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Abstract 

T h e  testabili ty of a sequential circuit can be i m -  
proved by controlling the  clocks of individual storage 
elements  during testing. W e  propose several clock con- 
trol strategies derived f r o m  a n  analysis of the circuit, i t s  
S-graph structure,  and i ts  funct ion.  Through examples 
we show how the  number  of clocks aflects the circuit’s 
testability. It  i s  shown that if certain flip-flops (FFs) 
are scanned (or  otherwise initialized), the remaining 
FFs can be controlled and initialized t o  a n y  arbitrary 
state using the  clock control. W e  derive a controlla- 
bility graph and use  it t o  assign clocks t o  FFs and t o  
schedule the  clocks t o  set  t he  FFs t o  a n  arbitrary state 
during tes t .  Our analysis of sequential benchmark cir- 
cui ts  indicates tha t  this could be a n  attractive scheme 
for combining partial  scan with clock control. 

1 Introduction 

A number of recent papers have considered the prob- 
lem of applying clock control to groups of flip-flops in 
a sequential circuit to improve the testability of the 
circuit. The basic idea of this approach to  testabil- 
ity involves dividing the flip-flops of the circuit into 
groups, with each group controlled by its own clock. 
During the test mode one or more clocks may be en- 
abled activating only those flip-flops controlled by the 
clock(s). The normal  clock mode in which all partitions 
are active may be realized by simultaneously enabling 
all clocks. The theoretical foundations for this multi- 
ple clock control were initially presented in [l] and [6]. 
Different variations have been suggested in [2], [7], and 

191. A dynamic approach to clock control has been pro- 
posed by Baeg & Rogers [2]. A clock control method for 
delay testing is presented by Fang & Gupta [7]. Rajan, 
et al. [9] control the enable lines of the FFs to  provide 
clock control by identifying states that are difficult to  
reach but are necessary to  detect some faults. 

While the previous research has presented results 
indicating the merits of clock control, little work has 
been reported on the improved testability in relation 
to the number of clocks used and the specific parti- 
tioning of the flip-flops. The purpose of this paper is 
to investigate those issues. 

We show that if certain FFs are controllable (i.e., can 
be set to  either 1 or 0 independent of the states of other 
FFs) then the circuit can be initialized to  an arbitrary 
state, thus providing controllability equivalent to  full- 
scan. If the circuit is not so controllable then it is made 
controllable by a combined partial-scan/clock-control 
scheme for testability improvement. We present an al- 
gorithm that finds a satisfactory clock assignment for 
FFs so that the circuit can be controlled (under clock 
control). In contrast to  [9], our method considers the 
functions of FF inputs to  determine partitions and the 
sequence of steps to  bring each FF to  a specified state. 
This DFT scheme may be an attractive alternative to  
existing DFT schemes for sequential circuits. 

2 Testability using clock control 

We assume that there are n FFs in the circuit which 
are partitioned into m groups, where m 5 n. Each 
group of FFs is assumed to  have its own independent 
clock control. During any clock cycle, it is possible 
to  enable any number of clock signals. For simplicity, 
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in the present work we activate a single group of FFs 
at  any one time and disable all others. Our objective 
is to use the clocks to  control the state of each FF 
independent of the state of other FFs. 

demux 

2.1 Hardware implementation for clock control 

I 
C O  

- 1 
0, 

'- O mux $ 2  

1 
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The clock control model can be implemented in 
hardware by using a clock distribution tree in which 
a demultiplexer splits the clock line into m clocks as 
shown in the schematic in Figure 1. A single test mode 
line determines the circuit mode (0 = normal mode, 
I = test mode) and [logm] select lines implement the 
clock control. In the normal mode all clock lines are en- 
abled. In the test mode a single clock line (determined 
by the select lines) is enabled. 

test 

clock 1 

seiect 

Figure 1. Clock control implementation. 

2.2 Number of clocks vs. testability 

The testability of the circuit improves with the num- 
ber of independent clocks. This is readily demon- 
strated for a mod-2" binary counter such as the mod-8 
binary counter shown in Figure 2. The normal mode is 
shown in state diagram A. Figure 2B shows one possi- 
ble grouping of bits for a two-clock control. The dashed 
edges are the additional transitions that become pos- 
sible when one or the other clock is disabled. With 
the additional transitions, it becomes easier to navi- 
gate from one state to another. For example, the av- 
erage and maximum path lengths for the normal mode 
in Figure 2A are 4.0 and 7, respectively. The same 
measures for the two-clock control in Figure 2B are 2.3 
and 4. Similarly, we find that the average path length 
under 3-clock control, in which each bit is controlled 
by a separate clock, improves to 2.1. 

A. Normal Mode (one clock) B. Two clocks: 
Clkl controls bit 3 
Clk2 controls bits 1,2 

Figure 2. Clock control in binary counter. 

In glnneral, for the mod-2" counter, the normal mode 
average and maximum path lengths are easily derived 
to  be Y-' and 2" - 1, respectively. In other cases, 
the path-lengths can be estimated by noting that with 
m clocks, it is possible to break the counter into m 
subcounters of no more than [n + m] stages. Thus, 
the ma,ximum path length for each subcounter will be 
0(2"/"") and the maximum path length of the whole 
counter will be O(m.  2n/m). 

We will show that in the extreme case of n clocks 
the binary counter can be brought to  any state in O(n) 
time starting from any arbitrary state. The only as- 
sumption we make is that the FF corresponding to the 
least significant bit (LSB) is initially controllable. 

Suppose the starting state is (SI, s2,. . . , sn) and the 
desired state is F = (fl,fi,...,fn) . Note that a bi- 
nary counter stage toggles whenever all lower order 
bits arle 1. Hence, a two-pass process to reach the de- 
sired state from an arbitrary initial state is possible. 
We assume that the stages are numbered 1, . . . , n from 
LSB to MSB (most significant bit) and that stage i is 
controlled by clock 4i. In the first pass, the counter 
is initi(a1ized to  the all-1 state starting from the LSB 
which is controllable by our assumption. Beginning 
at  the unknown state ( ~ 1 , .  . . , 9") = ( X ,  X ,  . . . , X ) ,  
successive steps during the first pass yield the states 

In the second pass, the bits in the final state 
F that differ from the all-1 state are changed se- 
quentially, starting from the MSB. Successive steps 
yieldthestates ( l , l , ~ ~ ~ , l , . f n ) ,  ( l , l , . . . , . fn-l , .fn),  ..., 
( f i  , f 2  . . . , fn-.l, f,). The initializing sequence for the 
counter requires O(2n) = O(n)  steps. Thus, in essence, 
the n-clock case is comparable to  full-scan for this ex- 
ample. 

In generalizing the above scheme, we notice that any 

( l , X , . . . , X ) ,  (1,1;.. ,X), "', ( l , l , . ' . , l ) .  
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standard implementation of the binary counter has the 
S-graph shown in Figure 3. The S-graph shows con- 
nectivity of FFs through combinational paths [4]. It 
has a node for each FF  and there is a directed edge 
from the FFi node to the FFj node if FFj can be 
reached from FFi through a path involving only com- 
binational logic elements. An extension of the S-graph 
can be defined which includes primary inputs as ad- 
ditional nodes. The graph reveals that each stage de- 
pends on itself and all preceding stages. Therefore, if 
the LSB stage is controlled and each subsequent stage 
can be independently controlled, the entire circuit can 
eventually be controlled by a process similar to above. 

Figure 3. The S-graph of a binary counter. 

3 Controllability graph (CG) 

We limit the discussion to D-type flip-flops. A FF 
may be controlled in several ways: 1) from the pri- 
mary inputs (PIS), 2 )  by an independent asynchronous 
set or reset, 3)  by controlling the FF from previously 
controlled FFs [ 5 ] ,  or 4) by scanning the FF. A circuit 
i s  controllable if each of its FFs can be controlled by 
one of the four methods. 

We define an edge-labeled directed generalzzed con- 
trollability graph (GCG) that captures the controllabil- 
ity relation: GCG = (V, E ,  W )  where V = { all PIS, 
all FFs }. The edge (i, j) E E and the condition (edge 
label) cv E W represent the functional dependence of 
node j on node i .  

The condition is determined by analyzing the 
function of the input signal of FF,, f, ( 5 1 , ’  . . , zn) 
where the zz’s include the PIS and the pseudo inputs 
that occur in the formula for FF,. Using the Shannon 
expansion, 

we define fi=y 
where y = 0 , l .  The state of FFj is determined by 

= fj ( ~ 1 , .  . . , xi-1, y, zi+l,. . . , x,) 

If either of the first two cases in the equation for f j  are 
satisfiable then FF;  can be controlled from xi under 
the conditions = fj=’ . fj”=” and c!,~ = p. f;=O, 

respectively, and a corresponding (directed) edge is 
added to the GCG. If neither of the first two cases 
is satisfiable, FFj is not controllable from xi. 

We further restrict the conditions of the first two 
cases to be satisfiable independent of the previous state 
of FFj since we may want to initially control FFj 
from an unknown state. If the condition is not in- 
dependent of the pseudo input of FFj we may not be 
able to satisfy the condition without first controlling 
F F j .  Therefore, E = { (i,j) I i , j  E V such that i can 
control j independent of the previous state of j}, and 
W = { cij I i , j  E V where cij is a condition under 
which i controls j}. 

An edge between two nodes exists in the GCG only if 
there is an edge between the same nodes in the S-graph 
(extended to include PIS) as shown for the ISCAS-89 
benchmark circuit s27 in Figures 4A and 4B (the PIS 
are nodes GO through G3). Note that there may be 
two edges between nodes in the GCG if both c& # 0 
and # 0. As shown on edges b, e ,  e ,  and f in 
Figure 4B, an inversion bubble is used to differentiate 
c ? ) ~  edges from edges. The dependence condition 
for each edge in the GCG has been given as a reference 
to the table in Figure 4C. The dependence conditions 
are given in the sum of products (SOP) form in which 
the current state of FF  Gi is referred to  as a pseudo 
input and denoted SLGi for i = 5,G,7. 

Next we place constraints on the edges in the GCG 
such that FFi is controlled before it can control FFj 
and all variables occurring in at least one product term 
of cij are also controlled. Hereafter, we will refer to this 
constrained CG simply as the CG. 

The CG for s27 in Figure 4D is derived as follows. 
Initially, only PIS GO through G3 are controllable. At 
the second level we include only those edges which rep- 
resent controllability from nodes in the first level, i.e., 
edges a and b to FFs G5 and G7. We can eliminate 
edges c and d because they include the uncontrolled 
pseudo inputs SLG5 and SLG7. At the third level, 
since G5 and G7 can now be controlled, we can include 
edges e and f to GG. As a result, edges c and d are 
considered implicitly. We have included dashed edges 
in the CG to indicate the dependence of G6 on nodes 
GO, G1, and G3. 
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A. S-Graph B. Generalized CG 

a: G I  + G3’ + SILG7 
b: GI  
c: GO & G3 & SILG5’ & SILG7’ 
d: GO &GI ’  & SI-GV & SI-G7’ 
e: GI ’  & G3 & SILG7’ 
f GO & G1’& G3 & SI-G5’ 

C. Dependence Conditions D. Constrained CG 

Figure 4. s27 graphs. 

4 Controllability algorithm 

We propose a general procedure in Figure 5 for ini- 
tializing the circuit to  an arbitrary state using a com- 
bination of clock control and partial scan. The algo- 
rithm has three parts: generation of the controllability 
graph, clock assignment for each of the FFs, and clock 
scheduling to bring the circuit to the desired state. 

To generate the controllability graph, we place all 
FFs and PIS into the initial CG and calculate the de- 
pendence conditions for all edges in the S-graph. As 
described above, we iteratively determine whether a FF 
can be controlled from PIS or other FFs using the con- 
straints of the CG. For each FF  that can be controlled, 
we add the respective edges to the CG and mark the 
FF “controlled”. An edge is not included in the CG 
if its associated dependence condition requires control- 
lability of a node at a higher level. If we are unable 
to extend the edge set for the CG and have uncon- 
trolled FFs remaining, we heuristically select one (or 
more) of the uncontrolled FFs to be scanned. In the 
present context, this leads to combining clock control 
with partial scan in a hybrid DFT scheme. 

4.1 Clock assignment 

The objective in clock assignment is to  partition the 
FFs into a minimum number of groups. To this end, 
we introduce two additional types of constraints: 

Generate CG 
Initialize: CG = { F F s ,  P I S } ;  Calculate dependencies 

While circuit is not controllable { 
For each uncontrolled FFj { 

For each edge (i ,  j )  in S-graph where i is controlled { 
If FFj is controllable from i { 

Insert ( i j ) ;  Mark FFj controlled } 
} ) }  

If no new edges were added to  CG then 
Select scan FF(s) & Mark as controllable 

1 
Clock Assignment 

Initialize: Clock groups CO = { Scan FFs } $  CI = 0 
Clock counter m = 1; Frontier F ,  F’ = 0 
Neighbor set N = { neighbors of PIS & Scan FFs } 

While ail FFs not controlled { 
While clock group C ,  not done { 

Move FFs in N satisfying constraints t o  F ;  F’ = 0 
If F = 0 then clock group C,  is done 
Else { 

Find rnax. length chains satisfying constraints of C,  
(Chains have the form FF,  + F F f  d . . .) 
(FFc is controllable; F F f  E F )  

Move selected FF chain to C,  
Move FFs in F no longer satisfying C,  to F’ 
N = N U { unmarked neighbors of F F ,  }; Mark nodes 

1 1  
Initialize next clock group: m = m + 1, C,  = 0 
Restore FFs in F’ to F 

1 
maxclock = m - 1 

Clock Scheduling 
Set :m = maxclock;  
While m # 0 { 

Set FFs in C ,  to (final) desired state; m‘ = m 
While m‘ # 0 { 

Bring parent FFs to necessary state 
m‘ = m’ - 1 

1 
m = m - 1  

1 

Figure 5. Controllability algorithm. 

Chain assignment: If FFi controls FFj under  the 
condition cij and FFj controls FFk under  the  condition 
c j k  t hen  FFj and FFI ,  can be assigned to  the  same 
chain only if cij and c j k  can be satisfied simultaneously, 
i.e., cij . c k l  # 0. 

Group assignment: If FFi controls FFk and FFj 
controi’s FFe (where i = j is  allowed) then  FFk and 
FFe can be assigned t o  the  same clock group only if 
neither condition Cik n o r  cje is absorbed b y  the other, 
i.e., if” cik ‘ cjl? # 0 and cik:. cje # 0. 

The chain assignment constraint allows grouping 
FFs that can be controlled as a shift-register chain un- 
der one clock. The serial input to  the chain is assumed 
to come from a PI or a previously controlled FF. The 
group assignment constraint allows a group of FFs to 
be controlled from PIS or previously controlled FFs in 
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a non-serial, though not necessarily simultaneous, way. 
By the group assignment constraint, G5 and G7 in 

s27 cannot be assigned the same clock. By the general 
constraints of the CG, G6 cannot be assigned the same 
clock as either G5 or G7. Hence, by these rules, the 
three FFs would be controlled by separate clocks. 

In some cases the constraints for group assignment 
can be relaxed to allow FFk and FFj to be assigned 
to the same clock group if Cik # c j j .  As an example, 
in s27, FFs G5 and G7 can both be assigned to clock 
1 giving rise to the following problem. When G1 is set 
to 1 allowing G2 to control G7 (condition b ) ,  condition 
a also becomes true, enabling G5 to be controlled from 
GO regardless of whether G5 is already in its desired 
state. One solution is to first control G7 by setting 
G l = l  allowing the complement of G2 to be passed to 
G7, and then setting (Gl ,G3) = (0,O) enabling G5 to 
be controlled from GO without affecting the state of 
G7. Although G5 and G7 can be controlled simulta- 
neously under the correct conditions in the s27 circuit, 
the process above allows each of the FFs to be con- 
trolled independently. After G5 and G7 are assigned 
to clock 1, we would assign G6 to a second clock. 

Consider the procedure to assign FFs to clocks as 
shown in Figure 5. Beginning with the FFs that are 
controllable from PIS and scan FFs, we identify the 
longest chain of FFs that can be grouped according to 
the chain assignment constraint and insert the chain 
into the current clock group, C,. We continue iden- 
tifying the longest chains that can be assigned to C, 
until no additional nodes can be added to the clock 
group. Note ,that in adding additional chains to C,, 
the nodes of the chain must not only satisfy the chain 
assignment cqiteria, but also must satisfy the group as- 
signment criteria with respect to all nodes in C,. 

An alternative to adding maximal length chains to 
clock groups is to first augment C, with individual 
FFs satisfying the group assignment constraint. Subse- 
quently, shift-register chains are constructed from FFs 
that have been assigned to C, if they satisfy the chain 
assignment constraint. In some cases, the trade-off of 
maximal length chains for greater breadth of individual 
FFs may allow fewer clocks and/or shorter test lengths. 

When no additional FFs can be moved to C, we 
‘close’ the current clock group and increment m. We 
continue until all FFs have been assigned to a clock. 

4.2 Clock scheduling 

The clock assignment procedure generates at most 
m + 1 clock groups; m due to clock control and one 
possible scan clock. We can use the clock assignments 
to derive a suitable clock scheduling and to determine 

the worst case initialization sequence for the clock pa,r- 
titioning. The key to the scheduling strategy is that 
no FF depends upon a FF in a higher numbered clock 
group. A FF controlled by clock $2 can only be af- 
fected by FFs in clock group 41 (or by previous FFs in 
the same chain in 42) and will not be affected by FFs 
in clock groups higher than 42. 

To determine a clock scheduling for an arbitrary 
state we only need to work backward with respect to 
the clock groups by initially setting the desired state 
of the FFs in C,. We continue working backward to- 
wards the FFs in C1, obtaining a set of test vectors 
that must be applied to bring the FFs in C, to  their 
desired state. Next, we set the FFs in C,-l to their de- 
sired state and again work backward resulting in a set 
of test vectors that will bring the FFs in C,-l to their 
desired state. We continue the process until the FFs 
in Cl have been set to their desired state. Reversing 
the order of the clocks that were enabled within each 
pass will give a correct clock schedule. In general, as 
we work backward, we may need to set any other FFs 
back to their original state if they have been changed. 

Using the clock assignment for the s27 exam- 
ple above, assume the current state of s27 is 
(G5,G6,G7) = ( l , O , O )  and suppose we would like to 
set s27 to a different state such as (l,l,l). Working 
backward, G6 must change state so we must justify its 
desired value . To set G6 = 1 we must activate $2 

with G5 = 0 and (Gl ,  G3, G7) = (0, 1 , O ) .  The current 
state of G7 satisfies the condition of edge e ,  but we 
need to control G5 to 0 before controlling G6. Thus, 
we activate 41 to set G5 = 0. Summarizing this pass, 
to control G6 to 1 we enable clocks and apply input 
vectors according to the following sequence: 

(GO, G1, G2, G3) (G5, G6, G7) 
(I, 0,O) (current state) 

$1 : (O,O,X,O) ( O , O ,  0) 
$2 ( X ,  0, x, 1) (O,1,0) 

We must still control G5 and 6 7  to their desired 
states. In this case we can simultaneously control 
G5 and G7 by activating $1 and applying the vec- 
tor (GO, G1, G2, G3) = ( 1 , 1 , O ,  X )  to reach our desired 
state (G5, G6, G7) = (1,1,1). 

4.3 Examples 

In this section, we examine four small circuits from 
the ISCAS-89 benchmark suite; s27, s208, s298, and 
s382. Table 1 summarizes the results of the circuits un- 
der clock control. All results shown use heuristics that 
primarily minimize the number of clocks used. While 
none of the circuits shown in the table require scan FFs 
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to  control the circuit, we could choose to  select one or 
more scan FFs to reduce the number of clocks as well 
as the test length. 

The maximum test length shown in the table is the 
worst case test length if all FFs in previous clocks must 
be changed after bringing the FFs in a higher clock 
group to  their desired state. 

le 1. Clock control results. 

Circuit 

s208 
s29S 
s R 8 3  

Clock Control 
# Scan # Max. Test 

FFs Clocks Length 
0 1  2 1  3 

5 Test generation strategies 

Test generation algorithms for non-scan and partial- 
scan circuits require a sequential test generator while 
those for full-scan require only a combinational test 
generator. The DFT scheme proposed in this paper 
shares features from both partial and full scan. As in 
partial scan, the circuit structure and its S-graph are 
analyzed to determine the FFs to be controlled. Kow- 
ever, the clock control provides an additional dimension 
of controllability which gives the scheme capabilities re- 
sembling full scan. In particular, as in full scan, it is 
possible to  drive the circuit to  any desired state using 
the scan and clock control. The primary differences 
from full scan are that the state initialization sequence 
depends on the circuit structure and a complete state 
observability is not guaranteed. 

Our strategy for test generation is to  assume, as 
with full-scan, that the circuit’s pseudo-inputs are com- 
pletely controllable and derive a test for a fault using 
a combinational test generator. If the fault is detected 
at a primary output, then we only need to  justify the 
state on the pseudo inputs. Following the strategy used 
in another sequential test generator [8], we assume a 
fault-free state justification. Therefore, we can use the 
procedure described earlier to  bring the circuit to  the 
desired state from an unknown (or known) initial state. 
Hence, no explicit time-frame expansion is necessary. 
If the fault is detectable only at a pseudo output, we 
bring around the fault effects to  the pseudo inputs in 
subsequent time frames and use a combinational test 
generator to propagate the effect to  a primary output. 
Improved results are possible if the test structure is 
made fault tolerant [3] or a conventional sequential test 
generator is used. 

6 Conclusion 

We have presented the main ideas from a work in 
progress. Our design for testability scheme combines 
the best features of scan and clock control. We have 
shown the feasibility of the approach through several 
examples. 

One implementation scheme for clock control ap- 
pears in the recent paper by Baeg and Rogers [2] and 
indicates that the hardware cost would be reasonable. 
These authors group together FFs in strongly con- 
nected components in the S-graph. We have proposed 
a different implementation model in this paper which 
has a smaller area cost but restricts the clock-control 
to  the activation of a single clock rather than allowing 
simultaneous activation of a subset of test clocks. Our 
criterion for grouping FFs is very different from that 
of Baeg, and Rogers. 

Our future research includes extending the control- 
lability scheme to achieve full observability. 

References 

V. D. Agrawal, S. C. Seth, and J. S. Deogun. Design for 
testability and test generation with two clocks. Proc. 
4th Int’l Symp. on VLSI Design, pages 112-117, Jan- 
uary 1991. 
S. Baeg and W. A. Rogers. Hybrid design for testability 
combining scan and clock line control and method for 
test generation. Proc. Int’l. Test Conf., pages 340-349, 
1994. 
S.  7’. Chakradhar, S.  Kanjilal, and V. D. Agrawal. Fi- 
nite state machine synthesis with fault tolerant test 
function. Jour. Electronic Testing: Theory and Applic., 
4:57-69, February 1993. 
K. T. Cheng and V. D. Agrawal. A partial scan method 
for circuits with feedbacks. IEEE Trans. on Computers, 
C-3!) (4) : 544-548 April 1990. 
K. T. Cheng and V. D. Agrawal. State assignment for 
testable design. Int ’1. Jour. Computer Aided Design, 

K. I,. Einspahr, S. C. Seth, and V. D. Agrawal. Clock 
part.itioning for testability. Proc. 3rd IEEE Great Lakes 
Symp. on VLSI Design, pages 42-46, March 1993. 
W.-C. Fang and S. K. Gupta. Clock grouping: A low 
cost DFT methodology for delay testing. Proc. Design 
Automation Conf., pages 94-99, 1994. 
A. Ghosh, S. Devadas, and A. R. Newton. Test genera- 
tion and verification for highly sequential circuits. IEEE 
Trans. Computer Aided Design, 10:652-667, May 1991. 
K. 13. Rajan, D. E. Long, and M. Abramovici. Increas- 
ing testability by clock transformation (getting rid of 
thotie darn states). Proc. 24th IEEE VLSI Test Symp., 
Apr/May 1996. 

3:291-307, 1991. 

293 


	Improving Circuit Testability by Clock Control
	

	Improving Circuit Testability by Clock Control - VLSI, 1996. Proceedings., Sixth Great Lakes Symposium on

