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Summary Regional ground-water recharge estimates for Minnesota were compared to
estimates made on the basis of four local- and basin-scale methods. Three local-scale
methods (unsaturated-zone water balance, water-table fluctuations (WTF) using three
approaches, and age dating of ground water) yielded point estimates of recharge that rep-
resent spatial scales from about 1 to about 1000 m2. A fourth method (RORA, a basin-scale
analysis of streamflow records using a recession-curve-displacement technique) yielded
recharge estimates at a scale of 10–1000s of km2. The RORA basin-scale recharge esti-
mates were regionalized to estimate recharge for the entire State of Minnesota on the
basis of a regional regression recharge (RRR) model that also incorporated soil and climate
data. Recharge rates estimated by the RRR model compared favorably to the local and
basin-scale recharge estimates. RRR estimates at study locations were about 41% less
on average than the unsaturated-zone water-balance estimates, ranged from 44% greater
to 12% less than estimates that were based on the three WTF approaches, were about 4%
less than the age dating of ground-water estimates, and were about 5% greater than the
RORA estimates. Of the methods used in this study, the WTF method is the simplest and
easiest to apply. Recharge estimates made on the basis of the UZWB method were incon-
sistent with the results from the other methods. Recharge estimates using the RRR model
could be a good source of input for regional ground-water flow models; RRR model results
currently are being applied for this purpose in USGS studies elsewhere.
ª 2006 Elsevier B.V. All rights reserved.

Introduction

Knowledge of ground-water recharge is critical in virtually
all ground-water hydrology investigations ranging from stud-
ies of agricultural contamination (Böhlke, 2002), urban
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transport (Lerner, 2002), and aquifer vulnerability (Robins,
1998) to hazardous-waste disposal siting (Tyler et al.,
1996; Scanlon et al., 1997). Ground-water recharge is de-
fined herein as the entry into the saturated zone of water
made available at the water-table surface (Freeze and Cher-
ry, 1979). Associated with this recharge is ground-water
movement within the saturated zone away from the
water-table area where the recharge occurred. Recharge
is the variable that ground-water flow modelers typically
know the least about but to which the simulated results
from the model are most sensitive. Accurate estimation of
recharge is difficult because the processes are complex
and depend on numerous local factors, including precipita-
tion amount, intensity, and duration, evapotranspiration
rate, runoff, geology, soil characteristics, topography, veg-
etation, and land use (Memon, 1995). Application of multi-
ple methods is recommended in estimating recharge
because of the limitations inherent in each method (Healy
and Cook, 2002; Scanlon et al., 2002; Nimmo et al.,
2005). For example, Risser et al. (2005) had sufficient data
to estimate recharge using four methods within a small wa-
tershed in Pennsylvania. It is rare, however, to have suffi-
cient good-quality data to allow recharge estimation using
more than two or three methods.

There are significant differences in local- and regional-
scale estimates of recharge. Local-scale estimates generally
are not representative of an entire watershed, and regional
estimates may be too general to capture recharge variabil-
ity within a watershed. Methods used in humid areas typi-
cally are based on streamflow, water-table fluctuations,
or water-balance approaches (Scanlon et al., 2002), which
work best where the water table is relatively shallow and
streams typically are gaining. Tracers and age-dating tech-
niques have also been used in both unsaturated and satu-
rated zone studies to estimate recharge (e.g. Gvirtzman
et al., 1986; Delin et al., 2000). Several different ap-
proaches have been used recently to estimate recharge at
the regional scale in humid areas of the United States,
resulting in maps that illustrate spatial variability of re-
charge (e.g. Sophocleous, 1992; Holtschlag, 1996; Arnold
et al., 2000; Dumouchelle and Schiefer, 2002; Szilagyi
et al., 2005). Few studies, however, have compared results
of a regional approach to multiple local-scale values. Such a
comparison is needed to help determine the applicability of
regional-scale estimates at the local scale.

The regional regression recharge (RRR) estimation meth-
od of Lorenz and Delin (2007) provides a method for region-
alizing recharge estimates at the local or basin scale to
estimates over a large region. To fully demonstrate the use-
fulness and accuracy of the RRR model, however, results
need to be compared to local- and basin-scale recharge esti-
mates made with well-documented methods. This paper
makes this scale comparison by using climate, streamflow,
soil, unsaturated-zone, ground-water level, and ground-
water age data for Minnesota, USA, to estimate recharge
at different spatial and temporal scales. The methods com-
pared to the RRR method in this paper include an unsatu-
rated-zone water-balance (UZWB), three water-table
fluctuation (WTF) approaches, age dating of ground water,
and the RORA method (Rutledge, 1998, 2000), a basin-scale
analysis of streamflow records using a recession-curve-dis-
placement technique. This paper also evaluates the spatial

and temporal variability of recharge using the various
methods.

Methods

Location and description of study area

The study area encompasses the entire State of Minnesota
(Fig. 1). Shown in Fig. 1 are the stream basin locations
and well sites where ground-water data were obtained for
this study. Water in this headwaters State drains to the Mis-
sissippi River in the central and southeastern parts; drains to
the Red River of the North in the northwest part; and drains
to Lake Superior in the northeast part. The State is largely
covered by glacial deposits of the Late Wisconsin glaciation
(Sims and Morey, 1972). The glacial deposits range in thick-
ness from less than 6 m in the southeast and northeast to
greater than 180 m in bedrock valleys. Upland parts of the
State typically consist of clayey till, whereas glacial out-
wash covers broad, generally flat sand plains. The topogra-
phy and sediments vary greatly across the State. At most of
the sites where water-level data were collected for this
study, however, topography is generally flat to gently roll-
ing. Sediments at most of the sites typically consisted of
poorly sorted glacial outwash sand of fine to very coarse
grain size, with some fine gravel and cobbles. Water-table
depths varied from less than 1 to about 54 m at the sites
used in this study. Land use typically was agricultural in
the glacial outwash areas where most of the data were
collected.

Mean annual precipitation (1971–2000) across the State
ranges between about 50 and 90 cm/yr (Gregory Spoden,
Minnesota Department of Natural Resources, written com-
mun., 2003). About 60% of this precipitation falls during
the growing season (May–September). Mean annual runoff
ranges from 5 to 41 cm/yr (Baker et al., 1979). Mean
monthly temperatures (1951–1980) vary from about 22 �C
in July to about �16 �C in January (Baker et al., 1985).

Recharge estimation

Many methods can be used to estimate recharge in humid
regions (Scanlon et al., 2002). These methods range from
site-specific, where localized unsaturated-zone or satu-
rated-zone data are available, to ground-water mass bal-
ance estimates at the basin scale. It was beyond the scope
of this study, and data were insufficient, to use all of the
available methods. The methods employed were based lar-
gely on data collected during previous studies. The hydro-
logic data and methods used in this study represent
different spatial and temporal scales (Table 1). The climate
and geology of Minnesota generally prevent the unsaturated
zone from being more than a few m thick, and recharging
water generally requires less than a year to travel from
the surface to the water table. Such relatively short travel
times preclude use of the unsaturated-zone tracer methods
(e.g. measuring the depth to the 1963 tritium peak) that
work on timescales of several decades. Rapid passage
through the unsaturated zone works to the advantage of sat-
urated-zone age-dating tracer methods, however. The four
methods used in this study were: (1) unsaturated-zone
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water balance (UZWB), which utilizes soil-moisture data, (2)
water-table fluctuations (WTF), (3) age dating of water in
the saturated zone, and (4) RORA, a basin-scale analysis
of streamflow records using a recession-curve-displacement
technique.

Unsaturated-zone water-balance (UZWB) method

The UZWB method relies on soil-moisture data from a single
profile within the unsaturated zone, representing about
1 m2, with a temporal scale that is event-based to seasonal

(Delin et al., 2000; Delin and Herkelrath, 2005). This meth-
od is based on the premise that soil water moves upward in
response to evapotranspiration (ET) above a boundary in the
unsaturated zone and that water below that depth perco-
lates downward to the water table as a result of each re-
charge period. Water that infiltrates into the ‘‘recharge
zone’’ below the ET/drainage boundary is assumed to be
unavailable for ET and ultimately results in recharge. Data
for the UZWB recharge estimates were available from three
intensive USGS data-collection sites – near Bemidji (1998–

Figure 1 Location of intensive data-collection sites for the water-table fluctuation (WTF) method and the ground-water age-
dating method, and basins used in the regional regression recharge method. Note that water-level measurement and ground-water
age dating are coincidental for several sites.

Table 1 Methods used for estimating ground-water recharge in this study

Method Spatial scale represented Temporal scale represented

Unsaturated-zone water balance (UZWB) 1 m2 Event based to seasonal
Water-table fluctuation (WTF) 1–100s m2 Event based to seasonal
Age dating of ground water 1–1000s m2 1–50 year average
RORA analysis of streamflow records using
a recession-curve-displacement technique

100–1000s km2 Monthly-100 years;
period of record

Modified from Scanlon et al. (2002); RORA, (Rutledge, 1998, 2000) is an automated method for estimating recharge in a basin from analysis
of a streamflow record using the recession-curve-displacement method of Rorabaugh (1960, 1964).
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2003), Williams Lake (1998–2003) (D. Hudson, US Geological
Survey, written commun., 2004), and the Management Sys-
tems Evaluation Area (Princeton) site (1992–1995) (Delin
et al., 1997) (Fig. 1). The ET/drainage boundary was located
at the 100-cm depth at all three sites, based on soil tension
measurements at the Bemidji site and on plant rooting
depth research results at the other two sites.

To estimate recharge using the UZWB method, the total
volume of soil moisture in the recharge zone per unit cross
section (V; cm3/cm2), was estimated throughout the year:

V ¼
XM

i¼1
hiDzi; ð1Þ

where i is an index to the soil-moisture probes (numbered
sequentially from 1 for the probe nearest the water table
to M for the probe nearest the ET/drainage boundary), hi
is the soil-moisture content measured by probe i (cm3/
cm3); and Dzi is the vertical thickness of the unsaturated
zone associated with probe i (cm). Recharge was assumed
to occur as a series of events in response to precipitation.
The recharge period (Rj; cm) was calculated as the increase
in V that occurred during recharge period j:

Rj ¼ Vjmax � Vjant; ð2Þ

where Vjmax is the maximum total soil-moisture volume
measured during the recharge period (cm3/cm2), and Vjant
is the minimum total soil moisture volume measured imme-
diately before the recharge period (cm3/cm2). Total annual
recharge (RTotal; cm/yr) is assumed to equal the sum of the
individual recharge events during the year.

Water-table fluctuation (WTF) method

The WTF method synthesizes data on a spatial scale of 1–
100s of m2 with a temporal scale that is period-based to sea-
sonal. The method is based on relating changes in measured
water-table elevation with changes in the amount of water
stored in the aquifer (Meinzer, 1923; Healy and Cook, 2002):

RðtjÞ ¼ Sy�DHðtjÞ ð3Þ

where R(tj) (cm) is recharge occurring between times t0 and
tj, Sy is specific yield (dimensionless), and DH(tj) is the peak
water-table rise attributed to the recharge period (cm).
Inherent assumptions include: (1) the observed well hydro-
graph depicts only natural water-table fluctuations caused
by ground-water recharge and discharge; (2) Sy is known
and constant over the interval of the water-table fluctua-
tions, and (3) the pre-recharge water-level recession can
be extrapolated to determine DH(tj).

Water-level data used in the WTF method were collected
from a variety of sites across Minnesota (Fig. 1). The USGS
has conducted intensive, long-term research at five sites
that yielded 1–10 years of continuous (meaning collected
at intervals no longer than 1 day) ground-water level data
for 29 wells: Bemidji – 8 wells (1993–2003); Princeton –
4 wells (1992–1995); Williams Lake – 9 wells (1998–
2003), Des Moines River – 4 wells (1999–2001); Glacial
Ridge – 4 wells (2003). Because wells were closely spaced
at these sites, results in this paper are generally presented
as an average for each site. Additional water-level data
were obtained from the Minnesota Department of Resources
(MDNR) observation well network (T. Gullett, Minnesota

Department of Resources, written commun., 2003). Only
wells with at least a weekly water-level measurement inter-
val throughout a given year were used. Thirty-four MDNR
wells at 31 sites met these criteria, with most of the data
collected before 1980. Where data were available only in
analog form, one value from every fifth day was entered
manually into a database. The fact that the water-level
data from the various WTF sites represent different time
periods imposes a bias on recharges estimates toward the
climate of that respective time period.

DH(tj) is estimated as the difference between the peak
of a water-level rise and the value of the extrapolated
antecedent recession curve at the time of the peak. This
recession curve is the trace that the well hydrograph would
have followed had there not been any precipitation (Fig. 2).
Predicting the recession curve is not always straightfor-
ward. Two approaches were used to estimate DH(tj) in
the WTF method: (1) graphical extrapolation and (2) calcu-
lation from a master recession curve (MRC). A third ap-
proach used to estimate DH(tj), made on the basis of the
computer code from the RISE program (A. Rutledge, US
Geological Survey, written commun., 2005), does not
extrapolate for continuation of a hypothetical recession
while the water table is rising. Because of the need for dai-
ly water-level data, the MRC and RISE approaches could be
applied only at sites where water levels were continuously
monitored. These two methods are described in detail in
the following sections.

Limitations of the WTF method include the fact that
water-level fluctuations in a well may only be representa-
tive of a small area within a watershed (hence the previ-
ously described averaging scheme for some sites); water-
level rises may not always be the result of direct recharge
(water levels in some wells at the Des Moines River site,
for example, may have been influenced by river stage);
and the method assumes that recharge is episodic and
therefore does not account for slow, steady flow to a
water table that may occur in regions with thick unsatu-
rated zones. This last item is probably not an issue in a re-
gion such as this where depth to the water table is
generally less than 10 m. Uncertainty in estimates of Sy

Figure 2 Recharge estimated using the graphical approach to
the WTF method, illustrated with hypothetical data.
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is also a concern. For this study, following common prac-
tice, Sy was set at a constant value. In reality Sy varies
as a function of depth to the water table (Childs, 1960).
It also varies over time in response to the wetting and
draining history. If multiple rises occur closely spaced in
time, the sediments may not fully drain between rises. In
theory, it would be appropriate to assign different values
of Sy to different rises. In practice, however, the informa-
tion and resources required to make these accommoda-
tions are rarely available.

WTF method – graphical approach. In the graphical ap-
proach used in the WTF method the antecedent recession
curves were extrapolated manually to obtain DH(tj)
(Fig. 2) on the basis of visual inspection of the entire data
set. When viewed with corresponding precipitation data,
rises that were not caused by precipitation (and therefore
did not indicate recharge) could be identified clearly and
eliminated from the recharge calculations. Examples of
rises not caused by precipitation include electrical surges,
changes in barometric pressure, pumping, earth tide ef-
fects, entrapped air, temperature variations, and manual
adjustment to the water-level measuring device. This ap-
proach involved more subjectivity than the other WTF ap-
proaches, and different users no doubt would produce
slightly different recession curves.

0.0.0.1. WTF method – master recession curve (MRC)
approach. The MRC approach used in the WTF method was
an automated procedure for calculating DH(tj) from daily
water-level data. The antecedent recession curve was
determined from a nonlinear regression equation of the
log of the difference in altitude between the water level
and the ‘‘pour point,’’ the asymptote that the water-level
recession is approaching. Development of a MRC began by
generating a list of recessions (periods during which
ground-water levels continually decrease) for a given well
using a program called FALL (A. Rutledge, US Geological Sur-

vey, written commun., 2003). A minimum recession dura-
tion of 10 days was chosen in this study. Once a list of
recessions was tabulated for the entire period of record,
statistical analysis software S-Plus� was used to estimate
the MRC recession parameters d and RR from the following
nonlinear relation:

lnðHt � dÞ ¼ lnðH0 � dÞ þ RR�t; ð4Þ

where Ht is water level at the end of the recession (cm), d is
the water level or pour point at which no discharge occurs
(cm), H0 is the water level at the start of the recession
(cm), RR is the recession rate (which is negative) (ln(cm)/
d); and t is the time of the recession (days). The negative
reciprocal of RR is the time in days for a decrease of one
natural log cycle in the water table above d. With a MRC
thus derived, the MRC was applied to the same daily
ground-water levels used by the RISE program. The MRC
was projected from the first ground-water value in the re-
cord. If the subsequent ground-water level rose above this
projected recession, recharge was measured as the distance
from the projected MRC to the shallower ground-water le-
vel. From this point, a new MRC was drawn, and the process
repeated (Fig. 3).

Even though multiple steps were required, the MRC ap-
proach was straightforward and easy to apply. The approach
avoided subjectivity after the estimation of the MRC param-
eters, but there remained the possibility that water-level
rises that were not due to recharge may have been improp-
erly included in the calculations. Other automated ap-
proaches to approximating the antecedent recession curve
include those by Crosbie et al. (2005) and Heppner and Nim-
mo (2005).

WTF method – RISE program approach. The RISE program
approach (A. Rutledge, US Geological Survey, written com-
mun., 2003) used in the WTF method calculated the daily
rise of water levels in an observation well as the amount
by which the water level on that day exceeded that of the

Figure 3 Recharge estimated using the master recession curve (MRC) approach to the WTF method. In practice, the MRC is applied
to every data point in the record. For clarity only selected applications of the MRC are illustrated on this figure.

Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA 235



previous day. If the result was negative, it was set to zero
for that day. This approach was expected to underestimate
actual recharge rates because the program makes no allow-
ance for the hydrograph recession that would have occurred
in the absence of recharge. The approach was very easy to
apply and involved less subjectivity than the other ap-
proaches. For example, the approach is automated and
the scientist does not need to make a judgment based on
previous experience to extrapolate the recession curve for
each recharge event.

Specific yield. Specific yield (Sy) for the WTF method was
estimated using a water-budget approach (Walton, 1970;
Hall and Risser, 1993; Healy and Cook, 2002). For late fall
through early spring, rates of ET in Minnesota are small,
and soil-moisture contents are usually at their greatest le-
vel. During this time period, assuming ET and change in
soil-moisture storage are negligible:

P ¼ Rþ RO; ð5Þ

where P is precipitation from a particular storm (cm); R is
recharge (cm); and RO is surface runoff (cm). This equation
states that precipitation either percolates down to the
water table as recharge or runs off. The method requires
data on water levels, precipitation, and stream discharge.
Inserting Eq. (3) into Eq. (5) and rearranging yields:

Sy ¼ ðP � ROÞ=DHðtjÞ: ð6Þ

Eq. (6) was applied to all precipitation-induced water-le-
vel rises for each well from late fall through early spring.
Streamflow records from nearest USGS gaging stations were
used to estimate surface runoff. For most of these events,
runoff was no more than a few percent of total precipita-
tion. Therefore to facilitate calculations, RO was consid-
ered to be zero in Eq. (6). Large storm events with
substantial runoff were omitted from the Sy calculations.
This approach may produce a slight overestimation in Sy.

Calculating Sy using Eq. (6) required diligence. Some
periods of precipitation produced anomalously small
water-level rises. The most common reason for this was
precipitation falling as snow. Snowmelt, on the other
hand, could produce large ground-water level rises with
little or no precipitation immediately before the rise. To
minimize the effects of these two extremes, air tempera-
ture data were used in conjunction with precipitation data
to identify and remove periods of snowfall and snowmelt
from the analysis. For each well, application of Eq. (6) pro-
duced a value of Sy for each appropriate recharge period.
If the median Sy value was selected as the representative
value for each well, then recharge calculated using Eq. (3)
would exceed precipitation for one-half of the winter re-
charge periods. Although such an occurrence could happen
(if, for instance, the well is located in a surface depres-
sion), it is unreasonable to believe that this would occur
half of the time for all of the wells. As a compromise,
the representative value of Sy for each well was set equal
to the average of all values that occurred within the low-
est 20th percentile of the set of Sy values for that well;
that is, average of the n/5 smallest of the set of n values.
Because each of these values should be legitimate inde-
pendently, it was not unreasonable to select a subset of
them for further use.

Age dating of ground water method

The age dating of ground water method synthesized data on
a spatial scale of 1–1000s of m2 (Delin et al., 2000). Re-
charge generally could not be estimated for a single re-
charge period. Ground-water ages (the time elapsed since
the water entered the aquifer as recharge) can be used with
well-depth information to obtain a vertical ground-water
velocity (Vogel, 1967; Delin et al., 2000). The velocity was
multiplied by aquifer porosity to obtain a recharge rate esti-
mate. This method was limited in its spatial resolution be-
cause deeper water, needed to establish an age gradient
at a site, may represent water recharged at increasingly
greater distances upgradient from the site. Ground-water
ages were determined on the basis of concentrations of
chlorofluorocarbon (CFC-12) and sulfur-hexafluoride (SF6)
using techniques documented by Busenberg and Plummer
(1992, 2000). These constituents can be used to trace the
flow of young water at the 1- to 50-year time scale as of
2005, depending on the ground-water age-dating method
used and the length and depth of the screened interval in
each well.

The recharge dates of ground water at one or more
depths below the water table were estimated for this study
from measured concentrations of SF6 at eight sites (Fig. 1).
Recharge dates were also estimated from measured concen-
trations of SF6 at one site collected from a previous study
(T. Cowdery, US Geological Survey, written commun.,
2004) and from measured concentrations of CFC-12 at 5
sites collected during previous studies (Stoner et al.,
1997; Cowdery, 1999; Delin et al., 2000; Lindgren and Lan-
don, 2000; Cowdery, 2005). Recharge dates were obtained
from three or more depths at the Bemidji and Princeton
sites, and vertical ground-water velocities at the water ta-
ble ðVo

vÞ were estimated visually by assuming an exponential
age distribution in the surficial aquifer (Vogel, 1967; Delin
et al., 2000):

Vo
v ¼ ðZ=ageðiÞÞ

� lnfZ=½Z � zðiÞ�g; ð7Þ

where Z is thickness of the saturated zone in the surficial
aquifer (cm), and z(i) is depth of the parcel below the water
table (cm). The average saturated-zone porosity at the site
(/) based on gravimetric analyses was used to convert the
vertical velocities at the water table ðVo

vÞ to ground-water
recharge rates:

R ¼ /Vo
v ; ð8Þ

The Sy values calculated in the previous section typically
were 30–50% less than the / numbers. For the other sites
where only a single ground-water age was available, a linear
ground-water age-depth profile was used to estimate down-
ward vertical ground-water velocity at the water table (Vo

v;
cm/yr):

Vo
v ¼ z=age; ð9Þ

where z is the depth of the middle of the well screen (cm),
and age is the age of a ground-water parcel (years).

RORA method

RORA (Rutledge, 1998, 2000) is an automated method for
estimating recharge in a basin from analysis of a streamflow
record using the recession-curve-displacement method of

236 G.N. Delin et al.



Rorabaugh (1960, 1964). The RORA program accounts for
the effects of ET, underflow, and other losses or gains of
ground water following a precipitation event. The RORA
program and associated documentation is available on the
web at: http://water.usgs.gov/ogw/rora/.

Before ground-water recharge could be estimated using
the RORA method, all 340 continuous-record stream-gaging
records in Minnesota were accessed through NWISWeb
(http://waterdata.usgs.gov/mn/nwis/sw) and reviewed
for inclusion in the analysis. The criteria for inclusion were
(1) gaging stations have at least a 10-year period of record;
(2) gaging stations have no missing data within the 10-year
periods; (3) the flow cannot be affected significantly by reg-
ulation and diversion structures, such as a dam; (4) the ba-

sins lie wholly within Minnesota or have soils that are not
different from those found in Minnesota; (5) the basins have
a drainage area of less than 5000 km2; (6) if a basin is nested
within a larger basin, it must be restricted to less than 15%
of the larger basin; and (7) the basins have soil data that can
be used to estimate landscape characteristics. The first
criterion was needed to obtain good average recharge esti-
mates, criteria 3 and 6 were included to simplify processing
and analysis, and criteria 2, 4, and 5 were required for esti-
mating recharge. On the basis of above criteria, a total of 38
basins were selected for use (Fig. 1; Table 2). One possible
error inherent to the method is that RORA assumed that the
streamflow recession is caused by ground-water discharge,
which might not necessarily be the case. Slow runoff from

Table 2 Average recharge rates as a percentage of precipitation using the RORA method in comparison to estimated recharge
from the regional regression recharge (RRR) model

Map ref.
no.

USGS stream gaging station (basin) name Gaging station
number

Period
analyzed

Average precip.
(cm/yr)

RORA (%) RRR (%)

1 Baptism River near Beaver Bay 4014500 1950–1989 78 44 21
2 Knife River near Two Harbors 4015330 1980–1999 76 34 18
3 Deer Creek near Holyoke 4024098 1980–1999 78 24 21
4 Buffalo River near Hawley 5061000 1950–1999 64 13 11
5 Wild Rice River at Twin Valley 5062500 1940–1999 63 13 30
6 Sand Hill River near Climax 5069000 1950–1999 60 10 19
7 Clearwater River at Plummer 5078000 1940–1999 62 16 35
8 Lost River at Oklee 5078230 1970–1999 62 15 17
9 Middle River at Argyle 5087500 1960–1999 54 13 11

10 Roseau River near Malung 5104500 1950–1999 58 17 32
11 Kawishiwi River near Ely 5124480 1970–1999 73 32 37
12 Sturgeon River near Chisholm 5130500 1950–1999 73 29 18
13 Warroad River near Warroad 5139500 1950–1979 58 16 13
14 Crow Wing River at Nimrod 5244000 1940–1979 67 24 30
15 Long Prairie River near Long Prairie 5245100 1980–1999 67 18 23
16 Elk River near Big Lake 5275000 1940–1979 73 19 23
17 Rum River near St. Francis 5286000 1940–1999 73 19 25
18 Elk Creek near Champlin 5287890 1980–1999 77 18 9
19 Pomme de Terre River at Appleton 5294000 1940–1999 63 8 13
20 Chippewa River near Milan 5304500 1940–1999 68 10 17
21 Yellow Medicine River near Granite Falls 5313500 1940–1999 65 11 25
22 Redwood River near Marshall 5315000 1950–1999 66 14 22
23 Cottonwood River near New Ulm 5317000 1940–1999 68 12 25
24 Little Cottonwood River near Courtland 5317200 1980–1989 71 17 20
25 Wantonwan River near Garden City 5319500 1980–1999 73 22 10
26 Le Sueur River near Rapidan 5320500 1950–1999 80 19 13
27 Kettle River below Sandstone 5336700 1970–1999 77 32 11
28 Knife River near Mora 5337400 1980–1999 73 25 14
29 Snake River near Pine city 5338500 1960–1979 75 27 17
30 Sunrise River near Stacy 5340000 1950–1959 79 16 21
31 Straight River near Faribault 5353800 1970–1999 81 25 19
32 North Fork Whitewater River near Elba 5376000 1970–1989 84 17 17
33 South Fork Whitewater River near Altura 5376500 1940–1969 85 11 22
34 Gilmore Creek at Winona 5379000 1940–1959 85 15 23
35 Root River near Lanesboro 5384000 1950–1979 84 15 22
36 Rush Creek near Rushford 5384500 1950–1979 86 14 23
37 Des Moines River at Jackson 5476000 1940–1999 69 14 23
38 Little Sioux River near Lakefield 6603000 1950–1959 72 8 12

Average 1955–1991 71 19 20

Map ref. no., reference number in Fig. 1; precip., precipitation.
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snowmelt could be confused for ground-water discharge by
the RORA method.

Regionalization of recharge estimates using the
RRR model

Regionalization is a process by which local or basin-scale re-
charge estimates can be extrapolated to regional estimates
covering a much larger area. Data from the UZWB, WTF, and
age-dating methods are point recharge estimates, represen-
tative only of the glacial outwash near where the sites are
located. The RORA results, however, represent an average
recharge rate over an entire basin with greater diversity in
soil type. Thus, the RORA basin-scale recharge estimates
are better suited to regionalization.

Regionalization of basin-scale data in Minnesota was
completed using the regional regression recharge (RRR)
model of Lorenz and Delin (2007). The RRR method provides
an estimate of average annual recharge for any point in the
State, with the exception of peatlands. The RRR model is
based on a regression of RORA recharge estimates with cli-
mate and soil data. The model synthesizes data on a spatial
scale of 10–1000s of km2 with a temporal scale representing
the period of streamflow record, generally 1–100 years. The
RRR model recharge estimates represent the average rate
within a soil association and do not reflect effects due to

localized factors such as topography. The model is de-
scribed in detail by Lorenz and Delin (2007) and is summa-
rized briefly in the following paragraphs.

Lorenz and Delin (2007) proposed a linear regression
model that includes a single soil variable and two climate
variables. The regression equation is:

R ¼ �14:25þ 67:63�SyRawls þ 0:6459�P

� 0:02231�GDD; ð10Þ

where R is average annual recharge (cm/yr) at the basin
scale, SyRawls is the average specific yield calculated by
the Rawls method (Rawls et al., 1982) as applied to STATS-
GO (1994) data for the basin, P is average annual precipita-
tion (cm/yr) at the basin scale, and GDD is the number of
growing degree days in degrees Celsius above 10 �C-days.
For this model, P and GDD were included as climatic factors
to estimate the net precipitation available for recharge.
Growing degree days was selected as a measure for estimat-
ing threshold instead of evapotranspiration (ET) because (1)
GDD is the primary factor in estimating ET, (2) annual esti-
mates of ET are not universally available, and (3) there are
several methods of estimating ET, which would complicate
use across a larger study area. The residual standard error
for average recharge for Eq. (10) was 2.79 cm/yr with 129
degrees of freedom, and the correlations within a station
for different decades was 0.5422 as determined by the max-

Figure 4 Average annual precipitation in Minnesota, 1971–2000 (data from Gregory Spoden, Minnesota Department of Natural
Resources, written commun., 2003).
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imum likelihood method. The overall significance (p-value)
of the model is less than 0.0001 based on the likelihood ratio
test between the regression model and the null model,
which includes the intercept term and the correlation
structure.

Evaluation of available data using the initial regression
model indicated that the relation between GDD and re-
charge appears to be linear at GDD rates of less than about
1350 degree-days and flat at greater than 1350 cm/yr for
the selected basins. Therefore, a modified GDD was com-
puted as the minimum of GDD and 1350 degree-days.

The RORA recharge estimates that were used to devel-
op Eq. (10) are included in this paper as a percentage of
precipitation. Precipitation rates used in the RRR model
were retrieved from the Minnesota State Climatology Of-
fice (Gregory Spoden, Minnesota Department of Natural
Resources, written commun., 2003) and represent interpo-
lated annual precipitation values on a 10,000-m grid over
the entire State. The gridded data were processed to rep-
resent the average precipitation within the decadal record
for each basin. The precipitation rates used in the model
represent the same time periods represented by the RORA
data for each basin (1940–1999) whereas the precipitation
shown in Fig. 4 represents an average for 1971–2000.
Growing degree day data summarized by month and year

for weather stations in and near Minnesota were obtained
from Shea (2006). Specific yield was selected as the soil
explanatory variable in the RRR model because it relates
to soil hydraulic characteristics that affect recharge. It
was assumed that specific yield responds to recharge in
a linear manner and could be estimated on the basis of
STATSGO (1994) data. SyRawls (Fig. 5) was estimated as
the difference between the water content of saturated
soil (hs) and the water content of soil at field capacity
(hfc) (at 330 cm of pressure head). The SyRawls, hs, and
hfc values were computed using soil texture, bulk density,
amount of organic matter, and other characteristics in the
STATSGO database using the method of Rawls et al.
(1982).

Results

Because recharge estimates using the various methods rep-
resent different time periods (Table 1) and because precip-
itation and other climatic factors vary over time, a direct
comparison of recharge rates cannot be reasonably made.
To facilitate comparison in this paper, therefore, total an-
nual recharge rates in the tables were computed as a frac-
tion of annual precipitation.

Figure 5 Spatial distribution of specific yield in Minnesota computed from STATSGO soils data using the Rawls method (Rawls
et al., 1982).
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Local and basin-scale recharge estimates

Unsaturated-zone water balance (UZWB) method

On the basis of the UZWB method, average recharge rates at
the measurement sites as a fraction of precipitation are:
Princeton – 33%; Bemidji – 40%; Williams Lake – 38%.
These results are consistent with previous UZWB estimates
at the Bemidji site of 24–61% (Delin and Herkelrath,
2005). These UZWB recharge estimates represent an aver-
age of three locations at the Bemidji site, two at the Prince-
ton site, and one at the Williams Lake site. The similarity of
the average UZWB recharge estimates at the Bemidji and
Williams Lake sites was expected given their similarity in
hydrogeologic setting and climate. The temporal variability
of UZWB recharge rates as a fraction of precipitation is
fairly consistent on an annual basis (Fig. 6). UZWB recharge
at Bemidji well 981, however, increased slightly during the
period of record for unknown reasons.

Water-table fluctuation (WTF) method

Average recharge estimated using the MRC approach to the
WTF method was 30% greater than recharge estimates made

using the graphical approach and 63% greater than recharge
estimates made using the RISE program approach (Table 3).
This was expected because the MRC approach by design ac-
counts for all recharge indicated by fluctuations of the
water table, no matter how short in duration or magnitude,
and also accounts for the projected recession curve. Con-
versely, the graphical approach may not account for the
smaller recharge volumes and the RISE program approach
ignores the projected recession curve.

There is a relation between unsaturated-zone thickness
and estimates of recharge that were based on the WTF
method. The data in Fig. 7 represent WTF recharge esti-
mates that were based on the graphical approach used in
the WTF method for all continuous-measurement wells at
the Bemidji, Williams Lake, and Glacial Ridge sites for
2003. A similar relation is evident for other years as well
as for the RISE and MRC approaches. There is no relation be-
tween recharge estimates and unsaturated-zone thickness
for thicknesses greater than about 3.5 m. At shallower
depths to the water table, however, the WTF-estimated re-
charge rate increases. One possible reason for this increase
may be that it takes less time for water to travel through a

Figure 6 Temporal variability of recharge using the unsaturated-zone water balance (UZWB) method and the RISE, master
recession curve (MRC), and graphical approaches to the water-table fluctuation (WTF) method for selected continuously measured
locations at the Williams Lake, Bemidji, Princeton, and Des Moines River sites.

240 G.N. Delin et al.



thinner unsaturated zone, thus bringing more of the water
to the saturated zone before it can be transpired by plants.
Another possible reason is that the effective Sy decreases
with proximity to the water table due to increased unsatu-
rated-zone water content (Childs, 1960). Without taking this
phenomenon into consideration Sy is overestimated. It
should be noted that although a shallow water table at
the Williams Lake and Glacial Ridge sites indicates a greater

recharge rate, it also implies a greater ground-water ET
rate. The relatively shallow depth to the water table is a
likely cause of some of the anomalously large WTF recharge
rates estimated for the Des Moines River site (Fig. 6).

Recharge during the summer months in this type of cli-
mate typically is minimal, although recharge can occur in
the summer if precipitation, soil moisture, and other fac-
tors are favorable. Results of this study indicate that for

Table 3 Average recharge rates as a percentage of precipitation estimated using the water-table fluctuation method in
comparison to estimated recharge from the regional regression recharge (RRR) model

Map ref.
no.

Site name
or nearest
town

MDNR
well #

Period of
record

Years of
record

Sy Recharge rates

Water-table fluctuation method
approaches

RRR
(%)

Graphical (%) MRC (%) RISE (%)

39 Akeley 29000 1971–1991 17 0.220 22 26 20 27
40 Barnesville 14000 1950–1990 33 0.109 23 41 24 11
41 Bemidjia NA 1994–2003 10 0.181 12 14 11 27
42 Big Lake 71000 1978 1 0.103 11 – – 19
43 Camp Ripley 49014 1952–1993 39 0.070 20 31 15 22
44 Clear lake 71006 1978 1 0.172 31 – – 23
45 Cloquet 9002 1952–1974 22 0.120 25 – – 38
45 Cloquet 9004 1950–1952 3 0.141 11 11 16 34
46 Des Moines Rivera NA 1991–2001 3 0.095 20 29 17 18
47 Eveleth 69003 1944–1950 7 0.088 29 51 25 29
48 Glacial Ridgea NA 2003 1 0.054 14 20 14 39
49 Grand Rapids 31000 1964–1967 3 0.326 31 28 16 33
50 Gray’s Bay 27007 1953–1962 9 0.058 22 48 19 21
51 Hanska 8000 1950–1975 25 0.042 20 16 7 18
52 Hawley 14004 1960–1966 7 0.032 14 19 – 15
53 Lake Bronson 35003 1957–1958 2 0.023 10 8 6 13
54 Little Falls 49017 1967–1971 5 0.034 19 29 15 21
55 Luce 56017 1970–1971 2 0.126 19 17 10 26
56 Luxemburg 73002 1978 1 0.091 12 – – 24
57 Marshall 42001 1958–1963 4 0.060 24 32 23 9
57 Marshall 42002 1958–1961 3 0.036 21 – – 9
57 Marshall 42005 1957–1962 6 0.078 19 43 26 8
58 Merrifield 18000 1974–1982 4 0.096 20 – – 27
59 Princetona NA 1992–1995 4 0.127 10 14 9 29
60 Orrock 71007 1977–1978 2 0.119 27 – – 23
61 Osage 3005 1980 1 0.225 11 – – 29
62 Perham 56015 1968–1973 6 0.096 11 – – 18
63 Redwood Falls 64006 1953–1961 9 0.030 17 25 13 16
64 Rice 5000 1978–1979 2 0.255 57 – – 20
65 Royalton 49001 1974–1975 2 0.071 19 – – 22
66 St. James 83000 1966–1968 3 0.139 33 48 32 22
67 Soderville 2014 1974–1976 3 0.084 22 31 16 26
68 Togo 31001 1971–1978 7 0.125 11 – – 23
69 Verndale 80002 1967–1978 8 0.132 19 21 16 24
70 Virginia 69010 1955–1963 9 0.035 14 15 12 25
71 Williams Lakea NA 1998–2003 6 0.228 22 28 19 21
72 Willow River 58000 1969–1986 12 0.162 18 – – 32
73 Winnibigoshish 31003 1944–1951 8 0.094 15 11 9 39
74 Worthington 53000 1962–1965 2 0.059 25 – – 17

Average NA 1958–1966 7 0.112 20 26 16 23
a USGS site where continuous water-level measurements were made; –, insufficient data to estimate recharge; MDNR, Minnesota

Department of Natural Resources; MRC, Master recession curve; RISE, A. Rutledge, US Geological Survey, written commun., 2005; NA, Not
applicable; Sy, specific yield; Map ref. no., reference number in Fig. 1.
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an accurate recharge estimate, it is necessary to collect
water-level data on at least a weekly (and preferably more
frequent) basis throughout the year. Unexpected recharge
events simply cannot be quantified if the data have not
been collected due to use of a measurement interval less
frequent than weekly. Measurements made less frequently
than about once per week resulted in substantially reduced
recharge estimates. This result was observed for all WTF
recharge estimation approaches and continuous-measure-
ment wells at the Bemidji, Williams Lake, Princeton, Des
Moines River, and Glacial Ridge sites. For example, the ef-

fects of water-level measurement interval on recharge
estimates at Princeton well R2 in 1993 are illustrated in
Fig. 8. Water levels in this well were measured hourly
throughout the year using a datalogger. By successively
editing this hourly data set, smaller data sets were gener-
ated representing daily, every 3 days, weekly, bi-weekly,
and monthly measurements. In using the graphical ap-
proach to estimate recharge, there was essentially no
change in estimated recharge when reducing the data set
from hourly to once-daily measurements; there is a 23%
underestimation when reducing the data set from hourly

Figure 7 Inverse correlation between unsaturated-zone (UZ) thickness and recharge estimated using the water-table fluctuation
(WTF) method. As the unsaturated-zone thickness decreases, the recharge rate based on the WTF method increases. The data are
graphical WTF recharge estimates for all continuously measured wells at the Bemidji, Williams Lake, and Glacial Ridge sites for
2003.

Figure 8 Effects of measurement frequency on water-table fluctuation (WTF) recharge estimates for Princeton well R2 using three
approaches (data from 1993).
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to weekly measurements, and a 48% underestimation when
reducing the data set from hourly to monthly measure-
ments. Similar results were obtained for the other contin-
uous-measurement wells and for the graphical and MRC
approaches to the WTF method.

We hypothesized that if daily water-level measurements
for a well were collected during a single year (and accurate
WTF recharge estimates were made) that accurate recharge
estimates could also be made in future years where only
monthly measurements are available by applying an
‘‘underestimation factor’’ calculated from the single year’s
worth of data. This hypothesis was tested by evaluating
water-level data from several wells with multiple years of
data. The conclusion was that underestimation of WTF re-
charge due to reduced measurement frequency is not con-
stant from year to year but is variable, depending on
climatic factors.

The average value of Sy calculated with Eq. (6) was 0.11.
This is lower than the average SyRawls value of 0.18 that was
calculated from STATSGO data for each well used in the
WTF method. The reasons for this are unclear. The surficial
sediments represented in the STATSGO soil properties may
differ texturally from aquifer sediments. Equating field
capacity to moisture content at �330 cm of pressure head,
may underestimate true field capacity. Cassel and Nielsen
(1986) suggest that for coarse-grained sediments moisture
content at �100 cm produces a more representative value.

Age dating of ground water method

Average recharge rates as a percentage of precipitation
made on the basis of the ground-water age-dating method
range from 7% at the Danvers site to 50% at the Atkinson site
(Table 4). The average recharge rate for all sites is 24% and
no spatial patterns of recharge are apparent across the
State. The results do not indicate any bias relative to the
SF6 or CFC-12 age-dating methods used.

RORA method

Recharge estimates were made for every year during the
period of record for each of 38 basins (Fig. 1). The basin-
scale RORA recharge rates ranged from 8% to 44% of precip-
itation and averaged 19% of precipitation (Table 2). These
results are within the range of recharge rates expected
for the climate and hydrogeologic settings in the 38 basins
(Delin et al., 2000).

Regionalized recharge rates using the RRR model

The map illustrating spatial variability of the RRR recharge
rates in Minnesota (Fig. 9) was made by applying Eq. (10)
to the statewide data sets of precipitation, GDD, and SyRawls
on a 10,000-m grid over the entire State. These estimates
are representative of the average recharge rates for
1971–2000 because the mean precipitation and GDD data
used to generate the map were from that time period (Table
2). The RRR rates illustrated in Fig. 9 generally reflect aver-
age soil conditions as described in the STATSGO database.
Local conditions, such as low permeability units at or near
land surface or topographic lows, could greatly reduce or in-
crease the estimated recharge rates. The ‘‘Unclassifiable’’
areas in Fig. 9 represent primarily peatlands where the or-
ganic content is too great to accurately estimate SyRawls.
The RRR rates in the tables were obtained using geographic
information system software with the digital output used to
create Fig. 9. For example, the RRR rate for the Baptism
River near Beaver Bay in Table 2 was the areally weighted
average of recharge for that basin overlain in Fig. 9.

Comparison of RRR model to local and basin-scale
results

In addition to any deficiencies in a given method, recharge
estimates may differ as a result of variations in the temporal

Table 4 Average recharge rates as a percentage of precipitation estimated using the ground-water age-dating method in
comparison to estimated recharge from the regional regression recharge (RRR) model

Map ref.
no.

Site name or
nearest town

Age-dating
method

Approximate
range of years
represented

Number
of wells
at site

Total number
of years

Average precip.
(cm/yr)

Age-dating
recharge
rate (%)

RRR
(%)

75 Atkinson SF6 1996–2003 1 7 79 49 34
76 Belgrade SF6 1996–2003 1 7 72 22 21
41 Bemidjia SF6 1962–2003 8 41 64 34 28
77 Danvers SF6 1979–2003 1 24 67 7 16
46 Des Moines Rivera CFC-12 1940–1999 10 59 71 31 17
48 Glacial Ridgea SF6 1989–2004 20 15 64 32 32
59 Princetona CFC-12 1949–1994 16 45 76 30 26
78 Parkers Prairie SF6 1990–2003 1 13 66 11 21
62 Perhama CFC-12 1946–1995 9 49 65 14 21
79 Philbrook SF6 1980–2003 1 23 72 10 22
80 Prairie Islanda CFC-12 1950–1996 13 46 76 15 20
81 Rock Rivera CFC-12 1955–1996 3 41 70 28 11
67 Soderville SF6 1999–2003 1 4 86 22 25
82 White Bear SF6 1990–2003 1 13 91 31 26

Average 1973–2001 NA 28 73 24 23
a Recharge rate is based on average of multiple wells at site; NA, not applicable; Map ref. no., reference number in Fig. 1; precip.,

precipitation.
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and spatial scales of the methods (Table 1) and in the period
of record for each site. Additionally, the age-dating method
is limited in its spatial resolution because deeper ground-
water samples, needed to establish an age gradient at a
site, may represent water recharged at increasingly greater
distances upgradient (Delin et al., 2000). For example,
ground water sampled from a 6-m depth below the water ta-
ble likely recharged the aquifer 10–100s of meters upgradi-
ent of the well whereas water sampled from 0.5-m below

the water table likely recharged the aquifer within a few
meters of the well.

The RRR rates compared least favorably to the UZWB re-
charge estimates. The average RRR rate of 25% of precipita-
tion for the three UZWB sites was 72% less than the average
UZWB rate of 43% of precipitation. This lack of agreement is
not surprising because the UZWB rates were generally great-
er than the other local-scale estimates (age-dating and
WTF), although they were similar in several cases.

Figure 10 Correlation of the regional regression recharge (RRR) method with (a) graphical water-table fluctuation (WTF) and (b)
age-dating recharge estimates.

Figure 9 Average annual recharge rate to surficial materials in Minnesota (1971–2000) estimated on the basis of the regional
regression recharge method.

244 G.N. Delin et al.



The average RRR rates range from 44% greater to 12% less
than rates based on the three WTF approaches as a percent
of precipitation, although differences for certain individual
wells are much larger (Table 3). Fig. 10a illustrates the lack
of correlation between RRR rates and the graphical WTF
rates for individual wells. Similarly, a correlation is not evi-
dent between RRR rates with respect to results from the
MRC and RISE program approaches. This is not unexpected
because the WTF recharge rates were based on geologic
data from a local site and water-level data collected on
an annual time scale. Conversely, the RRR model synthe-
sizes hydrogeologic data at the soil-association and basin
scale (Table 2) from across the entire State of Minnesota
representing a time period of about 60 years.

The average RRR rate was only about 4% less than the
average based on the age dating of ground-water method;
however, recharge estimates for individual wells ranged
from 61% less to 229% greater (Table 4). Fig. 10b illustrates
the relation between the RRR rates and the age dating of
ground-water method, which is better than the relation
with WTF in Fig. 10a. The better relation for the RRR versus
age-dating methods likely is because both methods repre-
sent multiple years of record. In addition, the age-dating
method generally utilized data representing a larger area
than that of the WTF method.

The average RRR rate compared most favorably with the
RORA recharge rates, being only about 5% greater (Table 2).
This result is not surprising because the RRR model was
based on the RORA data. The weighted average of the RRR
rates as a percentage of precipitation for individual basins
was as much as 22% less to 39% greater than the various
RORA estimates within each basin (Table 2), which likely re-
sulted from local heterogeneities within the basin that were
represented in the RORA results but not in the RRR results.

Discussion

Because the actual recharge rate is never known with 100%
certainty at a given location, use of multiple recharge esti-
mation methods is beneficial. No single method can be
termed the ‘‘best’’ at estimating recharge due to: (1) spa-
tial and temporal variability in the various independent vari-
ables (Table 1); (2) inherent limitations for each method (as
described earlier); (3) limitations on the availability of input
data in a given area; and (4) variability in the uses or appli-
cations of the recharge estimates. Nevertheless, several
conclusions can be gleaned from this study about the advan-
tages, disadvantages, and limitations of the methods
employed.

Of the methods used in this study, the WTF method was
the simplest and easiest to apply. Where water-level data
are already available this method is also the least expensive
to apply, although results indicate that at least a weekly
measurement frequency is required to avoid an unaccept-
able underestimation of the recharge rate. Of the WTF ap-
proaches used, RISE is the most reproducible; any user
that applies the program properly should generate exactly
the same recharge rate as the next user. Recharge esti-
mates on the basis of the MRC approach were consistently
greater than recharge estimates made using the graphical
and RISE approaches. The graphical WTF approach requires

the most subjectivity on the part of the user in projecting
the ground-water recession curve and thus is the least
reproducible.

The ground-water age-dating method also is easy to ap-
ply, however it requires accurate determination of
ground-water age using sophisticated and not-readily avail-
able laboratory methods. The costs associated with the col-
lection and analysis of samples may be a deterrent to use of
this method. In addition, there are many uncertainties asso-
ciated with the age dating of water (e.g. Busenberg and
Plummer, 1992, 2000).

The RORA method, as well as similar recession-curve-dis-
placement techniques, has an advantage over the site-spe-
cific methods in that it yields a recharge rate that is
representative of an entire basin (Table 1). Generation of
a recharge rate representative of this large an area makes
this method conducive to regionalization methods, such as
RRR, whereas local-scale recharge estimates are highly var-
iable and may be difficult to transfer from one location to
another. High-quality, long-term continuous streamflow re-
cords are required for the RORA method. If missing values
are estimated, uncertainty of the results increases. The
RORA method is not applicable in arid or semiarid areas
where perennial streams do not exist. Although RORA as-
sumes that streamflow recession is caused by ground-water
discharge, this might not be the case. Slow drainage to
streams from bank storage, wetlands, surface-water bodies,
soils, and snowmelt runoff can exceed ground-water dis-
charge during recession periods (Halford and Mayer, 2000;
Rutledge, 2000), and could be confused for ground-water
discharge by the RORA method.

Recharge estimates made on the basis of the UZWB
method were inconsistent with the results from the other
methods (Fig. 6). Based on results of this and previous stud-
ies, recharge rates in semi-humid climates generally fall in
the range of about 10–40% of precipitation (e.g. Delin
et al., 2000). However, the UZWB estimates generally fall
above or in the upper end of this range and are unreasonably
large in some cases. In addition, the cost of collecting data
for the UZWB method is perhaps the greatest of the meth-
ods tested, due to the labor and equipment needed to col-
lect soil-moisture data at multiple depths in the
unsaturated zone. In addition, the UZWB method yields a
point recharge estimate, representative of only about a 1-
m2 area, which is a drawback for some applications.

The RRR model, as applied in this study, should be rela-
tively easy to construct in other humid areas of the world
where regional databases for soils (such as STATSGO), pre-
cipitation, and growing degree days are available. These
data bases are available across the entire United States,
and presumably in other areas of the world. The only other
data needed to construct a RRR model is a set of indepen-
dent recharge estimates on a local or basin scale throughout
the area of interest. If a RRR model has already been con-
structed, the spatially-variable recharge estimates it gener-
ates could easily be used as input to a ground-water flow
model; RRR model results currently are being applied for
this purpose in USGS studies elsewhere. These RRR esti-
mates, variable at the soil association scale, are preferable
for ground-water flow model input compared to the conven-
tional use of local- or basin-scale recharge estimates that
typically are assumed to be constant over large areas.
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Numerous factors influence the spatial variability of re-
charge including physical characteristics of the soil, vegeta-
tion cover, land use, topography, water content of surface
materials, climate variability, and depth of the confining
layers and aquifers. Focused recharge of water in depres-
sional areas due to runoff from surrounding upland areas
also is an important local factor affecting recharge variabil-
ity. These small-scale variabilities in recharge are lost or
smoothed out when these basin-scale recharge estimates
are regionalized. Consequently, the recharge rates esti-
mated using the RRR method should be used with caution
for localized estimates of recharge. Average values of pre-
cipitation, recharge, and other variables were used to con-
struct the maps and regression equations. Thus, actual
recharge rates will vary from year to year depending on cli-
mate and weather patterns.

Spatial variability in recharge

Large-scale variability

Large-scale trends in recharge across Minnesota reflect cli-
matic variations. There is a strong relation between RRR
rates (Fig. 9) and average precipitation (Fig. 2). Where pre-
cipitation is least in the northwestern part of the State (50–
65 cm/yr), recharge also is least (0–5 cm/yr). Similarly, re-
charge increases in the eastern part of the State to greater
than about 15 cm/yr as precipitation increases to greater
than about 75 cm/yr. In the southeastern part of the State,
where precipitation is even greater than in northeastern
Minnesota, RRR recharge rates are small. The relation be-
tween RRR recharge rates and SyRawls (Fig. 5) is not as evi-
dent as with precipitation. Nevertheless, sand-plain areas
in the east-central part of the State, with SyRawls primarily
in the 0.20–0.25 range, correspond well with RRR recharge
rates in the 15–25 cm/yr range.

Large-scale trends are evident in the RORA basin-scale
data, with recharge greatest in the northeastern part of
the State and decreasing to the southwest (Table 2;
Fig. 1). This trend results to a large degree from smaller
runoff and ET rates in the northeast (Baker et al., 1979).

Large-scale trends in recharge are not readily evident in
the WTF results (Table 3; Fig. 1). The greatest recharge
rates (greater than 20% of annual precipitation) are located
in the east-central trending toward the southwestern parts
of the State. This area of greater WTF recharge does not re-
late well to patterns of precipitation or SyRawls. Large-scale
trends in recharge are also not readily evident in the
ground-water age dating results (Table 4; Fig. 1). The least
recharge rates (less than 20% of annual precipitation) are lo-
cated in the west-central part of the State with most of the
remaining sites having recharge between 20% and 40% of
precipitation. This area of least ground-water age-dating re-
charge does not relate well to patterns of precipitation or
SyRawls. Local anomalies likely are the result of local heter-
ogeneities in soils and topography rather than part of a
large-scale trend as noted earlier.

Small-scale variability

Small-scale variability in recharge in Minnesota is related
largely to variability in soil properties and land-surface
topography. Focused recharge of water in depressional
areas due to runoff from surrounding upland areas has been
identified by Delin et al. (2000) as an important contribution
to spatial variability in recharge. Evidence of this type of
small-scale variability in recharge was observed at several
of the intensive data-collection sites. For example, 37% of
the continuously measured wells at the Bemidji site are lo-
cated in lowland areas, where average graphical WTF re-
charge is 21% of precipitation compared to 15% in upland
areas.

Figure 11 Statistical summary of total monthly recharge for Elk River near Big Lake, Minnesota for 1940–1979, estimated using
the RORA method.
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Temporal variability in recharge

Intra-annual variability

Ground-water recharge varies seasonally on the basis of sev-
eral factors, including climate, antecedent soil-moisture
conditions, soil hydraulic properties, and depth to the water
table. An example of this seasonal variability using the
RORA method is illustrated in Fig. 11, a boxplot statistical
summary of total monthly recharge for Elk River near Big
Lake, Minnesota for 1940–1979. As expected, recharge
was greatest in the spring, which typically included 80–
90% of total annual recharge at any given site in Minnesota.
A much smaller secondary period of recharge typically oc-
curred in the fall. The data in Fig. 11 are typical of monthly
variability in recharge throughout Minnesota, regardless of
estimation method.

Inter-annual variability

The RRR method provides an estimate of average annual re-
charge for any point over a region. A tacit assumption in this
approach is that recharge does not change from year to
year. In reality recharge does vary, primarily in response
to changes in climate patterns (Fig. 6). Fig. 12a shows
how graphical WTF recharge increased with precipitation
for Bemidji well 310d. This same relation also is apparent
for MDNR well 49014 (Fig. 12b), which has the longest period
of record (39 years) of the wells used in this study. The aver-
age of graphical WTF recharge to precipitation for this well
was 20% over that period (coefficient of variation 43%), in
good agreement with the RRR estimate of 22% (Table 3).
MDNR well 49014 is typical of the other wells in this study.
The average ratio of recharge to precipitation for all wells
and years is 20%, with a coefficient of variation of 45%.

In addition to variations in response to climate patterns,
recharge also can vary in response to changes in land use.
For example, studies by Gebert and Krug (1996) and Juckem
(2003) indicated statistically significant changes in stream-
flow and recharge, respectively, due to changes in agricul-
tural practices in southwestern Wisconsin.

Summary and conclusions

Estimates of ground-water recharge for Minnesota from a
regional regression recharge (RRR) model were compared

to estimates based on three local-scale methods and one
basin-scale method. Local-scale methods were based on
an unsaturated-zone water balance (UZWB), water-table
fluctuations (WTF) using three approaches, and age dating
of ground water. A fourth method (RORA) is a basin-scale
analysis of streamflow records using a recession-curve-dis-
placement technique. The RORA recharge estimates, plus
climate and soils data, were the basis for the RRR model.
The RRR model provides an estimate of average annual re-
charge for any point in the State of Minnesota, and a similar
model could be constructed for other areas of the world.

The RRR model, as applied in this study, should be rela-
tively easy to construct in other humid areas of the world
where regional databases for soils, precipitation, and grow-
ing degree days are available. The only other data that one
needs to construct a RRR model is a set of independent re-
charge estimates based on local- or basin-scale estimates
from throughout the area of interest. Recharge estimates
using the RRR model could be a good source of input for re-
gional ground-water flow models; RRR model results cur-
rently are being applied for this purpose in USGS studies
elsewhere.

The WTF method is the simplest and easiest to apply, of
the methods used in this study. Because water-level data
are readily available this method could also be considered
the least expensive to apply, although results of this study
indicate that at least a weekly measurement frequency is
required to avoid an unacceptable underestimation of the
recharge rate. Recharge estimates made on the basis of
the UZWB method were inconsistent with the results from
the other methods, and are considered unreasonably large
in some cases. The RORA method has an advantage over
the site-specific methods in that it yields a recharge rate
that is representative of a relatively large area. This makes
the RORA results conducive to regionalization using the RRR
method.

Despite the various limitations of each of the methods
used in this study, estimated recharge rates normalized to
precipitation at a given site fall on average within about
60% of each other. This degree of agreement is noteworthy
particularly in consideration of the different temporal and
spatial scales represented by the various methods. Although
good agreement among methods does not necessarily imply
accuracy, it supports greater confidence in the results.

Figure 12 Graphical water-table fluctuation (WTF) recharge divided by precipitation versus: (a) total annual precipitation for
Bemidji well 310d; (b) year for MDNR well 49014.

Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA 247



Acknowledgements

This research was supported primarily through the US Geo-
logical Survey (USGS) Ground Water Resources Program
(Grannemann, 2001; Dennehy, 2005) with additional support
through the USGS National Research Program and the Minne-
sota Department of Natural Resources. The efforts of USGS
employees Tom Winter, Lehne Franke, Don Rosenberry, Dal-
las Hudson, Tim Cowdery, Greg Williams, Paul Oduro, Erik
Smith, Kim Reierson, and Stephanie Johnson are appreciated
for their assistance with technical consultation as well as
various analyses and data collection associated with this pa-
per. The authors thank US Geological Survey technical
reviewers Randy Hunt and Dennis Risser as well as two anon-
ymous reviewers for providing valuable comments that sig-
nificantly improved this paper. Use of brand, firm, or trade
names in this paper is for identification purposes only and
does not constitute endorsement by the US Government.

References

Arnold, J.G., Muttiah, R.S., Srinivasan, R., Allen, P.M., 2000.
Regional estimation of base flow and groundwater recharge in
the Upper Mississippi river basin. Journal of Hydrology 227, 21–
40.

Baker, D.G., Kuehnast, E.L, Zandlo, J.A., 1985. Climate of Minne-
sota—Part XV, Normal Temperatures (1951–1980) and their
Application. University of Minnesota Technical Bulletin AD-SB-
2777-1985.

Baker, D.G., Nelson, W.W. Kuehnast, E.L. 1979. Climate of
Minnesota—Part XII, The Hydrologic Cycle and Soil Water.
University of Minnesota Technical Bulletin 322.
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