
and Mary Jean Harrold, Member, /€E€

Abstract-Regression testing is a necessary but expensive maintenance activity aimed at showing that code has not been
adversely affected by changes. Regression test selection techniques reuse tests from an existing test suite to test a modified
program. Many regression test selection techniques have been proposed; however, it is difficult to compare and evaluate these
techniques because they have different goals. This paper outlines the issues relevant to regression test selection techniques, and
uses these issues as the basis for a framework within which to evaluate the techniques. We illustrate the application of our
framework by using it to evaluate existing regression test selection techniques. The evaluation reveals the strengths and
weaknesses of existing techniques, and highlights some problems that future work in this area should address.

Index Terms-Software maintenance, regression testing, selective retest, regression test selection.

+
1 INTRODUCTION

STIMATES indicate that software maintenance activities E account for as much as two-thirds of the cost of soft-
ware production [36]. One necessary but expensive mainte-
nance task is regression testing, performed on a modified
program to instill confidence that changes are correct and
have not adversely affected unchanged portions of the pro-
gram. An important difference between regression testing
and development testing is that during regression testing
an established suite of tests may be available for reuse. One
regression testing strategy, the retest-all approach, reruns all
such tests, but this strategy may consume excessive time
and resources. Regression test selection techniques, in contrast,
attempt to reduce the time required to retest a modified
program by selecting some subset of the existing test suite.

Although some regression test selection techniques select
tests based on information collected from program specifica-
tions 1281, 1401 most techniques select tests based on infor-
mation about the code of the program and the modified ver-
sion 111, 121, [31, [51, VI, [IO], 1111, [131, 1151, 1161, 1171, 1181,
1201, 1191, 1241, 1251, 1271, P81, D11, 1331, 1351, 1341, 1371, 1381,
[39], [411, 1421, [451. These code-based techniques pursue
three distinct goals. Coverage techniques locate program
components that have been modified or affected by modifi-

1

1. A second important task for regression testing is to find ways in which
the existing test suite is not adequate for testing a modified program, and
indicate where new tests might be needed. In this work, however, we are
concerned only with the process of reusing existing tests. We discuss this
further in Section 2.

G. Rothermel is with the Department of Computer Science, Oregon State
University, Dearborn Hall 307A, Corvallis, OR 97331-3202.
E-mail: grother@cs.orst.edu.
M.J. Harrold is with the Department of Computer and Information Science,
the Ohio State University, 395 Dreese Lab, 2015 Neil Ave., Columbus, OH
4321 0-1277. E-mail: harrold@cis.ohio-state.edu.

Manuscript received Oct. 27,1994; revised Feb. 20,1996.
Recommended for acceptance by T. Ostrand.
For information on obtaining Yeprints of this article, please send e-mail to:
transse&omputer.org, and reference IEEECS Log Number S95644.

cations, and select tests in T that exercise those components.
Minimization techniques work like coverage techniques, but
select minimal sets of tests through modified or affected pro-
gram components. Safe techniques select every test in T that
can expose one or more faults in P'. Given this abundance of
regression test selection techniques, if we wish to choose a
technique for practical application, we need a way to com-
pare and evaluate the techniques.

Differences in underlying goals lead regression test se-
lection techniques to distinctly different results in test se-
lection. Despite these philosophical differences, we have
identified categories in which regression test selection tech-
niques can be compared and evaluated. These categories
are inclusiveness, precision, efficiency, and generality.
Inclusiveness measures the extent to which a technique
chooses tests that will cause the modified program to pro-
duce different output than the original program, and
thereby expose faults caused by modifications. Precision
measures the ability of a technique to avoid choosing tests
that will not cause the modified program to produce differ-
ent output than the original program. Efficiency measures
the computational cost, and thus, practicality, of a tech-
nique. Generality measures the ability of a technique to
handle realistic and diverse language constructs, arbitrarily
complex code modifications, and realistic testing applica-
tions. These categories form a framework for evaluation
and comparison of regression test selection techniques. In
this paper, we present this framework, and demonstrate its
usefulness by applying it to the code-based regression test
selection techniques that we cited above.

The main benefit of our framework is that it provides a
way to evaluate and compare existing regression test selec-
tion techniques. Evaluation and comparison of existing
techniques helps us choose appropriate techniques for par-
ticular applications. For example, if we require very reliable
code, we may insist on a safe selective retest technique
regardless of cost. On the other hand, if we must reduce

0098-5589/96$05.00 01 996 IEEE

mailto:grother@cs.orst.edu
mailto:harrold@cis.ohio-state.edu
http://transse&omputer.org

530 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

testing time we may choose a minimization technique, even
though in doing so we may fail to select some tests that
expose faults in the modified program. Evaluation and
comparison of existing techniques also provides insights
into the strengths and weaknesses of current techniques,
and guidance in choosing areas that future work on regres-
sion test selection should address.

In the next section, we provide background material on
regression testing in general, and on the regression test selec-
tion problem in particular. In Section 3, we discuss theoretical
issues that provide motivation for our framework. In Section
4, we present our framework for comparing and evaluating
regression test selection techniques. In Section 5, we use our
framework to review and compare existing techniques. In
Section 6, we conclude and discuss future work.

Let P be a program, let P' be a modified version of P, and let
S and S' be the specifications for P and P', respectively. P(i)
refers to the output of P on input i, P'(ij refers to the output
of P' on input i, S (i) refers to the specified output for P on
input i, and S'(zj refers to the specified output for P' on in-
put z. Let T be a set of tests (a test suite) created to test P. A test
is a 3-tuple, <identifier, input, output>, in which identifier
identifies the test, input is the input for that execution of the
program, and output is the specified output, S(input), for this
input. For simplicity, in the sequel we refer to a test (t, i, S(i))
by its identifier t , and refer to the outputs P(i) and S(i) of
test t for input i as P(tj and S t) , respectively.

Research on regression testing spans a wide variety of
topics. Dogsa and Rozman [9], Hoffman and Brealey [22],
Hoffman [21], Brown and Hoffman [61, and Ziegler, Grasso,
and Burgermeister [46] focus on test environments and
automation of the regression testing process. Lewis, Beck,
and Hartmann [30] investigate automated capture-playback
mechanisms and test suite management. Hartmann and
Robson [20], Taha, Thebaut, and Liu [391, Harrold, Gupta,
and Soffa [14], and Wong et al. 1431 address test suite man-
agement. Binkley [4] presents an algorithm that constructs a
reduced-size version of the modified program for use in
regression testing. Leung and White [261 discuss regression
testability metrics. Most recent research on regression test-
ing, however, concerns selective retest techniques.

Selective retest techniques reduce the cost of testing a
modified program by reusing existing tests and identifying
the portions of the modified program or its specification
that should be tested. Selective retest techniques differ from
the retest-all technique, which reruns all tests in the existing
test suite. Leung and White [291 show that a selective retest
technique is more economical than the retest-all technique
if the cost of selecting a reduced subset of tests to run is less
than the cost of running the tests that the selective retest
technique lets us omit.

A typical selective retest technique proceeds as follows:
1) Select T E T, a set of tests to execute on P'.
2) Test P' with T , to establish the correctness of P' with

3) If necessary, create T', a set of new functional or

I respect to T.

structural tests for P'.

4) Test P' with T', to establish the correctness of P' with

5) Create T"', a new test suite and test history for P',

In performing these steps, a selective retest technique ad-
dresses four problems. Step 1 addresses the regression test
selection problem: the problem of selecting a subset T of T
with which to test P'. Step 3 addresses the coverage identzfica-
tion problem: the problem of identifying portions of P' or S'
that require additional testing. Steps 2 and 4 address the
test suite executzon problem: the problem of efficiently exe-
cuting tests and checking the results for correctness. Step 5
addresses the test suite maintenance problem: the problem of
updating and storing test information. Although each of
these problems is significant, we restrict our attention to the
regression test selection problem. We further restrict our
attention to code-based regression test selection techniques,
which rely on analysis of P and P' to select tests.

respect to T".

from T, T', and T'.

3 REGRESSION TEST SELECTION FOR FAULT
DETECTION

All code-based regression test selection techniques attempt to
select a subset T' of T that will be helpful in establishing con-
fidence that P' was modified correctly and that P's function+
ality has been preserved where required. In this sense, all
code-based test selection techniques are concerned, among
other things, with locating tests in T that expose faults in P'.
Thus, it is appropriate to evaluate the relative abilities of the
techniques to choose tests from T that detect faults.

A test t detects a fault in P' if it causes P' to fail: in that
case we say t is fault-renenling for P'. A program P fails for t
if, when P is tested with t, P produces an output that is in-
correct according to S . There is no effective procedure by
which to find the tests in T that are fault-revealing for P'
[32]. Under certain conditions, however, a regression test
selection technique can select a superset of the set of tests in
T that are fault-revealing for P'. Under those conditions, such
a technique omits no tests in T that can reveal faults in P'.

Consider a second subset of the tests in T the modifica-
tion-revealing tests. A test t is modification-revealing for P and
P' if and only if it causes the outputs of P and P' to differ.
Given two assumptions, we can find the tests in T that are
fault-revealing for P' by finding the tests in T that are modifi-
cation-revealing for P and P'. The assumptions are as follows:

P-Correct-for-T Assumption, For each test t in T,
when P was tested with t , P halted and produced the
correct output.
Obsolete-Test-Identification Assumption. There is
an effective procedure for determining, for each test
in t , whether t is obsolete for P'. Test t is obsolete for
program P' if and only if t either specifies an input to
P' that, according to S', is invalid for P', or t specifies
an invalid input-output relation for P'.'

To find tests in T that are fault-revealing for P', we run our
procedure for identifying obsolete tests in T, and remove

2. If we cannot effectively determine test obsolescence, we cannot effec-
tively judge test correctness. Thus, this assumption is necessary if we intend
to employ test reuse, whether selective or not.

ROTHERMEL AND HARROLD: ANALYZING REGRESSION TEST SELECTION TECHNIQUES

Obsolete
Fault-Revealing 2

I

531

them from T. We know that every test remaining in T ter-
minated and produced correct output for P, and is sup-
posed to produce the same output for P‘. Thus, the only
tests left in T that can be fault-revealing for P’ are those that
are modification-revealing for P and P‘, and we can find
those fault-revealing tests simply by finding the modifica-
tion-revealing tests. Also, some tests identified as obsolete
may still involve legal inputs to P’ that, if used to test P’,
reveal faults in P’. However, we may find these tests simply
by running P‘ with those inputs, and setting a time bound b
such that, if any test exceeds that bound, we assume it is
fault-revealing for P’.

Unfortunately, even when the P-Correct-for-T Assump-
tion and the Obsolete-Test-Identification Assumption hold,
there is no effective procedure for precisely identifying the
nonobsolete tests in T that are modification-revealing for P
and P‘ [321. Thus, we consider a third subset of T: the modi-
fication-traversing tests. A test t E T is modification-
traversing foy P and P’if and only if it

3

1) executes new or modified code in P’, or
2) former1 executed code that has since been deleted

from P.
The modification-traversing tests are useful to consider

because with an additional assumption, a nonobsolete test t
in T can only be modification-revealing for P and P’ if it is
modification-traversing for P and P’. The additional as-
sumption is as follows:

Controlled Regression Testing Assumption. When P‘
is tested with t, we hold all factors that might influence
the output of P’, except for the code in P’, constant with
respect to their states when we tested P with t.

When the Controlled Regression Testing Assumption holds
(with our first two assumptions), we can identify the tests
in T that are fault-revealing for P and P‘ by identifying the
nonobsolete tests in T that are modification-traversing for P
and P’, and then using the procedure described above to
determine, from among the obsolete tests for T, those tests
that are fault-revealing for P and P’. When all three of our
assumptions hold, this process locates the tests in T that are
fault-revealing for P‘ Fig. 1 illustrates the relationship that
holds between the sets of obsolete, fault-revealing, modifica-
tion-revealing, and modification-traversing tests in T when the
assumptions hold.

Reference [32] gives an algorithm that precisely identifies the

1

3. This procedure does not, of course, precisely identify the fault-
revealing tests from among the obsolete tests in ‘E It may select a test
which, if we increased b, would terminate without being fault-revealing.
However, this procedure does conservatively approximate the set of fault-
revealing tests from among those obsolete tests, omitting no fault-revealing
tests. Notice further that we could apply a similar procedure to all tests in
T, running them with a time bound b to discover, conservatively, which
tests are fault-revealing for 17’; however, in running all tests in T, we are
doing the very thing that selective retest aims to avaid.

4. To capture more formally the notion of executing new, modified, or
deleted code, in [321 we define the concept of an execution trace ET(P(t)) for
t on P to consist of the sequence of statements in P that are executed when P
is tested with t . We then say that two execution traces ET(P(t)) and
ET(P’(t)), representing the sequences of statements executed when P and P’,
respectively, are tested with t, are nonequivalent if they have different
lengths, or if when we compare their elements from first to last, we find
some pair of elements that are lexically nonidentical. We then say that t is
modification-traversing for P and P’ if and only if ET(P(I‘)) $ ET(P’(i)) ,

Test Suite T

Nonobsolete

Modification-Revealing

Faul t-Revealing

Fig. 1. Relationship between classes of tests.

tests t in T that are modification-traversing for P and P. Unfor-
tunately, that algorithm has an exponential worst-case running
time. Moreover, we show that unless P = NP, we cannot expect
to find an efficient algorithm to precisely identdy the tests in T
that are modification-traversing for P and P‘, because the prob-
lem of precisely i d e n w g those tests is PSPACE-hard. How-
ever, even though the problem of precisely idenhfymg the tests
in T that are modification-traversing for P and P‘ is intractable in
general, we show that there are algorithms that can conserva-
tively idenhfy those tests. In doing so, for cases where the three
assumptions hold, these algorithms select all nonobsolete tests in
T that are fault-revealing for P.

For brevity, we henceforth refer to tests that are ”fault-
revealing for P’,” ”modification-revealing for P and P’,” and
”modification-traversing for P and P‘,” simply as ”fault-
revealing,” “modification-revealing,” and ”modification-
traversing,” respectively.

The Controlled Regression Testing Assumption is not al-
ways practical. For example, if we port P to another system,
creating P‘, we cannot cannot use controlled regression test-
ing to test P‘ on the new system: controlled regression testing
demands that we hold all factors other than code constant,
including the system. When we do not employ controlled
regression testing, selection of the modification-traversing
tests may omit modification-revealing tests. For instance, in
the porting example, P‘ may fail on tests that are not modifi-
cation-traversing for P and P’ if the new system has less
memory available for dynamic allocation than the old sys-
tem. There are also other factors that affect the viability of the
assumption in practice: Nondeterminism in programs, time-
dependencies, and interactions with the external environ-
ment can all be difficult (although not necessarily impossible)
to incorporate into the testing process in a way that allows us
to employ controlled regression testing. However, even 5

5. It i s worth worrying, however, about the ramifications for software
quality if we do not deterministically test a particular timing effect, envi-
ronmental interaction, or dependency. In that case, in any particular testing
session, some important program behavior may go untested, due simply to
the vagaries of the environment or of the order in which operations occur.
If we cannot test such behavior deterministically, it is not clear how we can
ensure that we test it at all. Rather than concluding that the Controlled
Regression Testing Assumption is not useful in practice, perhaps we should
focus on finding ways to make controlled regression testing possible for
cases like these.

532 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

when we cannot employ controlled regression testing, the
modification-traversing tests may constitute a useful test
suite. We conjecture that when a testing budget is limited,
and a subset of T must be chosen, tests that execute changed
code are better candidates for re-execution than tests that are
not modification-traversing.

The three classes of tests that we describe in this section
can contribute to the specification of a framework for
evaluating and comparing regression test selection tech-
niques, for several reasons. First, testing professionals are
reluctant to discard tests that may expose faults. As we
have shown, given certain assumptions, the relationships
among the three classes provide a way to analytically
evaluate test selection techniques in terms of their abilities
to select and avoid discarding fault-revealing tests. Despite
the fact that many regression test selection techniques aim
to select tests to satisfy some test adequacy measure, it is
both reasonable and important to evaluate those methods
in terms of their abilities to detect faults.

Second, even for cases where the Controlled Regression
Testing Assumption cannot be satisfied, the three classes can
still serve to distinguish existing regression test selection tech-
niques. Most code-based regression test selection techniques
attempt to identify tests that execute changed components of
P'. Many techniques attempt to be more precise, eliminating,
from those tests that execute changed components, some tests
that clearly cannot cause P and P' to produce different output.
Thus, it is useful to compare test selection techniques in terms
of their abilities to iden@ these classes of tests.

Third, in practice, for large software systems, test suites
are functional, and the goal of testing is not coverage of
code components, but testing of functional behavior. When
test suites are built primarily to provide code coverage, it
may make little sense to select all tests that pass through a
component, because only one such test will provide that
coverage. But when test suites are functional it seems par-
ticularly important not to omit tests from T' that may reveal
faults in P', even though they may exercise code compo-
nents already exercised by other tests.

4 FRAMEWORK FOR ANALYZING REGRESSION TEST
SELECTION TECHNIQUES

In this section, we present our framework for analyzing
regression test selection techniques. The framework con-
sists of four categories: inclusiveness, precision, efficiency,
and generality.

4.1 Inclusiveness
Let M be a regression test selection technique. Inclusiveness
measures the extent to which M chooses modification-
revealing tests from T for inclusion in T'. We define inclu-
siveness relative to a particular program, modified pro-
gram, and test suite, as follows:
DEFINITION 1. Suppose T contains n tests that are modification-

revealing for P and P', and suppose M selects m of these
tests. The inclusiveness of M relative to P , P', and T is
1) the percentage given by the expression (1 0 0 (m / n)) if

n # O o r

2) 100% i fn = 0.

For example, if T contains 50 tests of which eight are modi-
fication-revealing for P and P', and M selects two of these
eight tests, then M is 25% inclusive relative to P, P', and T.
If T contains no modification-revealing tests then every test
selection technique is 100% inclusive relative to P, I", and T.

If M always selects all modification-revealing tests we
say M is safe, as follows:
DEFINITION 2. If for all P, P', and T, M is 100% zncluszve rela-

For an arbitrary choice of M, P, P', and T, there is no al-
gorithm to determine the inclusiveness of M relative to P,
P', and T [321; however, we can still draw useful conclu-
sions about inclusiveness. First, we can prove that M is safe
by showing that M selects a known superset of the modifi-
cation-revealing tests. For example, if M selects all modifi-
cation-traversing tests then for controlled regression testing
M is safe. Second, we can prove that M is not safe by find-
ing a case for which M omits a modification-revealing test.
Third, we can compare test selection techniques M1 and M2
to each other in terms of inclusiveness by showing that the
techniques select subsets Q and R of the modification-
revealing tests, and by showing that Q is a subset or super-
set of X. Finally, we can experiment to approximate the in-
clusiveness of M relative to a particular choice of P, P', and
T. Such experimentation involves running M on P, P', and T
to generate set T'. Then we run P' on each test in T to de-
termine which tests in T are modification-revealing. Finally,
we compare these tests with the modification-revealing
tests in T ' . ~

Inclusiveness and safety are significant measures. If M is
safe then M selects every nonobsolete test in T that is fault-
revealing for P', whereas if M is not safe it may omit tests
that expose faults. Furthermore, we hypothesize that if M1
and 1112 are regression test selection techniques, and M1 is
more inclusive than M2, then M1 has a greater ability to
expose faults than M2.

All code-based regression test selection techniques con-
sider the effects of modified code; however, to evaluate a
technique's inclusiveness we must also consider the effects
of new and of deleted code. When P' is created by adding
new code to P, T may already contain tests that are modifi-
cation-revealing because of that code. For example, con-
sider the code fragments shown in Fig. 2. In the absence of
other modifications, any test that executes statement S2 in
fragment F1 necessarily executes statement S2a in fragment
F1' and may be modification-revealing depending on
statements it subsequently encounters. Similarly, when P' is
created by deleting code from P, T may contain tests that
are modification-revealing because of this deleted code. For
example, consider the code fragments shown in Fig. 3. In
the example on the left, statement S1 in fragment F2 is de-
leted, yielding fragment F2'. In the absence of other modifi-
cations, any test that executes S1 in F2 may produce differ-
ent output in F2'. In the example on the right, two state-
ments are deleted from fragment F3, yielding fragment F3'.

tive to P, P', and T, M is safe.

6. Because it is not possible to determine whether P' halts when run on
test t E T, such experimentation can only approximate the inclusiveness of M.

ROTHERMEL AND HARROLD: ANALYZING REGRESSION TEST SELECTION TECHNIQUES 533

FtaOment F1 Fragment F1'

S1. if P then S1. if P then
5 2 . a : = 2 52. a : = 2
53. end : S 2 a . b : = 3 :

............................

5 3 . end

Fig. 2. Code fragments that illustrate addition of code.

Fragment F2

s1. call PutTermInGFXMode(1
s2. call DrawLine(pointl.point2)

.......
52.

... I

call DrawLine(pointl,point21

Fig. 3. Code fragments that illustrate deletion of code.

In the absence of other modifications, any test in which
both P and Q are true may produce different output in F3'.
If M does not account for the effects of new and deleted
code, we can find examples of code additions or deletions
that prove that M is not safe.

4.2 Precision
Let M be a regression test selection technique. Precision
measures the extent to which M omits tests that are non-
modification-revealing. We define precision relative to a
particular program, modified program, and test suite, as
follows:
DEFINITION 3. Suppose T contains n tests that are non-

modification-revealing for P and P' and suppose M omits
m of these tests. The precision of M relative to P, P: and
T is
1) the percentage given by the expression (1 0 0 (m / n)) if

2) 100% i f n = 0.
n#O,or

For example, if T contains 50 tests of which 44 are non-
modification-revealing for P and P', and M omits 33 of these
44 tests, then M is 75% precise relative to P, P', and T. If T
contains no non-modification-revealing tests, then every test
selection technique is 100% precise relative to P, P', and T.

As with inclusiveness, there is no algorithm to deter-
mine, for an arbitrary choice of M, P, P', and T, the preci-
sion of M relative to P, P', and T 1321; however, we can
draw useful conclusions about precision. First, we can
compare test selection techniques M1 and M2 to each other
in terms of precision by showing that the techniques select
subsets Q and R of the non-modification-revealing tests,
and by showing that Q is a subset or superset of R. Second,
we can prove that M is not precise by finding a case for
which M selects a test that is non-modification-revealing.
Third, we can use experimentation to compare relative pre-
cisions. Finally, we could prove that M is precise if we
could show that M omits a superset of the non-
modification-revealing tests.

Precision is useful because it measures the extent to
which M avoids selecting tests that cannot produce differ-

Fragment F3 Fragment F3'

Sl. if P then 51. if P then
5 2 . (do something) S2. (do something)
53. a := 2

endif endif
54. if Q then S4. if Q then
55. (do something) S5. (do something)

............................

.............................

............................ . print a S6

endi f endif

ent program output. In general, when we compare test se-
lection techniques in terms of precision, we can identify the
techniques that promote the least unnecessary testing. In
particular, when we compare safe test selection techniques
in terms of precision, we can identify techniques that come
closest to the goal of selecting exactly the modification-
revealing tests.

When we evaluate a test selection technique's precision,
it is useful to consider procedure structchange and modi-
fied version structchange' shown in Fig. 4.7 The changes
in structchange' create a syntactically different but se-
mantically equivalent modified version: the changes do not
affect the output of the program for any inputs. If M selects
any tests for this pair of procedures, it is imprecise.

s t ruc t change () structchgnger (1

S1. read(x)

5 2 . if (x <= 0)

S3. if (x = 0)

54. print(x+2)

5 5 . exit

end

end

5 6 . print(x+3)

5 7 . exit

S1' *

52'.

5 3 ' .

5 4 ' .

5 5 ' .

5 6 ' .

S 7 ' .

5 8 ' .

S 9 ' .

read(x1

if (x <= 01

if (x = 01

print(x+2)

exit
else
print(x+31

exit

end

end

print (x+3)

exit

Fig. 4. Procedures structchange and structchange',

Fig. 5 shows another procedure, pathological, and a
modified version, pathological', that can be useful when
we evaluate a test selection technique's precision. Each
while construct in the two versions first increments the
value of x, and then tests the incremented value to deter-
mine whether to enter or exit its loop. Notice that for a test

7. Fig. 4 is based on an example suggested by Weibao Wu (private com-
munication).

534 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

of input value "0," both versions output value "1," whereas
for a test of input value "-2" pathological outputs "1"
and pathological' outputs "3". If M selects the test of
input value "0" it is imprecise.

patho~ogical(x) gathological' (x)

(

s1. while (++x < 0)

s2. while (++x < 0)
(

1

{

SI'. while (++x < 0)

(

s2'. while (++x < 0)

{)

0

I { I

s3. while (++x < 0)
5 3 ' . while (++x < 0)

S 4 ' . while (++x < 0)

0
I

54. printf(-%d', x i ; I
S 5 ' . printf ("Fsd", x) ;

1
)

Fig. 5. Procedures pathological and pathological'.

4.3 Efficiency
We measure the efficiency of regression test selection tech-
niques in terms of their space and time requirements.
Where time is concerned, a test selection technique is more
economical than the retest-all technique if the cost of se-
lecting T' is less than the cost of running the tests in T-T'
[29]. Space efficiency primarily depends on the test history
and program analysis information a technique must store.
Thus, both space and time efficiency depend on the size of
the test suite that a technique selects, and on the computa-
tional cost of that technique. We rely on standard algorithm
analysis techniques to obtain theoretical measurements of
efficiency. Where empirical evidence about a technique's
efficiency is available, we also rely on that. In the rest of this
section, we discuss factors that should be considered when
performing such evaluations.

The first factor to consider when we evaluate a test selec-
tion technique's efficiency is the phase of the lifecycle in
which the technique performs its activities. We distinguish
two phases in a typical regression testing life cycle: a prelimi-
nary phase and a critical phase. The prelzmina y phase of re-
gression testing begins after release of some version of the
software. During this preliminary phase, programmers en-
hance and correct the software. When corrections are com-
plete, the critical phase of the regression testing life cycle be-
gins. In this critical phase, regression testing is the dominat-
ing activity; its time is limited-at times severely-by the
deadline for product release. It is in this critical phase that
cost minimization is most important for regression testing.

Regression test selection techniques can exploit the phases
of the regression testing life cycle. For example, a technique
that requires test history and program analysis information
during the critical phase can achieve a lower critical phase
cost by gathering some of that information during the pre-
liminary phase. When we evaluate test selection techniques
for efficiency, we differentiate between costs that are incurred
during the preliminary phase of regression testing and costs
that are incurred during the critical phase. 8

8. There are various ways in which this two-phase process may fit into

A second factor to consider when we evaluate a test se-
lection technique's efficiency is its automatability. Human
effort is expensive; techniques that require excessive human
interaction are impractical. The relative costs of human ef-
fort versus machine time may create cases in which, even
though test selection requires more time than the retest all
method, test selection is preferable. For example, suppose
we require two hours of analysis to determine that we can
save one hour of testing. If the analysis is fully automated,
the testing requires intensive human interaction, and we
can afford the analysis time, then test selection is preferable.
Finally, even a test selection method that is efficient in the
critical phase may be impractical, if it requires excessive
human interaction during the preliminary phase.

A third factor that impacts a test selection technique's ef-
ficiency is the extent to which the technique must calculate
information on program modifications. A technique that
must determine every program component that has been
modified in, deleted from, or added to, P, or calculate a
correspondence between P and P', may be more expensive
than a technique that calculates modification information as
needed. A technique that calculates information as needed
may find that only a partial correspondence need be calcu-
lated, saving work in comparison to a technique that first
calculates a complete correspondence.

Regression test selection techniques that require modifi-
cation information obtain it by one of two approaches. The
first approach is to use an incremental editor, that tracks
modifications as maintenance programmers perform them.
In this case, the cost of obtaining the information is incurred
during the preliminary phase of regression testing, instead of
in the critical phase. A second approach to obtaining modifi-
cation information is by using a "differencing" algorithm that
computes a correspondence between P and P', that shows which
components in P' are new, which components in P have been
deleted, whch components in P correspond to which compo-
nents in P', and which, of these corresponding components,
have been modified. One such differencing algorithm is pro-
posed by Yang [MI; this algorithm requires time O(I P I * I P' I)
to compute a correspondence between P and P'. An
Ob"(I P I, I P' I 13) algorithm is proposed by Laski and Szer-
mer [24]. More efficient comparison methods, such as the
W I X 9 dif f utility, may not be precise enough for computing
correspondences at the intraprocedural level. However,
coarser-grained interprocedural test selection algorithms that
only need to know, for example, which procedures in P have
been modified, can use methods such as d i f f . In this case, a
correspondence between P and P' at the procedure level can
be calculated in time O(max(I P I, I P' I) * log (max(I P I, I P' I)),
where the second multiplicand represents the cost of per-
forming table lookups in a directory or configuration man-
agement database to locate corresponding procedures.

the overall software maintenance process. A big bung process performs all
modifications and, when these are complete, turns to regression testing. An
incremental process performs regression 'testing at intervals throughout the
maintenance life cycle, with each testing session aimed at the product in its
current state of evolution. Preliminary phases are typically shorter for the
incremental model than with the big bang model; however, for both mod-
els, both phases exist and can be exploited.

9. UNIX is a registered trademark licensed exclusively by Novell, Inc.

ROTHERMEL AND HARROLD: ANALYZING REGRESSION TEST SELECTION TECHNIQUES 535

A final factor affecting the efficiency of test selection
techniques concerns the techniques’ ability to handle cases
in which P‘ is created by multiple modifications of P. A
technique that depends on analyses of programs and proc-
esses one modification at a time may be forced to reanalyze
or incrementally update analysis or test history information
after considering each modification. Such reanalysis can be
expensive and can significantly impact a technique’s cost.
An approach of this sort may suffice in the context of an
incremental regression testing process; however, in a big
bang process, this expense may be prohibitive.

4.4 Generality
The generality of a test selection technique is its ability to
function in a wide and practical range of situations. We
describe several factors that must be considered when
evaluating a technique‘s generality.

First, to be practical, a test selection technique should
function for some identifiable and practical class of pro-
grams. For example, a technique that is defined only for
procedures constructed of if, while, and assignment
statement constructs is not practical as defined.

Second, a test selection technique should handle realistic
program modifications. For example, a technique that does
not handle modifications that alter flow of control in pro-
grams is not, in general, practical.

Third, a technique that depends for its success on as-
sumptions about testing or maintenance environments is
less general than a technique that requires no such as-
sumptions. For example, a technique that requires that ini-
tial testing be performed using dataflow testing criteria is
less general than a technique that places no requirements
on initial testing. Similarly, a technique that requires an
incremental editor to track code modifications is less gen-
eral than a technique that has no such requirement.

Fourth, a technique that depends on the availability of
particular program analysis tools is less general than a
technique that does not depend on such tools. For example,
a technique that requires collection of test trace information
is less general than a technique that does not require this
information, because the instrumentation required to collect
such traces may be excessively intrusive for certain testing
applications. For similar reasons, a method that requires
traces on a per function basis is more general than a tech-
nique that requires traces on a per statement basis.

Finally, a technique may support intraprocedural or in-
terprocedural test selection. In practice, regression testing
is often performed at the interprocedural level on subsys-
tems or programs. Furthermore, empirical evidence sug-
gests that test selection at the intraprocedural level may not
offer savings sufficient to justify its cost [321.

We could define generality more quantitatively, as we
have defined inclusiveness and precision. We could then
use experimentation to measure generality with respect to

10

10. Most intraprocedural test selection techniques may be used interpro-
cedurally in a naive fashion, by applying them to all pairs of procedures in
the program and its modified version. However, this simplistic approach to
interprocedural test selection can be unnecessarily costly [321. We judge a
method interprocedural if it addresses interprocedural test selection by a
method that goes beyond this naive approach.

classes of programs and modifications. In this research,
however, we have found qualitative comparisons suffi-
ciently informative.

4.5 Tradeoffs
Test selection techniques face tradeoffs where the foregoing
criteria are concerned.

First, among safe techniques, increases in precision are
typically obtained by increases in analysis. Thus, increasing
precision can decrease efficiency. Among techniques that
are not safe, increasing either precision or inclusiveness can
decrease efficiency. When decreased efficiency drives the
cost of analysis above a certain level, it may render the cost
of selective regression testing greater than the cost of the
retest-all technique.

Second, most of the factors that we have identified as af-
fecting generality also have implications for inclusiveness,
efficiency or precision. For example, dataflow-based tech-
niques that do not calculate alias information must make
conservative assumptions to handle programs that contain
aliases. Attempting to increase the generality of these
methods by extending them to handle aliasing decreases
their efficiency. Similarly, techniques that handle multiple
modifications one at a time incur penalties in efficiency if
they must reanalyze programs after considering each modi-
fication; if such techniques do not perform reanalysis, how-
ever, they can incur penalties in precision.

4.6 Other Definitions of Inclusiveness and Precision
In this paper, we define inclusiveness and precision in
terms of the modification-revealing tests; however, other
definitions may also be useful. For example, we may define
inclusiveness and precision in terms of the modification-
traversing tests. In this case, inclusiveness measures a tech-
nique’s ability to select all modification-traversing tests,
and precision measures a technique’s ability to omit tests
that are not modification-traversing. To distinguish these
definitions from definitions based on the modification-
revealing tests we can use the terms mu-inclusiveness, mr-
precision, and mr-safety for the latter, and mt-inclusiveness,
mt-precision, and mt-safety for the former.

Similary, we can define inclusiveness and precision in
terms of other test selection criteria, such as one used by
dataflow test selection techniques. Dataflow techniques
attempt to identify tests that exercise new or affected defi-
nition-use associations in I”. To evaluate and compare da-
taflow techniques’ relative abilities to select tests that exer-
cise affected definition-use pairs (du-pairs), and omit tests
that do not, we can use du-pair-inclusiveness, du-pair-
precision, and du-pair-safety.

Under all such definitions of inclusiveness or precision
the definitions of efficiency and generality that we have
presented in this section continue to apply.

Despite the existence of alternative definitions of inclu-
siveness and precision, we believe that it is particularly im-
portant to evaluate test selection techniques in terms of
their mr-inclusiveness and mr-precision because, as the
discussion in the preceding section shows, those categories
support analytical comparisons of methods in terms of their
abilities to reveal faults in modified programs.

536 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

5 AN ANALYSIS OF REGRESSION TEST
TECHNIQUES

In this section, we discuss existing regression test selection
techniques, and use our framework to analyze them. To
illustrate our findings with respect to inclusiveness and
precision, we use diagrams like the one shown in Fig. 6. In
these diagrams, the outer box delimits the set of all nonob-
solete tests in T. The three circles, labeled "M," "N," and
"D," represent sets of tests that execute modified code in P',
new code in P', or code in P that has been deleted from P',
respectively. The three circles intersect, because some tests
execute two or three classes of code changes. All tests in the
sets represented by the circles are modification-traversing;
those not in those sets are non-modification-traversing. The
dash-filled area in the figure represents the set of modifica-
tion-revealing tests. Because each category of modification-
traversing tests contains some tests that are modification-
revealing and some that are not, the dashed area contains,
and omits, portions of each area formed by the intersections
of the circles.

M - tests that execute modified code

N - LeSts that execute new code

D - tests that execute deleted code

~ modiiicaiion-revealing tests

Fig. 6. Base diagram for depiction of inclusiveness and precision

To depict the inclusiveness and precision of a particular
selective retest technique, we shade portions of these dia-
grams. The shaded area shows the sets of modification-
traversing and modification-revealing tests that a technique
admits or omits. For example, Fig. 7 depicts the inclusive-
ness and precision of (A) the retest-all technique, and (B) an
optimum technique. Because the retest-all technique selects
all tests, we shade the entire diagram on the left. An opti-
mum technique, on the other hand, selects exactly the
modification-revealing tests; thus, in the diagram on the
right we shade only the area delimiting modification-
revealing tests.

In a few cases, we use larger shaded areas to indicate
that particular techniques are more or less inclusive than
other techniques for particular categories of tests. In each of
these cases, however, we point out this relationship in the
text when we describe the diagram. With the exception of
the few cases where relative sizes of shaded areas matter,
no importance should be attached to the sizes of the regions
or shaded areas in the graphs. Although the diagrams are
similar to Venn diagrams, they are not Venn diagrams.

To evaluate time efficiency we have used, where available,
the worst-case timing analyses presented by the authors of
the papers that present the techniques. In most cases where
such analyses were not available, we have performed them

(B) apumum method (A) retest-all method

Fig. 7. Inclusiveness and precision of retest-all and optimum techniques.

ourselves; in some cases where algorithms are not pre-
sented in sufficient detail, our analyses are well-considered
estimates. To standardize the set of symbols we use in our
timing analyses, we use I P I , I P' I , and I TI to refer to the
sizes of P, P', and T, respectively, where by size of a pro-
gram P we mean the number of statements in the program.
To augment our timing analyses, in the few cases where
empirical results on the cost of techniques were available,
we have discussed those results.

To evaluate space efficiency-a topic seldom discussed
in the papers on test selection techniques-we have con-
fined ourselves to mentioning cases in which(techniques
may require space exponential in the size of their input.

5.1 Linear Equation Techniques
Fischer I101 presents a selective retest technique that uses
systems of linear equations to select test suites that yield
segment coverage of modified code. Lee and He [25] pro-
pose a similar technique. Fischer, Raji, and Chruscicki 1111
extend Fischer's earlier work to incorporate information on
variable definitions and uses. Hartmann and Robson 1181,
[191, [20] extend and implement Fischer, Raji, and Chrus-
cicki's technique. Linear equation techniques use systems of
linear equations to express relationships between tests and
program segments. The techniques obtain systems of
equations from matrices that track program segments
reached by test cases, segments reachable from other seg-
ments, and (optionally) definition-use information about
the segments. The intraprocedural techniques use a 0-1 in-
teger programming algorithm to identify a subset T' of T
that, if P' contains no modifications that affect control
flow, ensures that every segment that is statically reach-
able from-and optionally every segment that can statically

11

12

11. Program segments are defined variously in the literature on linear
equation techniques. Fischer [lo] defines a segment as a single-entry, sin-
gle-exit block of code whose statements are executed sequentially; by this
definition, segments are equivalent to basic blocks. Fischer later applies the
term to procedures or functions in which statements might not be executed
sequentially. Hartmann and Robson define segments for C procedures and
programs as either particular groups of statements in procedures or as
entire functions, respectively [18]. In all cases, segments are portions of
code through which test execution can be tracked, that serve as test re-
quirements or entities to be tested. In our discussion, we use the single term
"segment" to refer to all these types of segments, unless it is necessary to
distinguish among them.

12. Modifications that affect control flow include not only changes in
predicate statements, but also (for example) changes in assignment state-
ments that alter variables used subsequently in predicate statements,

ROTHERMEL AND HARROLD: ANALYZING REGRESSION TEST SELECTION TECHNIQUES 537

Fragment F4 Fragment ~ 4 '

Sl'. y = (x-1) * (X + l) s1. y = (x-1) * (x+l)
5 2 . if (y=O) 5 2 ' . if (y=O)

5 3 . returnierror) S 3 ' . return(error1

5 4 . else
S 5 . r e t u r n (1 / y) : ~ 5 ' . r e t u r n (1 / (y - 3)) j

5 4 ' .else ..

..

Fig. 8. Code fragments that illustrate the lack of safety of minimization.

reach-a modified segment is exercised by at least one test
in T that also exercises the modified segment. An interpro-
cedural variant of the techniques treats subroutines as seg-
ments; this approach monitors subroutine coverage rather
than statement coverage, and supports test selection for
programs in which modifications have affected control
flow. Both the intraprocedural and interprocedural tech-
niques can use variable definition and use information in-
stead of or in conjunction with control flow information.

In the references just cited, linear equation techniques
are presented and discussed as minimization techniques.
However, the techniques need not necessarily perform
minimization: they can instead select between one and the
maximum number of tests traversing the respective cover-
age entity.
Inclusiveness. Minimization techniques omit modification-
revealing tests. If several tests execute a particular modified
segment and all of these tests reach a particular affected
code segment, minimization techniques select only one
such test unless they select the others for coverage else-
where. Consider, for example, the code fragments and test
cases shown in Fig. 8, where fragment F4' represents a
modified version of fragment F4 in which statement S5 is
erroneously modified. Tests t3 and t4 both execute state-
ments S5 and S5'. Test t3 causes a divide by zero exception
in SS, whereas test t4 does not. Minimization techniques
select only one of these tests and omit the other; if they se-
lect t4 they lose an opportunity to expose the fault that t3
exposes. Because minimization techniques can omit this
modification-revealing test, they are not safe.

As we have noted, linear equation techniques need not
strive for minimization. In this case, although we do not
prove this, we believe that the techniques select safe test
suites. In their intraprocedural variant, where the tech-
niques only handle situations where code modifications do
not alter control flow, minimization techniques can revert
to selecting all tests through procedures where such modi-
fications have occured. Interprocedural variants of the
techniques have no problem with alterations in control
flow, because they just identify modified procedures or
functions irrespective of the type of modification.

Precision. Applied to modified procedures for which con-
trol flow is not affected, intraprocedural linear equation
techniques omit non-modification-traversing tests by ig-
noring tests that do not execute changed segments. How-
ever, when control flow is affected, linear equation tech-
niques are not defined at the intraprocedural level. We in-
terpret this as requiring the user to revert to retest all when
control flow is affected. The use of dataflow information

test #

tl
t2
t3
t4

~

Test Cases

s1, s 2 , s5
s1. s2.55

can further increase the precision of the techniques. At the
interprocedural level, linear equation techniques can select
tests that traverse modified procedures, but do not traverse
any modified code in those procedures. Such tests are not
modification-traversing, so selecting them leads to a loss in
precision.

Fig. 9 depicts the inclusiveness and precision of linear
equation techniques, represented in Diagram (A) as mini-
mization techniques, and in Diagram (B) as interprocedural
nonminimization techniques. Diagram (A) illustrates
minimization's lack of safety, by leaving areas unshaded
within all test categories. Outside of the circles, the shaded
area depicts the non-modification-traversing tests selected
by the techniques assuming that when procedures contain
modified control flow they must select all tests through the
procedures. Diagram (B) shows the inclusiveness and pre-
cision of linear equation techniques when they do not at-
tempt to minimize the set of tests selected. In this case, the
shaded circular areas signify the techniques' selection of all
modification-traversing tests, whereas the shaded areas
outside the circles signifies the techniques' selection of tests
that are not modification-traversing.

I I 1

(A) mnn"aUon mio on^ (B) non " w a t l n n vemons

Fig. 9. Inclusiveness and precision of linear equation based techniques.

Efficiency. Linear equation techniques are automatable. When
the techniques operate as minimization techniques, they re-
turn small test suites and thus reduce the time required to m
the selected tests. However, Fischer states that due to the cal-
culations required to solve systems of linear equations the
techniques may be data and computation intensive on large
programs [lo]. In fact, the underlying problem is NP-hard [121,
and all known 0-1 integer programming algorithms may take
exponential time. Despite this possible worst-case behavior, 0-
1 integer programming algorithms exist that can obtain solu-
tions, in practice, in times that may be acceptable. For example,
Crowder, Johnson, and Padberg [8] report experimental re-
sults in which 10 large-scale problems are solved, each in less

538 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

than an hour. Hartmann and Robson report that their inter-
procedural technique, by treating functions rather than
smaller code segments as the basic entities for coverage,
achieves performance gains over intraprocedural techniques.
Nevertheless, the references on linear-equation-based test
selection techniques do not provide empirical data sufficient
to let us evaluate the cost of the techniques in practice.

Both intraprocedural and interprocedural techniques re-
quire computation of a correspondence between segments
in P to segments in P’, and of which segments have been
modified, after testing has entered its critical phase. The
references on linear equation methods do not specify a
method by which correspondence and change information
should be computed. We assume, however, as discussed in
Section 4, that the required information can be computed
for the intraprocedural techniques in time O(I P I * I P’ I 1.
For the interprocedural technique, the information can be
computed in time O(max(I P I, I I” I) * log (wax(I P I, I P‘ I)).
The techniques handle multiple modifications in a single
application of the algorithm.

Linear equation techniques require transitive closure op-
erations on relations of size O(I P I) to determine static reach-
ability between segments; such operations require worst-case
time O(I P I ’). However, these operations can be completed
during the preliminary phase of regression testing.

Generality. Although presented only for Fortran and C,
linear equation techniques can be implemented for any
procedural language. Both intraprocedural and interproce-
dural versions of the technique are defined. The intrapro-
cedural technique is defined only for modifications that
affect flow of control. The interprocedural technique han-
dles all types of program modifications. The techniques are
independent of underlying coverage criteria but are aimed,
in general, for use with control flow or dataflow testing
criteria. The techniques require tools for solving 0-1 integer
programming problems, and for collecting test trace infor-
mation at either the function level, or some intraprocedural
segment level.

5.2 The Symbolic Execution Technique
Yau and Kishimoto [451 present a selective retest technique
that uses input partitions and data-driven symbolic execu-
tion to select and execute regression tests. Initially, the
technique analyzes code and specifications to derive the
input partition for a modified program. Next, the technique
eliminates obsolete tests, and generates new tests to ensure
that each input partition class is exercised by at least one
test. Given information on where code has been modified,
the technique determines edges in the control flow graph
for the new program from which modified code is reach-
able. The technique then performs data-driven symbolic
execution, using the symbolic execution tree to symbolically
execute all tests. When tests are discovered to reach edges
from which no modifications are reachable, they need not
be executed further. Tests that reach modifications are
symbolically executed to termination. The technique selects
all tests that reach new or modified code. However, the
technique also symbolically executes these selected tests,
obviating the need for their further execution.

Inclusiveness. The symbolic execution technique selects all
tests that execute new or modified code in the modified
program. The technique also selects tests that reach blocks
in the original program in which statements (are deleted.
However, if entire blocks of code are deleted by removing
control statements, the symbolic execution technique does
not detect tests affected by such deletions because it selects
only tests that reach modified or new code actuallly present in
the modified program. Because such tests may be modifica-
tion-revealing, the symbolic execution technique is not safe.
Precision. The symbolic execution technique iselects only
tests that reach new or changed blocks of code. In most
cases, this approach omits non-modification-traversing
tests; however, the presence of a new block of colde does not
necessarily render tests through that block modification-
traversing. For example, in the programs shown in Fig. 4,
tests that take the false branch from 53 in structchange
enter a new block of code when they take that branch in
structchange’; however, these tests execute identical se-
quences of statements in the two program versions, and are
thus non-modification-traversing.

Fig. 10 depicts the inclusiveness and precision of the
symbolic execution technique. The shaded area indicates
the technique’s selection of all tests that execute modified or
new code. The area corresponding to tests that execute only
deleted statements is partially unshaded, indlicating the
technique’s omission of some such tests. Because the tech-
nique admits some non-modification-traversing tests, some
areas outside the circles are shaded.

I T - obsolete I

Fig. 10. Inclusiveness and precision of the symbolic executiim technique.

Efficiency. Yau and Kishimoto state that their symbolic
execution technique is computationally expensive and may
produce unmanageably large amounts of data The sym-
bolic expressions built during execution can be more com-
plex than the program from which they are derived. In fact,
the symbolic execution tree built by the technique can have
a size (and require a time to build) that is exponential in the
size of the modified program; this may result in symbolic
expressions that are exponential in the size of the modified
program. Finally, it is possible that for certain modifications
the algorithm will not terminate. This can occur, for exam-
ple, if a loop predicate is modified such that the modifica-
tion causes the program to loop forever on one of its test
inputs.

ROTHERMEL AND HARROLD: ANALYZING REGRESSION TEST SELECTION TECHNIQUES 539

The symbolic execution technique requires prior calcu-
lation of the location of new or modified code in the modi-
fied program; as discussed in Section 4 this can require time
O(I P I * I P’ I). The technique handles multiple modifica-
tions in a single application of the algorithm.
Generality. The symbolic execution technique handles
modifications that affect control flow, but does not handle
code deletions. The technique applies to both modified pro-
cedures and programs. Although the technique is presented
as part of a testing approach that makes use of input parti-
tion testing, the test selection algorithm itself does not de-
pend on the use of any specific testing criteria. Neverthe-
less, the technique has limited generality because of its cost:
the authors conclude that, due to the computational ex-
pense of symbolic execution, their technique is feasible only
for numerical programs that are not,inordinately complex.
The technique does not require test traces.

5.3 The Path Analysis Technique
Benedusi, Cimitile, and De Carlini [3] present a selective
retest technique based on path analysis. Their technique
takes as input the set of program paths in P’ expressed as
an algebraic expression, and manipulates that expression to
obtain a set of cycle-free exemplar paths: acyclic paths from
program entry to program exit. The technique then com-
pares exemplar paths from P to exemplar paths from P‘,
and classifies paths as new, modified, canceled, or unmodi-
fied. Next, the technique analyzes tests to see which exem-
plar paths they traverse in P. The technique selects all tests
that traverse modified exemplar paths.
Inclusiveness. The path analysis technique omits tests that
traverse canceled paths, and omits tests that traverse new
paths (paths that contain new blocks of code). In either case,
the omitted tests may be modification-revealing. For exam-
ple, the technique omits a test of pathological that uses
input “-2”. Because such a test is modification-revealing for
pathological and pathological’, the path analysis
technique is not safe.
Precision. The path analysis technique selects only tests
that execute modified exemplar paths; such tests are neces-
sarily modification-traversing. Thus, the technique omits
non-modification-traversing tests. However, the technique
does not omit any non-modification-revealing tests that
execute modified exemplar paths.

Fig. 11 depicts the inclusiveness and precision of the
path analysis technique. The shaded area indicates the
technique’s selection of all tests that traverse paths that
contain only modifications. The areas corresponding to
other tests are unshaded, indicating the technique’s omis-
sion of such tests.
Efficiency. The path analysis technique does not need to
compute a correspondence between a program and its
modified version - at least, not in the same sense in which
other techniques compute a correspondence. Instead, the
techni ue compares exemplar paths to locate modifica-
tions. The technique also handles multiple modifications 14

13. The computation and comparison of exemplar paths, however, can be
thought of as a computation of a correspondence.

I
Fig. 11. Inclusiveness and precision of the path analysis technique.

in a single application of the algorithm. However, the path
analysis technique is computationally expensive. The tech-
nique calculates and stores exemplar paths for P, P’, and
each test in T. The number of exemplar paths in P and P’,
on which both computation and data usage depends, may
be exponential in I P I or I P’ I .
Generality. The path analysis technique assumes the use of a
programming environment in which low-level program de-
signs are depicted by language-independent algebraic repre-
sentations. Such an environment facilitates construction of
algebraic expressions that may be manipulated to yield a set
of exemplar paths. The technique does not handle test selec-
tion for additions or deletions of code. The technique does
not support interprocedural regression testing beyond the
approach of analyzing all procedures in a program. The
technique does not require the use of any particular coverage
criteria or test generation technique, but does require a tool
for collecting traces at the statement level.

5.4 Dataflow Techniques
Several selective retest techniques are based on dataflow
analysis and testing techniques. Dataflow test selection
techniques identify definition-use pairs that are new in, or
modified for, E”, and select tests that exercise these pairs.
Some techniques also identify and select tests for definition-
use pairs that have been deleted from P. Two overall ap-
proaches have been suggested. Incremental techniques
process a single change, select tests for that change, incre-
mentally update dataflow information and test trace infor-
mation, and then repeat the process for the next change.
Nonincremental techniques process a multiply-changed
program considering all modifications simultaneously. The
dataflow regression testing techniques described by Gupta,
Harrold, and Soffa [131, Harrold and Soffa [151, 1161, [171,
Taha, Thebaut, and Liu 1391, and Ostrand and Weyuker
[31], are sufficiently alike to justify treating them together.
Inclusiveness. Dataflow techniques consider tests only in
association with definition-use pairs. As a result, they can
omit modification-revealing tests in several ways. For ex-
ample, for code deletions like the one depicted on the left in
Fig. 3, dataflow techniques do not select any tests. Simi-
larly, if a test executes a new or modified output statement
that contains no variable uses, dataflow techniques might not
select this test even though the statement may be modifica-
tion-revealing for the old and new versions of the program.

540 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

Both incremental and nonincremental techniques can omit
tests in these ways. Thus, dataflow techniques are not safe.

Precision. By selecting only tests that that execute new,
modified or deleted definition-use pairs, dataflow tech-
niques typically omit non-modification-traversing tests.
However, the presence of a definition or use in a new block
of code does not always render tests through that block
modification-traversing. For example, for the program of
Fig. 4, definition-use pair (S1’:x, S6’:x) is new, but tests that
exercise this pair are non-modification-traversing. Dataflow
techniques that attempt to identify tests through such pairs
are imprecise for cases such as this. On the other hand, by
requiring selected tests to exercise new or modified defini-
tion-use pairs, dataflow techniques omit tests, such as tests
that reach a modified definition but reach no use of the de-
fined variable, that are modification-traversing but non-
modification-revealing.

Fig. 12 illustrates the inclusiveness and precision of da-
taflow techniques. Because the techniques achieve an in-
crease in precision by selecting only tests that exercise defi-
nition-use pairs, part of the area of the diagram that corre-
sponds to modification-traversing tests that are non-
modification-revealing is unshaded. However, because the
techniques miss some modification-revealing tests, areas
within the modification-revealing test area are also un-
shaded, and because the techniques can select some non-
modification-traversing tests, some of the area outside the
circles is shaded.

Fig. 12. Inclusiveness and precision of dataflow techniques.

Efficiency. Dataflow techniques require initial calculation
and storage of dataflow information. Incremental dataflow
test selection techniques must perform incremental da-
taflow analysis and update the dataflow information. The
worst-case cost of test selection for such techniques per
modification is O(I T I * I P’ I 2, [391. The worst-case cost for
nonincremental techniques is slightly larger than this. For
nonincremental techniques, reanalysis of P’ requires
O(I P’ I ’) time, and computation of a correspondence be-
tween the versions can be computed in time O(l P l * l P‘ l).
However, comparison of definition-use associations can
require ~ ((m a x (I P I, I P’ I 1)’ * log (m u (I P I, I P‘ I)I*) time,
because the number of definition-use associations in a pro-
gram P may be quadratic in I P I . Thus the worst-case cost
of nonincremental techniques is O(T * (max(I P I, I P‘ I))’ *
log (max(I P I , I P‘ I))2).

Generality. Dataflow techniques require only control flow
graphs and test execution histories, and thus can be applied
to procedural programs generally. The techniques function
for all varieties of program changes except those that do not
alter definition-use associations. Taha, Thebaut, and Liu’s
technique, and Ostrand and Weyuker’s technique, apply to
intraprocedural regression test selection; Harrold and
Soffa’s technique applies to interprocedural test selection.
The techniques assume the initial use of dataflow test se-
lection criteria, and require tools for static dataflow analysis
and for collecting test traces at the basic block level. The
incremental approach also requires incremental dataflow
analysis tools.

5.5 Program Dependence Graph Techniques
Bates and Horwitz [2] present test selection techniques
based on the program dependence graph (PDG) criteria: all-
PDG-nodes and all-PDG-flow-edges. PDG techniques use
slicing to group PDG components (nodes or flow edges) in
P and P’ into execution classes, such that a test that executes
any component in an execution class executes all compo-
nents in that class. Next, the techniques identify compo-
nents that may exhibit different behavior in P‘ than in P
(affected components) by comparing slices of corresponding
components in P and P’. Finally, the techniques select all
tests that exercise components that are in the same execu-
tion class as an affected component.
Inclusiveness. Although we do not prove this, we believe
that PDG techniques identify all tests that execute new or
modified code. In the presence of multiple changes, the
techniques may fail to recognize that some test t will reach
a particular component c in P’, due to the presence of some
other changed statement in the slice from c. In that case,
however, they select t as necessary with respect to some
other component. Nevertheless, PDG techniques can omit
tests that exercised statements that are deleted from P. For
example, in both cases presented in Fig. 3, the techniques
select no tests. Thus, PDG techniques are not safe.
Precision. The technique of selecting tests through affected
nodes causes the all-PDG-nodes technique to select non-
modification-traversing tests. For example, applied to the
code fragments of Fig. 13, the all-PDG-nodes technique cor-
rectly selects test t l , but also selects non-modification-
traversing test t2 because t2 executes statement 54, which is
affected by the change to S2. This problem does not occur
with the all-PDG-flow-edges criteria. However, neither
technique is precise with respect to modifications of the sort
depicted in Fig. 4, because both techniques select tests that
reach new PDG components and tests that reach S6 (or
edge (S6’, 57’)) in structchange’, due to equivalence of
slices back from S8 (or edge (5’8, S9)).

Fragment F4’ Test Cases FragInant F4 I ti; # i mput I execuuon history I
P=1,Q=1 SI, 5 2 , S3,54
P=@,Q=1 s1,s3,s4

s1. i f P = 1 5‘1. i f P = 1
5 2 . x : = 2 i S 2 ’ . x : = 3 1
5 3 . if Q = 1 5 3 . if Q = 1

.
.. , , ,

54. y := x 54. y := x

Fig. 13. Code fragments that distinguish modified and affected statements.

ROTHERMEL AND HARROLD: ANALYZING REGRESSION TEST SELECTION TECHNIQUES

~

541

Fig. 14 depicts the inclusiveness and precision of PDG
techniques. Because both techniques admit non-
modification-traversing tests, some areas outside the circles
are shaded. Because both techniques miss some tests
through deleted statements, areas of modification-revealing
tests remain unshaded.

I T . obsolece I

Fig. 14. Inclusiveness and precision of PDG techniques.

Efficiency. PDG techniques compute control slices for
every node or flow edge in the PDG for P and every node
or flow edge in the PDG for P'. They then compute backward
slices on each node or flow edge in P that has a correspond-
ing node or flow edge in P', and each node or flow edge in P'
that has a corresponding node or flow edge in P. Thus, the
all-PDG-nodes techniques compute O(I P I + I P' I) slices, and
the all-PDG-flow-edges techniques compute O(I P I + I P' I ')
slices. Each slice can require time quadratic in procedure
size. Adding in the cost of performing set operations on test
suites of size t, all-PDG-nodes techniques have worst-case
time O(I TI * (max(I P I, I P' I))3) , and all-PDG-flow edges
has worst-case time O(I TI * (max(I P I, I P' I >>4). Further-
more, both slice computation on P' and slice comparisons
must be performed in the critical phase of regression test-
ing, after modifications to P are complete. PDG techniques
handle multiple modifications in a single application of the
algorithm. Finally, both PDG techniques require computa-
tion of a complete correspondence between statements in P
and their modified versions in P', provided by either a
mapping algorithm or an incremental editor.
Generality. PDG techniques are presented only for a re-
stricted set of language constructs; however, they should
apply to procedural languages generally, The techniques
address all types of code modifications except for code de-
letion. The techniques do not support interprocedural re-
gression testing beyond the approach of analyzing all pro-
cedures in a program. The techniques assume the use of
PDG-based test adequacy criteria, and require tools for con-
structing PDGs (which in turn require tools for performing
control dependence and dataflow analysis), tools for per-
forming program slicing, and tools for collecting test traces
at the statement level.

5.6 System Dependence Graph Techniques
Binkley [5] presents a technique for interprocedural regres-
sion test selection that operates on the system dependence
graph (SDG). Given program P and modified version P',

SDG techniques use calling context slicing-a slicing tech-
nique for calculating precise interprocedural slices-on
SDGs for P and P', to identify components (vertices or flow
edges) in P and P' that have common execution patterns. The
techniques identify new, preserved, deleted, and affected
components in P', where affected components are compo-
nents in P' that differ from their corresponding components
in P, or for which the calling context slice contains compo-
nents that are not in P. The techniques select tests that exer-
cise components in P that have common execution patterns
with respect to new or affected components in P'.
Inclusiveness. Although we do not prove this, we believe
that SDG techniques, like PDG techniques, identify all tests
that execute new or modified code. However, like PDG tech-
niques, SDG techniques can omit tests that exercised compo-
nents deleted from P. For both cases presented in Fig. 3, the
techniques select no tests. Thus, SDG techniques are not safe.

Precision. The SDG all-vertices technique is more precise
than the PDG all-vertices technique, because it avoids se-
lecting tests that execute only affected components-tests
that are non-modification-traversing. For example, when
applied to the code fragments in Fig. 13, the all-SDG-nodes
technique selects test t l and omits test t2, because t2 does
not execute any modified statements. Like the PDG tech-
niques, however, SDG techniques admit non-modification-
traversing tests for cases such as that of Fig. 4.

Fig. 15 depicts the inclusiveness and precision of SDG
techniques. Because the techniques may admit non-
modification-traversing tests, areas outside the circles are
shaded. Like PDG techniques, however, both techniques miss
some modification-revealing tests through deleted state-
ments, so an area corresponding to such tests is unshaded.

T - obsolete I

Fig. 15. Inclusiveness and precision of SDG techniques.

Efficiency. SDG techniques can require O(I P I + I P' I) or
O(I P I + I P' I ') slices, for the all-PDG-nodes and all-PDG-
flow-edges versions, respectively. Each slice can require
time linear in the size of the SDG. SDG size is polynomial in
a number of factors relating to program size, including
number of parameters, procedure size, and number of call
sites [23]: This polynomial is at least of degree two. Adding
in the cost of performing set operations on test suites of size
I TI, SDG techniques have a worst-case time of at least
O(ITI * (max(lP1, lP'I)l3) or O(ITI * (max(lP1, Im4),
depending on the criteria in use. SDG slice computation

542 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

and slice comparisons are performed with respect to state-
ments in P', so the costs of these operations on P' are in-
curred after modifications are complete, when testing has
entered the critical phase. SDG techniques handle multiple
modifications with a single application of their algorithm.
The techniques require provision of a complete correspon-
dence between statements in P and their modified versions
in P', provided by either a mapping algorithm or an incre-
mental editor. This correspondence must be computed after
testing has entered the critical phase.

Generality. SDG techniques apply to procedural languages
generally. The techniques address all types of program
modifications except for code deletions. The techniques
specifically address the problem of interprocedural test se-
lection, but should also function for intraprocedural test
selection. The techniques require tools for constructing
SDGs (which in turn require tools for performing control
dependence and dataflow analysis), and for collecting test
traces at the statement level. The techniques assume the use
of PDG-based test adequacy criteria.

5.7 The Modification Based Technique
Sherlund and Korel [37] present a selective retest technique
that uses static dependence analysis to determine program
components that are data or control dependent on modified
code, and thus may be affected by a modification. For each
of several types of program modifications, the technique
specifies a set of program components that can be influenced
by that modification. The technique instruments the modi-
fied program, and requires a tester to run tests from T on
the instrumented source. As each test is executed, the tech-
nique performs dynamic dependence analysis on its test
execution trace, to determine whether the test executed the
modified code, and if so, which influenced components it
then reached. Testing is complete for the modification when
each influenced component has been reached by some test
that exercised the modification. In [38], the authors extend
the work to handle logical modifications, which consist of
groups of logically related modifications.

The modification based technique differs from the other
techniques we analyze, in that it does not automate the
process of selecting T from T. Instead, the technique identi-
fies coverage requirements; the process of selecting a T that
helps satisfy these coverage requirements is left to the
tester. The authors indicate that future work will address
the problem of guiding the tester in that selection.

Despite the difference between the modification based
technique and techniques that automate the selection of T',
it is useful to evaluate the technique alongside other regres-
sion test selection techniques. Even though the technique
does not automatically select T', the goal of the technique is
to let the tester cease testing after having run some subset T'
of the tests in T.
Inclusiveness. The modification based technique is a
minimization technique. As such, the technique omits
modification-revealing tests, because it attempts to select,
for each modified code component, only one test that
reaches each component affected by that modification. The
technique may omit other tests that execute the same pair of

modified and affected code components, and thereby omit
tests that expose faults. For example, for the code fragments
and test cases shown in Fig. 8, the technique will allow the
tester to cease testing after selecting only one of tests t3 and
t4. A tester who selects t4 loses an opportunity to expose
the fault that t3 exposes.

The modification based technique is not defined for all
types of modifications; this too affects the inclusiveness of
the technique. For example, it is not clear from the refer-
ences how the technique handles deletions of procedure
calls when those calls do not influence variables, as de-
picted on the left side in Fig. 3.

Sherlund and Korel do not propose a nonminimization
version of their technique. If they chose to require selection
of multiple tests (rather than just one test) that reach an
affected component from a modified component, their
technique could still omit modification-revealing tests. For
example, because of its restriction that selected tests must
reach code that is dependent on modified code, the tech-
nique can omit tests that reach S2 from S1 in the code frag-
ments on the left in Fig. 3. Thus, even as a non-
minimization technique, the technique is not safe.
Precision. The modification based technique does not re-
quire testers to select non-modification-traversing tests,
because the techniques count only tests that actually exe-
cute modified code toward coverage. Moreover, by using
dependence analysis, the technique avoids requiring some
tests that, although modification-traversing, are non-
modification-revealing. Nevertheless, because the tech-
nique depends on a person to locate tests that cover testing
requirements, it is likely that in practice, the set of tests T
which that person selects to try to meet the criteria will in-
clude non-modification-traversing tests.

Fig. 16 depicts the inclusiveness and precision of the
modification based technique. The technique may leave
unexecuted tests in all categories, and thus areas in all cate-
gories remain unshaded. Using the technique, non-
modification-traversing tests may inadvertently be run;
thus, areas outside the circles are shaded

T - obsolete I r-

Fig. 16. Inclusiveness and precision of the modification based technique.

Efficiency. As a minimization technique, the modification
based technique can be satisfied by selection of small test
sets; this can reduce testing time. However, the technique
does not at present automate the test selection process; a

ROTHERMEL AND HARROLD: ANALYZING REGRESSION TEST SELECTION TECHNIQUES 543

person must select and execute tests until the testing re-
quirements for a modification have been met. We cannot
quantify the time this process may require. Moreover, the
technique assumes knowledge of all code modifications.
After the technique analyzes a particular modification or
logical modification, and tests have been found that cover
that modification, the technique must redo or incrementally
update its static analysis before it can consider the next
modification. The required static analysis, which includes
static data and control dependence analysis, requires
O(I P' I 2, time. After running each test, the technique re-
quires dynamic analysis of the trace for that test; this too
can require time O(I P' I '1. Thus, for each logical modifica-
tion the technique requires O(I TI * I P' I *) time.
Generality. The modification based technique applies to
procedural languages generally. The technique is defined
for many, but not all, types of program modifications. The
technique can apply interprocedurally or intraprocedurally.
The technique does not depend on any particular testing
criteria, but requires a tool for collecting test traces at the
statement level, and tools for performing static and dy-
namic control and data dependence analysis.

5.8 The Firewall Technique
Leung and White [28] present a selective retest technique
directed specifically at interprocedural regression testing
that handles both code and specification changes. Their
technique determines where to place a firewall around
modified code modules. Where test selection from T is con-
cerned, the technique selects unit tests for modified mod-
ules that lie within the firewall, and integration tests for
groups of interacting modules that lie within the firewall.
Leung and White [27] extend their technique to handle in-
teractions involving global variables. White and Leung [41]
discuss experiences implementing the firewall technique.
Inclusiveness. When the unit and integration tests initially
used to test system components are reliable, such that cor-
rectness of modules exercised by those tests for the tested
inputs implies correctness of those modules for all inputs,
the firewall technique selects all modification-revealing
tests, and is safe. As Leung and White note, however, in
practice, test suites are typically not reliable. When test
suites are not reliable, the firewall technique may omit
modification-revealing tests. To see how this may happen,
suppose T is a modified procedure in program P, let T be
the set of tests for P, and let T , be the set of unit and inte-
gration tests that apply to modules within the firewall
drawn around 23. If T, is not reliable for T, then there may
exist some input i E D (8 , such that no test in T , exercises
T with input i, and such that input i exposes a fault in T. If
some system test t E T exists, such that t p T, and such
that t causes 2' to be invoked with input i, then t is fault-
revealing for P, but the firewall technique does not select t.
It follows that in practice, the firewall technique is not safe.
The authors state that despite this fact, their technique
"provides a sensible utilization of testing resources" [28].

Precision. The firewall technique selects all unit and inte-
gration tests of modules that lie within the firewall. Because
not all of these tests necessarily execute modified code, the

firewall technique selects non-modification-traversing tests.
For the programs and modified versions of Fig. 4 and Fig. 5,
for example, the technique selects all tests, even though
some are non-modification-traversing.

Fig. 17 depicts the inclusiveness and precision of the
firewall technique. Because the technique omits modifica-
tion-revealing tests in all categories, the diagram contains
unshaded areas in all categories. Because the technique
admits some non-modification-traversing tests, some areas
outside the circles are shaded.

Fig. 17. Inclusiveness and precision of the firewall technique.

Efficiency. The firewall technique is not described in suffi-
cient formal detail to support a precise analysis of its worst-
case running time. We believe, however, that a firewall can
be constructed in time proportional to the size of a pro-
gram's call graph, and that tests can be selected for the
firewall in time proportional to the product of the size of
the test suite and the size of the call graph. In the worst
case, call graph size is proportional to program size; thus, the
firewall technique requires time O(max(I P I, I P' I * I T I) to
perform test selection. The technique handles multiple
modifications in a single application of its algorithm. The
technique also requires computation of the set of modified
procedures during the critical phase of testing; as discussed
in Section 4, such computation can be performed in time

The firewall technique has been implemented, and initial
measurements of its expense have been reported [421. The im-
plementation requires a database that may be expensive to set
up; however, this setup can be performed during the initial
phase of regression testing. Preliminary empirical results sug-
gest that once setup is complete, the analysis and test selection
phases of the technique are efficient for large amounts of data.
Generality. The firewall technique is applicable to programs
in procedural languages generally. The technique handles all
types of code modifications. The technique specifically han-
dles interprocedural test selection, although it does not han-
dle intraprocedural test selection. The technique does not
require the use of any underlying testing technique or any
particular coverage criteria. The technique does require tools
for collecting test traces at the function level. Finally, al-
though in this work we focus on code-based testing needs, it
is worth noting that the firewall technique also addresses
testing needs with respect to specification changes.

O(max(I P I, I p' I) * log (max(I P I, I P' I))).

544 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

5.9 The Cluster Identification Technique
Laski and Szermer [24] present a technique for identifying
single-entry, single-exit subgraphs of a control flow graph
(CFG), called clusters, that have been modified from one
version of a program to the next. The cluster identification
technique computes control dependence information for a
procedure and its changed version, and then computes the
control scope of each decision statement in the procedure
by taking the transitive closure of the control dependence
relation. The technique uses this information to identify
clusters and establish a correspondence between the CFGs
of P and P'. While establishing this correspondence, the
technique selects tests that execute new, deleted, and modi-
fied clusters.

Inclusiveness. The cluster identification algorithm is not
presented in sufficient formal detail to support a proof that
it is safe; however, we believe the technique is safe for con-
trolled regression testing. The technique handles structural
and nonstructural changes, and new and deleted code, by
identifying clusters in which structures or code have been
added, modified, or deleted, and selecting all tests that ex-
ercise the corresponding clusters in P. We believe that this
procedure identifies a superset of the modification-
traversing tests. For all example programs and code frag-
ments presented in this and the previous sections of this
paper, the technique identifies and selects such a superset.
Precision. The cluster identification technique can identify
clusters in a manner that allows selection of non-
modification-traversing tests. For example, given procedure
avg of Fig. 18, and the test suite for avg shown in the figure,
the cluster identification technique identifies a cluster con-
sisting of statements S3 through ,510, but does not identify
smaller clusters within that cluster. If we add statement
" ~ 5 ' . \ print ('Improper input .')" to avg just prior to
statement S5, the cluster identification technique selects tests
tl, t2, and t3, because all three tests exercise the modified
cluster that encloses the new line. However, only test t2 actu-
ally executes the new statement; tests t l and t3 are non-
modification-traversing. As a second example, for the proce-
dures of Fig. 4, the cluster identification technique selects
non-modification-traversing tests that enter the cluster that
contains statements S6' and S7'. Note, however, that the
technique selects exactly the modification-traversing tests for
procedures pathological and pathological' of Fig. 5.

Procedure avg

51. count = 0
5 2 . fread(fi1eptr.n)
5 3 . while (not EOF) do
S4. if (n<O)
S5. return(error)

else
S 6 . numarray[countl = n
57. count++

58. fread(fileptr,n)

S9. avg = calcavg(numarray,count)
Sl0. return i avg)

endl f

endwhi le

input

empty file

Fig. 18. Procedure illustrating imprecision in the cluster identification
technique.

I T - obslete I

Fig. 19. Inclusiveness and precision of the cluster identification technique.

The cluster identification technique looks inside modi-
fied procedures, and may omit non-modification-traversing
tests that go through those procedures on recognizing that
those tests do not execute modified clusters. Thus, it is
more precise than interprocedural linear equation tech-
niques, which select all tests through modified procedures.

Fig. 19 depicts the inclusiveness and precision of the
cluster identification technique, given our assertion that the
technique selects all modification-traversing tests. Because
the technique is safe, the circles in the diagram are fully
shaded. Because the technique can admit non-modification-
traversing tests, some areas outside the circles are shaded.
However, because the technique is more precise than inter-
procedural linear equation techniques, that shaded area is
smaller in this diagram than in diagram (B) of Fig. 9.
Efficiency. The running time of the cluster identification
technique is bounded by the time required to compute the
control scope of decision statements, which is O(n3) for pro-
cedures of YI statements. The algorithm for establishing a
correspondence between clusters is quadratic in the size of
the larger of P and P'. When dealing with test suites of I T I
tests, the technique requires O(I T I * (max(I P I, I P' I))3)
time to select tests. The technique handles multiple modifi-
cations in a single application of the algorithm. However,
the technique computes a correspondence for the entire
procedure and modified version, and it performs this com-
putation after modifications are complete, when testing is
in the critical phase.
Generality. Because the cluster identification technique
works on CFGs, it applies to procedural programs gener-
ally. Moreover, the technique handles all forms of program
modifications. The technique does not support interproce-
dural regression testing beyond the approach of analyzing
all procedures in a program. The technique makes no as-
sumptions about development environments or initial de-
sign of test suites. The technique requires tools for calcu-
lating control dependence and for collecting test trace in-
formation at the statement level.

5.10 Slicing Techniques
Agrawal et al. I l l define a family of selective retest tech-
niques that use slicing. For each test t E T, each technique
constructs a slice. The authors discuss four different slice
types: execution slice, dynamic slice, relevant slice, and ap-
proximate relevant slice. An execution slice for t contains

ROTHERMEL AND HARROLD: ANALYZING REGRESSION TEST SELECTION TECHNIQUES 545

exactly the statements in P that were executed by f. A dy-
namic slice for t contains all statements in the execution slice
for t that have an influence on an output statement in the
execution slice. A relevant slice for t is like the dynamic slice
for t, except that it also contains predicate statements in t
that, if changed, may cause P to produce different output,
and statements in t on which these predicates are data de-
pendent. Finally, an approximate relevant slice for t is like the
dynamic slice for t , except that it also contains all predicate
statements in the execution slice for t. Given slice sl for test
t , constructed by one of the four slicing techniques, if sl
contains a modified statement, the techniques select t .
Inclusiveness. As Agrawal et al. show, the dynamic slice
technique can omit modification-revealing tests when P
contains modified predicate statements, so the technique is
not safe. When code modifications do not alter control flow
graph edges or definition sets for P, the other slicing tech-
niques are safe. However, additions of predicate or assign-
ment statements to P adversely impact the inclusiveness of
slicing techniques. For example, suppose a new assignment
statement s is added to P. Because the slices constructed by
slicing techniques contain only statements that appeared in
P prior to its modification, no slice contains s. Any test that
executes the block of code in P‘ in which s is inserted, how-
ever, may be modification-revealing. Because slicing tech-
niques do not select such tests, they are not safe.

Agrawal et al. extend their techniques to address this
loss of safety for the relevant and potential relevant slice
techniques. When assignment statements is added to P, the
extended techniques include in sl all statements in P that
were executed by t , and that use the value computed by s.
When predicate statement p is added to P, the extended
techniques include in sl all statements in P that are control
dependent on p . With these extensions, the relevant and
potential relevant slice techniques select some tests that
execute new assignment or predicate statements that they
would otherwise omit, but they may still omit modification-
revealing tests. For example, if statement “S.

print (”this code should never execute”)“ is
added to P, any test that executes S is modification-
revealing. However, S does not define any variables, so
there are no statements in P that use variables defined in S
from which to select tests.

The inclusiveness of slicing techniques is also adversely
affected when programs contain multiple modifications.
When programs contain multiple modifications, slicing
techniques work incrementally, considering changes one by
one. Suppose the compound predicate statement ”SI. i f
c then S2. a := 1” is added to P, and the statement
“ ~ 3 - print (a)” is also added to P at a location reachable
from S2. This modification inserts three statements into P’.
Suppose that a slicing technique for test selection considers
these insertions in order S1, S2, and 53. On considering the
new predicate statement 5’1, no statements control depend-
ent on S1 are found, so no tests are selected. On considering
statement S2, because there are no tests known to execute
S2, and no uses of a in P, no tests are selected. Finally, on
considering statement S3, no tests are known to execute it,
so none are selected for it. Given this compound change,

tests that reach 52 and then S3 may be modification-
revealing. Because slicing techniques do not select such
tests they are not safe.

Precision. In cases where modifications are nonstructural,
and do not involve addition of new code, slicing techniques
select only modification-traversing tests. By restricting se-
lected tests to those that influence output, the potentially
relevant, relevant, and dynamic slices exclude, to different
degrees, tests that are modification-traversing but not
modification-revealing. When programs contain structural
changes, however, the extensions made to increase the in-
clusiveness of the techniques can cause selection of non-
modification-traversing tests. For example, consider the
procedures depicted in Fig. 4. Suppose statements S8, S6’,
and S8’ in the procedures are each replaced by the pair of
statements ‘’x=l’’ and “goto L”. Suppose further that
statement S7’ is not present in structchange’, and that a
new statement, ”L: print (x)” is inserted immediately
before S9 and S9’. The extended slicing techniques select all
tests that reach the new print statement (the statement with
label L : 1, because that statement contains a use of a variable
computed in new statement S6’. None of these tests are
modification-traversing.

Fig. 20 depicts the inclusiveness and precision of slicing
techniques. The diagrams illustrate the lack of safety of all
techniques, leaving portions of the areas corresponding to
modification-revealing tests unshaded. Moreover, for all
techniques, the diagrams shade some areas corresponding
to modification-traversing tests that are non-modification-
revealing, signifying the inclusion of such tests.

(A) execution slice technique (B) dynamic slice technique

(C) relevant slice technique (U) approximate relevant slice techque

Fig. 20. Inclusiveness and precision of slicing techniques.

546 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

Efficiency. When program modifications do not add as-
signment statements or affect flow of control, slicing tech-
niques can perform most of their work in the preliminary
phase of regression testing. In this case, the execution slice
requires only O(I T I) time per modification to select tests.
In the presence of arbitrary modifications, however, slicing
techniques are less efficient. To handle additions of assign-
ment statements and predicates, the techniques must com-
pute dynamic data and control dependence information
relevant to P‘, for each test in T. Such computations can
require O(I P‘ I ’) time, and must be performed after modifi-
cations are complete; thus, for arbitrary modifications the
techniques require O(I T I * I P‘ I 2, time per modification.

Furthermore, given multiple modifications, to avoid loss
of precision and safety, code analyses may need to be re-
peated or incrementally updated, and test traces collected
again, after each modification is considered. Without such
recalculation, the techniques cannot account for the cumu-
lative effects of modifications on test paths and slices. At
worst, recalculation of traces may require running all tests
in T, defeating the purpose of selective retest.

Generality. Slicing techniques work for all procedural-
language programs because they depend only on the
ability to trace program execution and calculate depend-
ence information. However, the techniques’ effectiveness
and efficiency decrease in cases where programs contain
multiple modifications or modifications to control structure.
The techniques do not support interprocedural regression
testing beyond the approach of analyzing all procedures in a
program. The techniques do not require a particular test suite
design or the use of coverage requirements. The techniques
require collection of test trace information at either the state-
ment or procedure level; some of the techniques also require
tools for static and dynamic dependence analysis.

5.11 Graph Walk Techniques
Rothermel and Harrold [321, [33], [351 present an intrapro-
cedural regression test selection technique that builds con-
trol flow graphs (CFGs) for P and P’, collects traces for tests
in T that associate tests with CFG edges, and performs syn-
chronous depth-first traversals of the two graphs, compar-
ing nodes (or actually, the program statements associated
with those nodes) that are reached along prefixes of execu-
tion traces.14 When a pair of nodes N and N’ in the graphs
for P and P’, respectively, are discovered, such that the
statements associated with N and N’ are not lexically iden-
tical, the technique selects all tests from T that, in P, reached
N. This approach identifies tests that reach code that is new
in or modified for P‘, and tests that formerly reached code
that has been deleted from P. The technique selects all of
the tests in T that are modification-traversing for P and P‘
[32]. The authors offer an interprocedural version of the
technique, also based on CFGs, that can be applied to entire
programs or subsystems. Rothermel and Harrold also pres-

ent versions of their techniques that add data dependence
information to CFGs to facilitate more precise test selection.
Inclusiveness. The graph walk techniques select all modifi-
cation-traversing tests [32]. Thus, for controlled regression
testing they are safe.
Precision. Graph walk techniques are not 100% precise for
arbitrary programs. Rothermel[32] defines a property of CFGs
called the multiply-visited-node p~0peuty.l~ Rothermel proves
that when P and P’ do not exhibit the multiply-visited-node
property, graph walk techniques select exactly the tests in T
that are modification-traversing for P and P‘. When G and G‘
exhibit the multiply-visited-node property, however, graph
walk techniques may select tests that are not modification-
traversing for P and P’. The procedures shown in Fig. 5 exem-
pldy a case where the multiply-visited-node property holds.
For the pair of procedures in the figure, graph walk techniques
can select non-modification-traversing tests. Nevertheless, in
empirical studies conducted using graph walk techniques on
nontrivial programs, no cases have been found in which the
multiply-visited-node property holds; the only known pro-
grams for wluch the property holds have been contrived for
the purpose of demonstrating the property. These empirical
results suggest that in practice, graph walk techniques do not
select non-modification-traversing tests.

Graph walk techniques that make use of data depend-
ence information further increase the precision of test se-
lection, omitting some modification-traversing tests that are
non-modification-revealing.

Like cluster identification techniques, both basic and im-
proved graph walk techniques select tests through modi-
fied procedures at a finer grain than linear equation tech-
niques, and thus, are more precise than those techniques.

Fig. 21 depicts the inclusiveness and precision of graph
walk techniques. Diagrams (A) and (B) show the safety and
precision of graph walk techniques for cases where the
multiply-visited-node property holds and does not hold,
respectively. Diagram (C) shows the safety and precision of
the improved versions of the graph walk techniques, that
use data dependence information. The safety of the tech-
niques is depicted by the presence of shading in all areas
corresponding to modification-revealing tests. The impreci-
sion of the techniques is illustrated by the shading of areas
not corresponding to modification-revealing tests. The fact
that the techniques can select non-modification-traversing
tests when the multiply-visited-node property holds is il-
lustrated by shading outside the circles in Diagrams (A)
and (C); this shading is omitted in Diagram (B), which de-
picts the conjectured precision of the techniques in practice.
However, the shaded area of non-modification-traversing
tests area is smaller than the corresponding area in Dia-
gram (B) of Fig. 9, reflecting the greater precision of the
graph walk techniques. The diagram on the right illustrates
the precision gains obtained by the improved versions of
the techniques; these techniques omit some tests that are
modification-traversing but not modification-revealing.

14. Earlier versions of this technique used control, program, or system
dependence graphs E!], [35]. The most recent version of the technique is
based on control flow graphs [321. The version achieve the same results in
terms of inclusiveness and precision; however, the CFG-based version is
more efficient than the earlier versions. In this discussion, we evaluate the
CFG-based version of the technique.

15. Let G and G’ be the control flow graphs for P and P’, respectively. The
multiply-visited-node property is a predicate that is true of P and P’ if, and
only if, the graph walk technique, in walking G and G’, visits some node in
G more than once.

ROTHERMEL AND HARROLD: ANALYZING REGRESSION TEST SELECTION TECHNIQUES 547

T-obsolete I

(A) SelectTests and SelectInterTests

(worst case)

(B) SelectTests and SelectInterTests (C) SelectTestsMorePrecisely and
(in practice) SelectInterTestsMorePrecisely

Fig. 21. Inclusiveness and precision of graph walk techniques.

Efficiency. Graph walk techniques run in time O(I TI *
(max(I P I, I P' I))). However, when the multiply-visited-
node property does not hold, the basic graph walk tech-
niques (that do not require data dependence information)
run in time O(I T I * m i 4 I P I , I P' I)) [321. The techniques can
construct graphs for P and collect test history information
during the preliminary phase of regression testing, but must
construct graphs for P' and traverse the graphs during the
critical phase. The techniques do not require prior computa-
tion of a correspondence between P and P'; instead, they lo-
cate modifications as they proceed, and in the presence of
significant changes avoid unnecessary processing.
Generality. Graph walk techniques apply to procedural
languages generally, because control flow graphs and da-
taflow information can be computed for all such languages.
The techniques handle all types of program modifications,
and support both intraprocedural and interprocedural test
selection. The techniques make no assumptions about ini-
tial test suite design or use of coverage criteria. The tech-
niques require test trace information at the basic block level,
and tools for constructing control flow graphs; advanced
versions of the techniques also require tools for dataflow
analysis.

5.12 The Modified Entity Technique

2

Chen, Rosenblum, and Vo [7] present the modified entity
technique, a regression test selection technique that detects
modified code entities. Code entities are defined as executable
portions of code such as functions, or as nonexecutable com-
ponents such as storage locations. The technique selects all
tests associated with changed entities. The authors have im-
plemented the technique as a software tool, called TestTube,
that performs regression test selection for C programs. Pro-
gram entities are kept in a database that, among other
things, facilitates comparison of those entities to determine
where modifications have occurred. The authors also dis-
cuss applications of the technique to the selective retest of
nondeterministic systems, where test coverage measures
may vary over different test executions, and instrumenta-
tion may interfere with test behavior.

Inclusiveness. Although we do not prove this, we believe
that by identifying all tests through changed code entities,
the modified entity technique identifies all modification-
traversing tests. Thus, the modified entity technique is safe
for controlled regression testing.

Precision. Given a modified function F in program P, the
modified entity technique selects all tests that execute F.
Because some tests may execute F without executing any
modified code in F , the modified entity technique selects
non-modification-traversing tests. For example, for the
functions and modified versions depicted in Fig. 4 and Fig. 5,
if these functions are called in some program, the technique
selects all tests that execute these functions, even though
some or all of the tests are non-modification-traversing.
Moreover, because the modified entity technique may also
select tests that do not execute modified clusters or modi-
fied execution traces, the technique is less precise than the
cluster identification or CFG-walk techniques. We believe
that the set of non-modification-traversing tests selected by
the method is equivalent to the set of non-modification-
traversing tests selected by the interprocedural linear equa-
tion technique.

Fig. 22 depicts the inclusiveness and precision of the
modified entity technique. Because the technique is safe, all
three circles are completely shaded. Because the technique
selects non-modification-traversing tests, areas outside the
circles are also shaded. That shaded area is comparable in
size to the shaded area employed for interprocedural linear
equation techniques in Diagram (B) of Fig. 9.

T - obsolete

Fig. 22. Inclusiveness and precision of the modified entity technique.

Efficiency. The modified entity technique is the most effi-
cient safe test selection technique available. The technique is
fully automatable, and runs in worst-case time proportional
to the size of the test suite times the number of changed enti-
ties in P, which is at worst equivalent to the size of P (though

548

TECHNIQUE
LINEAR
EQUATION
(minimization)
(intra)

LINEAR
EQUATION
(non-
minimization)
(inter)
SYMBOLIC
EXECUTION

PATH
ANALYSIS

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

INCLUSIVENESS
unsafe

(all categories)

safe for contrulled
regression
testing

not safe
(far deletions)

not safe
(for deletions
or additions)

TABLE I
SUMMARY OF OUR FRAMEWORK-BASED EVALUATIONS OF REGRESSION TEST SELECTION TECHNIQUES

PRECISION
selects non-mt tests

selects non-mt tests
Selects all teat8

through modified
procedures

selects non-mt tests

selects no non-mt tests

EFFICIENCY
worst case: exponential in IPI
in practice: unknown ,
correspondence: O(nas(lPI , IP'I)')

worst case. exponential in IPl
in practice: unknown
correspondence: O(maz(IP1, IP'I)'

*log(mas(IPI, IP'l))
Worst case' exponential in /PI

in prIctLce: unknown
correspondence: O(mar(lP1, lP'l)a

worst case. exponential ~n /PI
in practice; unknown
correspondence: not required

(may not terminate)

*iW(mQa(lPI, lp'l))

SYSTEM
DEPENDENCE
GRAPH

not safe
[for deletions)

regression 11 teStlng

selects non-mt tests
more precise than PDG

worst case: O(ITl* (moz(/PI , lP'1)3)
or O(lTI * fnmfIPI. IP'I)<)

per modification
in practice. unknown
correspondence: not required

technique in practice. unknown
correspondence: O(maz(lPl, IP'I)')

MODIFICA-
TION
BASED

FIREWALL

CLUSTER
IDENTIFI-
CATION

SLICING

GRAPH
WALK

MODIFIED

not safe
(all categories)
(minimization)

safe fur controlled
regression
testing if T
is reliable

safe for p.r t

not safe
(some
categories)

safe for controlled
regression
testing

safe fur controlled

technique in practice: unknown
correspondence: O(mar(IP1, lP'l)2)

logical modification for
analysis; test selection
is not automated.

walk technique

selects non-mt tests

selects non-mt tests

most precise safe
(but not in practice)

technique

in practice. unknown

Selects all tests in practice: '"efficient"

correspondence: not required

worst c a m O(lT1 * IP'I')
per modification

in practice. unknown
correspondence. not required

worst case. CJ(IT1 *L (mes(lPI, lP'l)')
in practice: O(IT1 * min(lPI,!P'l)

(without dataflow mformatmn)
correspondence. not required

Selects all tests

procedures * W m a N P I , P I))
less precise than graph

in practice is expected to be much less). Thus the technique
m s in time O(I TI * I P I). The technique does require an
O(max(I P I , I P' I * log (max(I P I , I P' I 1) lexical comparison
operation, performed on the code entities in the database
during the critical period, to establish which entities have
been modified. Experimental performance evaluations
show, however, that in practice this comparison operation
is one of the least costly operations performed by the tech-
nique. The technique handles multiple modifications in a
single application of the algorithms.
Generality. Although implemented only for C, the modi-
fied entity technique is applicable to procedural languages
generally. The technique handles all forms of code modifi-
cations. The technique is specifically designed to handle
interprocedural, rather than intraprocedural, regression
testing. The technique requires the use of a database con-
taining information about code, but such databases serve

16

16. David Rosenblum, personal communication.

GENERALITY
level: intra
mods. not control flow
criteria: control/datsflow
requires: segment traces,

linear equalion soiver
level: inter
mods: handles all
criteria: control/dataflow
requires: function traces,

linear equation mlver
level: intra/inter
mods, not deletions
criteria: partition
requires: symbolic execution

level: intra
mods: not deletionslnddittanr
criteria: path
requires. statement traces,

level: intra/inter
mods: only dataflow affecting
criteria. dataflow
requires: basic block traces,

static and incremental

algebraic design

dataflow analysis tools
level: intra
mods. nut deletions
criteria. PDG
requires. statement traces,

control dependence, slicing,
dataflow analysis t ode

level: intrarinter
mods. not deletions
criteria: PDG
requires: statement traces,

control dependence, slicing,
dataflow analysis took

level. intra/inter
mods. doesn't handle all
criteria: none
requires Statement traces,

staticldynamic control and
da ta dependence analysis

level, inter
mods. handles dl
criteria: none
requires. function traces
level. intra
mods: handles all
criteria: none
reauires, Statement traces

CFGs, control dependence
level: intra
mods: doesn't handle all
criteria. none
requires. statement traces,

static/dynamic control and
da ta dependence analysis

level. intralinter
mods: handles all
c r i t e r n none
requires: statement traces,

level: inter
mods: handles all
criteria: none
requires. function trace+

dataflow analysis (optional)

code database

other useful purposes. The technique makes no assumption
about initial test suite design or use of coverage criteria.
Finally, the technique shows promise in application to non-
deterministic programs.

5.13 Summary
Table 1 summarizes the results of our evaluations of regres-
sion test selection techniques. Techniques are listed in the
leftmost column; columns two through five summarize our
findings with respect to inclusiveness, precision, efficiency,
and generality, respectively, for each of the techniques.

We include separate rows for the linear equation tech-
nique, to summarize it in its intraprocedural, minimization
form and in its interprocedural, nonminimization form. We
summarize only the incremental version of the dataflow
techniques. We use single rows to summarize the two PDG
techniques, the two SDG techniques, the four slicing tech-
niques, and the four graph walk techniques.

The columns summarize the following information for
each technique, where applicable:

ROTHERMEL AND HARROLD: ANALYZING REGRESSION TEST SELECTION TECHNIQUES

~

549

INCLUSIVENESS. We state whether the technique is
safe. If the technique is not safe, we list the category
or categories of modifications for which the technique
may omit modification-revealing tests.

PRECISION. No techniques are 100% precise. We find it
useful to state whether techniques
1) select non-modification-traversing tests, or
2) select all tests through modified procedures in-

stead of selecting tests at a finer granularity.

When we know that a technique is more or less pre-
cise than another, we include this information.

EFFICIENCY. We list the worst case critical period run-
ning time of the technique. Where information on the
technique’s critical period running time in practice is
available we include it. We also list the cost of the cor-
respondence between P and P’ that the technique
must compute, if such a correspondence is required.
Techniques could instead rely on an incremental edi-
tor to provide this information; in that case generality
is reduced.

GENERALITY. For each technique, we state whether it
is intraprocedural, interprocedural, or both (”level:”),
the class of modifications that it handles (“mods:”),
the criteria on which it is based, if any (”criteria:”),
and its requirements in terms of tool support
(”requires:”). It would also be appropriate to list, in
this column, the class of languages and programs to
which the techniques apply, and whether or not the
techniques are fully automatable, However, we find
that all techniques are fully automatable except for
the modification-based technique (for which the test
selection process may be, but is not yet, automated).
We also find that all techniques apply to procedural
programs generally. Thus, to save space we omit
these fields from the table.

To save space, we use the following abbreviations in the
table:

in ter-interprocedural
intra-intraprocedural
mods-modifications
mt-modifica tion- traversing
non-m t-non-modification-traversing

6 CONCLUSIONS AND FUTURE WORK
We have presented a framework for evaluating regression
test selection techniques that classifies techniques in terms
of inclusiveness, precision, efficiency, and generality. We
have illustrated the application of this framework by using
it to evaluate existing regression test selection techniques.

One important contribution of this work is the insight it
provides into the state of current research on regression test
selection. Where current research is concerned, our evalua-
tions indicate that despite the differences in the goals of
various techniques, these techniques may be more clearly
compared and understood when our framework is em-
ployed. Our framework can be used by researchers to com-
pare their new techniques to existing techniques, and can
help them demonstrate the significance of the contributions

of their work over existing techniques. Our framework can
be used to identify strengths and weaknesses of various
techniques, and can help guide the choice of test selection
techniques for practical purposes. For example, a testing
professional seeking a safe test selection technique can
identify, using our evaluations, four possible techniques
that will serve the purpose: the linear equation, cluster
identification, modified entity, and graph walk techniques.
Alternatively, a testing professional who is primarily con-
cerned with using existing tests to achieve some coverage
measure may seek a technique that is based on some such
measure, rather than a safe technique.

Of equal importance, however, our work suggests sev-
eral directions for future research on regression test selec-
tion. One important direction for future work is experi-
mental study. Few techniques that we evaluated have been
implemented, and fewer still have been the subject of em-
pirical studies. With our framework, we have been able to
analytically evaluate the fault-detecting abilities and effi-
ciency of existing techniques; however, it is important to
pursue empirical evidence as well. We discuss a few im-
portant areas for empirical study:

The precision-efficiency tradeoff. Graph walk tech-
niques are more precise than the modified entity
technique. However, graph walk techniques gain
their precision by increasing the costs of analysis.
Similarly, graph walk techniques that use data de-
pendence information are more precise than graph
walk techniques that do not use such information, but
this precision gain, too, is achieved only at an increase
in analysis cost. Empirical studies can help to deter-
mine when the increased analysis costs outweigh the
gains of increased precision.

Fault-detection abilities. We have used our framework
to analytically evaluate test Selection techniques in
terms of their fault-detecting abilities. We have shown
that safe techniques can detect faults that are not de-
tectable by techniques that are not safe; we have also
shown that certain techniques are safe, at least, for
controlled regression testing. However, we have not
determined the impact, in practice, of safety on fault
detection. Empirical studies can help to determine
whether a safe interprocedural test selection tech-
nique, such as the graph walk technique, offers suffi-
cient improvements in fault detection in comparison
to an efficient, but nonsafe, interprocedural test selec-
tion technique such as the firewall technique.

Interprocedural versus intraprocedural test selection.
Many test selection techniques are intraprocedural.
Preliminary experimental results suggest that such
techniques may not offer savings that justify their
costs [32]. More extensive empirical studies can help
to determine the level at which test selection should
be performed.

Minimization techniques. Minimization techniques take
coverage to an extreme, requiring selection of only a
single test through some modified or affected compo-
nent of P‘. These techniques significantly reduce the

550 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 8, AUGUST 1996

number of tests that must be executed. However, pre-
liminary experimental results suggest that minimiza-
tion of test suites may have a significant, adverse im-
pact on the ability to detect regression errors 1321. Ad-
ditional empirical studies in this area would be useful.

Another important direction for future work is the in-
vestigation of other selective retest tasks. Our work has fo-
cused on the regression test selection problem: the problem
of selecting tests from an existing test suite. However, se-
lective retest techniques may be concerned with other tasks.
First, simply reusing tests in T may not provide adequate
testing of modified programs. Thus, many selective retest
techniques also address the coverage identification prob-
lem: the problem of locating components of the modified
program that should be retested, and judging where addi-
tional tests are required. The framework for comparing test
selection techniques presented in this paper could be ex-
tended to facilitate comparisons of techniques for coverage
identification. Second, in this work we have assumed the
availability of a technique for identifying obsolete tests;
these tests include tests that are obsolete due to changes in
specifications. The framework we have presented could be
extended to facilitate comparisons of specification-based
selective retest techniques.

ACKNOWLEDGMENTS
S.S. Ravi made many helpful suggestions, especially in re-
gard to the material presented in Sections 3 and 4. This
work was partially supported by grants from Microsoft,
Incorporated and Data General Corporation, and by the
National Science Foundation under Grant CCR-9357811 to
Clemson University and the Ohio State University.

REFERENCES
H. Agrawal, J. Horgan, E. Krauser, and S. London, "Incremental Re-
gression Testing," Proc. Conf. Software Maintenance-1993, pp. 348-
357, Sept. 1993.
S. Bates and S. Horwitz, "Incremental Program Testing Using
Program Dependence Graphs," Proc. 20th ACM Symp. Principles of
Programming Languages, pp. 384-396, Jan. 1993.
P. Benedusi, A. Cimitile, and U. De Carlini, "Post-Maintenance
Testing Based on Path Change Analysis," Proc. Conf. Software
Maintenance--1988, pp. 352-361, Oct. 1988.
D. BinWey, Wsing Semantic Differencing to Reduce the Cost of
Regression Testing," Proc. Conf. Software Maintenance-1992, pp. 41-
50, Nov. 1992.
D. Binkley, "Reducing the cost of Regression Testing by Seman-
tics Guided Test Case Selection," Proc. Conf. Software Mainte-
nance-1995, pp. 251-260, Oct. 1995.
P.A. Brown and D. Hoffman, "The Application of Module Re-
gression Testing at TRIUMF," Nuclear Instruments and Methods in
Physics Research, Section A, vol. A293, nos. 1-2, pp. 377-381, Aug.
1990.
Y.F. Chen, D.S. Rosenblum, and K.P. Vo, "TestTube: A System for
Selective Regression Testing,'' Proc. 16th Int'l Conf. Software Eng.,
pp. 211-222, May 1994.
H. Crowder, E.L. Johnson, and M. Padberg, "Solving Large-Scale
Zero-One Linear Programming Problems," Operations Research,
vol. 31, no. 5, pp. 803-834, Sept. 1983.
T. Dogsa and I. Rozman, "CAMOTE4omputer Aided Module
Testing and Design Environment," Proc. Conf. Software Mainte-
nnnce-1988, pp. 404-408, Oct. 1988.
K.F. Fischer, "A Test Case Selection Method for the Validation of
Software Maintenance Modifications," Proc. COMPSAC '77, pp.
421-426, NOV. 1977.

K.F. Fischer, F. Raji, and A. Chruscicki, "A Methodology for
Retesting Modified Software," Proc. Nat'l Telecommunications Conf.

M.R. Garey and D.S. Johnson, Computers and Intractability. New
York: W.H. Freeman, 1979.
R. Gupta, M.J. Harrold, and M.L. Soffa, "An Approach to Regres-
sion Testing Using Slicing," Proc. Conf. Software Maintenance-

M.J. Harrold, R. Gupta, and M.L. Soffa, "A Methodology for
Controlling the Size of a Test Suite," ACM Trans. Software Eng. and
Methodology, vol. 2, no. 3, pp. 270-285, July 1993.
M.J. Harrold and M.L. Soffa, "An Incremental Approach to Unit
Testing During Maintenance," Proc. Conf. Software Maintenance-

M.J. Harrold and M.L. Soffa, "An Incremental Data Flow Testing
Tool," Proc. Sixth Int'l Conf. Testing Computer Software, May 1989.
M.J. Harrold and M.L. Soffa, "Interprocedural Data Flow Test-
ing," Proc. Third Testing, Analysis, and Verification Symp., pp. 158-
167, Dec. 1989.
J. +tmann and D.J. Robson, "Revalidation During the Software
Maintenance Phase," Proc. Conf. Sofiware Maintenance-1 989, pp. 70-
79, Oct. 1989.
J. Hartmann and D.J. Robson, "RETEST-Development of a Se-
lective Revalidation Prototype Environment for Use in Software
Maintenance," Proc. 23rd Hawaii Int'l Conf. System Sciences, pp. 92-
101, Jan. 1990.
J. Hartmann and D.J. Robson, "Techniques for Selective Revali-
dation," I E E E Software, vol. 16, no. 1, pp. 31-38, Jan. 1990.
D. Hoffman, "A CASE Study in Module Testing," Proc. Conf.
Software Maintenance--1989, pp. 100-105, Oct. 1989.
D. Hoffman and C. Brealey, "Module Test Case Generation," Proc.
Third Workshop Software Testing, Analysis, and Verification, pp. 97-
102, Dec. 1989.
S. Horwitz, R. Reps, and D. Binkley, "Interprocedural Slicing
Using Dependence Graphs," ACM Trans. Programming Languages
and Systems, vol. 12, no. 1, pp. 26-60, Jan. 1990.
J. Laski and W. Szermer, "Identification of Program Modifications
and Its Applications in Software Maintenance," Proc. Conf. Soft-
ware Maintenance-1992, pp. 282-290, Nov. 1992.
J.A.N. Lee and X. He, "A Methodology for Test Selection," The 1.
Systems and Software, vol. 13, no. 1, pp. 177-185, Sept. 1990.
H.K.N. Leung and L. White, "Insights into Regression Testing,"
Proc. Conf. Software Maintenance-1989, pp. 60-69, Oct. 1989.
H.K.N. Leung and L.J. White, "Insights into Testing and Reflession

B-6-3, pp. 1-6, NOV. 1981.

2992, pp. 299-308, NOV. 1992.

1988, pp. 362-367, Oct. 1988.

Testing Global Variables," J. Softwdre Maintenance, vol. 2, pp. 209-
222, Dec. 1990.
H.K.N. Leung and L.J. White, "A Study of Integration Testing and
Software Regression at the Integration Level," Proc. Conf. Software
Maintenance--1990, pp. 290-300, Nov. 1990.
H.K.N. Leung and L.J. White, "A Cost Model to Compare Regression
Test Strategies," PYOC. Conf. Software Maintenance-1991, pp, 201.208,
Oct. 1991.
R. Lewis, D.W. Beck, and J. Hartmann, "Assay-A Tool to Sup-
port Regression Testing," Proc. ESEC '89, Second European Software
Eng. Conf., pp. 487-496, Sept. 1989.
T.J. Ostrand and E.J. Weyuker, "Using Dataflow Analysis for
Regression Testing," Proc. Sixth Ann . Pacific Northwest Software
Quality Conf., pp. 233-247, Sept. 1988.
G. Rothermel, "Efficient, Effective Regression Testing Using Safe
Test Selection Techniques," PhD dissertation, Clemson Univ.,
May 1996.
G. Rothermel and M.J. Harrold, "A Safe, Efficient Algorithm for
Regression Test Selection," Proc. Couf. Software Maintenance-
1993, pp. 358-367, Sept. 1993.
G. Rothermel and M.J. Harrold, "Selecting Regression Tests for
Object-Oriented Software," Proc. Conf. Software Maintenance-
1994, pp. 14-25, Sept. 1994.
G. Rothermel and M.J. Harrold, "Selecting Tests and Identifying
Test Coverage Requirements for Modified Software," Proc. 1994
Int'l Symp. Software Testing and Analysis, pp. 169-184, Aug. 1994.
S. Schach, Software Engineering. Boston: Aksen Assoc., 1992.
B. Sherlund and E. Korel, "Modification Oriented Software Test-
ing," Conf. Proc.: Quality Week 1991, pp. 1-17,1991.
B. Sherlund and B. Korel, "Logical Modification Oriented Soft-
ware Testing," Proc. 22th Int'l Conf. Testing Computer Software,
June 1995.

ROTHERMEL AND HARROLD: ANALYZING REGRESSION TEST SELECTION TECHNIQUES 551

[391 A.B. Taha, S.M. Thebaut, and S.S. Liu, “An Approach to Software
Fault Localization and Revalidation Based on Incremental Data
Flow Analysis,“ Proc. 13th Ann . Int’l Computer Software and Appli-
cations Conf., pp. 527-534, Sept. 1989.

i401 A. von Mayrhauser, R.T. Mraz, and J. Walls, ”Domain Based Re-
gression Testing,” Proc. Conf. Software Maintenance-1994, pp. 26-
35, Sept. 1994. ~

L.J. White and H.K.N. Leung, “A Firewall Concept for Both Con-
trol-Flow and Data-Flow in Regression Integration Testing,” Proc.
Conf. Software Maintenance-2992, pp. 262-270, Nov. 1992.
L.J. White, V. Narayanswamy, T. Friedman, M. Kirschenbaum, P.
Piwowarski, and M. Oha, ”Test Manager: A Regression Testing
Tool,” PYOC. Conf. Software Maintenance--1993, pp. 338-347, Sept.
1993.
W.E. Wong, J.R. Horgan, S. London, and A.P. Mathur, ”Effect of
Test Set Minimization on Fault Detection Effectiveness,” Proc.
17th Int’l Conf. Software Eng., pp. 41-50, Apr. 1995.
W. Yang, ”Identifying Syntactic Differences Between Two Pro-
grams,” Software-Practice and Experience, vol. 21, no. 7, pp. 739-
755, July 1991.
S.S. Yau and Z . Kishimoto, ”A Method for Revalidating Modified
Programs in the Maintenance Phase,” Proc. COMPSAC ’87: 21th
Ann. Int’l Computer Software and Applications Conf., pp. 272-277,
Oct. 1987.
J. Ziegler, J.M. Grasso, and L.G. Burgermeister, “An Ada Based
Real-Time Closed-Loop Integration and Regression Test Tool,”
Proc. Conf, Software Maintenance--1989, pp. 81-90, Oct. 1989.

Gregg Rothermel received a PhD in computer
science from Clemson University, an MS in
computer science from the State University of
New York at Albany, and a BA in philosophy
from Reed College. He is currently an assistant
professor in the Department of Computer Sci-
ence at Oregon State University. Previous posi-
tions include vice president for quality assurance
and quality control at Palette Systems Inc. Dr.
Rothermel’s research interests include software
engineering and program analysis, with an em-

phasis on the application of program analysis techniques to problems
in software maintenance and testing. He is a member of the IEEE
Computer Society and the ACM.

Mary Jean Harrold received PhD and MS de-
grees in computer science from the University of
Pittsburgh, and MA and BA degrees in mathe-
matics from Marshall University. She is currently
an assistant professor in the Department of
Computer and Information Science at the Ohio
State University. Dr. Harrold’s research interests
include program analysis and testing, testing of
object-oriented software, and maintenance and
testing environments. She is a recipient of the
National Science Foundation’s National Young

Investigator award. She is a member of the IEEE Computer Society
and the ACM.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	8-1996

	Analyzing Regression Test Selection Techniques
	Gregg Rothermel
	Mary Jean Harrold

	Analyzing Regression Test Selection Techniques - Software Engineering, IEEE Transactions on

