
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department
of

1996

Improving Circuit Testability by Clock Control Improving Circuit Testability by Clock Control

Kent L. Einspahr
Concordia College, eins@seward.ccsn.edu

Sharad C. Seth
University of Nebraska-Lincoln, seth@cse.unl.edu

Vishwani D. Agrawal
AT&T Bell Laboratories, Murray Hill, NJ

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

 Part of the Computer Sciences Commons

Einspahr, Kent L.; Seth, Sharad C.; and Agrawal, Vishwani D., "Improving Circuit Testability by Clock
Control" (1996). CSE Conference and Workshop Papers. 50.
https://digitalcommons.unl.edu/cseconfwork/50

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17237504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/50?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages

Improving Circuit Testability by Clock Control

Kent L. Einspahr
Dept. of Computer Science

Concordia College University of Nebraska-Lincoln
Seward, NE 68434-1599

Sharad C. Seth
Dept. of Computer Science and Engineering

Lincoln, NE 68588-0115
einsQseward.ccsn.edu seth@cse.unl. edu

Vishwani D. Agrawal
AT&T Bell Laboratories

Murray Hill, NJ 07974-0636
va@research. att .com

Abstract

T h e testabili ty of a sequential circuit can be i m -
proved by controlling the clocks of individual storage
elements during testing. W e propose several clock con-
trol strategies derived f r o m a n analysis of the circuit, i t s
S-graph structure, and i ts funct ion. Through examples
we show how the number of clocks aflects the circuit’s
testability. It i s shown that if certain flip-flops (FFs)
are scanned (or otherwise initialized), the remaining
FFs can be controlled and initialized t o a n y arbitrary
state using the clock control. W e derive a controlla-
bility graph and use it t o assign clocks t o FFs and t o
schedule the clocks t o set t he FFs t o a n arbitrary state
during tes t . Our analysis of sequential benchmark cir-
cui ts indicates tha t this could be a n attractive scheme
for combining partial scan with clock control.

1 Introduction

A number of recent papers have considered the prob-
lem of applying clock control to groups of flip-flops in
a sequential circuit to improve the testability of the
circuit. The basic idea of this approach to testabil-
ity involves dividing the flip-flops of the circuit into
groups, with each group controlled by its own clock.
During the test mode one or more clocks may be en-
abled activating only those flip-flops controlled by the
clock(s). The normal clock mode in which all partitions
are active may be realized by simultaneously enabling
all clocks. The theoretical foundations for this multi-
ple clock control were initially presented in [l] and [6].
Different variations have been suggested in [2], [7], and

191. A dynamic approach to clock control has been pro-
posed by Baeg & Rogers [2]. A clock control method for
delay testing is presented by Fang & Gupta [7]. Rajan,
et al. [9] control the enable lines of the FFs to provide
clock control by identifying states that are difficult to
reach but are necessary to detect some faults.

While the previous research has presented results
indicating the merits of clock control, little work has
been reported on the improved testability in relation
to the number of clocks used and the specific parti-
tioning of the flip-flops. The purpose of this paper is
to investigate those issues.

We show that if certain FFs are controllable (i.e., can
be set to either 1 or 0 independent of the states of other
FFs) then the circuit can be initialized to an arbitrary
state, thus providing controllability equivalent to full-
scan. If the circuit is not so controllable then it is made
controllable by a combined partial-scan/clock-control
scheme for testability improvement. We present an al-
gorithm that finds a satisfactory clock assignment for
FFs so that the circuit can be controlled (under clock
control). In contrast to [9], our method considers the
functions of FF inputs to determine partitions and the
sequence of steps to bring each FF to a specified state.
This DFT scheme may be an attractive alternative to
existing DFT schemes for sequential circuits.

2 Testability using clock control

We assume that there are n FFs in the circuit which
are partitioned into m groups, where m 5 n. Each
group of FFs is assumed to have its own independent
clock control. During any clock cycle, it is possible
to enable any number of clock signals. For simplicity,

288
0-8186-7502-0196 $5.00 0 1996 IEEE

Proceedings., Sixth Great Lakes Symposium on VLSI, 1996. doi: 10.1109/GLSV.1996.497635

http://einsQseward.ccsn.edu

in the present work we activate a single group of FFs
at any one time and disable all others. Our objective
is to use the clocks to control the state of each FF
independent of the state of other FFs.

demux

2.1 Hardware implementation for clock control

I
C O

- 1
0,

'- O mux $ 2

1
I 0

The clock control model can be implemented in
hardware by using a clock distribution tree in which
a demultiplexer splits the clock line into m clocks as
shown in the schematic in Figure 1. A single test mode
line determines the circuit mode (0 = normal mode,
I = test mode) and [logm] select lines implement the
clock control. In the normal mode all clock lines are en-
abled. In the test mode a single clock line (determined
by the select lines) is enabled.

test

clock 1

seiect

Figure 1. Clock control implementation.

2.2 Number of clocks vs. testability

The testability of the circuit improves with the num-
ber of independent clocks. This is readily demon-
strated for a mod-2" binary counter such as the mod-8
binary counter shown in Figure 2. The normal mode is
shown in state diagram A. Figure 2B shows one possi-
ble grouping of bits for a two-clock control. The dashed
edges are the additional transitions that become pos-
sible when one or the other clock is disabled. With
the additional transitions, it becomes easier to navi-
gate from one state to another. For example, the av-
erage and maximum path lengths for the normal mode
in Figure 2A are 4.0 and 7, respectively. The same
measures for the two-clock control in Figure 2B are 2.3
and 4. Similarly, we find that the average path length
under 3-clock control, in which each bit is controlled
by a separate clock, improves to 2.1.

A. Normal Mode (one clock) B. Two clocks:
Clkl controls bit 3
Clk2 controls bits 1,2

Figure 2. Clock control in binary counter.

In glnneral, for the mod-2" counter, the normal mode
average and maximum path lengths are easily derived
to be Y-' and 2" - 1, respectively. In other cases,
the path-lengths can be estimated by noting that with
m clocks, it is possible to break the counter into m
subcounters of no more than [n + m] stages. Thus,
the ma,ximum path length for each subcounter will be
0(2"/"") and the maximum path length of the whole
counter will be O(m. 2n/m).

We will show that in the extreme case of n clocks
the binary counter can be brought to any state in O(n)
time starting from any arbitrary state. The only as-
sumption we make is that the FF corresponding to the
least significant bit (LSB) is initially controllable.

Suppose the starting state is (SI, s2,. . . , sn) and the
desired state is F = (fl,fi,...,fn) . Note that a bi-
nary counter stage toggles whenever all lower order
bits arle 1. Hence, a two-pass process to reach the de-
sired state from an arbitrary initial state is possible.
We assume that the stages are numbered 1, . . . , n from
LSB to MSB (most significant bit) and that stage i is
controlled by clock 4i. In the first pass, the counter
is initi(a1ized to the all-1 state starting from the LSB
which is controllable by our assumption. Beginning
at the unknown state (~ 1 , . . . , 9") = (X , X , . . . , X) ,
successive steps during the first pass yield the states

In the second pass, the bits in the final state
F that differ from the all-1 state are changed se-
quentially, starting from the MSB. Successive steps
yieldthestates (l , l , ~ ~ ~ , l , . f n) , (l , l , . . . , . fn-l , .fn), ...,
(f i , f 2 . . . , fn-.l, f,). The initializing sequence for the
counter requires O(2n) = O(n) steps. Thus, in essence,
the n-clock case is comparable to full-scan for this ex-
ample.

In generalizing the above scheme, we notice that any

(l , X , . . . , X) , (1,1;.. ,X), "', (l , l , . ' . , l) .

289

standard implementation of the binary counter has the
S-graph shown in Figure 3. The S-graph shows con-
nectivity of FFs through combinational paths [4]. It
has a node for each FF and there is a directed edge
from the FFi node to the FFj node if FFj can be
reached from FFi through a path involving only com-
binational logic elements. An extension of the S-graph
can be defined which includes primary inputs as ad-
ditional nodes. The graph reveals that each stage de-
pends on itself and all preceding stages. Therefore, if
the LSB stage is controlled and each subsequent stage
can be independently controlled, the entire circuit can
eventually be controlled by a process similar to above.

Figure 3. The S-graph of a binary counter.

3 Controllability graph (CG)

We limit the discussion to D-type flip-flops. A FF
may be controlled in several ways: 1) from the pri-
mary inputs (PIS), 2) by an independent asynchronous
set or reset, 3) by controlling the FF from previously
controlled FFs [5] , or 4) by scanning the FF. A circuit
i s controllable if each of its FFs can be controlled by
one of the four methods.

We define an edge-labeled directed generalzzed con-
trollability graph (GCG) that captures the controllabil-
ity relation: GCG = (V, E , W) where V = { all PIS,
all FFs }. The edge (i, j) E E and the condition (edge
label) cv E W represent the functional dependence of
node j on node i .

The condition is determined by analyzing the
function of the input signal of FF,, f, (5 1 , ’ . . , zn)
where the zz’s include the PIS and the pseudo inputs
that occur in the formula for FF,. Using the Shannon
expansion,

we define fi=y
where y = 0 , l . The state of FFj is determined by

= fj (~ 1 , . . . , xi-1, y, zi+l,. . . , x,)

If either of the first two cases in the equation for f j are
satisfiable then FF; can be controlled from xi under
the conditions = fj=’ . fj”=” and c!,~ = p. f;=O,

respectively, and a corresponding (directed) edge is
added to the GCG. If neither of the first two cases
is satisfiable, FFj is not controllable from xi.

We further restrict the conditions of the first two
cases to be satisfiable independent of the previous state
of FFj since we may want to initially control FFj
from an unknown state. If the condition is not in-
dependent of the pseudo input of FFj we may not be
able to satisfy the condition without first controlling
F F j . Therefore, E = { (i,j) I i , j E V such that i can
control j independent of the previous state of j}, and
W = { cij I i , j E V where cij is a condition under
which i controls j}.

An edge between two nodes exists in the GCG only if
there is an edge between the same nodes in the S-graph
(extended to include PIS) as shown for the ISCAS-89
benchmark circuit s27 in Figures 4A and 4B (the PIS
are nodes GO through G3). Note that there may be
two edges between nodes in the GCG if both c& # 0
and # 0. As shown on edges b, e , e , and f in
Figure 4B, an inversion bubble is used to differentiate
c ?) ~ edges from edges. The dependence condition
for each edge in the GCG has been given as a reference
to the table in Figure 4C. The dependence conditions
are given in the sum of products (SOP) form in which
the current state of FF Gi is referred to as a pseudo
input and denoted SLGi for i = 5,G,7.

Next we place constraints on the edges in the GCG
such that FFi is controlled before it can control FFj
and all variables occurring in at least one product term
of cij are also controlled. Hereafter, we will refer to this
constrained CG simply as the CG.

The CG for s27 in Figure 4D is derived as follows.
Initially, only PIS GO through G3 are controllable. At
the second level we include only those edges which rep-
resent controllability from nodes in the first level, i.e.,
edges a and b to FFs G5 and G7. We can eliminate
edges c and d because they include the uncontrolled
pseudo inputs SLG5 and SLG7. At the third level,
since G5 and G7 can now be controlled, we can include
edges e and f to GG. As a result, edges c and d are
considered implicitly. We have included dashed edges
in the CG to indicate the dependence of G6 on nodes
GO, G1, and G3.

290

A. S-Graph B. Generalized CG

a: G I + G3’ + SILG7
b: GI
c: GO & G3 & SILG5’ & SILG7’
d: GO &GI ’ & SI-GV & SI-G7’
e: GI ’ & G3 & SILG7’
f GO & G1’& G3 & SI-G5’

C. Dependence Conditions D. Constrained CG

Figure 4. s27 graphs.

4 Controllability algorithm

We propose a general procedure in Figure 5 for ini-
tializing the circuit to an arbitrary state using a com-
bination of clock control and partial scan. The algo-
rithm has three parts: generation of the controllability
graph, clock assignment for each of the FFs, and clock
scheduling to bring the circuit to the desired state.

To generate the controllability graph, we place all
FFs and PIS into the initial CG and calculate the de-
pendence conditions for all edges in the S-graph. As
described above, we iteratively determine whether a FF
can be controlled from PIS or other FFs using the con-
straints of the CG. For each FF that can be controlled,
we add the respective edges to the CG and mark the
FF “controlled”. An edge is not included in the CG
if its associated dependence condition requires control-
lability of a node at a higher level. If we are unable
to extend the edge set for the CG and have uncon-
trolled FFs remaining, we heuristically select one (or
more) of the uncontrolled FFs to be scanned. In the
present context, this leads to combining clock control
with partial scan in a hybrid DFT scheme.

4.1 Clock assignment

The objective in clock assignment is to partition the
FFs into a minimum number of groups. To this end,
we introduce two additional types of constraints:

Generate CG
Initialize: CG = { F F s , P I S } ; Calculate dependencies

While circuit is not controllable {
For each uncontrolled FFj {

For each edge (i , j) in S-graph where i is controlled {
If FFj is controllable from i {

Insert (i j) ; Mark FFj controlled }
}) }

If no new edges were added to CG then
Select scan FF(s) & Mark as controllable

1
Clock Assignment

Initialize: Clock groups CO = { Scan FFs } $ CI = 0
Clock counter m = 1; Frontier F , F’ = 0
Neighbor set N = { neighbors of PIS & Scan FFs }

While ail FFs not controlled {
While clock group C , not done {

Move FFs in N satisfying constraints t o F ; F’ = 0
If F = 0 then clock group C, is done
Else {

Find rnax. length chains satisfying constraints of C,
(Chains have the form FF, + F F f d . . .)
(FFc is controllable; F F f E F)

Move selected FF chain to C,
Move FFs in F no longer satisfying C, to F’
N = N U { unmarked neighbors of F F , }; Mark nodes

1 1
Initialize next clock group: m = m + 1, C, = 0
Restore FFs in F’ to F

1
maxclock = m - 1

Clock Scheduling
Set :m = maxclock;
While m # 0 {

Set FFs in C , to (final) desired state; m‘ = m
While m‘ # 0 {

Bring parent FFs to necessary state
m‘ = m’ - 1

1
m = m - 1

1

Figure 5. Controllability algorithm.

Chain assignment: If FFi controls FFj under the
condition cij and FFj controls FFk under the condition
c j k t hen FFj and FFI , can be assigned to the same
chain only if cij and c j k can be satisfied simultaneously,
i.e., cij . c k l # 0.

Group assignment: If FFi controls FFk and FFj
controi’s FFe (where i = j is allowed) then FFk and
FFe can be assigned t o the same clock group only if
neither condition Cik n o r cje is absorbed b y the other,
i.e., if” cik ‘ cjl? # 0 and cik:. cje # 0.

The chain assignment constraint allows grouping
FFs that can be controlled as a shift-register chain un-
der one clock. The serial input to the chain is assumed
to come from a PI or a previously controlled FF. The
group assignment constraint allows a group of FFs to
be controlled from PIS or previously controlled FFs in

291

a non-serial, though not necessarily simultaneous, way.
By the group assignment constraint, G5 and G7 in

s27 cannot be assigned the same clock. By the general
constraints of the CG, G6 cannot be assigned the same
clock as either G5 or G7. Hence, by these rules, the
three FFs would be controlled by separate clocks.

In some cases the constraints for group assignment
can be relaxed to allow FFk and FFj to be assigned
to the same clock group if Cik # c j j . As an example,
in s27, FFs G5 and G7 can both be assigned to clock
1 giving rise to the following problem. When G1 is set
to 1 allowing G2 to control G7 (condition b) , condition
a also becomes true, enabling G5 to be controlled from
GO regardless of whether G5 is already in its desired
state. One solution is to first control G7 by setting
G l = l allowing the complement of G2 to be passed to
G7, and then setting (Gl ,G3) = (0,O) enabling G5 to
be controlled from GO without affecting the state of
G7. Although G5 and G7 can be controlled simulta-
neously under the correct conditions in the s27 circuit,
the process above allows each of the FFs to be con-
trolled independently. After G5 and G7 are assigned
to clock 1, we would assign G6 to a second clock.

Consider the procedure to assign FFs to clocks as
shown in Figure 5. Beginning with the FFs that are
controllable from PIS and scan FFs, we identify the
longest chain of FFs that can be grouped according to
the chain assignment constraint and insert the chain
into the current clock group, C,. We continue iden-
tifying the longest chains that can be assigned to C,
until no additional nodes can be added to the clock
group. Note ,that in adding additional chains to C,,
the nodes of the chain must not only satisfy the chain
assignment cqiteria, but also must satisfy the group as-
signment criteria with respect to all nodes in C,.

An alternative to adding maximal length chains to
clock groups is to first augment C, with individual
FFs satisfying the group assignment constraint. Subse-
quently, shift-register chains are constructed from FFs
that have been assigned to C, if they satisfy the chain
assignment constraint. In some cases, the trade-off of
maximal length chains for greater breadth of individual
FFs may allow fewer clocks and/or shorter test lengths.

When no additional FFs can be moved to C, we
‘close’ the current clock group and increment m. We
continue until all FFs have been assigned to a clock.

4.2 Clock scheduling

The clock assignment procedure generates at most
m + 1 clock groups; m due to clock control and one
possible scan clock. We can use the clock assignments
to derive a suitable clock scheduling and to determine

the worst case initialization sequence for the clock pa,r-
titioning. The key to the scheduling strategy is that
no FF depends upon a FF in a higher numbered clock
group. A FF controlled by clock $2 can only be af-
fected by FFs in clock group 41 (or by previous FFs in
the same chain in 42) and will not be affected by FFs
in clock groups higher than 42.

To determine a clock scheduling for an arbitrary
state we only need to work backward with respect to
the clock groups by initially setting the desired state
of the FFs in C,. We continue working backward to-
wards the FFs in C1, obtaining a set of test vectors
that must be applied to bring the FFs in C, to their
desired state. Next, we set the FFs in C,-l to their de-
sired state and again work backward resulting in a set
of test vectors that will bring the FFs in C,-l to their
desired state. We continue the process until the FFs
in Cl have been set to their desired state. Reversing
the order of the clocks that were enabled within each
pass will give a correct clock schedule. In general, as
we work backward, we may need to set any other FFs
back to their original state if they have been changed.

Using the clock assignment for the s27 exam-
ple above, assume the current state of s27 is
(G5,G6,G7) = (l , O , O) and suppose we would like to
set s27 to a different state such as (l,l,l). Working
backward, G6 must change state so we must justify its
desired value . To set G6 = 1 we must activate $2

with G5 = 0 and (Gl , G3, G7) = (0, 1 , O) . The current
state of G7 satisfies the condition of edge e , but we
need to control G5 to 0 before controlling G6. Thus,
we activate 41 to set G5 = 0. Summarizing this pass,
to control G6 to 1 we enable clocks and apply input
vectors according to the following sequence:

(GO, G1, G2, G3) (G5, G6, G7)
(I, 0,O) (current state)

$1 : (O,O,X,O) (O , O , 0)
$2 (X , 0, x, 1) (O,1,0)

We must still control G5 and 6 7 to their desired
states. In this case we can simultaneously control
G5 and G7 by activating $1 and applying the vec-
tor (GO, G1, G2, G3) = (1 , 1 , O , X) to reach our desired
state (G5, G6, G7) = (1,1,1).

4.3 Examples

In this section, we examine four small circuits from
the ISCAS-89 benchmark suite; s27, s208, s298, and
s382. Table 1 summarizes the results of the circuits un-
der clock control. All results shown use heuristics that
primarily minimize the number of clocks used. While
none of the circuits shown in the table require scan FFs

292

to control the circuit, we could choose to select one or
more scan FFs to reduce the number of clocks as well
as the test length.

The maximum test length shown in the table is the
worst case test length if all FFs in previous clocks must
be changed after bringing the FFs in a higher clock
group to their desired state.

le 1. Clock control results.

Circuit

s208
s29S
s R 8 3

Clock Control
Scan # Max. Test

FFs Clocks Length
0 1 2 1 3

5 Test generation strategies

Test generation algorithms for non-scan and partial-
scan circuits require a sequential test generator while
those for full-scan require only a combinational test
generator. The DFT scheme proposed in this paper
shares features from both partial and full scan. As in
partial scan, the circuit structure and its S-graph are
analyzed to determine the FFs to be controlled. Kow-
ever, the clock control provides an additional dimension
of controllability which gives the scheme capabilities re-
sembling full scan. In particular, as in full scan, it is
possible to drive the circuit to any desired state using
the scan and clock control. The primary differences
from full scan are that the state initialization sequence
depends on the circuit structure and a complete state
observability is not guaranteed.

Our strategy for test generation is to assume, as
with full-scan, that the circuit’s pseudo-inputs are com-
pletely controllable and derive a test for a fault using
a combinational test generator. If the fault is detected
at a primary output, then we only need to justify the
state on the pseudo inputs. Following the strategy used
in another sequential test generator [8], we assume a
fault-free state justification. Therefore, we can use the
procedure described earlier to bring the circuit to the
desired state from an unknown (or known) initial state.
Hence, no explicit time-frame expansion is necessary.
If the fault is detectable only at a pseudo output, we
bring around the fault effects to the pseudo inputs in
subsequent time frames and use a combinational test
generator to propagate the effect to a primary output.
Improved results are possible if the test structure is
made fault tolerant [3] or a conventional sequential test
generator is used.

6 Conclusion

We have presented the main ideas from a work in
progress. Our design for testability scheme combines
the best features of scan and clock control. We have
shown the feasibility of the approach through several
examples.

One implementation scheme for clock control ap-
pears in the recent paper by Baeg and Rogers [2] and
indicates that the hardware cost would be reasonable.
These authors group together FFs in strongly con-
nected components in the S-graph. We have proposed
a different implementation model in this paper which
has a smaller area cost but restricts the clock-control
to the activation of a single clock rather than allowing
simultaneous activation of a subset of test clocks. Our
criterion for grouping FFs is very different from that
of Baeg, and Rogers.

Our future research includes extending the control-
lability scheme to achieve full observability.

References

V. D. Agrawal, S. C. Seth, and J. S. Deogun. Design for
testability and test generation with two clocks. Proc.
4th Int’l Symp. on VLSI Design, pages 112-117, Jan-
uary 1991.
S. Baeg and W. A. Rogers. Hybrid design for testability
combining scan and clock line control and method for
test generation. Proc. Int’l. Test Conf., pages 340-349,
1994.
S. 7’. Chakradhar, S. Kanjilal, and V. D. Agrawal. Fi-
nite state machine synthesis with fault tolerant test
function. Jour. Electronic Testing: Theory and Applic.,
4:57-69, February 1993.
K. T. Cheng and V. D. Agrawal. A partial scan method
for circuits with feedbacks. IEEE Trans. on Computers,
C-3!) (4) : 544-548 April 1990.
K. T. Cheng and V. D. Agrawal. State assignment for
testable design. Int ’1. Jour. Computer Aided Design,

K. I,. Einspahr, S. C. Seth, and V. D. Agrawal. Clock
part.itioning for testability. Proc. 3rd IEEE Great Lakes
Symp. on VLSI Design, pages 42-46, March 1993.
W.-C. Fang and S. K. Gupta. Clock grouping: A low
cost DFT methodology for delay testing. Proc. Design
Automation Conf., pages 94-99, 1994.
A. Ghosh, S. Devadas, and A. R. Newton. Test genera-
tion and verification for highly sequential circuits. IEEE
Trans. Computer Aided Design, 10:652-667, May 1991.
K. 13. Rajan, D. E. Long, and M. Abramovici. Increas-
ing testability by clock transformation (getting rid of
thotie darn states). Proc. 24th IEEE VLSI Test Symp.,
Apr/May 1996.

3:291-307, 1991.

293

	Improving Circuit Testability by Clock Control
	

	Improving Circuit Testability by Clock Control - VLSI, 1996. Proceedings., Sixth Great Lakes Symposium on

