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Solutions of the heat conduction’equation in multilayers for photother 
deflection experiments 

William A. McGahan 
Center for Microelectronic and Optical Materials Research and Departments of Electrical Engineering 
and Physics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0511 

K. D. Cole 
Department of Mechanical Engineering, University oj* Nebraska-Lincoln, Lincoln, Nebraska 68588-0511 

(Received 7 October 1991; accepted for publication 4 May 1992) 

Exact expressions are presented for the deflection of a laser beam passing parallel to and above 
the surface of a sample heated by a periodically modulated axisymmetric laser beam. The sample 
may consist of any number of planar films on a thick substrate. These exact expressions are 
derived from a local Green’s function treatment of the heat conduction equation, and contain an 
exact analytical treatment of the absorption of energy in the multilayered system from the 
heating laser. The method is based on calculation of the normal component of the heat fluxes 
across the layer boundaries, from which either the beam deflections or the temperature 
anywhere in space can be easily found. A central part of the calculation is a tridiagonal matrix 
equation for the N+ 1 normal boundary fluxes, where N equals the number of films in the 
sample, with the beam deflections given as simple functions of the normal heat flux through the 
top surface of the sample. Even though any layer or layers in the sample (including the 
substrate) can be optically absorbing, the final results are remarkably simple both in form and 
ease of calculation, even for large numbers of layers. In the case of an infinitesimal probe beam, 
the beam deflections are given by an expression involving a single numerical integration which 
can be eliminated for data analysis by Fourier transforming the experimental data. A general 
expression for the measured signals for the case of four-quadrant detection is also presented and 
compared to previous calculations of detector response for finite probe beams. 

I. INTRODUCTION 

The measurement of thermal properties of thin-film 
media is an important issue in magneto-optical recording, 
ion implantation, electron-beam lithography, and many 
other areas of materials science and processing. The 
present paper is concerned with photothermal deflection 
methods for the measurement of thermal properties of thin 
films. Photothermal deflection (PTD) experiments are a 
powerful tool for the measurement of thermal properties 
(conductivity, diffusivity) of both bulk materials and thin 
films.lT2 In these experiments, a periodically modulated la- 
ser beam excites thermal waves in the sample which in turn 
heat the ambient region above the sample. The resulting 
gradient of the temperature (and hence the index of refrao 
tion) in the ambient above the sample can be measured by 
detecting the deflection of a second laser beam passing 
above the sample and parallel to the sample surface. The 
probe beam is initially centered on a four-quadrant silicon 
photodetector, such that deflection signals can be mea- 
sured as differences in voltage between the upper and lower 
or left- and right-hand-side halves of the detector. The 
ambient medium through which the probe beam passes is 
usually air, but other gases or t&rids can be used to increase 
the deflection signal. The deflection of the probe beam is 
measured synchronously with respect to the chopping of 
the heating laser beam, and has components parallel and 
normal to the surface of the sample, each of which has 
components both in and out of phase with the modulation 
of the heating laser beam. Nonlinear regression is used to 
find values of the sample thermal properties and experi- 

mental parameters such that calculated probe beam deflec- 
tions match the experimental deflections as closely as pos- 
sible. The calculation of probe beam deflections, then, is an 
important part of the PTD measurement technique. 

For small temperature changes, the angular deflection 
of an infinitesimally thin probe beam passing through a 
region of nonuniform temperature is given by3 

s 1 dn 
M=- ~~TVT(r)xdr, 

where n is the index of refraction of the ambient medium, 
and the integral is evaluated along the path of the probe 
beam. This expression can be readily evaluated once the 
temperature distribution in the ambient (at least along the 
beam path) is known. 

Our research in PTD theory is motivated by our work 
with PTD measurements on multilayers. We are particu- 
larly interested in measuring the thermal conductivity of 
thin films used for magneto-optical recording media. Cur- 
rently, the most widely used magneto-optical media are 
rare-earth/transition-metal-based alloys, which are highly 
reactive in atmosphere and require protective coatings to 
preserve lllm quality. Thin-film samples of these materials 
would necessarily consist of at least two or three films on a 
thick substrate, hence a multilayer formalism is required 
for analysis of the experimental data. Also, we are inter- 
ested in dielectric films with low optical absorption. For 
this reason we also require an exact optical model to treat 
the distribution of heat absorbed within the dielectric, as. 
well as within an additional absorbing layer or substrate. 
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To our knowledge, there is no PTD theory in the literature 
that combines an exact treatment of optical absorption; 
axisymmetric laser heating, multiple layers, and ease of 
calculation, which is important if the theory is to be used 
for regression analysis of data. I.ndividual parts of a com- 
plete theory for multilayers are available in the literature of 
PTD theory, and we discuss pertinent literature below. 

There is an extensive literature concerning theoretical 
temperature prediction in multilayer structures heated by 
laser beams. Since the initial calculations by Lax4 for a 
semi-infinite body with steady heating, there have been sev- 
eral predictive multilayer temperature calculations, subject 
to varying degrees of approximation. Burgener and Reedy’ 
studied a two-layer structure- with a continuous-wave 
scanned laser beam, and they indicateclhow’fo apply their 
method to N layers; however, laser heating was limited to 
complete absorption at the surface of a single film. Ander- 
son” included linearly varying absorption inside the mate- 
rial. Actual exponential absorption could be approximated 
by several piecewise-linear absorbing layers. Vaez Iravani 
and Wickramasinghe’ used the temporal Fourier trans- 
form to find the temperature in such a multilayer structure. 
The temperature expressions within each layer were linked 
to the adjacent layers by discontinuity conditions on tem- 
perature and heat flux at the layer interfaces. Kant8 studied 
the same absorption geometry but used the Laplace trans- 
form appropriate for the temperature rise caused by a sin- 
gle laser pulse. :_ I 

An important application for temperature calculations 
in multilayers is modeling the thermomagnetic write pro- 
cess in magneto-optical recording-media. Typically the-ge- 
ometry of interest is one or more transparent layers on top 
of one opaque (high absorption) layer, so the laser heating 
is limited to complete absorption in a region of infinitesi- 
mal thickness. Madison and McDaniel,’ in the most ambi- 
tious temperature theory to date, analyzed-a scanned laser 
beam with arbitrary absorption across one layer, for a sin- 
gle transient pulse of the laser beam. They use globally 
defined Green’s functions combined with Laplace trans- 
form methods to obtain’their solution, and they indicate 
how to extend the method to N layers.. As N increases the 
Green’s function for the system becomes increasingly com- 
plex. .L’ 

There is also extensive existing literature concerning 
PTD experiments and related theory: Mandelis and 
Royce” employed a one-dimensional model to calculate 
photoacoustic effects for a thin sample on a thick backing 
layer, with exponential absorption of heat in the thin sam- 
ple layer only. Jackson et al.” calculated deflections for 
one-layer systems, in which only the film was optically 
absorbing; and extended their calculation to include finite 
probe beam corrections for four-quadrant detection. Aa- 
modt and Murphy12-’ considered both bulk and single- 
layered structures and found expressions for the beam de- 
flections for several limiting cases, as well as a finite probe 
beam correction for the case of position sensitive detectors. 
The calculation by Grosse and Wynands13 of photoacous- 
tic IR spectra for multilayers is of particular interest, as 
they calculate the energy absorbed by the multilayer from 

the heating laser beam exactly. Their calculation is one 
dimensional, however, and requires numerical convolution 
over the heating distribution in the sample. Finally, Reich- 
ling, Griinbeck, and Schneider14 have recently published 
calculations for systems consisting of two layers on a thick 
substrate with exponential absorption in both layers or in 
one layer and the substrate. Their solution is based on the 
Hankel transform technique of Jackson et al.,‘! and allows 
for the inclusion of a thermal resistance between the two 
layers. They present plots of calculations performed with 
this formalism, but do not present the actual theory used 
for the calculations. 

The remainder of the paper is structured as follows: In 
Sec. II we show the necessary Green’s functions for both 
layers and semi-infinite regions, and apply Fourier and 
Hankel transformations to these functions. In Sec. III we 
treat the absorption of energy from the heating laser beam 
in multilayer systems analytically, and derive simple ex- 
pressions for the volume integrals in the Green’s function 
temperature expressions. In Sec. IV we derive temperature 
solutions for the two-body case in which the sample is 
assumed to be infinitely thick. In Sec. V we extend the 
two-body solution to systems with any number of layers. 
Section VI contains the derivation of simple expressions for 
probe beam deflections in PTD experiments based on the 
temperature solutions presented previously. Section VII 
presents a derivation of the_expressions for the signals mea- 
sured in PTD-experiments using four-quadrant detectors. 
Section VIII contains sample calculations demonstrating 
the usefulness of the theory, and Sec. IX summarizes this 
work and presents some conclusions. 

II. CALCULATION OF GREEN’S FUNCTIONS 

We will consider the case of an arbitrary number of 
films on a thermally and optically thick substrate. The 
geometry of the problem is shown in Fig. 1. Note that each 

+-Heating Laser 

Probe Beam 

I Layer 1 ,, 
4 4 

FIG. 1. Geometry for the photothermal deflection experiment. 
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region is given a numeric index (0 for the ambient, 1 for 
the first layer, etc.), and all quantities that refer to a spe- 
citic region will be subscripted with the number that in- 
dexes that region in Fig. 1. Also, we will use a local z 
coordinate in each region. For example, in any layer and in 
the substrate we fix z=O to be at the top of the layer, with 
the positive z direction being downward into the sample. In 
the ambient region above the sample we fix’>=0 at the 
ambient/sample interface with the positive z direction be- 
ing upward, away from the sample. This choice of local 
coordinates simplifies the task of matching solutions in 
each region to those of neighboring regions at the mutual 
boundaries. 

We seek solutions to the following axisymmetric heat 
conduction equation: 

(2) 

where a is the thermal diffusivity, K is the thermal conduc- 
tivity, and g(r,z,t) is the power per unit volume transferred 
to the medium at (r,z,t> by the modulated laser beam. The 
thermal conductivity and ditfusivity are assumed to be in- 
dependent of both radius and temperature. This is equiva- 
lent to assuming the sample is laterally homogeneous and 
that the rise of temperature induced by the laser heating is 
small enough that the sample thermal properties are con- 
stant over the resultant range of temperatures. We will find 
separate solutions in each homogeneous region (substrate, 
film, air), and enforce continuity of both temperature and 
normal components of the heat flux at the boundaries. We 
will also require that the temperature elevation go to zero 
at points far removed from the region of heating. 

The Green’s function G( r,z,t 1 r’,z’,r) for this problem 
is defined as the solution of Eq. (2) with the source term 
replaced by a S-function source located at (J,z’,r): 

id 3G a2G 1 dG 

( ) 

s(r-r’)6(z-z’)Lqt-T) 
-- r-g + -- 
Y ar ZF-a at=- 27-rar’ f 

(3) 

subject to the requirement that the normal derivative of G 
vanishes on the boundaries of the region of interest. Sepa- 
rate Green’s functions are required for semi-infinite regions 
and for layers. Beck et al. have found solutions of Eq. (3) 
of the form,15 for semi-infinite, dG/&=O at z==.O, 

G(r,z,tlr’,z’,T)=& .y&z-j lexp( -4zzJ 

x s m exp[ -B2dt-7) lL%UW 
0 

xJ0W)dLt (44 
for t > r, zero otherwise; and for layer, aG/az=O at both 
z=O and at z=d, 

G(r,z,tjr’,z’,T) =&d 

XCOS(y) exp( Tmzd~~f-r))] 

x s m exp[ --/32a(t-7) lPJ0(b) 
0 

XJdW>@, (4b) 

for t> r, zero otherwise, where Jo(x) is the zeroth-order 
Bessel function, and d denotes the thickness’ of the layer. 

The temperature at a point (r,z,t) in space time is then 
given by the sum of two integrals, 

T(r,z,t) =f ss 

t 

s ?---m.q(r’,~)G(r,t,tlr’,z’=z~T) 

X2m’ dr’ dT+-? 
ss 

t. 

K v 
gW,z’,d ?-=-CO 

X G( r,z, t ] r’,z’,T) 2rr’ dr’ dz’ d7, (5) 

where S is the surface of the region within which (r,z) is 
located, with differential area 2?rr’ dr’ and V is the volume 
of the region with differential volume 27~’ dr’ dz’. We as- 
sume that all regions of interest are bounded by planes of 
constant z’, and we denote the locations of the boundaries 
then by z’ = zV The quantity q(r’,T) is the normal com- 
ponent of the heat flux through the boundary of the region 
at (r’,z,r),. The first integral in Eq. (5) is a surface inte- 
gral, to be evaluated over the boundary surface of the re- 
gion of interest. The second integral is a volume integral 
which is taken over the entire volume of the region. Phys- 
ically, the second integral represents changes in tempera- 
ture caused by heat generated within the region of interest, 
whereas the first integral represents changes in temperature 
due to heat generated outside the region which diffuses into 
the region of interest across the boundaries. It is the un- 
known heat fluxes q(r’,T) that we will determine by en- 
forcing continuity of temperature and normal components 
of the heat fluxes at the boundaries. Note that since the 
Green’s functions in Eq. (5) are uonzero only for t > 7, the 
upper limit of the time integrations can be taken as t. 

As we are interested only in situations where the vol- 
ume heating source g(r’,z’,t) is periodic in time (i.e., mod- 
ulated laser beam) we will Fourier transform Eq. (5) to 
select the temperature response at the fundamental fre- 
quency of modulation. The use of lock-in detection in the 
actual PTD experiment allows us to effectively measure 
only the component of the beam deflections at the funda- 
mental frequency of modulation. In addition, we apply 
Hankel transformations to Eqs. (4) and (5) to eliminate 
difficulties associated with the Bessel functions in Eq. (4). 
The Fourier- and Hankel-transformed temperature is then 
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w,a f 1 =f 
s 

q(r’, f ) G(&z, f ) r’,z’ =z,)2rr’ dr’ g(r,z, f ) =i Re(J**E) =g I-WA 1% f-f,) s 

g( r’,z’f > G(@,z,f I r’,z’) 2~r’ dr’ dz’, 

(6) 

where G(&z, f I r’,z’) is the Hankel transform of the Fou- 
rier transform of the Green’s functions as given in Eq. (4). 
Note that the temperature in Eq. (6) now has units of 
(K) (length)z( time) due to the integral transformations. 
The transformed Green’s functions in Eq. (6) are given by, 
for semi-infinite (O<z( CO ) , 

G(P,z, f I r’,z’) = & [exp(---rllz----Z’I 1 

and for layer (O<z<d), 

G(P,s f I r’,z’) 

cos ( mnz’/d) cos ( m?rz/d) 
q2-l-m2d/8 

XJ0W’L 0) 

where 

‘q= jlpT5i$72. (7c) 

Other series expansions for Eq. (7b) exist,15 but we 
have chosen the particular form shown because all result- 
ing integrations can be performed analytically. Also, unless 
the layer thickness d becomes extremely large, the series in 
Eq. (7b) converges very rapidly. The expressions (6) and 
(7) yield the one-dimensional case when taken in the limit 
fl+O. With the Green’s functions given in Eq. (7), we now 
have the basic tools required to calculate the temperature 
and the photothermal beam deflections in arbitrary multi- 
layered samples. 

III. CALCULATION OF VOLUME HEATING TERM 

In this section we calculate the contribution to the 
temperature caused by volume heating in each layer and 
the substrate for the case of an axisymmetric periodic laser 
heating beam. We first evaluate the energy per unit volume 
absorbed by the sample as a function of position in the 
sample using a procedure similar to that used in the one- 
dimensional photoacoustic calculations of Grosse and 
Wynands. I3 In a material with nonzero absorption in 
which a time-harmonic electromagnetic disturbance exists, 
the time-averaged energy absorbed per unit volume at a 
point (r,z) is given by’” 

nkc 
=x I E(r,zfl 2N f-f,), (8) 

where J is the electromagnetic current density at (r,z), E is 
the electric field at (T,z), e2 is the imaginary part of the 
dielectric constant at (r,z), n is the index of refraction, k is 
the extinction coefficient, c is the speed of light, /z is the 
wavelength of the heating laser, and f, is the chopping 
frequency. Assuming a Gaussian intensity distribution for 
the radial dependence of g( r,z, f ) and normalizing appro- 
priately yields 

(9) 

where PO is the total power of the heating laser and rh is the 
Gaussian radius of the heating beam. We will henceforth 
suppress the S function S( f - f,) in Eq. (9), and simply 
carry along the appropriate units (seconds). In Eq. (9), 
Enorm(z) is the normalized and dimensionless electric field 
in the sample at z due to an incident plane wave of unit 
amplitude. For a given multilayer structure, we use the 
method of Crook” to calculate Enorm(z>. This method pro- 
vides exact solutions for the electric field anywhere in the 
multilayer by requiring the total electric fields at each in- 
terface to satisfy the Fresnel reflection and transmission 
equations. In general, if we assume an incident beam of 
unit amplitude, consistent with Eq. (9), the dimensionless, 
normalized electric-field strength in any layer or the sub- 
strate is given by 

E norm(z) =E+(z=O) expr?) exp( -‘f) 

+E- (z=d) exp(/2rny-z)) 

, (10) 

where il is the wavelength of the heating laser beam. The 
quantities E+(z = 0) and E_ (z = d) refer to the (nor- 
malized) electric-field amplitudes of the downward prop- 
agating wave just below the top of the region (z=O) and 
the upward propagating wave just above the bottom of the 
region (z=d). This expression is exactly valid even when 
multiple reflections and interference effects occur, as the 
field quantities therein represent the sum of all upward and 
downward propagating waves in a layer, and are the nat- 
ural result of calculations using Crook’s method. In the 
substrate, where the region is only bounded at z=O, the 
second term in Eq. (IO) does not exist. The energy trans- 
ferred to the medium per unit volume [Eq. (8)] can then be 
evaluated from [Eqs. (8)-( IO)] 
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nkPo 
8(r’,zrr f ) =rr/2r exp [Cl exp( -2yz’) 

h 

+C2 exp(2yz’)+C3 cos(Sd-26z’++)l, 

(11) 

where C1, C2, and C3 are dimensionless constants, 

Cl=]E+(z’=O)12 (semi-infinite or layer), (12a) 

C2= 1 E-(z’=d) I2 exp( -.2yd) (layer only), (12b) 

C3=2[E,(z’=O)g-(z’=d) 1 exp(--yd) (layer only), 
(12c) 

and 

y=2?rk/A, 6=2rn/A, 4=arg[E(z’=O)E*(z’=d)]. 
(12d) 

In Eq. ( 11) there are three terms: The first term represents 
energy absorbed from the component of the beam propa- 
gating downward in the region, the second term represents 
energy absorbed from the upward propagating component 
of the beam, and the third term represents the effects of 
interference between the two components. Note that only 
the first term is nonzero for the semi-infinite substrate. 
Figure 2 shows the energy per unit volume absorbed in a 
single-layer system as a function of depth into the sample 
for a lOOO-A-thick layer with several different values of 
absorption in the layer. Equation ( 12) also accurately re- 
produces the results of calculations by Evans, Burgess, and 
McLean,18 which are based on evaluating the z derivative 
of the power density in the medium. 

We will now evaluate the volume integral in Eq. (6) 
for both the semi-infinite and layer cases. First, the volume 
heating integral in the substrate, which represents the 
change in temperature at (fi,z> due to all heat generated 
within the substrate, is given by 

Film 
~- _- 

---- k=O., 
k=0.3 

. . . . .._ k=O,5 
_-^ k=O.7 -- k=O.9 

Substrate 
-c>- c.r _.- __~-__ 2.) 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
Depth (Angstroms) 

FIG. 2. Energy per unit volume (J/cm3) X lo4 absorbed vs depth into the 
sample (A) for a 1000 A layer on a thick substrate. For the substrate, 
n=2.5, k= 1.5, and for the layer, n= 1.5, k=variable. Note the discon- 
tinuity at the film/substrate boundary (z= 1000 A). The incident laser 
power is 0.75 mW, the laser wavelength is 6470 A, and the profile is taken 
at the center of the heating beam. 

B(fl,z, f ) ~2: Jam hr’ Joa iWtzf7 f > 

x G(P,z, f I r’,z’)dz’ dr’ 

=2zzV Jo* r’ exp( -$) Jo(/3r’)dr’ 

X- 
s 

ow [exp( --rl Iz--z’J 1 

+exi(-~Iz+z’j)]exp(--2yz’)dz’. i (13) 

Equation (13) can be readily evaluated” to yield ’ 
._ 

B(fl,z, f 

X 
exp( -2yz) +exp( -VZ) 

114-a 

+ 
exp ( - 2yz) - exp ( - qz) 

7l--2Y 
(14) 

Similarly, the volume heating integral for a layer, with 
z=O at the top of the layer and z=d at the bottom of the 
layer, can be found: 

(15) 
where 

Cl=; [l--exp(-2yd)]+~~exp(2yd)--l] 

+; sin(bd) cos(qb), 
- 

: 
.’ c, w 4j+m2,&d2 {c,[l-- (-‘ljrn ‘=&‘(-2yd)j 

+C2[l+(-l)“exp(2yd)l} 

1 1 
+c3 2Sfm?r/d+2S-rnrr/d ‘.F- ‘” -_i -. . i. 

i 
sin(6d) cos($), 

x cos(Sd)‘sin(+), 
m=even, 
m=odd:+ 1 

(16) 

Equations (14) and (15) represent the temperature 
change due to heat generated within a semi-infinite region 
and a layer, respectively. These expressions are given in the 
p space of the Hankel transformation, as we will solve for 
temperature and beam deflections in this space. Given the 
volume heating [Eqs. (14)-( 16)] and the Green’s func- 
tions of the previous sectioq~[Eq. (7)], we may now solve 
for the temperature everywhere in and above the sample, 
and subsequently the photothermal beam deflections. 
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IV. THE TWO-BODY SOLUTION V. EXTENSION TO MULTKAYER SOLUTIONS 

For the case of a sample consisting of a semi-infinite 
substrate and N layers, we may write the temperature (in 
Hankel space) in each region as follows: For the ambient, 

TO(B,Zl f > =p Jam qlo(r’, f jGo(P,s f I r’,z’=O) 

x 237-r’ dr’, (214 
for layer j, 

We first turn to the solution of the two-body problem, 
corresponding to a thermally and optically thick sample 
with no films. The solutions for the temperature distribu- 
tion in the ambient and the substrate are 

Tom, f I=; Jf10 2m’q,o(r’, f > 
x GoU?,z, f 1 r’,z’=Ojdr’, (1%) 

for ambient, region 0, and 

Tl(PJ, f > =z Jam 2rr’qol( r’, f > GI (L&z, f I r’,z’ = 0 1 

xdr’+-B,(P,sf 1, 
for subtrate, region 1. 

(17b) 

Two matching conditions are required to find the un- 
known heat fluxes qlo and qol. The first condition is that 
the normal comp.onent of the heat flux is continuous at the 
boundary z=O, which yields qlO(r’, f j = -qol (r’, f j. 
The subscript ij in qi/ refers to heat passing from region i 
into region j (see Fig. 1). The second condition is that the 
temperatures To and T, in Eq. ( 17) must be equal at the 
boundary (z=O). After insertion of the Green’s functions, 
the temperature matching condition yields 

s O” r’q1o(r’,f) 
0 

27ra, m  
EC-- - 

Kl s o 

XJo(pr’)dr’+B1(P,z=o, f j, (18) 

or 

(&+&) ia r’q1o(r’, f )Jo(WW’ 

=4 mz=o, f 1. (19) 

The integral in Eq. (19) is simply the Hankel transforma- 
tion of qdr’,f 1 to q1o(P,f 1. Then, 

41o(P, f 1 =Ky;yyKy;o 4 (D, f ). (20) 

We could then transform qlo(/3, f ) back to qlo(r’, f ) via 
the inverse Hankel transformation but, as we shall see 
later, it is more convenient to retain the above form. Note 
that E?q. (20) constitutes a complete solution for the tem- 
perature anywhere in Hankel space, as the temperature at 
any point in both the air and the sample can be readily 
evaluated from Eq. ( 17) once the heat fluxes q(& f j are 
known. One numerical integration is required to express 
this result in real space; however, the integration is not 
difficult as q(p) falls to zero as exp( - fi2) such that the 
integrand is effectively nonzero only over a relatively small 
range of p values. 

Tj(PJ, f > =z s 
m  

J 0 
qj- l,j(Y’t f ) Gj(PJ, f 1 r’,z’=O) 

x 21rr’ dr’ -I-: 
$ om qj+l,j(r’,f )Gj 

x (fI,z, f 1 r’,z’=d)2& dr’+Bj(hz, f 1, 
(21bj 

and for the substrate, 

T,+,(bhf ) =z s om qN,N+ 1 k’? f ) GN+ 1 

X (&z, f 1 r’,z’=O)2m’ dr’ 

+BN+1(&f >. (21c) 

Note the contributions in Eq. (21b) from heat fluxes 
through both the top and bottom of the layer. Now, the r’ 
dependence of all Green’s functions in Eq. (21 j is of the 
form Jo(@‘), so all four of the above radial integrals have 
the form 

s om dr’, f )Jo(Pr’V dr’=q(h f ), (22) 

which is the definition of the Hankel transformation. The 
temperature equations (21) may then be combined with 
Eqs. (7) and (22) to give 

To(Lkf I=& exp( -wjql0(E f ), 

Tj(PtS f 1 z-J-- 
cos (m-z/d) 

Kj dj ( 
A+2 
7; 

I? 1 
m=i Tj+m 

22/g 
1 

qj- 1, j 

X(P,f I+--!-- 
Kj dj ( 

:+2 
Tj 

m  
XC 

(- 1)” cos(m?rz/d) 
m=l 7; + m2g/d2 

Xqj+l,j(B,f )+Bj(B~vf ), (2%) 

1 
TN+ I (/%Z, f ) = 

‘VN+ IKN+ 1 
exp( -TN+ lz) 

X qN,N+ I(& f ) +BN+ I (h.G f > f (23~) 

At this point, it is convenient to make use of the iden- 
tities” 
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rrcoth(xx) 1 m 
2x _- (244 

?r 1 = 2 t---1)” 
2xsinh(?rx)-?? m=l ?%?’ Wb) 

to reduce the summations in Eq. (23). The temperature of 
a layer evaluated at z=O, d becomes 

T’(PsZ=O, f I= 
coth@d) 

KJ% 
qj- 1, j(Ps f > 

1 
+K,q,- sinh(qj d) qj+ 1, j(P, f 1 

+Bj(P, f9z=o), (254 

1 
TJR.7zd. f I= 
-J\P’- -,J I  

n, . .(R. f j 
Kjlljsinh(7]id) ‘J-L’J”Y” ’ 

+ 
coth(qj d) 

Kir?i 
4j+ 1, j(P, f 1 

+Bj(P, f,z=d)* (25bj 

We may then enforce the continuity of temperature and 
normal heat flux at the interfaces to determine qlo, the heat 
flux into the ambient region, from which the beam deflec- 
tions will be calculated. The heat flux matching condition 
gives the general result qi/ = -qj~ Continuity of the tem- 
perature at the first interface (ambient/top of film) yields 

coth(Qldj 

‘Cl771 
q1ouhf > 

+ 
~~~~ siih(q,d) ‘?(” f ’ 

+4(P,f,z=O) (264 

for all values of fi. At the last interface (bottom film/ 
substrate), we find 

Klrll s;;(Bld) qlo(~, f ) +cot;l(ll:ldj %,(P, f ) 

+B,W, f,z=d) 

=~42dB,f. )+B2w,f 1. 

At an interface between two layers, denoted regions j and 
j+ 1, where layer j+ 1 lies below (nearer the substrate) 
layer j, continuity of the temperature requires 

COth(Tj+ ldj+ I> 1 

Kj+ ITj+ 1 
4j,j+1(P,f )+ 

Kj+ lTj+ I sinh ( vj+ ldj+ 1) 

xqj+z,j+l(P,f )+Bj+l(p, f,z=Oj 

1 cOth(?l/ djj 
=Kjqj sinh( qj dj) qj- 1, j(B* f ) + 

KjYl %+ *,I 

X (Ps f ) +Bj(P, f,z=dj)* (27) 

E&uations (26) and (27) constitute a set of Nf 1 linear 
equations for N-I- 1 unknown normal heat fluxes at the 
interfaces, where N equals the number of films in the sys- 
tem. This system of equations can be compactly written as 
the following tridiagonal matrix equation: 

wo+u1 -v, ()- . . . 0 

- Vl u,+u, -v, --- 0 
0 - v2 u,+u, **- 0 

. . . . . . . . . . . . -VN 
0 0 0 - VN UN+ wN+l 

‘1 
410 Bl(z=Oj 
q21 B,(z=O) -BI(z=dlj 

x q32 = &(z=O) -B2(z=dZj ) 
. . . . . . 

,qN+l,N, ,BN+l(Z=O) --BN(z=dNj 
with the definitions 

(28) 

WjEL u*r coth(qi dij 1 

‘Vi Ki-’ 7?i Ki 
, viz 

~~71 Ki sinh(qi df) ’ 
.- (29) 

For the two-body case, U1 should be replaced with WI, the 
term appropriate to the substrate, in which case solution of 
the above equation yields the previously obtained expres- 
sion (20). 

For any multilayered system, we can easily calculate 
both the temperature due to heat generated within each 
region in the system (named B above) and the normal 
components of the heat fluxes qy through all interfaces in 
the system. These two quantities completely determine the 
temperature anywhere in the system via Eq. (23). The 
above exact result is simple compared to nonlocal Green’s- 
function-based multilayer calculations, such as that of 
Madison and McDaniel.g We now proceed to calculate the 
beam deflections in skimming transverse-mode photother- 
ma1 deflection experiments from these temperature results. 

VI. EVALUATION OF INFINITESIMAL PROBE BEAM 
DEFLECTIONS 

To calculate the photothermal beam deflections for 
multilayers, we begin with the solution for the temperature 
at any point in the ambient above the sample, given as 

T(r,z, f I= Jo’ T(kAz, f WdPrMD 

s m P exp( --?loz) = 
0 2KoVo 

qlo(P, f MdPh% (30) 

where we have demonstrated in the previous sections 
methods by which qlo(fl, f ), the normal component of the 
heat flux through the top surface of the sample into the 
ambient, can be calculated for arbitrary layered systems. 
The angular deflection of an infinitesimal probe beam pass- 
ing through the heated region above the sample is given by3 
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1 dn 
M- ---dT 

s 
VT(r) xdr, (31) 

where the integral is taken along-the path of the probe 
beam. We will follow a procedure similar to that of Jack- 
son et al. *’ to evaluate Eq. (3 1). We will assume the de- 
flection of the beam is small compared to the path length 
and that the probe beam propagates along j? Then, 

ldn m 
M= ---E. 

s 
VT(r) xy^dy _ 

m 

(32b) 

Now, x, y, and z are independent variables, hence we may 
swap the order of differentiation and integration in Eq. 
(32). We then have 

.M=i$ [i (Jim T(r)dy)$ 

-& (J:, Todv)~] r - (33) 

A single integration of the temperature is required, 

P exp( -voz) 
hTK& 

410(P>f 1 

X 
s m Jo@ dm)dy dP 

-02 

s m exp(--7102) = 
4rKo770 

q,o(P, f 1 cWJ’~)dP. 
j3=0 

(34b) 

Evaluation of the necessary derivatives of Eq. (34) and 
substitution of the result into Eq. (33) yields 

1 dn 
M,,,(x,h) = --- 

s 
m P exp( --r70h) 

n dT p=o 4rKo’?o 

XadP,f > sin(b’~b@, 

M”,,(X,h) = -; g J-i0 expl;KThj 

x~lo(P,f I cwW& 

(354 

. . L. 

(35bj 
where h is the distance between the probe beam and the 
surface of the sample. The subscripts tan and norm in Fq. 
(35) denote the tangential and normal components of the 
beam deflection, respectively. Each is a complex number, 
as both have components both in and out of phase with the 
modulation of the heating beam. Note that the deflections 
depend on the location of the probe beam (x,h) where x is 
the distance from the probe beam to the center of the 
heating beam, and h is the height of the probe beam above 
the sample surface. Note also that all of the information 
about the sample thermal and optical properties is con- 
tained in qlo(fl, f ), so that Eq. (35) is valid for any mul- 
tilayer sample structure. 

Equations (35a) and (35b) are Fourier transform in- 
tegrals, with /3 interpreted as a spatial frequency, so we can 
perform a spatial Fourier transform on both sides of Eq. 
(35) to eliminate the numerical integrations over p. The 
deflections as a function of the spatial frequency fi are then 

&f,,(fl,,h)‘= -.! dnp eT;K-Tyhj 
ndT 41om f >, 

0 

1 dn exp(-r],h) 
~norm(P,h) = In dT 

hTK0 
crlO(/%f ). 

For the two-body case, we find that 

(364 

(36b) 

(374 

.+-&) ev(+) . (37bj 
Equations (37a) and (37b) are identical in form to the 
result obtained for S-function absorption at the surface’ 
with the addition of the correction 

w C(k,flia) =-.----- 
771+w* 

This correction term approaches unity as the extinction 
coefficient becomes large, corresponding to the limit in 
which all energy is absorbed at the surface. Aamodt and 
Murphy have numerically investigated the effects of this 
correction on PTD measurements on semi-infinite samples 
in some detail.20 

Note that the Fourier transform into the spatial fre- 
quency domain allows one to transform the experimental 
data once and use the simple analytical expressions (37a) 
and (37b) -to fit the experimental data, rather than per- 
forming the integrations in Eq. (35) numerically at each 
iteration of the fitting procedure, thereby reducing the re- 
quired ‘computer time by orders of magnitude. In this case, 
no numerical integrations are required, regardless of the 
number of layers and absorbing regions in the sample, and 
regression fits to large bodies of experimental data can be 
performed easily on a personal computer. 

The above theory applies to the case in which the 
probe beam is of infinitesimal width. In the following sec- 
tion,, we generalize the deflection expressions to describe 
probe beams of finite extent, and investigate the effect of 
four-quadrant detection on the measurement of PTD sig- 
nals. 

VII. GENERALIZATION TO FINITE PROBE BEAMS 

The above theory is presented specifically for probe 
beams of infinitesimal extent, and should be valid for finite 
probe beams provided the width of the probe beam is much 
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less than the thermal diffusion length in the ambienti If 
this is not the case, the above theoretical expressions 
should be corrected for the finite width of the probe beam, 
as the probe beam will be distorted upon passing the sam- 
ple, and the deflection of the subsequent distorted beam is 
not well defined. Several authors have calculated correc- 
tions to beam deflection theory for Gaussian probe beams 
of nonzero extent. “*12 The general approach is to divide 
the probe beam into infinitesimal elements and average the 
deflections over these elements, weighting each element ac- 
cording to the Gaussian intensity profile of the probe beam. 
The result of this calculation is the insertion of a multipli- 
cative correction factor w(R,,h,/?) into the integrands of 
Es. (35), 

w(R,,h,P)=0.5 exp($) [ l+erf(g-$)I , (39) 

where h is the height of the center of the probe beam above 
the sample surface, w is the chopping frequency, and R, is 
the probe beam radius. 

This approach is not appropriate for the case of four- 
quadrant detection, though, as only the portions of the 
probe beam that are deflected across a detector quadrant 
boundary contribute to the measured signal, and a simple 
weighted average over the entire probe beam cross section 
does not physically describe the actual experimental con- 
figuration. In the actual experiment, each component of 
the probe beam that is deflected across a detector quadrant 
boundary contributes a square-wave pulse to the total sig- 
nal, and it is the Fourier component of the sum of all of 
these square pulses at the chopping frequency that is the 
measured signal. Jackson et al.” calculated the detector 
response for this case assuming the probe beam was not 
distorted in passing the sample, such that the entire Gauss- 
ian profile of the probe beam was shifted in position on the 
detector but unchanged in shape. This is equivalent to as- 
suming that the deflections are equal for all components of 
the probe beam. Using this method of calculation, we find 
the detector signal for normal or tangential deflections to 
be given by 

where M represents either the normal or tangential deflec- 
tion, Rp is the probe beam Gaussian radius, A is the wave- 
length of the probe beam, and erf( ) represents the error 
function. For typical values of R,, M, and A, the argument 
of the error function is quite small, such that the signal is 
effectively linear in the deflections, and no correction to the 
infinitesimal probe beam deflection equations previously 
derived is required. If the probe beam is significantly larger 
than the thermal diffusion length in the ambient such that 
the deflection of the components of the probe beam is not 
uniform across the probe beam profile, the Gaussian shape 
of the probe beam will be distorted upon passing the sam- 
ple, E& (40) will no longer be valid, and a more sophisti- 
cated approach to the calculation of the four-quadrant de- 
tector response is required. 

We have attempted to solve this problem by calculat- 
ing exactly the intensity signal from the four-quadrant de- 
tector as a function of the sample properties, probe and 
heating beam radii, and sample-detector distance. Since it 
is the Fourier component of this signal at the frequency of 
heating beam modulation that we measure (not the angu-m 
lar deflection of the beam), this calculation should provide 
the most accurate means for the interpretation of experi- 
mental PTD data. 

We first calculate the normal and tangential signals 
due to a probe beam of infinitesimal extent. We then con- 
volve this result with the Gaussian intensity profile of the 
probe beam to obtain results for probe beams of finite ex- 
tent. We assume the center of the heating beam strikes the 
sample at (x,2) = (O,O), and the center of the probe beam 
passes the sample at (x,,h). We will use a second primed 
set of coordinates centered on the detector such that 
x’sx + x0, z’rz+h. Consider, then, a component of the 
probe beam that initially strikes the detector at the point 
(x’,z’) when there is no thermal deflection of the beam. 
When the heating laser is switched on, the beam will un- 
dergo angular deflections both parallel and no-ma1 to the 
surface of the sample, denoted M,(x,z) and Mn(x,z), re- 
spectively. If the distance from the sample to detector is 
large compared to the maximum distance the beam is de- 
flected at the detector (a very good approximation), the 
distance that the beam is deflected at the detector is given 
simply by the product of the sample-detector distance L 
and the angular deflections &l. 

We then define the normal deflection signal as the dif- 
ference in signal between the top and bottom halves of the 
detector, and the tangential signal as the difference in sig- 
nal between the right- and left-hand-side halves of the de- 
tector. Only components of the probe beam that are de- 
flected across the boundary between halves of the detector 
will contribute to the deflection signals. Mathematically, 
this condition is written 

L I KW,z’) I> 1 x’ I; 

for nonzero tangential signal, and 

~Iiii;n(xt,zr)I,IztI, 

(414 

(41b) 

for nonzero normal signal. Components of the probe beam 
that do not satisfy the above conditions cannot contribute 
to the deflection signals. 

Next, for an infinitesimal component of the probe 
beam that satisfies one (or both) of the above conditions, 
the point at which this component strikes the detector will 
be described as a function of time by the following equa- 
tions: 

x’(t) =x’(t=O) +Re[Lli?,(x’,z’) exp( -hf)], (424 

z’(f>=z’(f=O)+Re[Lri?,(x’,z’) exp( -iof)]. (42b) 

If the corresponding inequality (41) is satisfied for the 
coordinate x’ or 2, there will exist two times t, and t2 
during each period (defined by o) at which the probe 
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beam component under consideration crosses the bound- 
ary between detector halves. As the boundaries between 
the detector halves are at x’=O and z’=O, the times tl and 
t2 are given as the solutions of 

Tangen fiak 

x’(t=O) +Re[Lk&x’,z’) exp( -iot)] =0, 

Normal: 
(43a) 

z’(t=O) +Re[L&n(x’,z’) exp( -zht)] =O: (43b) 
The solutions of the above equations (with ik=kf’ + iM” ) 
are 

2 
t1,2=- tan-’ ( 

M;i l,/@+- (x’2/L2> 
0 W/L) -M; 1 ’ (4W 

for the tangential case, and 

2. 
t1,2- -; tan-’ 

M:, 2.k J 1 li?, I2- (z’2/L2) 
(z’/L) -M:, ’ 

(44b) 

for the normal case, where we may now write x’(t=O) as 
x’ and z’( t=O) as z’. Now, as synchronous (lock-in) de- 
tection is used, the signal measured will be the component 
of the previously mentioned square pulse at the fundamen- 
tal frequency of the heating beam modulation. Fourier 
transforming the pulse wave form, we find the m-phase 
(cosine transform) and out-of-phase (sine transform) 
components of the signal ‘(assumed to be of unit ampli- 
tude) to be 

S~(x’,z’)=(l/~) [sin(ot2> -sin(otl>], (45a) 
for in phase, normal, or tangential, and 

S,(x’,z’)=(l/?r) [COS(cot~)-COS(Wt2)], (45b) 
for out of phase, n_ormal, or tangential. If we define the 
complex signal S&‘,z’ ) &‘a( in phase) + iS,( out of 
phase) and insert the above expressions for tl and t2 into 
the signal equations (45a) and (45b), we find (after some 
trigonometric manipulation), 

tangential: 

iQxt,zy = 
1 

-7riit(xt,zt) 
p&(x’,z’) j2- (x’2/L2), (464 

normal: 

i&y) = 1 
mcn(x’,zf) 

IMnbW j2--(z’VL2). (46b) 

The PTD signal measured as a function of x0 and h for 
probe beams of finite extent will then be given by 

bbh) = Jyn J---y [ &(;, z’) 
x( )i*)‘/2] 
X exp ( 

- b’2+z’2) dx’ dz’ 
2 ) R&J 

, (474 
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sAIJd = J:a J,y(:; [ Tjg(;.,z.) 
x( JiizyLz)‘“] 
Xexp( -(xIcz’2)) & dxt, 

where x1 (z’) and x2 (z’) are the two roots of Eq. (42a) that 

(47b) 

represent the points furthest from the detector quadrant 
boundary that can still be deflected across that boundary, 
and zr(x’) and z2(x’) are the two roots of Eq. (42b) that 
represent the si@ar limits for the normal defiections. The 
dependence of S, and St on x0 and h comes from the co- 
ordinate transformation between the primed coordinates 
(centered on the detector) and the unprimed coordinates, 
centered on the heating laser beam. The above integrals are 
intractable, and we have as yet to find useful approxima- 
tions in which they can be evaluated. They are not ex- 
p_ected to-converge to the infinitesimal beam expressions 
M,, and MC in the limit R, + 0, as an infinitesimal probe 
beam incident initially on the center of the four-quadrant 
detector will produce the same signal for any nonzero de- 
flection of the beam. The above integrals do reduce to the 
expression derived above Eq. (40) for the case of constant 
deflections over the entire probe beam profile. We are cur- 
rently attempting numerical evaluations of the effects of 
the above corrections to the infinitesimal expressions, but 
the above integrals are quite difficult to evaluate numeri- 
cally, as the limits on the inner integration must be calcu- 
lated by solving Eq. (42) for each point of the outer inte- 
gral. 

VIII. SAMPLE CALCULATIONS 
To demonstrate the usefulness of the above formalism 

we have performed several example calculations for PTD 
experiments. We perform these calculations for a two-layer 
system of aluminum nitride on aluminum on glass. The 
glass substrate is assumed to have the following properties: 
mass density p=O.O025 kg/cm3, specific heat capacity-c 
=750 J/(kg K), thermal conductivity ~=0.0014 W/ 
(cm K), index of refraction it = 1.4, extinction coefficient 
k=O.O. The aluminum film is fixed at 100 A thickness and 
is assumed to have the following properties: p=O.O025 
kg/cm3, C=720 J/(kg K), ~=2.37 W/(cm K), n=2.74, 
k=8.32. The aluminum nitride layer is of variable thick- 
ness and is assumed to have the following properties: p 
=0.002 25 kg/cm3, C=720 J/(kgK), ~=0.16 W/ 
(cm K), n==2.25, k=0.005. We have chosen this sample 
structure as an example of an experimental attempt to 
measure the thermal properties of the aluminum nitride 
thin iilm. We assume the following experimental parame- 
ters: wavelength of heating laser= 6470 A, Gaussian radius 
of heating laser beam Rh = 50 ,um, probe beam radius 
RP = 0 ,um, height of probe beam above sample h = 100 ,um, 
diffusivity of ambient medium (air) =0.225 cm2/s. Figures 
3 and 4 show the normalized amplitude of the tangential 
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FIG. 3. Calculated amplitude of the tangential deflection for sample 
structure described in Sec. VIII. Data are calculated at a chopping fre- 
quency of 50 Hz, and for aluminum nitride film thicknesses ranging from 
0 to 10 pm. 

deflection signal calculated for aluminum nitride film 
thicknesses ranging from 0 to 10 ,um, for chopping fre- 
quencies of 50 and 1000 Hz, respectively. Note the data is 
predicted to be insensitive to the existence of the aluminum 
nitride layer for thicknesses below about 0.1 ,um ( 1000 A). 
In Figs. 5 and 6 we show the sensitivity of the normalized 
amplitude of tangential deflection to a 10% change in the 
thermal conductivity of the aluminum nitride film, at 
chopping frequencies of 50 and 1000 Hz, respectively. We 
see that reasonable sensitivity to the thermal conductivity 
of the aluminum nitride film can be expected for films 0.1 
,um or more in thickness. 

IX. SUMMARY 

In the present paper we report analytic expressions for 
temperature and probe beam deflection for multilayer sys- 
tems based on Green’s function techniques. Our results 
have several distinguishing unique features. First, the ab- 
sorption of heat from the laser beam is treated analytically, 
and no approximations are required to obtain solutions for 
any number of layers. Any or all of the layers in the sys- 
tem, as well as the substrate, can have nonzero optical 
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FIG. 4. Same as Fig. 3, but for a chopping frequency of 1000 Hz. 
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FIG. 5. Calculated change in normalized amplitude of the tangential 
deflection signal due to a 10% change in the thermal conductivity of the 
aluminum nitride layer in the sample described in Sec. VIII. Data are 
shown for aluminum nitride film thicknesses ranging from 0 to 10 pm, 
and are calculated for a chopping frequency of 50 Hz. 

absorption. Integrations over the heating distributions are 
performed analytically, such that numerical convolution as 
in the method of Grosse and Wynandst2 is not required. 
Second, we use local Green’s functions applied in Fourier 
transform space appropriate for steady periodic heating. 
By using local Green’s functions we are able to treat the 
exact heating distribution in multilayers analytically, with- 
out numerical integrations or approximations to the heat- 
ing profile. We use temperature and heat flux matching 
conditions between adjacent regions to link the local solu- 
tions. Such matching conditions were used by Kant8 and 
Iravani and Wickramasinghe,7 although they used only 
surface-source solutions for the temperature within each 
layer. Third, the central part of the calculation is a simple 
tridiagonal matrix equation for the boundary heat fluxes, 
such that the computing time required increases slowly 
with the number of layers in the system. This matrix equa- 
tion is easily solved on a personal computer, even for many 
layers, and completely determines the temperature every- 
where in the sample and the ambient,21 and completely 
determines the probe beam deflections. Also, if the photo- 
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FIG. 6. Same as Fig. 5, but for a chopping frequency of 1000 Hz. 
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thermal deflection data is initially Fourier transformed, as 
is often done,22 the expressions for the deflections in Fou- 
rier space for any number of layers are free of numerical 
integrations, and our results are ideal for accurate analysis 
of experimental PTD data. Finally, we present new exact 
integral equations for the finite probe beam corrections for 
PTD experiments in which a four-quadrant detector is 
used. Analysis of experimental data will be reported in 
future papers. 
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