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Abstract
Purpose. The purpose of this work was to determine whether a new 

modeling methodology using fuzzy logic can predict skin perme-
ability coefficients that are given compound descriptors that have 
been proven to affect percutaneous penetration. 

Methods. Three fuzzy inference models were developed using subtrac-
tive clustering to define natural structures within the data and as-
sign subsequent rules. The numeric parameters describing the 
rules were refined through the use of an Adaptive Neural Fuzzy 
Inference System implemented in MatLab. Each model was eval-
uated using the entire data set. Then predicted outputs were com-
pared to the published experimental data. 

Results. All databases produced fuzzy inference models that success-
fully predicted skin permeability coefficients, with correlation coef-
ficients ranging from 0.83 to 0.97. The lowest correlation coefficient 
resulted from a model using log octanol/water partition coefficient 
and molecular weight as inputs with two input membership func-
tions evaluated by two fuzzy rules. The correlation coefficient of 
0.97 occurred when log octanol/water partition coefficient and hy-
drogen bond donor activity were used as inputs with three input 
membership functions evaluated by three fuzzy rules. 

Conclusions. Fuzzy rule-based models are a realistic and promising 
tool that can be used to successfully model and predict skin per-
meability coefficients as well as or better than previous algorithms 
with fewer inputs 

Keywords: fuzzy logic, skin permeability, percutaneous absorption, 
clustering, adaptive neural fuzzy inference system 

Introduction 

Skin permeability is an important parameter in the assessment 
of potential toxicity of environmental agents or the feasibil-
ity of a drug for transdermal delivery. Although skin penetra-
tion can be determined experimentally, a simple model that 
can predict this descriptor, based on few inputs, is invaluable 
to both risk assessment and drug-delivery investigations. A 
number of algorithms to predict skin permeability coefficients 
have been developed, using empirical, analytical, and theoreti-
cal approaches (1–9). In his often-cited study (1), Flynn related 
the skin permeability coefficients (Kp) of over 90 compounds 
to their octanol/water partition coefficients (Kow). Potts and 
Guy (2) used multiple regression to develop an equation in-
volving both Kow and molecular weight (MW) to predict skin 

permeability coefficients and then tested that algorithm with 
the Flynn database. In their revised model, Potts and Guy (3) 
related the skin permeability coefficient to molecular volume 
(MV) and hydrogen bond donor and acceptor activities by 
multiple regression analysis. Abraham et al. (6) also developed 
an equation using hydrogen bond activity parameters, which 
was very similar to Guy and Potts (3) but was able to predict 
skin permeability coefficients for additional compounds, in-
cluding some steroids. 

The purpose of this work was to use the above-men-
tioned, previously published databases of compounds to de-
velop a fuzzy model to predict skin permeability coefficients. 
Fuzzy logic is a powerful tool that has been successfully used 
for modeling, control systems, pattern recognition, image 
processing and detection of distorted plethysmogram pulses 
(10–13). It differs from traditional Boolean logic in that input 
and output values to a fuzzy inference model can belong to 
multiple sets with different membership values in each set 
(14). Most human skin permeability models have been devel-
oped by postulating factors that may influence penetration 
and then using various mathematical techniques, typically 
multiple regression, to verify that influence. The objectives 
of this work were to assess the performance of a fuzzy infer-
ence system for predicting skin permeability coefficients and 
compare that to more traditional models. 

In comparing these fuzzy models with previously pub-
lished algorithms, the criteria for a “good” model are that its 
outputs closely correlate to experimental outputs (reflected in 
a correlation coefficient), it uses few inputs, it enhances under-
standing of the phenomenon, and it is easy to use. 

Theory 

Introduction to Fuzzy Modeling 
All modeling schemes, whether based on traditional math-
ematical principles or developed through fuzzy techniques, 
represent a mapping of a set of inputs to a set of outputs. For 
predicting chemical penetration through the skin, the out-
put is the skin permeability coefficient and inputs include 
a variety of descriptors, such as MW, MV, log octanol/ wa-
ter partition coefficients, and hydrogen bonding activity (1–
6). The difference between models previously published and 
the one described in this article is simply the method used to 
map the input to output. Many models are developed with-
out a complete knowledge of the system being interpreted or 
predicted. For instance, analytical models are usually satis-
factory at predicting outputs but can be oversimplifications 
of the system. This is because the system cannot be fully de-
scribed, as all of the factors involved are either not known or 
completely understood. Independent of the method used, all 
traditional types of models impose a form of mapping based 
on known information. A set of conventions used to create 
a form or outline must be assumed to develop the model. 
An alternative method is to use a “model-free” form to map 
from a set of inputs to an output. In this case, natural rules 
are developed from the data rather than imposing rules on 
the modeling system. Therefore, in a model-free system, the 
rules are developed through clustering algorithms that di-
vide the data into natural partitions. Mapping is then opti-
mized through various techniques. The result of this “model-
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free” or even “structure-free” model is still a mapping from 
inputs to outputs, similar to traditional algorithms. 

The rules, whether imposed by the modeler or determined 
from the data, can be crisp (with the truth of the proposi-
tions being either true or false) or fuzzy (whereas the truths 
of propositions lie along a continuum along the unit interval). 
For instance, in Kirchner et al. (5), a chemical database is di-
vided into subgroups of compounds with similar molar vol-
umes. Linear regression is performed within each group to 
develop a relationship between log Kow and log Kp. Through 
these subgroups or clusters (as described in the following sec-
tion), Kirchner et al. (5) imposed rules on the system and the 
model was forced to conform to these rules. If, for instance, 
the data had clustered into subgroups, in which the members 
had partial membership or degree of belonging (as described 
in the following section), the resulting rules would be fuzzy. 

Fuzzy Sets and Membership Functions 
Phenomena to be modeled are complex and often riddled with 
uncertainty in the form of ambiguity. Traditionally, uncer-
tainty is described in mathematical models by random char-
acteristics, but fuzzy set theory allows this uncertainty to be 
represented through possibility rather than probability. Ross 
states that most uncertainty, however, is not truly random and 
can better be represented through fuzzy set theory (11). 

Classic set theory defines objects as either a full or non-
member of a set. In fuzzy set theory, an element can be a par-
tial member of the set. The element will have a degree of 
membership within a set, which can be defined by a particu-
lar membership function (14). For example, the set of chem-
icals with a MW from 500 to 700 is a classic or “crisp” set; 
the set of chemicals with MW in the region “around 600” is 
fuzzy. In a crisp or Boolean set, an element is either a full 
member of a particular set, represented by a membership 
value of one on the y-axis of Figure 1a, or is not a member 
represented by a membership value of zero. In a fuzzy set, 
elements can have degrees of membership on the real con-
tinuous interval [0,1] with the endpoints of the interval (zero 
and one) again representing no or full membership, respec-
tively, as demonstrated in Figure 1b. Infinite values between 
these endpoints represent various degrees of membership 
for elements of the fuzzy set. 

The use of membership functions is the major difference 
between crisp and fuzzy sets. In crisp sets, the membership 
function is unique, whereas fuzzy sets can have an unlimited 
number of membership functions and this flexibility trans-
lates to the utility of these types of sets (11). The membership 
function is the avenue through which to classify the fuzzi-
ness of a set. Membership functions can be assigned by in-
tuition, inference, rank ordering, neural networks, genetic 
algorithms, and inductive reasoning, in addition to several 
other methods (11). 

Clustering Methods 
For complex systems or databases, an effective modeling ap-
proach can be to partition or “cluster” the available data into 
subsets and then approximate each subset by a simple model. 
By clustering data, not only can structures in the data be re-
vealed, but also the complexity of the model can be reduced. 
Hard or crisp clustering methods, based on classic set theory, 
partition the data into separate, mutually exclusive subsets 

and require complete or no membership of an object to a clus-
ter. Fuzzy clustering methods allow objects to belong to multi-
ple clusters at one time with different degrees of membership. 

Fuzzy clustering is a means to organize data into groups. 
Each group is formed based upon similarity of the data be-
longing to that group or cluster. Data that belong to a partic-
ular cluster have more in common with other data belonging 
to that cluster than to data not belonging to that cluster. Fur-
ther, given the nature of fuzzy sets, each data point can have 
membership in a variety of different clusters. 

Procedurally, the degree of similarity, or membership, 
is determined in a mathematical sense (generally some dis-
tance norm). Particular aspects of these strategies depend 
upon the clustering method used. The range of complexity, 
appropriateness, and ease of implementation of fuzzy clus-
tering methodologies is vast. A good treatment of the topic 
can be found in Babuška (12). Some of the fuzzy clustering 
methods include partitioning (15,16), subtractive clustering 
(17), fuzzy c-means, Gustafson-Kessel, fuzzy maximum like-
lihood estimate clustering, fuzzy c-varieties, fuzzy c-ellip-
totypes, fuzzy c-regression models, and possible clustering 
(12). Each of these methods has particular characteristics that 
dictate their respective usefulness for given situation. One of 
the limiting factors for these methods is that they are diffi-
cult to generalize, and therefore it is difficult to develop the 
computational tools required for repetitive data analysis. 

Figure 1. Membership functions of (a) a crisp set and (b) a fuzzy 
set. The crisp set includes all compounds with a molecular weight 
(MW) of 500 to 700 and assigns them a membership value of one. 
All other compounds with an MW outside that set have member-
ship equal to 0. The fuzzy set includes the set of compounds with an 
MW “around 600.”   
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One of the most simple and straightforward cluster-
ing methods is fuzzy partitioning (16). This method divides 
each dimension of the data space into groups. The division 
is based entirely upon the scale of the data space without re-
gard for the distribution or arrangement of the data within 
the data space. The resulting ordinate groups (or partitions) 
are the clusters that represent the input space. Similarly, the 
output data space is divided into groups. Rules are subse-
quently derived that map the data included in the input 
clusters to the clusters that represent the output space. This 
technique has merit and utility but is an unsophisticated ap-
proach to represent data and relationships between input 
and output data spaces. 

Chiu (17) proposed subtractive clustering to mathemati-
cally evaluate each data point as a potential cluster center. 
After the initial examination, the point that has the greatest 
potential to be a cluster center is identified. Given that selec-
tion, the potential of every other data point to be a cluster 
center is reduced based upon its proximity to the identified 
cluster center. Subsequent points are chosen and this pro-
cess continues until some stopping criteria are met. Given 
a variety of parameter designations, the result of this effort 
is a sense of data organization as expressed by the number 
of clusters identified, the location of the cluster centers, and 
the membership of each datum in each cluster. The proce-
dures for subtractive clustering have been coded for use in 
the Mat-Lab software (Version 6.1, Release 12.1, MathWorks, 
Inc., 2000) and this method is a good choice for modeling 
many forms of data. It is the method used in this work. 

In a rule-based system, each cluster (describing the input 
space) developed by the above procedures has a correspond-

ing rule (one rule per cluster). Each rule describes the rela-
tionship between the data in the cluster in the input space to 
the output space. Collectively, the compilation of rules maps 
the input data space to the output data space. For example, if 
the data space consisted of three variables, each of the rules 
would include three variables. 

Methods 

The development of clusters and subsequent rules is con-
ceptually sufficient to describe the mapping from the in-
put space to the output space. However, refinement of the 
numeric parameters is useful to enhance the model fit. The 
means chosen was the Adaptive Neural Fuzzy Inference Sys-
tem (ANFIS; 16) as implemented in the MatLab Fuzzy Tool-
box. A complete discourse on the implementation of these 
techniques is beyond the scope of this work. However, rele-
vant features and context are described below. 

The first step to using the fuzzy rule-based model is to de-
velop the clusters and subsequent rules. The refinement of 
these rules is accomplished using by the Sugeno inference 
system (18), in which the antecedents are fuzzy propositions 
but consequences are crisp functions. The specific mapping 
to the crisp function is determined within ANFIS (16). The 
implementation of ANFIS using MatLab requires that the 
data set be divided into “training” and “checking” (sub)sets 
of the data. The training data (sub)set is representative of the 
entire data space. The selection of the training data (sub)set 
is accomplished in a variety of ways. In this work, one-half 
of the entire data set was selected as the training data. The 
checking data (sub)set is similarly selected. 

Figure 2. MatLab (Mathworks, Inc., 2000) interactive interface describing Flynn Fuzzy Model. Each row of membership functions represents 
a rule and consists of two membership functions, one corresponding to each input. The first two columns represent the two inputs, molecu-
lar weight and log Kow, respectively. The last column represents the weighted output (log Kp) of the each of the two rules. For each individual 
membership function, the range of input values is represented by the values on the x-axis (molecular weight or log Kow) and the membership 
value (μ) is represented on the y-axis. The shaded region is a visual representation of the resulting membership value of the input value. The 
rule outputs (a and b) are represented by the multicolored bars. The gray portion represents the position of the rule output on the abscissa 
and the black portion of the bar represents the minimum of the two membership values of the inputs in each rule, indicated by the horizontal 
arrows. This interface gives access to the model, in which compound descriptors can be entered by moving the vertical lines (i and ii), which 
results in the weighted output (c). For a compound with molecular weight (i) and log Kow (ii), the crisp output of the model (c) is the weighted 
average of the two crisp outputs (a and b) of the two rules. 
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Using these data subsets, the ANFIS program modifies the 
membership functions of the antecedents to monitor a gradi-
ent vector that determines how well the fuzzy inference sys-
tem is modeling the data set. Once this vector is determined, 
optimization of the parameters is accomplished to reduce er-
rors, however the checking data (sub)set is used to monitor 
occurrences of over fitting. 

Thus the skin permeability models presented here were 
developed by subtractive clustering and adaptive neural tech-
niques that learned from the data obtained from previously 
published studies (1, 3, 6). Three separate models were de-
veloped using the ANFIS program in the MatLab software 
and each was based on a different group of inputs/outputs. 
The data were divided into two subsets, defined as the train-
ing and checking sets, which were used to train the model and 
then to prevent over fitting the data. The model was then eval-
uated by running the entire data set through it and this output 
data was then compared to the published experimental data. 

Several fuzzy-ruled based models were developed to pre-
dict skin permeability coefficients of chemicals using various 

combinations of inputs. All fuzzy logic models predicting skin 
permeability were developed using MatLab software. The first 
model was developed using the database collected by Flynn 
(1), which includes MW and log octanol/water partition co-
efficients (log Kow) for each chemical. These two descriptors 
served as the inputs to the model, and the log skin permeabil-
ity coefficient (log Kp) was the output (as in all models). Next, 
models were developed with additional inputs. The second 
model was derived from the database compiled by Potts and 
Guy, (3) which is a subset of Flynn’s original database and in-
cludes solvachromatic parameters for the compounds such as 
hydrogen bond donor activity (solute summation hydrogen-
bond acidity, Σ2

H), hydrogen bond acceptor activity (solute 
summation hydrogen-bond basicity, Σβ2

H), dipolarity/po-
larizability (π), and the molar refractivity (R2). The last fuzzy 
model to predict skin permeability coefficients was developed 
from the data compiled by Abraham et al., (6) which was an 
extension of the Potts and Guy database, with the same inputs 
but some additional compounds. 

Additional code was written to supplement the MatLab 
functions that enabled a combination of inputs to be tested 
in the model formulations. The “Flynn” fuzzy model (n = 
94) resulted in a generation of three models for all combina-
tions of MW and log Kow as inputs. The Potts and Guy fuzzy 
model (n = 37) tested a combination of five inputs, includ-
ing MV, Σ2

H, Σβ2
H, π, as well as log Kow, which was added 

as an input because it appeared from the Flynn model to be 
important. Molar refractivity (R2) was not included as an in-
put because it has been determined that it is not important 
(3). Finally, the Abraham fuzzy model data set (n = 54) ex-
panded on the Guy and Potts database and used the same 
inputs as the Potts and Guy fuzzy model, with the replace-
ment of MV with MW. By testing combinations of inputs, 
not only was the best fuzzy model determined, but the fac-
tors that are most important to predicting skin permeability 
were also discerned. 

Figure 3. Predicted skin permeability coefficients, as determined by 
Flynn Fuzzy Model, vs. experimental skin permeability coefficients 
from Flynn (1) with Kp in cm/h. 

Figure 4. MatLab (Mathworks, Inc., 2000) interface describing Potts and Guy Fuzzy Model. Each row of membership functions represents a 
rule. The first two columns represent the two inputs, Σ2

H
 and log Kow respectively. The last column represents the weighted output (log Kp) 

of the each of the three rules. Range of input values is represented by the values on the x-axis and the membership value (μ) is represented on 
the y-axis. The shaded region is a visual representation of the resulting membership value of the input value. The rule outputs (a, b, and c) are 
represented by the multicolored bars. For a compound with Σ2

H
 (i) and log Kow (ii), the crisp output of the model (d) is the weighted average 

of the crisp outputs (a, b, and c) of the three rules.  
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Results and Discussion 

For each of the three databases, all combinations of inputs 
were used to develop models, but only the best fuzzy model 
developed from each database is reported. The best Flynn 
fuzzy model included two inputs (MW and log Kow) as was 
expected. The generated fuzzy model partitioned the data set 
(input/output) into two clusters and for each of these clus-
ters, defined associated membership functions. For each clus-
ter there was an associated rule as demonstrated in Figure 
2. Each row of membership functions represents a rule. The 
first two columns represent the two inputs, MW and log Kow, 
respectively, and the last column represents the weighted 
output (log Kp) of the each of the two rules. The crisp output 
of the model is the weighted average of the two crisp out-
puts of the two rules. The weighting is based upon compli-
ance (or membership) of the input to the cluster describing 
the input space. There was a good correlation (r2

 = 0.82) when 

the predicted output of this model was compared to experi-
mental values (Figure 3). Previously published algorithms 
using multiple regression techniques (2) obtained a correla-
tion coefficient of r2

 = 0.67 with the same two inputs. The re-
sults from the “Flynn” fuzzy model validate that MW and 
log Kow can be used to predict skin permeability and dem-
onstrates that fuzzy logic can successfully model this param-
eter as well as, if not better, than traditional analytical tech-
niques (2). 

The best Potts and Guy fuzzy model used a combination 
of just two inputs (Σ2

H, termed Hd in Reference 3 and log 
Kow) and three clusters (Figure 4). The additional third row 
(when compared with Figure 2) represents the third cluster. 
Comparing the model outputs to experimental data resulted 
in an excellent correlation coefficient, r2

 = 0.97 (Figure 5). A 
previous multiple regression model (3) using these hydro-
gen bonding activity factors, in addition to molar volume, 
resulted in a correlation coefficient of 0.94. 

The best “Abraham” fuzzy model also used Σ2
H

 and log 
Kow as inputs and evaluated these inputs using three rules 
(Figure 6). When the outputs of these models were evaluated 
against experimental values (Figure 7), an excellent correla-
tion coefficient was observed (r2 = 0.95) and corresponds to 
similar previous results using regression techniques (6). The 
advantage of the fuzzy model is the fewer number of inputs 
necessary to generate the output (two inputs in the fuzzy 
model vs. five inputs using regression techniques (6)). 

Overall, the objective of these fuzzy models was to ver-
ify that fuzzy logic is a viable modeling alternative. To do 
this, a comparison between previously reported and simi-
lar fuzzy models was performed in Table I. From a compar-
ison of several factors, including correlation coefficients and 
number of inputs required for successful mapping, it is ob-
vious that fuzzy logic is a valid modeling approach that is 

Figure 5. Predicted skin permeability coefficients, as determined by 
Potts and Guy Fuzzy Model, vs. experimental skin permeability co-
efficients from Potts and Guy (3), with Kp in cm/s. 

Figure 6. MatLab (Mathworks, Inc., 2000) interface describing Abraham Fuzzy Model. Each row of membership functions represents a rule. 
The first two columns represent the two inputs, Σ2

H
 and log Kow respectively. The last column represents the weighted output (log Kp) of the 

each of the three rules. Range of input values is represented by the values on the x-axis and the membership value (μ) is represented on the y-
axis. The shaded region is a visual representation of the resulting membership value of the input value. The rule outputs (a, b, and c) are rep-
resented by the multicolored bars. For a compound with Σ2

H
 (i) and log Kow (ii), the crisp output of the model (d) is the weighted average of 

the crisp outputs (a, b, and c) of the three rules.   
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at least as good as, if not better, than some other traditional 
methods. Additionally, this modeling system also reveals in-
formation about the system being modeled, as evidenced by 
the fact that the fuzzy models identified the same inputs as 
being central to predicting skin permeability, such as size 
and hydrogen bonding activity, which have previously been 
elicited by other modeling forms (1–8). 

Fuzzy models were successful in predicting skin permea-
bility coefficients. However, these models could be improved 
with different and perhaps more sophisticated clustering 
methods. The clustering methods available in the MatLab 
software are limited, but there have been other methods de-
veloped (16) not yet integrated into the software. Addition-
ally, these fuzzy models were based on rather small data-
bases. Increasing the number of compounds for which all 
input descriptors are available could create a data set that 
might better represent the data space and thus result in an 
improved model. 

These models have proven that fuzzy logic is a realis-
tic and promising tool that can successfully model skin per-
meability coefficients as well as or better than previous al-
gorithms. More importantly, these fuzzy models reveal that 
fewer inputs are needed to predict skin permeability. Fu-
ture studies should include attempts to study and extract in-
formation from the models and cluster structures within, to 
gain a better understanding of the essential components of 
skin permeability. Additionally, future models will attempt 
to capitalize on the ability of fuzzy modeling to integrate ex-
pert opinion and conditional parameters. Thus with larger 
data sets, more sophisticated clustering techniques, and ex-
pert insight into the data structure, fuzzy logic could be the 
ideal approach to modeling skin permeability, along with 
many other parameters in medicine. 
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Abraham Fuzzy Model, vs. experimental skin permeability coeffi-
cients from Abraham et al. (6), with Kp in cm/s.  

Table I. Comparison of Previously Published Models to Three 
Fuzzy Models 

Model          Database  
reference     reference           Inputs                                n        r 2

 

(2)a
 	 (1) 	 log Kow, MW 	 93 	 0.670 

(3) 	 (3) 	 MV, Σ2
H, Σβ2

H
 	 37 	 0.940 

(6) 	 (6) 	 R2, π, Vx, Σ2
H, Σβ2

H
 	 53 	 0.958 

A 	 (1) 	 log Kow, MW 	 93 	 0.828 
B 	 (3) 	 Σ2

H, log Kow 	 37 	 0.973 
C 	 (6) 	 MW, Σ2

H
 	 53 	 0.959 

A. Fuzzy model described in Figures 2 and 3 (Flynn Fuzzy Model). 
B. Fuzzy model described in Figures 4 and 5 (Potts and Guy Fuzzy 

Model). 
C. Fuzzy model described in Figures 6 and 7 (Abraham Fuzzy 

Model). MW, molecular weight. 
a
  Refers to reference numbers.  
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