
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department
of

2001

Design Verification and Functional Testing of Finite State Design Verification and Functional Testing of Finite State

Machines Machines

Mark W. Weiss
University of Nebraska-Lincoln, mweiss@cse.unl.edu

Sharad C. Seth
University of Nebraska-Lincoln, seth@cse.unl.edu

Shashank K. Mehta
Indian Institute of Technology, Kanpur, skmehta@cse.iitk.ac.in

Kent L. Einspahr
Concordia University, Seward, NE, Kent.Einspahr@cune.edu

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

 Part of the Computer Sciences Commons

Weiss, Mark W.; Seth, Sharad C.; Mehta, Shashank K.; and Einspahr, Kent L., "Design Verification and
Functional Testing of Finite State Machines" (2001). CSE Conference and Workshop Papers. 12.
https://digitalcommons.unl.edu/cseconfwork/12

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17237438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/12?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages

Design Verification and Functional Testing of Finite State Machines

Mark W. Weiss and Sharad C. Seth Shashank K. Mehta Kent L. Einspahr

Seward, NE 68434 USA
University of Nebraska-Lincoln Pune University Concordia University

{ mweiss,seth}@cse.unl.edu skm@cs.unipune.ernet.in eins@seward.cune.edu
Lincoln, NE 68588-0115 USA Pune, 411007 India

Abstract
The design of a finite state machine can be verified
by simulating all its state transitions. Typically, state
transitions involve many don’t care inputs that must be
fully expanded for an exhaustive functional ver%fication.
However, b y exploiting the knowledge about the design
structure it is shown that only a f e w vectors f rom the
fully expanded set suf ice f o r both design verification
and testing for manufacturing defects. The main con-
tributions of the paper include a unified fault model for
design errors and manujacturing faults and a function-
based analysis of the circuit structure for the purpose
of generating tests under the unified model. Experi-
mental results on benchmark finite state machines are
presented in support of this approach to test generation.

1. Introduction

Test generation for design verification and manu-
facturing faults are generally regarded as independent
activities. At times, manufacturing tests may be aug-
mented with design verification test vectors to catch
“unmodeled” faults although a sound basis for com-
bining the two kinds of tests does not exist. In this
paper we propose a unified approach to testing and
verification of finite state machines (FSMs).

We assume that the FSM design is verified by sim-
ulating its state transitions. Typically, a state tran-
sition involves many don’t care inputs which must be
fully expanded for an exhaustive functional verifica-
tion. Alternatively, an analysis of the circuit structure
in the context of the specific state transition allows us
to select only a subset of the fully expanded vectors
without losing any coverage of faults under the uni-
fied model. These vectors are simulated individually
for design verification and are included in a tour of the
FSM states to define a manufactwing test. Thus, both
kinds of tests are derived from a common basis.

Test generation using the functional description of
a FSM, with or without the circuit implementation, is
not new. Purely function-based test generation meth-
ods have used the single-transition fault model [l] and

its extension to multiple state-table faults [2]. How-
ever, test sequences based solely on the functional in-
formation tend to be long because they must work for
any implementation. Further, the generated test must
be simulated on the specific implementation to deter-
mine its fault coverage.

As in other prior works [3], [4], we assume that
the test generator can access the gate-level implemen-
tation. However, while we consider design verification
and manufacturing testing in a unified fashion, the ear-
lier work focuses only on manufacturing testing.

The rest of the paper is organized as follows: Sec-
tion 2 describes a unified fault model for design er-
rors and manufacturing defects. Next, in Section 3, a
test generation technique is discussed for design ver-
ification and functional testing for manufacturing de-
fects. The implementation of this method involves ex-
act three-value simulation, fault list computation, and
constrained test generation, as explained in Section 4.
The results of the evaluation of tests generated using
border-gate analysis are presented in Section 5 . Sec-
tion 6 concludes the paper.

2. A Unified Fault Model

Manufacturing faults (such as stuck-at and
bridging) and design errors (such as wrong-gate-
substitution, missing-gate, extra-input, missing input,
etc.) can be unified into a single model. Let G be a
“good” circuit, i.e., it conforms to its specifications.
The faulty circuits are described by the pair G,F,
where 3 is the fault list. 3 is defined by the set of pairs,
{(si,Es,),(Sz,Es,),...,(Sk,Es,)>, where each sa is
a collection of lines of the circuit G and Es, is the corre-
sponding environment condition. In the interpretation
of the fault (St, Es,), if any of the Es, conditions are
satisfied, then all lines of Sa in G’ have complementary
values compared to their respective values in G.

Example faults described in the unified model in-
clude the following. The stuck-at-1 fault a t line g
is given by ({ g } , { g = 0)) . A bridging fault in
which line b at 1 forces line a t o 1 is expressed as
({ a } , {ab = 01)). A gate substitution error a t a gate
output g , in which a two-input AND gate is replaced

0-7695-0831-6/00 $10.00 0 2000 IEEE 189

 Fourteenth International Conference on VLSI Design, 2001. doi: 10.1109/ICVD.2001.902659

mailto:mweiss,seth}@cse.unl.edu
mailto:eins@seward.cune.edu

by a two-input OR gate, can be captured by the fault
({g},{h1h2 = 01 OR hlh2 = lo}), where, h l and h2
are inputs to the gate.

The unified model can be used to generate a test
for manufacturing faults in the same way as for the
stuck-at or the bridging fault model. A test sequence
for fault (S , Es) must excite the fault by satisfying
the condition Es and then must propagate the faulty
signal from one of the lines of S to a PO.

The given circuit is assumed to be correct for the
purpose of generating manufacturing tests; each fault
of the model is considered in conjunction with the cor-
rect design for coverage by a test. The same approach
cannot be taken for design verification because the cir-
cuit to be verified is possibly an incorrect implementa-
tion of the FSM specification. Nevertheless, we gener-
ate the tests for design verification in the same man-
ner as for manufacturing because most design errors
of the model are reversible. For example, if the bad
circuit results from the good one by 'X-gate substi-
tuted by Y-gate' then the good circuit results from the
bad by 'Y-gate substituted by X-gate'. Other pairs of
complementary errors are extra-gate & missing-gate,
and extra-input & missing-input. This approach al-
lows us to generate a test from the bad circuit us-
ing the model which can distinguish from the variant,
namely, the good circuit. Once again, test generation
for (S , Es) involves creating excitation and propaga-
tion conditions.

3. Test Generation

3.1 Design Verification Tests

An implementation of a finite state machine (FSM)
is a sequential circuit, but its verification is equiv-
alent to the verification of the underlying combina-
tional circuit since the designer can control the sec-
ondary inputs and observe the secondary outputs. Let
the collection of the transitions of the FSM be R =
{((S,,I,)/(T,,O,))Jz E Z}, where S, is the initial state,
T, is the final state, I, is the primary input, and 0, is
the primary output of the i-th transition. In the un-
derlying combinational circuit, the secondary inputs
and secondary outputs are treated as additional PIS
and POs, respectively. Therefore, its specification is
{((I , ') /(Oi))/z E Z}, where I,' is composed of the bits
of I , and the bits of the encoding of S,, and 0: is com-
posed of the bits of 0, and the bits of the encoding
of T,. The design is correct if and only if it performs
each transition correctly. That , in turn, is equivalent
to verifying the correctness of each input/output pair

An important point to note is that if there are don't
care values in 1: they must either be simulated sym-

(I;/o;)vz E 2.

. n... j

Fig. 1. Illustration of 3 classes.

bolically or expanded fully. Computationally, both op-
tions can be very expensive. We)propose an alternative
below.

Consider a modulo-8 counter. The underlying com-
binational circuit has a 3-bit input and a 3-bit output.
Testing the complete functionality of the circuit re-
quires setting the input t o each of the 8 patterns and
comparing the output t o the corresponding specified
pattern. Such a specification leaves no choice to t,he
functional test-generator t o improve the speed of test-
ing since all input patterns have distinct output pat-
terns. Fortunately, in most large circuits the output
patterns are much fewer than the valid input patterns.
This enables us to specify the functionality of the cir-
cuit by forming cubes in the input space and assigning
one output pattern to each cube.

When there are input don't cares, a test-generator
can optimize the test set by selecting a subset of the
vectors of each cube with the same fault testability as
the entire cube. For example, in the priority-encoder
described above, it may not be necessary to test all
eight inputs embedded in XXXl if say, 1001 and 0011
could test all the faults that could possibly be tested
by the vectors of XXX1.

For some partially specified input I,' we can classify
the faults detected by the vector:; of I,' in three classes:

F,N the faults that cannot be propagated by any

F,A the faults that are propagated by all settings of

F,p the faults that are propagated by some but not

Sample faults of each class for the circuit in Figure 1
include the following. Faults ({ l } , {Im = Ol}), and
({n, k } , {nk = 00)) are in F t ~ . Faults ({m} , {Im =
01)) and ({ g , d } , { g d = lo}) are in F,N. Faults
({e}, {ab = 11)) and ({ a , b } , {ab = 11)) are in F,p.

The faults of F,N cannot be detected and any vec-
tor of the cube I,' can test the faults in F,A. Any
test for F,p will also test for faults in F z ~ . There-
fore, for test-generation it is sufficient to consider 3,p

setting of X ' s ,

X ' s , and

all settings of X's.

190

faults. Still, the process may not be efficient because
Fiip is, in general, a large class. There are very rare
instances when a fault set S = { l ~ , l z , . . . , l m } has a
test vector but none of the singleton fault-sets, {li},
are detectable. Therefore, without any significant loss,
we only consider a subset of F t p , namely, 3$g1et0n
which is {(S, Es) E Ftpl S = s ingle ton} .

Next, we show that a subset Fi of FtSpgLeton exists
with the property that any test set which can detect
all faults of 3, also detects all faults of F$g’eton . To
determine the fault set Fz it is necessary to understand
how a vector of cube 1: performs as a test vector. This
is best explained in terms of the results of exact three-
value simulation of I,’ on the circuit.

Three-value simulation of a circuit with partially
specified input I,’ will be called exact when each line is
assigned a binary value if and only if it assumes that
value for all vectors of I!. The problem of computing
exact t hree-value simulation is NP-complete since SAT
can be reduced to it. Although the standard three-
value simulation is linear in circuit size it is not always
exact. An algorithm for exact three-value simulation
is presented in the next section.

We define a border gate (a gate a t the boundary of
the X-domain in the simulation) as the gate which has
a binary output and at least one X input in an exact
three-value simulation. It can be easily verified that
the binary output must correspond to the dominating
value for the gate (e.g. 0 for AND) in this definition.
For input cube (11x0) in the circuit of Figure 1 the
only border gate is C.

Two test vectors of the same cube 1: differ in their
testing capability because they create different condi-
tions at border gates. In Figure 1, vector 1100 allows
the faulty signal to pass from j to m at the border gate
C . On the other hand, vector 1110 blocks the passage
of the faulty signal through C . Using this fact we shall
show that there exists a fault subset Fi of F p which is
sufficient to consider for test generation.

3, can be computed easily from border gate analy-
sis. If a fault S = (1) is in Fip, there exists a setting of
unspecified PIS which enables the propagation of the
fault from 1 to some PO(s), and there also exists a set-
ting which blocks the propagation. Thus, there must
exist a sensitization path starting from 1 and entering
at least one border gate. The sensitization path either
(i) passes through no fanout-stem and enters input line
1’ of a border gate, or (ii) it passes through a fariout-
stem and the first such stem is 1”.

In case (i) the fault 1 can be observed only if fault
1’ can be observed. In case (ii) the fault 1 can be ob-
served only if the fault I” can be observed because the
sensitization path did not fork before entering I”. This

fact leads to the conclusion that it is sufficient to con-
sider faults a t the inputs of the border gates and at the
fanout-stems in the cone of border gates. The precise
class of faults in each category can be determined by
classifying border gates as follows:

Type-0 Border gates for which no input has
dominating value. Note that in this
case the X values on the inputs must
be negatively correlated for the output
of the gate to be binary.
Border gates in which exactly one in-
put has dominating value.
Border gates in which two or more in-
puts have dominating value.

Type-0 border gates can only have inputs with
value X or the non-dominating value. For these gates,
we need to include only the faults for each X-input
line, 1, with the environment condition: line 1 set to the
dominating value and all other border gate input lines
set to the non-dominating value. These are the only
faults that can be propagated through Type-0 border
gates.

Similarly, the only input faults that can be prop-
agated through Type-1 border gates involve an input
line, 1, with the dominating value. The corresponding
environment condition is line 1 set to the dominating
value and all other border gate input lines set to the
non-dominating value.

No input faults of Type-2 border gates can be p rop
agated because there are multiple dominating inputs.
However, border gates of this type can be used to re-
strict the set of fanout-stem faults described earlier. It
can be seen that the only fanout stem faults that are
not already covered by the Type-0 and Type-1 bor-
der gate faults must be detected by multiple sensitized
paths passing through a Type-2 border gate. For such
a stem fault to be detected, it must have a binary value
and be in the cone of influence of all the dominating
inputs of the border gate. In summary, we make the
following observation regarding the faults in 3,.

Observation
For any input-cube I,’, the singleton faults Ci that

cower all faults of F p of cube xi an propagation i s
the union of the set of X-input lines in Type-0 border
gates, the set of dominating input lines in Type-1 bor-
der gates, and the set of binary-valued fanout stems, in
the cone of all the dominating inputs of Type-2 border
gates.

Type-1:

Type-2

For the circuit of Figure 1, F(l1xq is { { j } } .

Once we find Fi a test set is computed to propa-
gate the faults of Fi. This test ensures propagation of

19 1

Tour(Input:V, R;Output:E){
G = (V, 7);
Find shortest paths Pa,o from CY to p VCY, f i E V s.t.

G' = G;
While 3a s.t. A(cY) > 0 in G' Do

Select (r with A(a) > 0 in G';
Select p from all 0' with A@') < 0 s.t. Pa,o is shortest;
Add min{A(a), A(/3)} copies of the edges (transitions)

A(a) > 0 > U P) ;

of Pa,p to G';
Find an Eulerian cycle E in G".}

Fig. 2. An algorithm to generate a minimum tour of the FSM.
A (z) denotes outdeg(z) -indeg(z).

all faults of F p and, if is non-empty, all faults of FA.
Faults 3~ do not have to be considered because they
are not detectable by any vector of the cube I,. If
turns out to be empty (i.e., when F p would be empty),
then any randomly selected vector of I , is included in
it to take care of FA. The final test is derived from
7 = U, as described in the next subsection.

Finally, we turn to the fault excitation problem.
An unrestricted fault model requires us to consider all
possible environmental conditions, leading to an unac-
ceptably large test set. Therefore, in our experiments
we have considered each fault of 3% only once for test
generation for each input cube. But if the same fault
occurs in F, and F3, then the test is generated for it
in both of the cases.

3.2 Functional Tests for Manufacturing Faults

Unlike design verification, a functional test for
manufacturing defects is more difficult because neither
the secondary inputs are controllable nor the secondary
outputs observable. Empirically, the effectiveness of
the many tour-based functional test methods [3], [5]
indicates that distinguishing the faulty state from the
good one by an arbitrary vector sequence is not difficult
if it is long enough and the FSM is reduced. There-
fore, in this work we propose to perform sequential
circuit testing by a tour E of the states of the FSM
which covers all the transitions of 7 given in the pre-
vious section. The tour must not pass through any
invalid state otherwise the test will not be functional.
The algorithm for the computation for E appears in
Figure 2. Here V denotes the set of states and R is
the set of transitions. The algorithm computes & as
the shortest closed walk passing through all the edges
of the labeled graph (V, 7). An Eulerian cycle (cycle
passing through each edge exactly once) exists if and
only if the in-degree and the out-degree match for ev-
ery node. This is achieved in (V, 7) by adding copies
of some of the edges (making it a multi-labeled graph).

3.3 Related Prior Work

We introduced the border gate approach earlier in
the context of combinational logic verification [6]. The
key idea of our approach, setting input don't cares to
maximize path sensitization in the circuit, is closely re-
lated to earlier papers on automatic test pattern gen-
eration for manufacturing faults.

RAPS (Random Path Sensitization) [7] and
SMART [8] have a similar goal of generating tests that
deliberately sensitize a large number of signal paths
towards the POs without targeting specific faults. Un-
like this paper, however, they assume no primary input
constraints.

SMART'S restart gates are related to our border
gates. A gate is defined to be a restart gate if it has
one controlling input, its output is critical, and none of
its inputs are critical. This can happen only if some of
the inputs to the gate are unspecifiied and the output is
specified. Thus, restart gates are lborder gates but the
converse is not true. For example, gate C in Figure 1 is
a border gate but not a restart gate because its output
is not critical.

The approach presented in this paper is similar to
the SMART approach in using border (restart) gates
to help extend sensitized paths. The main difference is
that SMART ignores multi-branch sensitization paths,
which appear more frequently in larger and more com-
plex designs. The multiple branches may pass through
the same gate when gates have more than one con-
trolling input so such cases cannot be ignored. Fur-
ther, treating one restart gate independent of the oth-
ers cannot handle the sensitized :paths with branches
in different restart gates.

4. Implementation

The observation in the last section provides the ba-
sis for a scheme to generate tests that cover all the
faults Fp for a FSM transition. R-ecall that for design
verification the secondary inputs and outputs can be
assumed to be accessible, hence it suffices to carry out
combinational test generation for each transition inde-
pendently. Then, the algorithm in the last section can
be employed to generate a functional test sequence.

For the input/output specification { ((I ~) / (O ~)) l z E
2) corresponding to a transition i, the sequence of
steps of our test generation strategy can be described
as in the following subsections.

4.1 Exact Simulation

The exact simulation can be performed by improv-
ing on the results of the inexact simulation using a line
justification procedure that is commonly used in au-
tomatic test pattern generation [!>I. For a node (line)

192

LogicSimulate(C:circuit, B:input cube) {
3_valuesimulate(C,B) ;
For all the gates in the cone of specified outputs {

Create a list L of gate output nodes with X value
sorted in order of their level from input to output }

While L is non-empty{
Remove node N at the head of the list L
If -Justify(N,O) then {

Assign 1 to N;
Carry out deterministic implications and update L ; }

Assign 0 to N ;
Carry out deterministic implications and update L ; } }

Else If -Justify(N, 1) then {

For each primary output 2 with specified value 21 {
If -Justify(Z, V) then (report design error)}}

Fig. 3. An algorithm to do exact three-value logic simulation.

N in the circuit, the process Justify(N, w) determines
if there is an input vector contained in the input cube
that would set node N to the binary value U. For
each node N with an X value after three-value simu-
lation, if the call to Justify(N,O) fails we can imme-
diately change the X value to 1 because it is not pos-
sible to justify a 0 value at node N by any setting of
the unspecified inputs. Otherwise, we make the call
Justify(N, 1). If this fails, the node can be set to 0,
otherwise, it must remain as X. Since the number of X
values is bounded by the circuit size, at most a linear
number of calls to Justify is necessary for the exact
simulation.

This idea is incorporated in the algorithm shown
in Figure 3. After the (inexact) three-value simula-
tion, the algorithm collects all gate output nodes with
X value that are in the cone of the specified outputs.
These are tested for a constant value as above in order
of their level from input to output. Whenever a node
value changes, deterministic implications of the change
are propagated to other nodes in the circuit and the
list of remaining X nodes is pruned accordingly. In the
final step, the algorithm checks for any discrepancies
in the primary output values between the specification
and exact simulation. In that case, a design error is de-
tected independent of the settings of X values on the
input.

Example: The circuit shown in Figure 4 will be
used as a running example. For the input cube shown
in the figure, assume both outputs are specified to be 1.
Figure 4(a) shows the signal values after the (inexact)
three-value simulation upon which the following sorted
list L will be created:

L = { k , h m , q , r , s }

It is possible to justify both 0 and 1 on k. Therefore
this node retains its X value. The same is true of node
1 . However, Justify(m,O) fails therefore m is assigned

193

d x

' 0

X I

x 9

(bl

Fig. 4. Three-valued vs. exact simulation

constant 1 and lines n, p , q , T , s, t , U , and U are also
assigned 1 by deterministic implication. As a result,
the list L is pruned and becomes null, completing the
while loop. The result is shown in Figure 4(b). The
primary-output check in the last step succeeds as the
PO values after exact simulation match the specifica-
tion, hence no design errors are revealed at this stage.

4.2 Border Gate Identification

Border gates are identified via simulation. The ex-
ample in Figure 4(b) has three border gates that are
shown highlighted.

4.3 Fault List Generation

The fault list is generated following the Observa-
tion in Section 3 with some exceptions. We include
the faults at the inputs of border gates of Types 0 and
1 as stated. However, for ease of computation, we in-
clude a superset of the fanout stems indicated in the
Observation. Instead of verifying that a binary-valued
fanout stem is included in the cone of all dominating
inputs of a Type-2 border gate, we include all binary-
valued stems in the cone of any border gate.

For the three border gates in the running example,
the faults on the following lines will be included: IC, 1 ,
q, r , and U. In addition, because the constant-valued
stem m is in the input cone of q and r , the fault on
line m will also be in the fault list.

Fig. 5. Structural change to constrain input value.

4.4 Constrained Test Genera t ion

The test generation must be carried out under in-
put constraints; only the unspecified values in the in-
put cube can be changed during test generation. It
is possible to modify a PODEM-like algorithm that
searches for a solution on a decision tree to allow
branching and backtracking only on the unconstrained
inputs. We accomplish the same goal by running a
standard test generator [lo] on a modified circuit that
constrains the inputs internally (see Figure 5). A
greedy approach is used to cover as many faults as pos-
sible by a single test vector before considering another
vector in the input cube.

For the running example, the fault on line IC is de-
tected by the test cube abcdefg = llOllOX which also
detects the fault on line m. Further expanding the test
cube to 1101100 detects the fault on line U . Similarly,
the test 1111100 detects faults on lines 1 m and U . The
faults on lines q and r are not detectable by any vector
in the original input cube. Therefore, only two vectors
in the input cube cover all the faults detectable by all
eight vectors included in the cube. There are 12 such
faults on lines b, d, h, i, j , I C , 1 , m, s, t , U, and U.

5. Exper imen ta l Resul t s

We implemented the test generation described in
the previous section and conducted experiments using
a representative sample of 12 FSMs included in the
1991 logic synthesis benchmarks. We excluded from
consideration small machines and those that include
very few or no don't cares in their transitions because
our approach does not provide any additional benefit
in these cases.

The structural representations for the FSMs were
produced using SIS [ll] to simplify and synthesize the
circuits using the rugged script. Technology mapping
was limited to four-input simple gates. Each transition
was expanded into one or more input vectors using the
border gate approach and a shortest tour was obtained
to cover all the resulting transitions. These tests are
referred to as BG in reporting the results.

For comparison, we also obtained simpler func-
tional tests (hereafter referred to as ST) in which suc-
cessive randomly-generated tours (independent from
the BG tours) were merged so that the tour length
matched the tour length of the BG test set. The

don't cares were randomly-filled in this case. Initially
this test is equivalent t o the functional test of Karam
and Saucier [3] but expanded with additional tours to
match the BG test length.

In the first set of experiments, we compared the BG
and ST tests for their coverage of manufacturing faults.
To this end, the tests were applied as sequences of vec-
tors corresponding to their respective tours, and their
coverage was evaluated using the HOPE fault simula-
tor [13]. The results are presented in Table I. For each
circuit the Table shows the nuniber of states in the
FSM followed by circuit statistics giving the number
of primary inputs, primary outputs, gates, flip-flops,
and number of faults. The last, three columns give the
test length and the comparison of the fault coverage
for SAF faults. It will be seen that the coverage of the
BG tests is consistently higher.

In the second set of experiments, the tests were
evaluated for their coverage of d!esign verification er-
rors. As explained in Section 2, f'or design verification
it is enough to apply the tests on the underlying com-
binational. logic circuit. A recent program, ESIM [12],
was used for this evaluation. This simulator can pro-
duce coverage of a test for single design errors of the
following kinds: gate substitution errors (GSE), gate
count errors (GCEs), input count errors (ICES), and
wrong input errors (WIEs). The GSE class is further
subdivided into errors of single input gates (SIGSEs)
and multiple input gates (MIGSEs). The GCE class
is also divided into two subclasses corresponding to
extra or missing gates (EGE and MGE, respectively).
Similarly there are two subclasses, EIEs and MIEs cor-
responding to the class ICE.

Table I1 shows the results for i,he coverage of design
errors. For each circuit, the test lengths are identical
to the test lengths shown in Table I. This is followed
by the coverage of the various classes of design errors.
The results show that the BG tests cover more design
errors than the ST tests for a majority of the tested
circuits.

6. Conclusion

The fault model and the border-gate approach to
test generation allows a unified approach to test gen-
eration for detecting design errors and manufacturing
faults. The manufacturing tests are functional hence
can be applied at the rated speed of the circuit. The
results on the benchmark circuit show that our tests
provide a high coverage for the design errors and SAF
faults.

Acknowledgments: This work was supported by the
NSF Grant No. CCR-9971167 and the University of

194

TABLE I
FAULT COVERAGE

Circ
cse
ex1
ex6
kevb

Comb # Total Test % Flt Cov
Sta PI PO Gates FF Flts Len ST BG

16 7 7 135 4 368 516 97.8 99.1
18 8 19 121 5 366 925 99.7 99.7
8 5 8 68 3 189 70 97.8 98.4

19 7 2 158 5 396 705 86.8 99.7

TABLE I1
COVERAGE OF DESIGN ERRORS

Nebraska-Lincoln Center for Communication and In- design circuits,” IEEE Design and Test, pp. 43-54, August
formation Science. We are grateful to Dr. Hussain
Al-Asaad for making ESIM available to us.

References
[l] K.-T. Cheng and J.-Y. Jou, ‘‘Functional test generation for

finite state machines,” in Proceedings International Test
Conference, pp. 162-168, 1990.
I. Pomeranz and S. M. Reddy, “Test generation for multiple
state-table faults in finite state machines,” IEEE Transac-
tions on Computers, vol. 46, pp. 783-794, July 1997.
M. Karam and G. Saucier, “Functional versus random test
generation for sequential circuits,” Jour. Electronic Test-
ing: Theory and Applications, vol. 4, pp. 33-41, 1993.
I. Pomeranz and S. M. Reddy, “On achieving complete fault
coverage for sequential machines,” IEEE Transactions on
Computer Aided Design, pp. 378-386, March 1994.
J . B. Adams and D. S. Hochbaum, “A new and fast ap-
proach to very large scale integrated sequential circuit test
generation,” Operations Research, vol. 45, pp. 842-856,
November-December 1997.
M. Weiss, S. C. Seth, S. Mehta, and K. L. Einspahr, “Ex-
ploiting don’t cares to enhance functional tests,” in Pro-
ceedings International Test Conference, 2000. To appear.

[7] P. Goel, “RAPS test pattern generator,” IBM Technical
Disclosure Bulletin, vol. 21, pp. 2787-2791, December 1978.

[8] M. Abramovici, J . J. Kulikowski, P. R. Menon, and D. T.
Miller, “SMART and FAST: Test generation for VLSI scan-

(21

[3]

[4]

[5]

[6]

1986.
P. Goel, “An implicit enumeration algorithm to generate
tests for combinational logic circuits,” IEEE Transactions
on Computers, vol. C-30, pp. 215-222, March 1981.
H. K. Lee and D. S. Ha, “On the generation of test pat-
terns for combinational circuits,” Technical Report 12-93,
Virginia Polytechnic Institute and State University, Depart-
ment of Electrical Engineering, College Station, T X 77840
USA, 1993.
E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton, and
A. Sangiovanni-Vincentelli, “SIS: A system for sequential
circuit synthesis,” Memorandum UCB/ERL M92/41, Uni-
versity of California, Berkeley, University of California,
Berkeley, CA 94720 USA, May 1992.
H. AI-Asaad and J. P. Hayes, “ESIM: A multimodel design
error and fault simulator for logic circuits,” in Proceedings
of the VLSI Test Symposzum, pp. 221-228, 2000.
H. Lee and D. Ha, “HOPE: An efficient parallel fault simu-
lator for synchronous sequential circuits,” in Proceedings
29th Design Automation Conference, pp. 336-340, June
1992.
J . Dworak, M. R. Grimaila, S. Lee, L.-C. Wang, and
M. Mercer, “Modeling the probability of defect excitation
for a commercial IC with implications for stuck-at fault-
based ATPG strategies,” in Proceedzngs International Test
Conference, pp. 1031-1037, 1998.

195

	Design Verification and Functional Testing of Finite State Machines
	

	Design verification and functional testing of finite state machines - VLSI Design, 2001. Fourteenth International Conference on

