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Abstract 
The design of a finite state machine can be verified 
by simulating all its state transitions. Typically, state 
transitions involve many  don’t care inputs that must  be 
fully expanded for  an exhaustive functional ver%fication. 
However, b y  exploiting the knowledge about the design 
structure it is  shown that only a f e w  vectors f rom the 
fully expanded set suf ice  f o r  both design verification 
and testing for  manufacturing defects. The main  con- 
tributions of the paper include a unified fault model for  
design errors and manujacturing faults and a function- 
based analysis of the circuit structure for  the purpose 
of generating tests under the unified model. Experi- 
mental results on benchmark finite state machines are 
presented in support of this approach to  test generation. 

1. Introduction 

Test generation for design verification and manu- 
facturing faults are generally regarded as independent 
activities. At times, manufacturing tests may be aug- 
mented with design verification test vectors to  catch 
“unmodeled” faults although a sound basis for com- 
bining the two kinds of tests does not exist. In this 
paper we propose a unified approach to  testing and 
verification of finite state machines (FSMs). 

We assume that the FSM design is verified by sim- 
ulating its state transitions. Typically, a state tran- 
sition involves many don’t care inputs which must be 
fully expanded for an exhaustive functional verifica- 
tion. Alternatively, an analysis of the circuit structure 
in the context of the specific state transition allows us 
to  select only a subset of the fully expanded vectors 
without losing any coverage of faults under the uni- 
fied model. These vectors are simulated individually 
for design verification and are included in a tour of the 
FSM states to  define a manufactwing test. Thus, both 
kinds of tests are derived from a common basis. 

Test generation using the functional description of 
a FSM, with or without the circuit implementation, is 
not new. Purely function-based test generation meth- 
ods have used the single-transition fault model [l] and 

its extension to  multiple state-table faults [2]. How- 
ever, test sequences based solely on the functional in- 
formation tend to  be long because they must work for 
any implementation. Further, the generated test must 
be simulated on the specific implementation to  deter- 
mine its fault coverage. 

As in other prior works [3], [4], we assume that 
the test generator can access the gate-level implemen- 
tation. However, while we consider design verification 
and manufacturing testing in a unified fashion, the ear- 
lier work focuses only on manufacturing testing. 

The rest of the paper is organized as follows: Sec- 
tion 2 describes a unified fault model for design er- 
rors and manufacturing defects. Next, in Section 3, a 
test generation technique is discussed for design ver- 
ification and functional testing for manufacturing de- 
fects. The implementation of this method involves ex- 
act three-value simulation, fault list computation, and 
constrained test generation, as explained in Section 4. 
The results of the evaluation of tests generated using 
border-gate analysis are presented in Section 5 .  Sec- 
tion 6 concludes the paper. 

2. A Unified Fault Model 

Manufacturing faults (such as stuck-at and 
bridging) and design errors (such as wrong-gate- 
substitution, missing-gate, extra-input, missing input, 
etc.) can be unified into a single model. Let G be a 
“good” circuit, i.e., it conforms to  its specifications. 
The faulty circuits are described by the pair G,F, 
where 3 is the fault list. 3 is defined by the set of pairs, 
{(si,Es,),(Sz,Es,),...,(Sk,Es,)>, where each sa is 
a collection of lines of the circuit G and Es, is the corre- 
sponding environment condition. In the interpretation 
of the fault (St, Es,),  if any of the Es, conditions are 
satisfied, then all lines of Sa in G’ have complementary 
values compared to  their respective values in G. 

Example faults described in the unified model in- 
clude the following. The stuck-at-1 fault a t  line g 
is given by ( { g } , { g  = 0 ) ) .  A bridging fault in 
which line b at  1 forces line a t o  1 is expressed as 
( { a } ,  {ab  = 01)). A gate substitution error a t  a gate 
output g ,  in which a two-input AND gate is replaced 

0-7695-0831-6/00 $10.00 0 2000 IEEE 189 

 Fourteenth International Conference on VLSI Design, 2001. doi:  10.1109/ICVD.2001.902659 

mailto:mweiss,seth}@cse.unl.edu
mailto:eins@seward.cune.edu


by a two-input OR gate, can be captured by the fault 
({g},{h1h2 = 01 OR hlh2 = lo}), where, h l  and h2 
are inputs to  the gate. 

The unified model can be used to  generate a test 
for manufacturing faults in the same way as for the 
stuck-at or the bridging fault model. A test sequence 
for fault (S ,  Es)  must excite the fault by satisfying 
the condition Es and then must propagate the faulty 
signal from one of the lines of S to  a PO. 

The given circuit is assumed to  be correct for the 
purpose of generating manufacturing tests; each fault 
of the model is considered in conjunction with the cor- 
rect design for coverage by a test. The same approach 
cannot be taken for design verification because the cir- 
cuit to  be verified is possibly an incorrect implementa- 
tion of the FSM specification. Nevertheless, we gener- 
ate the tests for design verification in the same man- 
ner as for manufacturing because most design errors 
of the model are reversible. For example, if the bad 
circuit results from the good one by 'X-gate substi- 
tuted by Y-gate' then the good circuit results from the 
bad by 'Y-gate substituted by X-gate'. Other pairs of 
complementary errors are extra-gate & missing-gate, 
and extra-input & missing-input. This approach al- 
lows us to  generate a test from the bad circuit us- 
ing the model which can distinguish from the variant, 
namely, the good circuit. Once again, test generation 
for (S ,  Es )  involves creating excitation and propaga- 
tion conditions. 

3. Test Generation 

3.1 Design Verification Tests 

An implementation of a finite state machine (FSM) 
is a sequential circuit, but its verification is equiv- 
alent to  the verification of the underlying combina- 
tional circuit since the designer can control the sec- 
ondary inputs and observe the secondary outputs. Let 
the collection of the transitions of the FSM be R = 
{((S,,I,)/(T,,O,))Jz E Z}, where S, is the initial state, 
T, is the final state, I, is the primary input, and 0, is 
the primary output of the i-th transition. In the un- 
derlying combinational circuit, the secondary inputs 
and secondary outputs are treated as additional PIS 
and POs, respectively. Therefore, its specification is 
{((I , ' ) /(Oi))/z E Z}, where I,' is composed of the bits 
of I ,  and the bits of the encoding of S,, and 0: is com- 
posed of the bits of 0, and the bits of the encoding 
of T,. The design is correct if and only if it performs 
each transition correctly. That ,  in turn, is equivalent 
to  verifying the correctness of each input/output pair 

An important point to  note is that if there are don't 
care values in 1: they must either be simulated sym- 

(I;/o;)vz E 2. 

. . . . . . .. . . . . . . . . . . .... . .. . .. . . .. ... . . . . .. . . . . . . . . . n... ............................... j 

Fig. 1. Illustration of 3 classes. 

bolically or expanded fully. Computationally, both op- 
tions can be very expensive. We )propose an  alternative 
below. 

Consider a modulo-8 counter. The underlying com- 
binational circuit has a 3-bit input and a 3-bit output. 
Testing the complete functionality of the circuit re- 
quires setting the input t o  each of the 8 patterns and 
comparing the output t o  the corresponding specified 
pattern. Such a specification leaves no choice to  t,he 
functional test-generator t o  improve the speed of test- 
ing since all input patterns have distinct output pat- 
terns. Fortunately, in most large circuits the output 
patterns are much fewer than the valid input patterns. 
This enables us to  specify the functionality of the cir- 
cuit by forming cubes in the input space and assigning 
one output pattern to  each cube. 

When there are input don't cares, a test-generator 
can optimize the test set by selecting a subset of the 
vectors of each cube with the same fault testability as 
the entire cube. For example, in the priority-encoder 
described above, it may not be necessary to  test all 
eight inputs embedded in XXXl if say, 1001 and 0011 
could test all the faults that could possibly be tested 
by the vectors of XXX1. 

For some partially specified input I,' we can classify 
the faults detected by the vector:; of I,' in three classes: 

F,N the faults that cannot be propagated by any 

F,A the faults that are propagated by all settings of 

F,p the faults that are propagated by some but not 

Sample faults of each class for the circuit in Figure 1 
include the following. Faults ( { l } ,  {Im = Ol}), and 
({n,  k } ,  {nk  = 00)) are in F t ~ .  Faults ( {m} ,  {Im = 
01)) and ( { g , d } , { g d  = lo}) are in F,N. Faults 
({e}, {ab = 11)) and ( { a ,  b } ,  {ab = 11)) are in F,p. 

The faults of F,N cannot be detected and any vec- 
tor of the cube I,' can test the faults in F,A. Any 
test for F,p will also test for faults in F z ~ .  There- 
fore, for test-generation it is sufficient to consider 3,p 

setting of X ' s ,  

X ' s ,  and 

all settings of X's. 
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faults. Still, the process may not be efficient because 
Fiip is, in general, a large class. There are very rare 
instances when a fault set S = { l ~ , l z , .  . . , l m }  has a 
test vector but none of the singleton fault-sets, {li}, 
are detectable. Therefore, without any significant loss, 
we only consider a subset of F t p ,  namely, 3$g1et0n 
which is {(S, Es)  E Ftpl S = s ingle ton} .  

Next, we show that a subset Fi of FtSpgLeton exists 
with the property that any test set which can detect 
all faults of 3, also detects all faults of F$g’eton . To 
determine the fault set Fz it is necessary to  understand 
how a vector of cube 1: performs as a test vector. This 
is best explained in terms of the results of exact three- 
value simulation of I,’ on the circuit. 

Three-value simulation of a circuit with partially 
specified input I,’ will be called exact when each line is 
assigned a binary value if and only if it assumes that 
value for all vectors of I!. The problem of computing 
exact t hree-value simulation is NP-complete since SAT 
can be reduced to  it. Although the standard three- 
value simulation is linear in circuit size it is not always 
exact. An algorithm for exact three-value simulation 
is presented in the next section. 

We define a border gate (a gate a t  the boundary of 
the X-domain in the simulation) as the gate which has 
a binary output and at  least one X input in an exact 
three-value simulation. It can be easily verified that 
the binary output must correspond to  the dominating 
value for the gate (e.g. 0 for AND) in this definition. 
For input cube (11x0) in the circuit of Figure 1 the 
only border gate is C. 

Two test vectors of the same cube 1: differ in their 
testing capability because they create different condi- 
tions at  border gates. In Figure 1, vector 1100 allows 
the faulty signal to  pass from j to m at  the border gate 
C .  On the other hand, vector 1110 blocks the passage 
of the faulty signal through C .  Using this fact we shall 
show that there exists a fault subset Fi of F p  which is 
sufficient to consider for test generation. 

3, can be computed easily from border gate analy- 
sis. If a fault S = ( 1 )  is in Fip, there exists a setting of 
unspecified PIS which enables the propagation of the 
fault from 1 to some PO(s), and there also exists a set- 
ting which blocks the propagation. Thus, there must 
exist a sensitization path starting from 1 and entering 
at  least one border gate. The sensitization path either 
(i) passes through no fanout-stem and enters input line 
1’ of a border gate, or (ii) it passes through a fariout- 
stem and the first such stem is 1”. 

In case (i) the fault 1 can be observed only if fault 
1’ can be observed. In case (ii) the fault 1 can be ob- 
served only if the fault I” can be observed because the 
sensitization path did not fork before entering I”. This 

fact leads to  the conclusion that it is sufficient to  con- 
sider faults a t  the inputs of the border gates and at the 
fanout-stems in the cone of border gates. The precise 
class of faults in each category can be determined by 
classifying border gates as follows: 

Type-0 Border gates for which no input has 
dominating value. Note that in this 
case the X values on the inputs must 
be negatively correlated for the output 
of the gate to be binary. 
Border gates in which exactly one in- 
put has dominating value. 
Border gates in which two or more in- 
puts have dominating value. 

Type-0 border gates can only have inputs with 
value X or the non-dominating value. For these gates, 
we need to include only the faults for each X-input 
line, 1, with the environment condition: line 1 set to the 
dominating value and all other border gate input lines 
set to the non-dominating value. These are the only 
faults that can be propagated through Type-0 border 
gates. 

Similarly, the only input faults that can be prop- 
agated through Type-1 border gates involve an input 
line, 1, with the dominating value. The corresponding 
environment condition is line 1 set to the dominating 
value and all other border gate input lines set to the 
non-dominating value. 

No input faults of Type-2 border gates can be p rop  
agated because there are multiple dominating inputs. 
However, border gates of this type can be used to  re- 
strict the set of fanout-stem faults described earlier. It 
can be seen that the only fanout stem faults that are 
not already covered by the Type-0 and Type-1 bor- 
der gate faults must be detected by multiple sensitized 
paths passing through a Type-2 border gate. For such 
a stem fault to be detected, it must have a binary value 
and be in the cone of influence of all the dominating 
inputs of the border gate. In summary, we make the 
following observation regarding the faults in 3,. 

Observation 
For any input-cube I,’, the singleton faults Ci that 

cower all faults of F p  of cube xi an propagation i s  
the union of the set of X-input lines in Type-0 border 
gates, the set of dominating input lines in Type-1 bor- 
der gates, and the set of binary-valued fanout  stems, in 
the cone of all the dominating inputs of Type-2 border 
gates. 

Type-1: 

Type-2 

For the circuit of Figure 1, F(l1xq is { { j } } .  

Once we find Fi a test set is computed to propa- 
gate the faults of Fi. This test ensures propagation of 
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Tour(Input:V, R;Output:E){ 
G = (V, 7); 
Find shortest paths Pa,o from CY to  p VCY, f i  E V s.t. 

G' = G; 
While 3a s.t. A(cY)  > 0 in G' Do 

Select (r with A(a)  > 0 in G'; 
Select p from all 0' with A@') < 0 s.t. Pa,o is shortest; 
Add min{A(a), A(/3)} copies of the edges (transitions) 

A(a)  > 0 > U P ) ;  

of Pa,p to  G'; 
Find an Eulerian cycle E in G".} 

Fig. 2. An algorithm to generate a minimum tour of the FSM. 
A (z) denotes outdeg(z) -indeg(z). 

all faults of F p  and, if is non-empty, all faults of FA. 
Faults 3~ do not have to be considered because they 
are not detectable by any vector of the cube I,. If 
turns out to  be empty (i.e., when F p  would be empty), 
then any randomly selected vector of I ,  is included in 
it to  take care of FA. The final test is derived from 
7 = U, as described in the next subsection. 

Finally, we turn to  the fault excitation problem. 
An unrestricted fault model requires us to  consider all 
possible environmental conditions, leading to  an unac- 
ceptably large test set. Therefore, in our experiments 
we have considered each fault of 3% only once for test 
generation for each input cube. But if the same fault 
occurs in F, and F3, then the test is generated for it 
in both of the cases. 

3.2 Functional Tests for Manufacturing Faults 

Unlike design verification, a functional test for 
manufacturing defects is more difficult because neither 
the secondary inputs are controllable nor the secondary 
outputs observable. Empirically, the effectiveness of 
the many tour-based functional test methods [3], [5]  
indicates that distinguishing the faulty state from the 
good one by an arbitrary vector sequence is not difficult 
if it is long enough and the FSM is reduced. There- 
fore, in this work we propose to  perform sequential 
circuit testing by a tour E of the states of the FSM 
which covers all the transitions of 7 given in the pre- 
vious section. The tour must not pass through any 
invalid state otherwise the test will not be functional. 
The algorithm for the computation for E appears in 
Figure 2. Here V denotes the set of states and R is 
the set of transitions. The algorithm computes & as 
the shortest closed walk passing through all the edges 
of the labeled graph (V, 7). An Eulerian cycle (cycle 
passing through each edge exactly once) exists if and 
only if the in-degree and the out-degree match for ev- 
ery node. This is achieved in (V, 7) by adding copies 
of some of the edges (making it a multi-labeled graph). 

3.3 Related Prior Work 

We introduced the border gate approach earlier in 
the context of combinational logic verification [6]. The 
key idea of our approach, setting input don't cares to  
maximize path sensitization in the circuit, is closely re- 
lated to  earlier papers on automatic test pattern gen- 
eration for manufacturing faults. 

RAPS (Random Path Sensitization) [7] and 
SMART [8] have a similar goal of generating tests that 
deliberately sensitize a large number of signal paths 
towards the POs without targeting specific faults. Un- 
like this paper, however, they assume no primary input 
constraints. 

SMART'S restart gates are related to  our border 
gates. A gate is defined to  be a restart gate if it has 
one controlling input, its output is critical, and none of 
its inputs are critical. This can happen only if some of 
the inputs to the gate are unspecifiied and the output is 
specified. Thus, restart gates are lborder gates but the 
converse is not true. For example, gate C in Figure 1 is 
a border gate but not a restart gate because its output 
is not critical. 

The approach presented in this paper is similar to  
the SMART approach in using border (restart) gates 
to help extend sensitized paths. The main difference is 
that SMART ignores multi-branch sensitization paths, 
which appear more frequently in larger and more com- 
plex designs. The multiple branches may pass through 
the same gate when gates have more than one con- 
trolling input so such cases cannot be ignored. Fur- 
ther, treating one restart gate independent of the oth- 
ers cannot handle the sensitized :paths with branches 
in different restart gates. 

4. Implementation 

The observation in the last section provides the ba- 
sis for a scheme to generate tests that cover all the 
faults Fp for a FSM transition. R-ecall that for design 
verification the secondary inputs and outputs can be 
assumed to  be accessible, hence it suffices to carry out 
combinational test generation for each transition inde- 
pendently. Then, the algorithm in the last section can 
be employed to  generate a functional test sequence. 

For the input/output specification { ( ( I ~ ) / ( O ~ ) ) l z  E 
2) corresponding to  a transition i, the sequence of 
steps of our test generation strategy can be described 
as in the following subsections. 

4.1 Exact Simulation 

The exact simulation can be performed by improv- 
ing on the results of the inexact simulation using a line 
justification procedure that is commonly used in au- 
tomatic test pattern generation [!>I. For a node (line) 
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LogicSimulate(C:circuit, B:input cube) { 
3_valuesimulate( C,B) ; 
For all the gates in the cone of specified outputs { 

Create a list L of gate output nodes with X value 
sorted in order of their level from input to output } 

While L is non-empty{ 
Remove node N at the head of the list L 
If -Justify(N,O) then { 

Assign 1 to N; 
Carry out deterministic implications and update L ; }  

Assign 0 to N ;  
Carry out deterministic implications and update L ; } }  

Else If -Justify(N, 1) then { 

For each primary output 2 with specified value 21 { 
If -Justify(Z, V) then (report design error)}} 

Fig. 3. An algorithm to do exact three-value logic simulation. 

N in the circuit, the process Justify(N, w) determines 
if there is an input vector contained in the input cube 
that would set node N to  the binary value U. For 
each node N with an X value after three-value simu- 
lation, if the call to  Justify(N,O) fails we can imme- 
diately change the X value to  1 because it is not pos- 
sible to  justify a 0 value at  node N by any setting of 
the unspecified inputs. Otherwise, we make the call 
Justify(N, 1). If this fails, the node can be set to  0, 
otherwise, it must remain as X. Since the number of X 
values is bounded by the circuit size, at most a linear 
number of calls to  Justify is necessary for the exact 
simulation. 

This idea is incorporated in the algorithm shown 
in Figure 3. After the (inexact) three-value simula- 
tion, the algorithm collects all gate output nodes with 
X value that are in the cone of the specified outputs. 
These are tested for a constant value as above in order 
of their level from input to  output. Whenever a node 
value changes, deterministic implications of the change 
are propagated to  other nodes in the circuit and the 
list of remaining X nodes is pruned accordingly. In the 
final step, the algorithm checks for any discrepancies 
in the primary output values between the specification 
and exact simulation. In that case, a design error is de- 
tected independent of the settings of X values on the 
input. 

Example: The circuit shown in Figure 4 will be 
used as a running example. For the input cube shown 
in the figure, assume both outputs are specified to  be 1. 
Figure 4(a) shows the signal values after the (inexact) 
three-value simulation upon which the following sorted 
list L will be created: 

L = { k , h m , q , r , s }  

It is possible to justify both 0 and 1 on k. Therefore 
this node retains its X value. The same is true of node 
1 .  However, Justify(m,O) fails therefore m is assigned 
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Fig. 4. Three-valued vs. exact simulation 

constant 1 and lines n, p ,  q ,  T ,  s, t ,  U ,  and U are also 
assigned 1 by deterministic implication. As a result, 
the list L is pruned and becomes null, completing the 
while loop. The result is shown in Figure 4(b). The 
primary-output check in the last step succeeds as the 
PO values after exact simulation match the specifica- 
tion, hence no design errors are revealed at  this stage. 

4.2 Border Gate Identification 

Border gates are identified via simulation. The ex- 
ample in Figure 4(b) has three border gates that are 
shown highlighted. 

4.3 Fault List Generation 

The fault list is generated following the Observa- 
tion in Section 3 with some exceptions. We include 
the faults at the inputs of border gates of Types 0 and 
1 as stated. However, for ease of computation, we in- 
clude a superset of the fanout stems indicated in the 
Observation. Instead of verifying that a binary-valued 
fanout stem is included in the cone of all dominating 
inputs of a Type-2 border gate, we include all binary- 
valued stems in the cone of any border gate. 

For the three border gates in the running example, 
the faults on the following lines will be included: IC, 1 ,  
q,  r ,  and U. In addition, because the constant-valued 
stem m is in the input cone of q and r ,  the fault on 
line m will also be in the fault list. 



Fig. 5. Structural change to constrain input value. 

4.4 Constrained Test Genera t ion  

The test generation must be carried out under in- 
put constraints; only the unspecified values in the in- 
put cube can be changed during test generation. It 
is possible to  modify a PODEM-like algorithm that 
searches for a solution on a decision tree to  allow 
branching and backtracking only on the unconstrained 
inputs. We accomplish the same goal by running a 
standard test generator [lo] on a modified circuit that 
constrains the inputs internally (see Figure 5).  A 
greedy approach is used to  cover as many faults as pos- 
sible by a single test vector before considering another 
vector in the input cube. 

For the running example, the fault on line IC is de- 
tected by the test cube abcdefg = llOllOX which also 
detects the fault on line m. Further expanding the test 
cube to  1101100 detects the fault on line U .  Similarly, 
the test 1111100 detects faults on lines 1 m and U .  The 
faults on lines q and r are not detectable by any vector 
in the original input cube. Therefore, only two vectors 
in the input cube cover all the faults detectable by all 
eight vectors included in the cube. There are 12 such 
faults on lines b,  d,  h, i, j ,  I C ,  1 ,  m, s, t ,  U, and U. 

5. Exper imen ta l  Resul t s  

We implemented the test generation described in 
the previous section and conducted experiments using 
a representative sample of 12 FSMs included in the 
1991 logic synthesis benchmarks. We excluded from 
consideration small machines and those that include 
very few or no don't cares in their transitions because 
our approach does not provide any additional benefit 
in these cases. 

The structural representations for the FSMs were 
produced using SIS [ll] to  simplify and synthesize the 
circuits using the rugged script. Technology mapping 
was limited to four-input simple gates. Each transition 
was expanded into one or more input vectors using the 
border gate approach and a shortest tour was obtained 
to  cover all the resulting transitions. These tests are 
referred to  as BG in reporting the results. 

For comparison, we also obtained simpler func- 
tional tests (hereafter referred to  as ST) in which suc- 
cessive randomly-generated tours (independent from 
the BG tours) were merged so that the tour length 
matched the tour length of the BG test set. The 

don't cares were randomly-filled in this case. Initially 
this test is equivalent t o  the functional test of Karam 
and Saucier [3] but expanded with additional tours to 
match the BG test length. 

In the first set of experiments, we compared the BG 
and ST tests for their coverage of manufacturing faults. 
To this end, the tests were applied as sequences of vec- 
tors corresponding to  their respective tours, and their 
coverage was evaluated using the HOPE fault simula- 
tor [13]. The results are presented in Table I. For each 
circuit the Table shows the nuniber of states in the 
FSM followed by circuit statistics giving the number 
of primary inputs, primary outputs, gates, flip-flops, 
and number of faults. The last, three columns give the 
test length and the comparison of the fault coverage 
for SAF faults. It will be seen that the coverage of the 
BG tests is consistently higher. 

In the second set of experiments, the tests were 
evaluated for their coverage of d!esign verification er- 
rors. As explained in Section 2, f'or design verification 
it is enough to  apply the tests on the underlying com- 
binational. logic circuit. A recent program, ESIM [12], 
was used for this evaluation. This simulator can pro- 
duce coverage of a test for single design errors of the 
following kinds: gate substitution errors (GSE), gate 
count errors (GCEs), input count errors (ICES), and 
wrong input errors (WIEs). The GSE class is further 
subdivided into errors of single input gates (SIGSEs) 
and multiple input gates (MIGSEs). The GCE class 
is also divided into two subclasses corresponding to 
extra or missing gates (EGE and MGE, respectively). 
Similarly there are two subclasses, EIEs and MIEs cor- 
responding to  the class ICE. 

Table I1 shows the results for i,he coverage of design 
errors. For each circuit, the test lengths are identical 
to the test lengths shown in Table I. This is followed 
by the coverage of the various classes of design errors. 
The results show that the BG tests cover more design 
errors than the ST  tests for a majority of the tested 
circuits. 

6. Conclusion 

The fault model and the border-gate approach to  
test generation allows a unified approach to test gen- 
eration for detecting design errors and manufacturing 
faults. The manufacturing tests are functional hence 
can be applied at the rated speed of the circuit. The 
results on the benchmark circuit show that our tests 
provide a high coverage for the design errors and SAF 
faults. 
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TABLE I 
FAULT COVERAGE 

Circ 
cse 
ex1 
ex6 
kevb 

# # # Comb # Total Test % Flt Cov 
Sta PI PO Gates FF Flts Len ST BG 

16 7 7 135 4 368 516 97.8 99.1 
18 8 19 121 5 366 925 99.7 99.7 
8 5 8  68 3 189 70 97.8 98.4 

19 7 2 158 5 396 705 86.8 99.7 

TABLE I1 
COVERAGE OF DESIGN ERRORS 

Nebraska-Lincoln Center for Communication and In- design circuits,” IEEE Design and Test, pp. 43-54, August 
formation Science. We are grateful to  Dr. Hussain 
Al-Asaad for making ESIM available to  us. 
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