
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department of

4-1978

On Combinational Networks with Restricted Fan-
Out
K. L. Kodandapani
University of Regina

Sharad C. Seth
University of Nebraska - Lincoln, seth@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csearticles

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Kodandapani, K. L. and Seth, Sharad C., "On Combinational Networks with Restricted Fan-Out" (1978). CSE Journal Articles. 42.
http://digitalcommons.unl.edu/csearticles/42

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles/42?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-27, NO. 4, APRIL 1978

On Combinational Networks with

Restricted Fan-Out
K. L. KODANDAPANI AND SHARAD C. SETH, MEMBER, IEEE

Abstract-Fan-out-free networks of AND, OR, NOT, EXOR, and
MAJORITY gates are considered. Boolean functions for which such
networks exist are defined to be fan-out free. The paper solves the
following problems regarding the fan-out-free networks and
functions.

1) Characterization of the class of fan-out-free functions: The
characterization given is constructive in the sense that if a given
function is fan-out free one obtains a fan-out-free network to realize
it.

2) Counting the class of fan-out-free functions: After establishing
a correspondence between a fan-out-free function and a normalized
network realizing it, a series of formulas are developed to count
distinct normal networks for any subset of the five gates mentioned
above.

3) Fault Diagnosis: Methods are developed to detect multiple
faults and to locate single faults in arbitrary fan-out-free networks.

Index Terms-Characterization of fan-out-free networks, com-
binational networks, counting offan-out-free, fan-out-free networks,
functional decomposition, localized fan outs, multiple fault detec-
tion, single fault location.

I. INTRODUCTION
L OGICAL networks with limited or no fan-out simplify

testing and fault diagnosis. In this paper we consider
limiting the fan out by localizing it to the modules of a
network. In the most general case the modules may realize
an arbitrary (n - 1) variable function in an n input network.
Functions realizable by such networks can be easily shown
to correspond to those which have simple disjunctive dec-
ompositions. In practice the class of modules available is
small and usually fixed, therefore, we restrict discussion to
fixed sets of modules, and in particular, to modules which
are commonly available. In the context ofa given module set
we will call a functionfan-outfree if it can be realized by a
fan-out-free interconnection of modules. We answer the
following questions about fan-out-free functions and
networks:

1) How do we characterize and synthesize fan-out-free
functions of AND, OR, NOT, EXOR (EXCLUSIVE-OR function),
and MAJ (3 input majority function) modules? (See Section
II.)

2) How many fan-out-free functions of n variables are
there for n > 1? (See Section III.)

3) How do we detect and locate faults in this generalized
class of fan-out-free networks? (See Section IV.)
Even though the results pertain to the fan-out-free func-

Manuscript received May 28, 1976; revised January 11, 1977.
K. L. Kodandapani was with the Department of Computer Science,

University of Regina, Regina, Sask., Canada. He is now with the Depart-
ment ofComputer Science, Wichita State University, Wichita, KS 67208.

S. C. Seth is with the Department of Computer Science, University of
Nebraska, Lincoln, NE 68588.

tions and networks of this specific set of modules, the
methodology is often applicable to any fixed set ofmodules.
The AND, OR, and EXOR modules we consider may be
-extended gates, that is, they may contain more than two
inputs. Also, we note, that since the NAND's and NOR'S can be
simulated by fan-out-free networks of the modules con-
sidered, we do not lose anything by excluding these from the
module set as long as the aim is not to synthesize aminimum
network in some well-defined sense.
The above questions have been answered for more res-

tricted sets of modules in the literature. Hayes [8], [9]
answers questions 1) and 2) for AND, OR, and NOT, while
Chakrabarti and Kolp [6] answer the same questions for
arbitrary two input modules which is equivalent to consider-
ing AND, OR, NOT, and EXOR. Butler [5] gives counting
formulas for functions of arbitrary two input modules. The
problem offault diagnosis ofEXOR networks is considered by
Seth and Kodandapani [11].

II. CHARACTERIZATION AND SYNTHESIS ALGORITHM

A. Background and Notation

Letfbe a two-valued Boolean function of n variables x1,
x2, * * xn. The Boolean difference' off with respect to a
variable xi is denoted by df/dxi and is given by

dxf =f (xi = O) ®f (Xi = 1),

where e) is the EXCLUSIVE-OR operation. In general,
d (d(df\ .. df (1dx(d * *(dx) *) is denoted by d .

It can be verified that

df df
dx1x2 ... xj dxi,Xi2 ... Xij

where (iI, i2, ..., ij) is an arbitrary permutation of (1, 2, ,
j). Thus, given a set X = {xl, x2, , x,}, we can unambi-
guously represent the Boolean difference (1) by df/dX.
We list below some properties of Boolean difference

which will be used in the characterization of fan-out-free
networks:

Property 1: If df/dxi = df/dxj, then df/dxi xj = O.
Property 2: Let f be decomposable as

f(X) = g(h(Y), X- Y) (2)

1 Readers unfamiliar with Boolean difference are referred to Akers [1]
and Sellers et al. [10] for further details.

0018-9340/78/0400-0309$00.75 (© 1978 IEEE

309

doi: 10.1109/TC.1978.1675103

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 4, APRIL 1978

where Y is a subset of X. Furthermore, let y be a member of
Y. Then

df dg dh
dy dh dy'

where the " represents the AND operation.
Property 3: Letfbe expressed in the Reed-Muller.canoni-

cal (RMC) form involving only uncomplemented variables
as follows:

2n- 1

f= iaix=IOXi2 ... xin

i =o

a single variable from this set are identical. For example, the
coefficients of the terms X1 X2, X1 X3, * * *, X1 X2 ... Xm are
zero while the coefficients of XlXm+l, X2Xm+l, ", and
xm xm +1 will be identical. Hence, the function h = x G®
X2 ® -.0- x. can be factored out ofvarious terms in (3) with
the consequent decomposition

f= g(h(xl, m xm), x.+ *-- Xn,)*

Hayes [8] has shown that a necessary and sufficient
condition forfto have a decomposition of the form (2) with

(3)

where the summation operation is EXCLUSIVE-OR, ij's are
either 0 or 1, such that i is the decimal equivalent of the
binary number in" 2 il, and xij = 1 ifij = 0 and xii = xiif
i = 1. Then

df-0)aidHX12 in (xl x2x OXn O)

Property 4: Letf be the linear function

f= aOxD 9Ox2 i) ..xn,
Then

df_ df
dxi dxj'

where ao E {O, 1}.

for i andj E {1, 2, , n}.

B. Characterization
We will first investigate the conditions under whichfhas a

simple decomposition of form (2) with the further stipula-
tion that h is a nondegenerate function of Y. If X = {x1,
x2 , x}j, we will assume, without any loss of generality,
that Y = {x1, x2, ., Xm} where m < n.

Theorem 1: A functionf(x1, X2, ... X,) can be expressed
as g(h(x , x2, ,x.),xm+1, , x,), where h= x1®x2®3

Oxm, iff

df = dfj for i and j E t1, 2, m}.

Proof (Only If Part): Assume f has the indicated
decomposition. By Property 2:

df df dh
dxi dh dx.

and

df df dh
dxj dh dx>

But by Property 4 dh/dxi = dh/dxj, hence df/dxi = df/dxj.
If Part: Assume df/dxi = df/dxj for i and jE {1, 2, ,

m}. Then from Property 1 it follows that df/dZ = 0 for any
subset Z of {x1, x2, , Xm} containing two or more var-
iables. Furthermore, if W is any subset of {xm 1, ... , xnj we
must have df/dxi W = df/dxj W. Thus, it follows from
Property 3 that the coefficients of all the terms in the RMC
form (3) off involving two or more variables from {x1, ,
xm} are zero and the coefficients of two terms each involving

h(x, x2,X) = x m or x E {Xi, Xi}

is that f(xi = ai) =f(xj = aj) for all i and j E {1, 2, ,
where ai, aj E {0, 1}. The following lemma shows that this
condition is totally disjoint from that stated in Theorem 1.
Lemma 1: Letf be nonvacuous in variables xi and x; and

let f(xi = ai) =f(xj = aj). Then df/dxi $ df/dxj.
Proof: Without loss of generality assume ai= ac = 0.

Then according to Hayes [8]f has a simple decomposition:

f(X) = g(h(xi, xj), X -{xi, xj)),
where

h(xi, xj) = xi xj.
Now by Property 2

df dg dh dg
dxi dh dxi dh

and

df dg dh dg
dxj dh dx =dh

Sincef is nonvacuous in xi and xj it follows that df/dxi and
df/dxj cannot be identically zero and therefore dg/dh is not
identically equal to 0. Thus

dg dg
dh XidhX I

It is now possible to extend Hayes' concept of adjacency
to provide an algorithmic procedure for determining fan-
out-free functions of AND, OR, NOT, and EXCLUSIVE-OR gates.

Definition 1: Two variables xi and xj of a function
f (xl, ... xn) are adjacent if either ofthe following conditions
are satisfied.

Condition 1: f (xi = ai) =f (xj = aj) for ai and aj E {0, 1}.
Condition 2: df/dxi = df/dxj.
It is easy to verify that adjacency is an equivalence relation

and hence, partitions the set of variables into equivalence
classes.

Theorem 2: Let Y be an equivalent class under the
adjacency relation containing two variables off Then

f (X) = g(h(Y), X -Y),
where h is either an AND, OR, or EXCLUSIVE-OR function ofthe
variables in Y. Furthermore, h is an AND or an OR function if

310

KODANDAPANI AND SETH: COMBINATIONAL NETWORKS WITH RESTRICTED FAN-OUT

the variables in Y are adjacent to each other because of
Condition 1; otherwise h is an EXCLUSIVE-OR function.

Proof: By Lemma 1 the variables in Ycould be adjacent
to each other by satisfying either Conditions 1 or 2 but not
both. If Condition 1 is satisfied, then, as shown in [8],fhas
the desired decomposition with h as either an AND or an OR
function (possibly of some complemented variables). If
Condition 2 is satisfied then h is an EXCLUSIVE-OR function
from Theorem 1. I

Corollary 1: Let Y1, , Yk be the nonsingleton equiv-
alence classes of the variables of f under the adjacency
relation. Then

f(X) = g(h(Y1), ..., hk(Yk), X - (Y1 u * u KA
where hi is an AND or an OR function if variables in Yi satisfy
Condition 1 of Definition 1; hi is EXCLUSIVE-OR otherwise.

Corollary 2: f(x I, - * , x") for n > 1 is not a fan-out-free
function of AND, OR, NOT, and EXCLUSIVE-OR if each equiv-
alence class under the adjacency relation contains a single
variable.
Theorem 2 and its corollaries can be used to develop an

iterative algorithm to synthesize a fan-out-free network for a
given function whenever it exists. The following example
illustrates how this can be done.
Example 1: Let

f(xl, x2, X3, X4, X5) = (5X1X2X3 + XI.C2X3 + X4)25

+ (X354 + X1X2X4 + X1X2x4)x5.
The equivalence classes are {x1, x2}, {X }, {x4}, and {x5}

where df/dx1 = df/dx2 = X3 X4. Thus,fcan be expressed as

f=g(x1 x2,X3, x4, x5) =g(h,x3,x45 x5).
Now, g can be determined by the use of the decomposition
chart, see Curtis [7], as hx3 5X + X4X55 + hX4x5 + 5x354x5.
The equivalence classes of g are {h, x3}, {x4}, and {x r} where
g(h = 0)= g(X3 = 0). Thus,

g = k(hx3, X4, x5) k(l, X4, X)

Furthermore,

k(l, X4, X5) = (1 + x4)55 + X4X5

The equivalence classes of k are {1, x4} and {x5} where
k(l= 1)=k(X4=1). Thus,

k = u(l + X4, X5) U(V, X5) = Vi55 + VX5.

The equivalence class of u are {v, x5} where
du/dv = du/dx5.

Thus, u = ao (3 v D x5 where ao is determined to be 0
since u(v = 0, x5 = 0) = 0. The resulting fan-out-free
network forf is shown in Fig. 1.
Example 2: Consider the majority function of three

variables

f(Xl, X2, X3) = X1X2 + X1X3 + X2X3.
It can be easily verified that the equivalence classes off are
{x1}, {x2}, and {X3}* Thus, by Corollary 2 of Theorem 2,f is
not a fan-out-free function of AND, OR, NOT, and EXOR.

x1
X2

x3

x4

x5 f

Fig. 1. Decomposed network for the functionfin Example 1.

Table I shows which genera ofthree variable functions are
fan-out-free in AND, OR, NOT, and EXOR. Note that the genus
numbers marked with a "*" are not fan-out-free without the
EXOR function.

It may be observed that all two-variable functions are
fan-out free in AND, OR, NOT, and EXOR. Furthermore, a
multiinput AND, OR, or EXOR module obviously has a
fan-out-free realization in terms ofthe two-input gates ofthe
same kind. Thus, the class offunctions being considered here
coincides with the fan-out-free functions of two-input
flexible cells considered by Chakrabarti and Kolp [6], Butler
[5], and others. However, we believe that our characteriza-
tion of these functions in terms of the adjacency relation
leads to a simpler checking algorithm than available
heretofore.
The genera 5, 7, 8, 12, and 13 in Table I are not fan-out free

in AND, OR, NOT, and EXOR. We could add one or more of
these to the module set and try to answer the three questions
in the Introduction for the new module set. From a practical
standpoint, however, the majority gate function correspond-
ing to genus number 12 is the only other module commonly
available by itself or as part of a full adder. Thus, in the
following, we confine ourselves to determining the precise
conditions under which the h function in the decomposition
of a function f specified by (2) is the majority function.

Theorem 3: Let Y = (x*', xJ, x4) where x* = x or x- for
d e {i, j, k}. Then the following conditions are necessary and
sufficient for f(X) to be decomposable as g(h(Y), X - Y)
where h(Y) = MAJ(Y).

Condition i):

df df df
dx1iXj dxjxk dxiXk'

Condition ii):

dx (xj = Xk =j 0) = a,

df (xi = Xk =0) = ajdxj
df (xi = xj = 0) = ak,
dXk

such that the following condition is true.

311

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-27, NO. 4, APRIL 1978

TABLE I

Genus Number Representative Function

1 0 Yes
2 x1x2x3 Yes
3 x1x2 Yes
4* xi X2 X3 + XI X2X3 Yes
5 x1x2x3 +x1 2' No
6 XlX2 +Xlx3 Yes
7 x x2 + xl x2X3 No
8 f1x2x3 + x152x3 +xlx2y3 No
9 xi Yes
10* XI X2 Yes
11* xi1 x2 (G x3 Yes
12 x1x2 + x1x3 +x2x3 No
13 xit3 + x2x3 No
14 xl 52 X3 + xi X2 + Xl X3 Yes

Condition C): Either all three of ai, aj, and ak are 0, or two
of ai, aj, and ak are equal and the third is 0.

Proof of Sufficiency: Assume f(x1, , xn)= g(h(Y),
X- Y).

df dg dh
dxi dh dxi
df dg dh

dxixj dh dxix;
Similarly,

df dg dh
dxiXk dh dXiXk
df dg dh

dxjXk dh dxjxk
Now h(Y) = MAJ(Y).

Case 1: Y= (xi, xj, xk) or (5it, x-j, Xk).
Clearly

df df df dg
dxixj dxixk dxjxk dhl

Now

dfi dy dh
dxi dhi (xj 3 Xks) = dli (t- S Xk)

df dy dgy
dxj dh (Xi hxk)= (ti 4)

df dg(5 dg(5)
d =dh(Xi E) xj) = h(Xi (i3x0dXk, dh' dh'

ai= aj=ak=°

Case 2: Y = (x*, x7, x) where any one or two of xi, xj,
Xk are complemented. Without loss of generality, assume

Y = (iCi, xj, xk) or (xi, xj, x5).

dxf dl (xj S Xk) = dh (tS@ X-k)
df dg dg
dxj dli dhS,)~(, t,

df dg (x- (xj) dg (xi E)
dXk dh(x Jdh(x®i

Then ai = O, aj = ak =df/dx xj =dg/dh.
Proof of Necessity: Assume Conditions i) and ii) hold.

Case 1:

ai = aj= ak=O. (4)

Consider the RMC expansion off (x) about the variables xi,
xj, and Xk.

f(x)= boGblXiSb2Xji(Gb3XiXi®b4Xk
S b5xiXkID b6XjXk) b7XiXjXk, (5)

where

b= df
=

k XiXjXk=000O ,

r3 r2 r1

is the binary expansion of r. In view of Condition i),
b3= b5 = b6 and b7 = 0. In view of (4), b, = b2= b4= 0.
Hence, (5) becomes

f (x) = bo (S b3(xiXj 9 XiXk (xixk)
= (bo s b3) S b3(tiXK S X5X4 S XJXk).

Since bo and b3 are independent of xi, Xj, xk and

XiXXi XiXk XXiXk = MAJ(Xi, xi, xk)

XSX@XjX4 S XiXk = MAJ(X, Xj Xk),

we have f (x) = g(h(Y), X - Y).
Case 2: We consider only the case ai = 0, aj= ak=

df/dxixj. Inthiscase,in(5),b1 = 0,b3= b5= b6= b2= b4,
b7 = 0. Hence, (5) can be written as

f (x) = bo S b3(5iXj S XiXk S XjXk)
= (bo S b3)D5b3(Xi 5 xixki xixk).

Hence, f(x) = g(MAJ(Y), X - Y) where

Y = (xi" xj, Xk) or (xi, 5tj, Xk). I
Now we give an algorithm to check whether a function

has a decomposition of type given by (2), when h(Y) is a
majority function of three variables.

Algorithm
Step 1: Compute

df df df
dx1x2 ' dx2X3 dxnd -1Xn

If for some i, j, k,

df df
dxixj dxjxk

then compute df/dxixXk and check if

df df
dxiXk dxixj

If so, go to Step 2. Otherwise, f is not decomposable.
Step 2: Compute

312

KODANDAPANI AND SETH: COMBINATIONAL NETWORKS WITH RESTRICTED FAN-OUT

df
dx (Xi = Xk = 0),

and

df
(xi = Xi = 0),

dXk,

and let them be represented by a i, aj, and ak,, respectively.

Then, if Condition C) ofTheorem 3 is satisfiedfis decompo-
sable, otherwise not.
Example 3: Consider the representative function of genus

number 5 in Table I

f(Xl, X2, X3)= XlX2X3 + X1X2X3

X1X X2 X3 x,x2 x,x3 x2x3

df = x2 EX3
dx1

df = lX1El DX3
dX2

df = lx1Ex2

dx3

df df df
dx1x2 dxlx3 dX22X3

which satisfies Condition i) of Theorem 3.
However, a, = a2 = a3 = 1, which violates Condition ii).

Hence, the function is not decomposable in the form of a

majority function.
Example 4: Letf= x1 X2 + X2 X3 + X1 X3 + X4. Then

df
dx = (X2 X3)x4

df df
= = X4-

dxIX2 dX1X3

Hence, we check for df/dx2 X3. Now

df
dx (X1(dX3(3035)4

df
dX2X3 = X4.

Thus Condition i) of Theorem 3 is satisfied. To check
Condition ii) we compute

df (X2 =X3 = 0) = 0

df

dx (xl = X3 = 0)= X4
df2

dx3 (XI = X2 = 0) = (XI EDX2 1)541X1=X2=00 =54-

Therefore Condition ii) is also satisfied and we must have

f= g(M(X4l, X2, X3), X4).

The polarities of x1, x2, X3 are determined by looking at

which case in the proof of Theorem 3 applies; in this case
either 5-i, X2, X3 or x1, 5-2, X3 are acceptable polarities. The
first choice leads to the decomposition

f= M(5f1, X2, X3) + X4

as determined by the procedure given in Hayes [8].

III. COUNTING FAN-OUT-FREE FUNCTIONS

The fan-out-free networks of AND, OR, NOT, EXOR, and MAJ
gates obtained by the method described in the last section
can all be "normalized" so that NOT gates, if any, occur only
at the input. This is accomplished by successively pushing
the NOT gates at the output of other gates to their inputs
using the following:

1) DeMorgan's rules for AND or OR gates;
2) the rule i(x1, x2, ..., x" = l(it1, x2, ... , xj for a linear

function 1, and
3) the rule M(x1, x2, X3) = M(5?1, 5-2, 3)for the majority

function M.
One way of counting fan-out-free functions is to count the

number of normalized networks corresponding to distinct
functions. This will be the approach followed here. First, we
consider how the problem can be broken down into simpler
counting problems in successive steps.

First, the class of n variable fan-out-free functions, F(n),
may be broken down into degenerate (those depending on
fewer than n variables) and nondegenerate functions so that

F(n) = FD(n) + FND(n), (6)

where the degenerate functions may be counted by the
relation:

FD(n) = E FND(M)
O<m<n-1 m

(7)

It suffices therefore to count only nondegenerate functions.
Second, the class of nondegenerate functions may itselfbe

broken down into mutually disjoint subclasses, identified
according to the module type used at the output in the
normal realization. We will use the function symbols A, 0, E,
M, and N to denote the number of functions with respec-

tively AND, OR, EXOR, MAJ, and NOT gates as the output gates
in the normal realizations. Furthermore, let G = {A, 0, E, M,
N}, then

(8)FND(n) = E X(n).
x E G

Third, for an output gate X with p inputs wemay consider
a normal realization to have the form of Fig. 2 where Bi's
represent normal fan-out-free networks of ni variables. The
partition of the input variables in the figure is of the type
T = {n1, , np}. Each distinct partition type gives distinct
classes ofnormal realizations. Let X(n, T) be the number ofn
variable functions with output gate X and partition type T.
Then

X(n)= E X(n, T),
T

for X E G. (9)

Finally, we develop recursive relations to compute X(n,
T). We will find an alternate way of representing partition

df
dx (Xj = Xk = 0),

313

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-27, NO. 4, APRIL 1978

(n1 inputs)

(n2 inputs) <

(n inputs) =+

Fig. 2. The form of a fan-out-free network considered in deriving count-
ing formulas. X could be any one of the five gates considered.

types more convenient for our purposes. In this, the repeti-
tion frequencies of each integer occurring in the partition
type are used as superscripts of that integer. For example,
the partition type {1, 1, 1, 2, 4} of 9 will be represented as
13214'. The number of partitions ofn inputs (or any objects)
of the type T= mil m k is given by (see Berge [2]):

* ~~~(ml!)I .. (Mk !)111 ! 0 (0

The output gate of Bi's in Fig. 2 may be restricted to be other
than X in a standard realization if X is an AND, OR, or an
EXOR gate. This is because otherwise such an output gate will
be subsumed in an extended X. Furthermore, ifX is an EXOR
gate, only 2 out of 2P distinct assignments of functions (ft,
f2,* ,fp), where each f is eitherfi orLi, are distinct. Thus

we get the following recursive equations:

X(n, T) = r(T) I Y'(n) YP(n),
Yi e G-{X}

for X E {A, 0} (11)

E(n, T) = rP-) E Y1(n1) ... YP(np) (12)
2P-1 YieG-{E}

M(n, T) = r(T) E Y1(n1) .. YP(n,).
yi E G

(13)

In special cases X(n, T) may be calculated directly. We leave
it to the reader to verify that

if X= N
otherwise

x E tA, 0, M}
X = E

rom duality)

(14)

for n > 1 (15)

(16)

I > 1 (NOT is never an

output gate in normal
realizations for n > 1)

and from (4) and (11)

N(n)= 0, for n > 1

M(n,T)=0, if p 3.

(17)

(18)

(19)

Equations (6)-(19) provide an algorithmic way to count

fan-out-free functions. Some sample calculations are shown
in the following example.
Example 5: Consider fan-out-free functions of three var-

iables. There are two partition types of 3: T= i and
T2= 12. From (15)

A(3, T1)= 0(3, T1)= M(3, T1)= 8

and E(3, T1)=2.
From (5)

3!
r(T2)=12 =3

1! 2!

Therefore using (11) and (12)

A(3, T2) = 0(3, T2)

= 3(N(l)(N(2) + 0(2) + E(2) + M(2))

+ 0(1)(N(2) + 0(2) + E(2) + M(2))

+ E(1)(N(2) + 0(2) + E(2) + M(2))
+ M(1)(N(2) + 0(2) + E(2) + M(2))).

But from (14) all but the first term within the outermost
brackets are 0. Also M(2) = 0 from (19) and (9) and
N(2) = 0 from (18). Thus,

A(3, T2) = 3N(l)(0(2) + E(2)).

But

0(2) = 0(2, 12) = 4 and E(2) = E(2, 12) = 2

A(3, T2)= 3 2(4 + 2)= 36.

Similarly,

E(3, T2) = 3N(1)(0(2) + A(2))

= 3(4 + 4) = 24.

Now using (9)

X(3)= X(3, T1) + X(3, T2), for X E G.

Therefore

0(3)= A(3)= 8 + 36= 44,

M(3) = 8 + 0 = 8,
E(3)= 2 + 24= 26, and

N(3) =0.

Therefore, from (8)

FND(3) = A(3) + 0(3) + M(3) + E(3) + N(3)
=44+44+8+26+0= 122

and from (7)

FD(3) = (FN(0) +() FND(1) + (2) FND(2)

= 2 + 3 N(1) + 3(A(2) + 0(2) + E(2))
= 2 + 3 2 + 3 10 = 38.

x(1, 11)=X(1)= 20
|2n if AKX(n, In) =

A(n) = O(n) (fi

N(n, T) = 0, for n

314

KODANDAPANI AND SETH: COMBINATIONAL NETWORKS WITH RESTRICTED FAN-OUT

TABLE II
FAN-OUT-FREE FUNCTIONS OF DIFFERENT MODULE SETS

n AON AOEN AOEMN AOMN

I D(n) FND(n) F(n) PD(n) FND(n) F(n) FD(n) FND(n) F(n) FD(n) FND(n) F(n)

1 2 2 4 2 2 4 2 2 4 2 2 44

2 6 8 14 6 10 16 6 10 16 6 8 14

3 32 64 96 38 114 152 38 122 160 32 72 104

4 314 832 1146 526 2154 2680 558 2554 3112 346 1152 1498

5 4892 15104 19996 12022 56946 68968 14102 75386 89488 6572 26304 32876

6 104518 352256 456774 376430 1935210 2311640 493230 2865370 3358600 176678 773376 950054

7 2814520 10037248 12851768 14821942 80371122 95193064 21734582 133191386 154925968 5511738 27792384 33304122

Therefore from (6)

F(3) = FD(3) + FND(3)
= 38 + 122 = 160.

Table II shows the results of a computer program which
implemented the method in this section to count fan-out-
free functions of up to 7 variables for 4 different module sets.
The module sets {AND, OR, NOT} and {AND, OR, EXOR, NOT}
are the same as considered in [8] and [5], respectively. These
are included here for reference only. The third module set
consists of {AND, OR, EXOR, MAJ, NQT} for which the number
of fan-out-free functions F(n) grows faster than the first two
module set; for n = 7 this number is more than ten times
larger than for the first module set and almost twice the size
for the second module set. The fourth module set consisting
of {AND, OR, MAJ, NOT} iS of interest because the fan-out-free
functions of this set are a larger subset of unate functions
than the fan-out-free functions of {AND, OR, NOT}. Again, the
function grows much more rapidly than for the smaller
module set and is about 21 times greater for n = 7.

IV. DIAGNOSIS OF FAULTS IN FAN-OUT-FREE
COMBINATIONAL NETWORKS

Fault detection in fan-out-free combinational networks
has been considered by a number of authors. In the litera-
ture, the gates in the network are usually restricted to AND,
OR, NOT, NAND, and NOR types. In [11] multiple fault
detection in linear tree networks consisting of two-input
EXOR modules has been considered. The fault model in [11]
assumes that a fault in an EXOR gate can change the EXOR
function to any other function of its two inputs other than
the equivalence function. In this section, we consider mul-
tiple fault detection and single fault location in fan-out-free
networks consisting of the NOT gate, the two-input AND, OR,
and EXOR gates, and the three-input MAJ gate. The results of
this section can be readily generalized to networks in which
the AND, OR, and EXOR gates are extended to include more

than two inputs. In our fault model we assume stuck-type
faults for the basic AND, OR, and NOT gates, but for the EXOR
and the MAJ gate which are usually realized by a network of
basic gates, we will allow arbitrary faults with the following
exceptions: the EXOR gate cannot change to an EQUIVALENCE
(complement of EXOR) gate, and the MAJ gate cannot fail to
another majority function with one or more inputs
complemented.2 By a single fault we mean the presence of a
fault of the above mentioned type and by a multiple fault we
mean the simultaneous presence of a number ofsingle faults.
The multiple fault detection test set is derived in an

iterative manner. We will view the fan-out-free network N as
a tree whose root node is the output gate. We will denote the
root node by R, its left and right subtrees by NL and NR,
respectively, and its middle subtree, if any, by NM. We have
to consider three cases depending on whetherR is an AND or
an OR gate, an EXOR gate, or a MAJ gate. Before proving the
theorems that specify the multiple fault detection test set for
N in each of the above three cases, we state the following
results, the proofs ofwhich are similar to those for linear tree
networks given in [11].
Lemma 2: Every multiple fault in a fan-out-free network is

detectable.
Lemma 3: Assume the correct response of a tree network

to a multiple fault detection test set is a binary vector C.
Then no multiple fault can change the response to C.

Corollary 3: No multiple fault can complement the output
function of a tree network.

Theorem 4: Let R be an AND(OR) gate. Let T(NL) and
T(NR) be the multiple fault detection test sets for NLand NR,
respectively. Partition the two test sets into a set of false tests,
i.e., those normally producing a 0; and a set of true tests, i.e.,
those normally producing a 1.

2 These restrictions in the fault model appear to be arbitrary, however,
they seem to hold for stuck-type faults in nonredundant realizations. The
authors have verified this for commonly known implementations of the
EXOR gate and for two-level realizations of the MAJ gate.

315

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-27, NO. 4, APRIL 1978

T(NL)= {ao, ao, *-, aj°} u {al, a', *--, all S}j
T(NR) = {bo, bo, -, bo} u .(bl, bl,, bl, }

where, the elements of the sets represent vectors and the
superscripts denote the normal response.

Define a new test set T(N) = TN' U TN2 where

TN1 = {(x, bl(b?)), Vx E T(NL)}
TN2 = {(a1(a'), x), Vx E T(NR)}.

T(N) detects all multiple faults in N.
Proof: We will prove the result only for the case when R

is an AND gate. The case when R is an OR gate follows by
duality.

Case 1: The multiple fault includes a fault in R. In
view of the fault model, this fault can be i-a-0 or i-a-1 faults
at the input or output leads of R. In such a case, it is easy to
see that T(N) detects this fault.

Case 2: R is fault-free. The fault is in NL, NR, or both.
Without loss of generality, assume NL is faulty. (NR may or
may not be faulty.) In this case TN1 detects the fault because if
the output of NR remains 1 for the input bl to NR, then the
output of NL is sensitized to the output of R; if a fault in NR
causes the output of NR to be 0 when bl is applied to NR,
then a true test in T(NL) detects the fault. I

Theorem 5: Let R be an EXOR gate and let T(NL) and
T(NR) be as defined in Theorem 4. Define a new test set T(N)
as

T(N)= {(x, bo)Ix E TNJ U {(a°, x)Ix E TNR} I{(al, bl)}
T(N) detects all multiple faults in N.
Theorem 6: All conditions remaining the same as in

Theorem 5, assume that at least one of NL or NR is
nondegenerate, then the test set T(N) given by

T(N) = {(a', x) I x E TNJ

u {(x, bo)IX E TNR, x al} u {(a', bl)}

detects all multiple faults in N.
The proofs ofTheorems 5 and 6 are exactly similar to the

corresponding theorems for linear tree networks given in
[1 1].
Theorem 7: Let R be a MAJ gate. Let NL, NM, and NR be

the three subtrees corresponding to the three inputs of R,
and T(NL), T(NM), and T(NR) the corresponding multiple
fault detection test sets for NL, NM, and NR, respectively.
Then the test set

TN = TN1 TN2 U TN3 U TN4
= {(x, co, bl)Ix E TNL} u {(al, x, bo)Ix E T(NM)}

U (a',, cl x)lx E- TNR u t(a', c°, bo), (a1, c1, bl)l
detects all multiple faults in N.

Proof:
Case 1: The multiple fault includes a fault in R. We

will show by contradiction that at least one ofthe 8 tests {(a',
cl, bY) p, q, r E {O, 1}}, included in TN, detects the multiple
fault. Assume such is not the case and that for k E {O, 1}, ak,
3k, and 7k represent the responses of the (possibly faulty)

subnetworks NL, NR, and NM when input vectors akl, bii, and
c1 are applied to them, respectively. The response of the
faulty root node for the 8 tests can then be summarized in the
form of a table:

Input Response

x° 7° °POO
90O7Ofll 0
ca° y' o0 0

alO yO
I PI

01 yO #1 1

al y1 #1 1

Furthermore, it can be shown by arguments similar to those
used in [11] that oa° = al, ,B0 = P3, and yT = y'. Thus, the
above table, indeed, represents a truth table for R when
specific binary values are assigned to oc, /B°0 and yo. Of the
eight possible tables, one corresponds to the fault-free MAJ
gate and hence can be ruled out. The other seven correspond
to failure modes for the MAJ gate excluded by our fault
model. Thus, by contradiction, the assumption that none of
the 8 tests detect the fault must be false.

Case 2: The multiple fault does not include a fault in
R. Assume NL is faulty. (NR or NM may or may not be
faulty.) Consider the application of the tests in TN1 to N. If
the outputs ofNM and NR remain 01 or change to 10, then
the output ofNL is sensitized to the output ofR and the fault
is detected. If the outputs ofNM and NR change to 00 or 11,
then the output ofN remains 0 or 1 for all the tests in TN1 and
hence the fault is detected. I
When one or more of the subtrees in a tree network

consists of only AND or OR gates, then the functions
produced at the outputs of such trees are unate functions.
Minimal multiple fault detection test sets can be obtained
easily by the method proposed by Berger and Kohavi [3].
Now we will illustrate the application of the above

theorems for the derivation of a multiple fault detection test
set for the tree network shown in Fig. 3. The dotted boxes
show the successive stages in the derivation of the test set.

Single Fault Location: As in [11] the basic principle used
in the location of single faults is that of binary search based
on isolation of the fault to either the left subtree NL, right
subtree NR, or the root R. Thus the fault location procedure
is adaptive-the outcome of tests up to a certain time
determine, in general, what tests should be applied next.
Moreover, the tests applied also depend on the function
realized by the current root node.
Assume the root node is an AND gate and suppose the test

set TN1 specified in Theorem 4 is applied to the network. Let
the fault-free output be VCL which will also be the output of
the left subtree in this case because the output of the right
subtree merely acts as a sensitizing input to the root node.
Assuming a fault had already been indicated, it is not too
difficult to analyze various outputs and partially isolate the
fault as shown in Table III. The vectors 0 and 1 in Table III
represent all zeros and all ones, respectively. The ambiguity
in the first column can be removed by applying TN2 to the

316

KODANDAPANI AND SETH: COMBINATIONAL NETWORKS WITH RESTRICTED FAN-OUT

Fig. 3. Derivation of tests for an example network using Theorems 4-7.

TABLE III

Response implies 0 or VCL 1 other
fault in R or NR R NL

TABLE IV

Response to TN2 =
0 or VCR I other

0 or VCL R R NR
Response to TN, = 1 R x x

other NL x x

network and assuming VCR is the correct response. This is
illustrated in Table IV. The "x" entries in Table IV
represent logically impossible situations.

Similar analysis applies to the situation where the root
node is an OR gate, an EXOR gate, or a MAJ gate. The tests to be
applied in these cases follow from Theorems 4 (dual case), 5,
and 7.
The single fault location procedure recursively applies the

appropriate test set to subtree networks (while holding
nonsubtree inputs at constant sensitizing values) until a root
node is determined to be faulty. Clearly, in the worst case the
recursive calls need not exceed the number of levels in
the tree.

V. CONCLUSION

The class of functions considered in this paper is a
generalization of the strictly fan-out-free functions of Hayes
[8] which are realizable by fan-out-free networks ofAND, OR,

and NOT gates; the functions we consider have fan-out-free
realizations in terms of modules which may themselves be
realized by fan out. In other words, we consider networks of
AND, OR, and NOT gates in which fan out, if present, is
restricted to be local. It can be shown that for any given set of
modules the class offan-out-free functions is still vanishingly
small, as compared to the class of Boolean functions.
However, a number of practically useful functions (e.g.,
linear functions) which are not strictly fan-out free may be
included in the more general class considered in this paper.
Furthermore, we conjecture that the number of strictly
fan-out-free functions of n variables, as a fraction of the
fan-out-free functions of AND, OR, NOT, and EXOR gates,
asymptotically becomes zero for a large value of n.
For further research we suggest the following.
1) Extend the characterization for the majority gate

(Theorem 3) to include an arbitrary voting function of n
variables.

317

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-27, NO. 4, APRIL 1978

2) Assume a function cannot be realized by a fan-out-free
network ofmodules. What is the minimum fanout, cf., Hayes
[8], to realize this function?

ACKNOWLEDGMENT
The authors wish to thank Dr. J. Butler ofNorthwestern

University for pointing out some computational errors in
Table II in an earlier version of the paper.

REFERENCES
[1] S. B. Akers, Jr., "On the theory of boolean functions," SIAM J. AppL

Math., vol. 7, pp. 487-498, 1959.
[2] C. Berge, Principles of Combinatorics. New York: Academic Press,

1971.
[3] I. Berger and Z. Kohavi, "Fault detection in fanout-free combina-

tional networks," IEEE Trans. Comput., vol. C-22, pp. 908-914, Oct.
1973.

[4] R. Betancourt, "Derivation of minimum test sets for unate logical
circuits," IEEE Trans. Comput., vol. C-20, pp. 1264-1269, Nov. 1971.

[5] J. T. Butler, "On the number of functions realzed by cascades and
disjunctive networks," IEEE Trans. Comput., vol. C-24, pp. 681-690,
July 1975.

[6] K. Chakrabarti and 0. Kolp, "Fan-in constrained tree networks of
flexible cell," IEEE Trans. Comput., vol. C-23, pp. 1238-1249, Dec.
1974.

[7] H. A. Curtis, A New Approach to the Design of Switching Circuits.
Princeton, NJ: Van Nostrand, 1962.

[8] J. P. Hayes, "The fanout structure of switching functions," J. Assoc.
Comput. Mach., Oct. 1975.

[9]-, "Enumeration of fanout free Boolean functions," to be
published.

[10] F. F. Sellers, M. Y. Hsiao, and L W. Bearnson, "Analyzing errors
with the Boolean difference," IEEE Trans. Comput., voL C-17, pp.
676-683, July 1968.

[11] S. C. Seth and K. L. Kodandapani, "Diagnosis of faults in linear tree
networks," IEEE Trans. Comput., vol. C-26, pp. 29-33, Jan. 1977.

K. L Kodandapani received the B.E. degree in
electrical engineering from Mysore University,
Mysore, India, the M.E. degree in applied elec-
tronics and servomechanisms, and the Ph.D.
degree in electrical engineering from the Indian
Institute of Science, Bangalore, India, in 1971
and 1974, respectively.
- From September 1974 to November 1975, he
was a lecturer in the Computer Science Pro-
gram, Indian Institute of Technology, Kanpur,
India. From December 1975 to May 1977, he was

a Post-Doctoral Fellow at the University of Regina, Regina, Sask.,
Canada Since August 1977, he has been an Assistant Professor of
Computer Science, Wichita State University, Wichita, KS. His current
research interests include fault-tolerant computing and parallel processing.

Sharad C. Seth (S'66-M'70) was born in Sagar,
XT 2jB-^-M India, on November 1, 1942. He received the B.E.

degree in electronics and telecommunications
from Jabalpur, India, the M.S. degree from the
Indian Institute of Technology, Kanpur, India,
in 1966, and the Ph.D. degree from University of
IlLinois, Urbana, in 1970.

Since then he has been on the faculty of the
Department of Computer Science, University of
Nebraska at Lincoln, currently holding an
Associate Professor's position. His research in-

terests are in the areas of fault tolerant computing, switching theory, and
software verification.

Dr. Seth is a member of the Association for Computing Machinery.

318

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	4-1978

	On Combinational Networks with Restricted Fan-Out
	K. L. Kodandapani
	Sharad C. Seth

	tmp.1267831294.pdf.OdjNd

