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ABSTRACT 

One of the more difficult tasks facing a modeler in developing a simulation model of a 

discrete part manufacturing system is deciding at what level of abstraction to represent 

the resources of the system.  For example, questions about plant capacity can be modeled 

with a simple model, whereas questions regarding the efficiency of different part 

scheduling rules can only be answered with a more detailed model.  In developing a 

simulation model, most of the actual features of the system under study must be ignored 

and an abstraction must be developed.  If done correctly, this idealization provides a 

useful approximation of the real system.  Unfortunately, many individuals claim that the 

process of building a simulation model is an “intuitive art.”  The objective of this research 

is to introduce aspects of “science” to model development by defining quantitative 

techniques for developing an aggregate simulation model for estimating part cycle time of 

a manufacturing flow line.  The methodology integrates aspects of queueing theory, a 

recursive algorithm, and simulation to develop the specifications necessary for combining 

resources of a flow line into a reduced set of aggregation resources.  Experimentation 

shows that developing a simulation model with the aggregation resources results in 

accurate interval estimates of the average part cycle time.   
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CHAPTER 1  

INTRODUCTION 
If you want to understand some aspect of the Universe, it helps if you 
simplify it as much as possible and include only those properties and 
characteristics that are essential to understanding.  If you want to 
determine how an object drops, you don’t concern yourself with whether it 
is new or old, is red of green, or has on odor or not.  You eliminate those 
things and thus do not needlessly complicate matters.  The simplification 
you call a model or a simulation and you can present it either as an actual 
representation on a computer screen or as a mathematical relationship. ... 
Such simplified simulation make it far easier to grasp a phenomenon than 
it would be if we had to study the phenomenon itself. 

 Hari Seldon, mathematician 
              (Asimov, 1988, p. 138) 

1.1 Research Problem Statement 

 In developing a simulation model of a discrete part manufacturing system, a 

modeler must decide at what level of abstraction to represent the resources of the system.  

For example, questions about plant capacity can be modeled with a simple model, 

whereas questions regarding the efficiency of different part scheduling rules can only be 

answered with a more detailed model (Thesen and Travis, 1988).  Unfortunately, many 

claim that the process of building a simulation model is an “intuitive art” (Emshoff and 

Sissin, 1970; Shannon, 1975; MacNair and Sauer, 1985; and Pritsker, 1986 are a small 

subset).  The objective of this research is to introduce aspects of “science” to model 

development by defining a quantitative methodology for developing an aggregate 

simulation model of a manufacturing flow line system. 
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1.2 Problem Environment 

 Computer simulation is the process of developing a mathematical-logical model 

of a real system and experimenting with this model on a computer (Pritsker, 1986).  It is 

one of the most important operations research techniques (Lane, Mansour, and Harpell, 

1993).  It’s many uses range from comparing alternative systems to answering capacity 

and feasibility questions.  Simulation modeling has its roots in computer science, 

mathematics, and statistics (Murray and Sheppard, 1987).  To use simulation correctly 

and intelligently, the practitioner is required to have training in each of these different 

fields.  Shannon et al. (1985) estimate that a simulation practitioner must have about 720 

hours of formal classroom instruction plus another 1440 hours of outside study to gain 

this basic knowledge.  This estimate emphasizes one of the significant disadvantages of 

simulation: the quality of the analysis depends on the quality of the model.   

 One of the more difficult tasks of model building is determining at what level of 

abstraction to model the resources of the system.  According to Shannon (1975), “Model 

building requires an ability to analyze a problem, abstract from it its essential features, 

select and modify basic assumptions that characterize the system, and then enrich and 

elaborate the model until a useful approximation results.”  He concludes by stating that 

the successful approach to model building appears to proceed on the basis of elaboration 

and enrichment.  One starts with a very simple model and elaborates it until it clearly 

represents the system.  Pegden et al. (1990) agrees and remarks that, “this process of 

system abstraction and simplification is the essence of modeling art.” 

 In contrast, McHaney (1991) proposes that simulation is neither an art nor a 

science, but both.  He asserts that the creativity and instincts used are akin to an art, while 

the methodology involved in model creation and analysis are based on computer science 

and mathematical principles.  Therefore, elements of both art and science exist in 

modeling (Figure 1.1). 
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Art Science

Center
Simulation

 
 
Figure 1.1. Art versus Science: where simulation falls [from McHanely, 1991]. 

 Since a model is a description of a system, it is also an abstraction or 

simplification of that system (Pritsker, 1986). Most problem situations are enormously 

complex, containing an almost infinite number of elements, variables, parameters, 

relationships, constraints, etc. (Shannon, 1975).  When building a model, an infinite 

number of facts can be included followed by an endless amount of time gathering detailed 

facts about any situation and defining the relationships among them.  Shannon (1975) 

describes the following situation: 
Consider the simple act of taking a piece of paper and writing a letter.  
One could study the detailed chemical composition of the paper, lead, and 
erasure; the effect of atmospheric conditions on the moisture content of the 
paper and its effect on the friction of the pencil lead as it moves across the 
paper; the statistical distribution of the letters in the sentences; etc.  

If the only aspect of interest is whether a letter is sent or not, then none of these details are 

pertinent.  In developing a simulation model, most of the actual features of the system 

under study must be ignored and an abstraction must be developed. 

 The representation or model of a system is not unique.  Depending upon the 

objective of the study, the same system can be represented in a variety of ways giving 

different types and amounts of information (Neelamkavil, 1987).  The level of detail in a 

model is usually determined by the specific objective of the modeling effort (Emshoff and 

Sisson, 1970).  For example, Thesen and Travis (1988) remark that questions about plant 
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capacity can be modeled with a simple model, while questions regarding the efficiency of 

different part scheduling rules can only be answered with a more detailed model.   

 Modeling is a balancing act (Balci, 1989).  On one hand, a model should include 

the essential elements of the system, and on the other hand, it should not include 

unnecessary detail.  Missing an essential element may invalidate the representation 

provided by the model.  Inclusion of unnecessary detail only makes the model 

unnecessarily complex and difficult to analyze.  The natural tendency of the novice is to 

include too much detail, while the more experienced modeler tends toward greater 

abstraction (Sadowski, 1989).  Advantages for developing an abstract simulation model 

include (Gordon, 1969; Pedgen et al., 1991):  

• a reduced run length, 

• a less complex model, 

• easier to animate, 

• easier to debug, validate, modify and document, 

• less demand of programming resources (queues and systems variables), 

• less data dependent answers.   

 An argument often used for the complex model is the need for precise results.  

Where this argument fails is that the increased run-time for the more complex model may 

lead to fewer replications, which in turn produces wider confidence intervals on the 

performance measure (Pegden et al., 1990).  Hence, the more detailed model may actually 

produce less precise results.  In addition, consider the case of a manufacturing line where 

all operations are specified as data distributions.  For example, ten production steps 

requires ten processing times, one for each step.  If these estimates are not accurate, it 

would be better to combine or aggregate several or all of the steps and guess a combined 

distribution.  This will reduce the variability of the estimate, since as the data is 

aggregated the importance of each individual time is minimized.  A final disadvantage of 
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a large and complex model is it is more likely to contain undetected bugs that can 

introduce errors of a much larger magnitude than a simpler model. 

 

1.3 Scope and Objectives 

 In developing a simulation model, most of the actual features of the system under 

study must be ignored and an abstraction must be developed.  If done correctly, this 

idealization provides a useful approximation of the real system, or at least certain parts of 

the real system.  Abstracting a system into a simulation model involves three techniques: 

simplification, aggregation, and substitution. 

 The easiest method, simplification, is the omission of certain details from the 

model, such as infrequent machine breakdowns, small travel times, etc. (Pegden et al., 

1990).  This simplification process entails stripping away unimportant details or the 

assumption between relationships (Shannon, 1975).  This approach assumes that not all 

factors are equally important in determining system behavior.  The task for the modeler is 

determining which factors are critical, and which are not.    

 The second method involves aggregating or lumping details into a single, 

approximately equivalent function (Pegden et al., 1990).  Pedgen et al. (1990) discusses 

the example of a manufacturing flow line in which an operator may perform several 

distinct tasks on a part as it moves through a workstation.  Rather than individually 

modeling each of these tasks, one can model the entire operation as a single process. For 

example, the load time for a part on the machine might be aggregated with the machine 

process time to have a single part time on the machine.   

 A third technique in developing an abstract model involves substituting a simpler 

but approximate process for a more complex one.  For example, consider a manufacturing 

cell with several different lathes, each with slightly different performance characteristics.  

These can be approximated by a set of parallel, identical lathes.  Another common 
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substitution involves replacing a stochastic process with a constant process (replacing a 

probabilistic service time with a deterministic service time).  For instance, it may be 

known that the process time for a part follows a normal distribution with a very small 

standard deviation.  This could be simplified by modeling the processing time as a 

constant time based on the mean.  

 Facing competitive pressure from both domestic and foreign sources, today’s 

manufactures must strive to keep delivery promises and reduce inventory (Cheng, 1990).  

Success depends upon a manufacture’s ability to reliably predict part cycle times.  The 

ability of a manufacture to predict part cycle times accurately in its production system has 

two important implications (Cheng, 1990): (1) assignment of reliable and attainable due-

dates to job orders, and (2) accurate assessment of the work-in-process inventory in the 

production system.  Not only do both of these strive to win customer satisfaction by 

promising and delivery on specified dates but they also allow for a reduction in costs. 

 The objective of this research is to develop a formal methodology for creating an 

aggregate simulation model that can be used to estimate part cycle time.  The scope of 

this research will be limited to flow line manufacturing systems.  The methodology 

operates by aggregating or lumping together resources of the system to develop the 

specification for an aggregation simulation model that accurately estimates the part cycle 

time.   

 

1.4 Research Assumptions 

This research will proceed based on the following basic assumptions: 

(1) The decision process for aggregating simulation resources will be studied from a 

predictive point of view.  Such an approach focuses on identifying the impact of 

key or significant resources of a system.  In comparison, the reactive point of 

view requires the generation of the complete model (Figure 1-2).  It explores the 
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aggregation issue by running the full or complete model, and based on the 

output, decides an appropriate procedure for aggregating system resources.  The 

noticeable discrepancy is that if the full model needs to be run, why study 

developing a reduced or aggregate model?  It is the premise of this research to 

aid a modeler in developing the initial simulation model. 

 

Flow Line 
Description

Based on the output, decide how to aggregate features in the model

From the description, decide how to aggregate resources
Aggregate 
Simulation 

Model

Aggregate  
Simulation 

Model

Output from 
Runing the 

Full 
Simulation 

Model

PREDICTIVE      

REACTIVE   

 
 
Figure 1.2. Comparison of two approaches for aggregating resources in a simulation 

model. 

(2) The manufacturing system that this research explores is a production flow line 

(flow shop) system.  Systems of this type are widely used in industry to represent 

situations in which parts (or customers, or telephone calls) arrive to a service area, 

obtain the service they require, and then move on to the next service area or leave 

the system.  Systems of this type are a subset of the broad class of discrete part 

manufacturing systems.  It is hypothesized that future research will be able to 

extend the research methodology to other discrete manufacturing systems 

(manufacturing cell, job shop, flexible manufacturing system, etc.).  Discussion on 

continuous or hybrid systems will be excluded.   

(3) All shop floor data is readily available.  In theory, this information is available on 

process flow diagrams, but in practice it is not always known.  It can be assumed 

that in a fully-integrated, computerized factory (with data checking) of the future, 
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this information can be obtained.  In addition, common sense inherently dictates 

that if a part flow is currently in operation or is being modeled for such, the  

information about the operational steps required to make a part must be known. 

(4) The success of the aggregation procedure will be judged on how well it estimates 

a single performance variable, namely the average cycle time (sojourn time) of a 

part to wait and be serviced by all stations (resources) of the flow line.  In addition 

to this variable being important for planning delivery dates, it is also useful for 

reducing costs.  Mott and Tumary (1992) discuss that since material carrying costs 

are directly related to the value of the assets (parts being produced) and the length 

of time those assets remain in the process, estimation of the average cycle time of 

a part is an important value for system evaluation. 

(5) Application of the research methodology requires that the underlying 

manufacturing system be stable and operating at less than capacity.  Specifically, 

the arrival rate of a part to the flow line and the resource service times are such 

that the associated queue of the resource is not growing unbounded.  This can be 

tested for all flow line stations by checking that the mean arrival rate divided by 

the service rate multiplied by the number of servers is less than one.   

(6) The relationship between the different production stations or resources in the flow 

line is independent for estimating the cycle time of a part.  That is, it will be 

assumed that the order of resources has little if any impact on estimating the cycle 

time of a part through a flow line.  The case when independence is not assumed 

and the order of resources in the flow line is important and will be discussed in 

Chapter 4. 

(7) A final constraint on the system is that there are no feedback loops in the 

production operation. 
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1.5 Major Research Tasks 

 A high level view of this research is illustrated in Figure 1.3.  Applying the 

aggregation methodology to a production flow manufacturing system description results 

in the specifications of the equivalent aggregate system. 

 

 
Description 

of Flow Line

Speficications for   
Developing Aggregate 

Simualtion Model

Application of 
Aggregation 
Methodology

 
 
Figure 1.3. The research methodology decision process. 

 The major tasks identified for achieving the objectives of this research are 

summarized as follows: 

(1) Development of a formalism to describe a production flow manufacturing system.  

This description provides a necessary foundation for identifying and collecting 

information that the aggregation methodology requires. 

(2) Creation of a formalism to describe the aggregate system.  It summarizes all the 

information necessary for the modeler to develop an aggregate simulation model 

of the system. 

(3) Identification of a procedure for computing the average cycle time of an 

aggregation resource. 
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(4) Development of techniques to estimate the mean service time of an aggregate 

resource. 

(5) Origination of a method for describing the mean service time of an aggregation 

resource in terms of its aggregated resource service means. 

(6) Identification of a method for creating the aggregate simulation model using the 

original resource service time distributions. 

A more detailed description of these tasks and their relationship is presented in Chapter 3, 

RESEARCH METHODOLOGY. 

 

1.6  Original Contribution of the Research 

 The objective of this research is to create a formalized methodology for 

developing an aggregate simulation model of a production flow line which estimates part 

cycle time.  Upon completion of this research and meeting of the research objectives, this 

research has the following original contributions: 

(1) Development of a methodology for aggregating resources in a simulation model 

of a production flow line. 

(2)  Development of formalisms for describing a production flow line and its 

aggregate equivalent.  These formalisms provide a foundation from which a flow 

line can be defined and compared. 

(3) Identification of a method for determining the service mean of an aggregate 

resource.  This involves applying queueing formulas backwards, in that the mean 

service time of an aggregation resource is estimated from the average cycle 

(waiting) time.  This differs from the more common approach of specifying the 

mean service time and computing the cycle (waiting) time. 
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(4) Creation of a technique for weighting the resources of an aggregate resource so as 

to estimate the aggregate resources service time mean.  This is accomplished 

through the use of a recursive algorithm. 

(5) Demonstration that analytical techniques such as queueing analysis can be 

integrated with simulation to reduce the effort necessary to address questions that 

simulation can answer. 

 

1.7 Organization of the Dissertation 

 This dissertation consists of five chapters.  Chapter 1 presents the research 

problem statement, defines the problem environment, identifies the scope and objectives 

of this research, states the research assumptions, defines the major research tasks, and 

lists the original contribution of this research.  Chapter 2 reviews past research in the 

areas covered by this research.  It also introduces techniques used by the aggregation 

methodology and thus provides a foundation from which the research methodology is 

developed. 

 The research methodology is presented in Chapter 3.  The chapter begins by 

presenting an overview of all the major research tasks and the links between them.  This 

is accomplished by presenting the specific steps of the research methodology.  The 

remainder of the chapter expands and discusses the details involved with each of the 

steps.  The analysis of an example flow line is continued throughout the chapter to 

illustrate each step of the aggregation methodology. 

 Chapter 4 is allocated for illustrating the application of the aggregation 

methodology developed in the previous chapter.  It discusses the impact of applying the 

aggregation methodology by studying its application for three types of flow line system: a 

flow line with all exponential servers, a flow line with only single capacity servers, and a 

flow line with any number of servers of any capacity.  For each of these different cases, 
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the results of applying the methodology is explored.  In addition, a computer program 

which implements the aggregation methodology is discussed.  Chapter 5 provides a 

summary of the research results, summarizes the limitations of the research, and offers 

recommendations for future research work on this topic. 

 The reference section lists all literature reviewed in regard to this research.  The 

format follows that of the journal Simulation published by the Society for Computer 

Simulation. 

 



CHAPTER 2 

LITERATURE SURVEY 

 This chapter identifies the important research concepts necessary for creating the 

aggregation methodology for estimating the cycle time of a part.  Section 2.1 defines 

computer simulation by discussing the simulation model development process.  Section 

2.2 discusses the components that make up a discrete manufacturing systems.  It also lists 

the different types of flow line manufacturing systems and reviews commonly studied 

performance measures.  Section 2.3 explores the use of queueing analysis for estimating 

the steady state performance of a queueing system.  This section concludes by discussing 

previous research of tandem queue (flow line) system.  With no previous formal research 

for developing an aggregate simulation model, Section 2.4 reviews the general concept of 

aggregation and reviews how aggregation is performed in other areas.  Section 2.5 

summarizes the major concepts presented in Chapter 2. 

 

2.1 Introduction to Simulation 

 Simulation is one of the most important operations research techniques (Lane, 

Mansour, and Harper, 1993).  Its uses range from answering holding capacity and 

production feasibility questions to comparing alternative system routing and scheduling 

plans.  This section provides an introduction to developing a simulation model.  Section 

2.1.1 introduces the concept of a model.  Section 2.1.2 explores computer simulation 

models, a specific type of model.  Section 2.1.3 reviews the procedures for developing a 

simulation model.  Section 2.1.4 summarizes procedures for generating random variables.   

 

2.1.1 What is a Model? 

 A model is a simplified representation of a system (or process or theory) intended 

to enhance our ability to understand, predict, and possibly control the behavior of the 
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system (Neelamkavil, 1987).  More formally, Shannon (1975) defines a model to be “a 

representation of an object, system, or idea in some form other that of the entity itself “ 

(Shannon, 1975).  Pritsker (1986) expands on this definition and states that models are 

descriptions of systems.  A system is a collection of regularly interacting or 

interdependent components (such as machines, people, information, and 

communications), acting as a unit in carrying out an implicitly or explicitly defined 

mission (Maisel and Gnugnoli, 1972). 

 Modeling is not new; mankind has been conceptualizing and developing models 

since he began to understand and manipulate his environment (Shannon, 1975). The 

concept of representing some objects, system, or idea with a model, is so general that it is 

difficult to classify all the functions models fulfill.  Elmaghraby (1968) identifies at least 

five common uses for models: 

 • an aid to thought 

 • an aid to communication 

 • an aid to training and instruction 

 • a tool of prediction 

 • an aid to experimentation 

Shannon (1975) remarks that models may either be descriptive or prescriptive.  A 

descriptive model is useful for explaining and/or understanding while a prescriptive 

model  predicts and/or duplicates a systems behavior characteristics.   

 There are many methods to classify models, unfortunately none is completely 

satisfactory, although each serves a particular purpose.  Some of these classification 

schemes are as follows: 

 • static versus dynamic 

 • deterministic versus stochastic 

 • discrete versus continuous 
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 • iconic versus analog versus symbolic 

Gordon (1969) classifies models based on whether they are physical or mathematical 

(Figure 2.1).  A model is said to be a physical model whenever the modeling 

representation is physical and tangible, with model elements made of material and 

hardware (Jacoby and Kowalik, 1980). Correspondingly, a model is said to be a 

mathematical or formal model when a set of mathematical or logical relations are used to 

describe a system.  A second distinction is between static models and dynamic models.  

In the case of mathematical models, a third distinction is the technique employed in 

solving the model.  Specifically, a distinction is made between analytic and numeric 

methods.   

 

NumericAnalytic Analytic

Computer  
Simulation

Static Dynamic

Physical

Models

Mathematical

Static Dynamic

Numeric

 
 

Figure 2.1. Classification of models [modified from Gordon, 1969]. 
 

 Shannon (1975) uses a different approach for describing models.  He describes 

models on a continuous spectrum, starting with exact models or prototypes of reality and 

proceeding to completely abstract mathematical models (Figure 2.2). 

 



 

4 

Physical 
Models

Scaled  
Models

Analog 
Models

Management 
    Games

Computer 
Simulation

Math 
Models

Exactness Abstraction
 

Figure 2.2. Spectrum classification of models [from Shannon, 1975]. 

 A model goes through a set of development steps.  Pritsker (1986) shows a 

pictorial view of the model building approach (Figure 2.3).  He states that “a system is a 

collection of items from a circumscribed sector of reality that is the object of study or 

interest.”  The first step in building a model is developing the purpose for modeling.  

Based on this purpose, the boundaries of the system and a level of modeling detail are 

established.  The desired performance measures and design alternatives are also included 

in the model.  Assessment of design alternatives in terms of the specified performance 

measures are considered as model outputs.  Once the development process is complete, 

the conceptual model is ready for implementation. 
 

SYSTEM

Purose Level of 
  Detail Boundaries

   Design  
Alternative

Performance 
  Measures

IMPLEMENTATION

Assessment

CONCEPTUAL 
     MODEL

 
 

Figure 2.3. Factors affecting the development of a model [from Pritsker, 1986]. 



 

5 

2.1.2 Computer Simulation 

 Naylor (1979) defines simulation as “... a numerical technique for conducting 

experiments on a digital computer, which involves logical and mathematical relationships 

that interact to describe the behavior and structure of a complex real-world system over 

extended periods of time.”  Computer simulation is therefore an expensive and 

complicated process and should be used only under the following circumstances 

(McHaney, 1991): 

• The real system does not exist and it is too costly, time-consuming, hazardous, 

or impossible to build a prototype. 

• The real system exists but experimentation is expensive, hazardous, or seriously 

disruptive. 

• Mathematical modeling of the system has no practical analytical or numeric 

solutions. 

Simulation is not without its drawbacks (Law and Kelton 1982): 

• Simulation models are often expensive and time consuming to develop. 

• Simulation models give estimates of performance characteristics, and offers few 

procedures for optimization. 

• Simulation models produce large quantities of output which possible can give a 

false impression that the model is valid, when in fact this cannot be determined 

until the output is studied. 

 A simulation model is made up of many parts.  Shannon (1975) states that almost 

every simulation model consists of some combination of the following ingredients: 

• components - the parts when taken together make up the system under study. 

• parameters - the input or specific characteristics which describe the system. 

• variables - the output responses from running the simulation model.  Two type 

of variables in a model of a system: exogenous and endogenous.  Exogenous 



 

6 

variables are the input variables, those that originate or are produced outside of 

the system.  They are independent of running the simulation model.  

Endogenous variables are those produced within the system or result from 

external causes.  The can be thought of as the dependent variables. 

• functional relationships - describes the relationships between variables and 

parameters in a system.  These relationships are either deterministic or 

stochastic in nature. 

• constraints - are limitations imposed on the values of the variables or on how 

resources can be allocated or expanded.  An example of a constraint is a 

requirement that an automatic guided vehicle can only transport one part at any 

given time. 

• criterion function - an explicit statement of the objectives or goals of the system 

and how they are to be evaluated. 

 

2.1.3 Developing a Simulation Model  

 As with all models, the purpose of a computer simulation model is to provide a 

representations of a real system (Anderson et al., 1988).  Developing this model is a 

highly complex task which rarely is aided by the assistance of a computer.  Table 2.1 

presents a list of published articles which describe the simulation process, diagnose the 

common problems and pitfalls that can occur during a simulation study, or offer advise on 

how to perform a study.  Many excellent textbooks have also been written which describe 

the simulation modeling process (Pegden et al., 1990; Pritsker, 1986; Shannon, 1975; 

Banks and Carson, 1984 are a small subset). 
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Table 2.1. Published papers describing the simulation process. 
 

Author Subject 
 
Annino and Russell (1979) 

 
Reviews the ten most common causes of simulation 
failure and outlines the procedures for overcoming them. 

  
Dietz (1992) 

 
Outlines the format of a successful simulation project. 

 
Fossett, Harrison and 
Weintrobs (1991) 

 
Develops and tests  a procedure for evaluating a 
simulation model. 

 
Law (1986) 

 
Provides an overview of how simulation is used to model 
manufacturing systems. 

 
Law and McComas (1986) 

 
Discusses the ten potential pitfalls in the areas of model 
development, simulation software, modeling randomness, 
and the design and analysis of simulation experiments. 

 
Mott and Tumay (1992) 

 
Presents a strategy for showing how a simulation study 
can be justified. 

 
Nance (1983) 

 
Summarizes current procedure of developing a simulation 
model. 

 
Osborne and Watts (1977) 

 
Summarizes the general principles of model 
classification, construction, and validation. 

 
Pollacia (1989) 

 
Introduces to the main concepts of discrete simulation. 

 
Sadowski (1989) 

 
Presents an approach for conducting a simulation project 
that will aid in avoiding many common problems and 
pitfalls. 

 
Schoemaker (1978) 

 
Reviews the “art” of simulation and discuss the stumbling  
blocks that may occur in a study. 

 
Schruben (1983) 

 
Introduces discrete event modeling by discussing the 
important issues related to model development. 

 
Thesen and Travis (1988) 

 
Introduces the uses of simulation, the underlying 
concepts, and the types of computer packages available. 
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Ulgen (1991) 

 
Reviews proper management techniques necessary for 
making a successful simulation project. 

 
Weiner, Grant, and 
Coffman (1986) 

 
Suggests methods for establishing the credibility of 
industrial manufacturing simulation studies. 

 

 



 

9 

Figure 2.4 (Mackulak et al., 1987) presents a high level flowchart of the steps 

required in a simulation study.   The simulation process can be broken into the following 

stages or tasks (a modification of Pegden, et al., 1990; Pritsker, 1986 and Shannon, 1975 

present similar lists): 

(1) Problem Definition - clearly identify the goals of the study to identify its purpose.  

The first task in a simulation project is the construction of a clear definition of the 

problem and an explicit statement of the objectives or goals of the analysis 

(Pritsker, 1986; Shannon, 1975; Emshoff and Sisson, 1970).  Both Pritsker (1986) 

and Shannon (1975) agree that the formulation of a problem is a continuing process 

throughout the simulation study.   

(2)  Project Planning - decide on the personnel, management support, computer 

hardware, and software resources to perform the study. 

(3)  System Definition - determine the boundaries and restrictions to be used in defining 

the system (or process) and investigating how the system works.  Once an initial 

problem statement and all goals are identified, the task of formulating a model 

beings (Pritsker, 1986).  Both static and dynamic elements must be identified.  The 

static description defines the elements of the system and the characteristics of those 

elements.  The dynamic description defines the way in which elements in the system 

interact to change the states of the system over time.  From these descriptions a 

modeler tries to identify the small subset of characteristics or features of the system 

that is sufficient to serve the specific objectives of the study. 

(4) Conceptual Model Formulation - develop a preliminary model either graphically or 

in pseudo-code to define the components, descriptive variables, and interactions 

(logic) that constitute the system.  This model formulation phase generates data 

input requirements for the model (Pritsker, 1986).  
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(5) Preliminary Experimental Design - select the measures of effectiveness to be used, 

the factors to be varied, and the level of those factors to be investigated. 

(6) Input Data Preparation - identify and collect the input data needed by the model. 

(7) Model Translation - formulate the model in an appropriate simulation language. 

(8)  Verification - establish that the computer program executes as intended. 

(9) Validation - establish that a desired accuracy or correspondence exists between the 

simulation model and the real system.  Carson (1986) and Sargent (1987) provides 

guidelines on the important issues of model verification and validation.  Eklundh 

(1981) generalizes these techniques by discussing procedures for determining the 

accuracy of a simulation program. 

(10) Final Experimental Design - design an experiment that will yield the desired 

information and determine how each of the test runs specified in the experimental 

design is to be executed. 

(11) Experimentation - execute the simulation to generate the desired data and to 

perform the sensitivity analysis. 

(12) Analysis and Interpretation - draw inferences from the data generated by the 

simulation. 

(13) Implementation and Documentation - document the model and its use, record the 

findings, and implement the results. 
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Figure 2.4. Steps in a simulation study [from Mackulak et al., 1987]. 
 

2.1.4 Generating Random Variables  

 The underlying basis of the aggregation methodology that will be presented in 

Chapter 3 is its search for a procedure for generating random variables for an aggregation 

resource (a resource representing a combination of resources).  To provide a foundation 

for this later discussion, it is important to first review the concept of random variables 

and discuss how simulation goes about generating their values. 
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 A simulation model which has any random or stochastic aspects must sample or 

generate random variables from one or more distributions (Law and Kelton,  1982).  

While there are many techniques for doing this, the basic ingredient needed by them all is 

a source of independent, identically distributed uniform random variables with a lower 

bound of zero and upper bound of one. 

 Remarkably, random variates (or stochastic variates) from virtually any 

distribution can be obtained by transforming (0,1) random numbers.  Generating truly 

random numbers is, in general, impractical and in fact undesirable (Arthur, 1989).  

Instead, generators of (0,1) pseudorandom numbers is needed.  Fishman (1978) states that 

“much of the literature refers to pseudorandom number generation to emphasize that 

deterministic methods are used in practice.  Generally, we omit the quantifier ‘pseudo’ 

both to save space and to avoid giving the reader an unnecessary feeling of discomfort for 

relying on such methods.” 

 Arthur (1989) summarizes that the easiest methods of generating random numbers 

are performed by hand, such as by throwing a dice, dealing cards, or drawing balls from 

an urn.  Next come random devices such as a rapidly spinning disk, pulsating vacuum 

tubes, and cosmic ray counters.  Other techniques involve using a table of random 

numbers to using a decimal expansion for irrational numbers such as pi and e. 

 However, all of these approaches fail with regard to one or more of the following 

important considerations when selecting a random number generator (Arthur, 1989): 

• The routine should be fast. 

• The routine should not require a lot of computer storage. 

• The routine should have a sufficiently long cycle before it repeats. 

• The random numbers should be repeatable. 

• The generated random numbers should closely approximate the ideal statistical 

properties of uniformity and independence. 
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 In addressing the uniformity issue, Bratley, Fox, and Schrage (1983) use the 

following qualitative approach: 

• Condition 1: The numbers when treated as points on the line segment for zero 

to one are approximately normally distributed. 

• Condition 2: Successive nonoverlapping pairs when treated as point in the unit 

square are approximately normally distributed. 

 

• Condition n: Successive nonoverlapping n-tuple of numbers when treated as 

points in the n-dimensional hypercube are approximately uniformly distributed. 

Unfortunately, empirical test of this type are not statistically powerful and they are 

difficult to apply when n is greater than 10.   

 The technique most often used to generate random variates is to use a numerical 

scheme.  A key characteristic is that these are almost always generated sequentially, with 

each new number being determined by one or more of its predecessors (Arthur 1989). 

 The midsquare method (Law and Kelton, 1982) is apparently the first proposed 

method for use on a digital computer.  It starts with an initial number or seed, Xo.  This 

number is squared, and the middle digits become U1 (after placement of the decimal).  

The middle digits then also become X1, and the process repeats.  The major drawback of 

this approach is that it has poor statistical qualities and the seed needs to be chosen with 

care, for once zeroes appear, they are carried through in subsequent numbers. 

 The next general class of generators are the additive congruential and Fibonacci 

generators (Arthur, 1989).  The general additive congruential generator adds two or more 

previous numbers together and then takes the remainder when this sum is divided by a 

number called the modules.  The Fibonacci generator is a special case of this type in 

which the two most recent numbers are added together.  The major disadvantage with this 

approach is that there is a lot of serial correlation. 
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 The linear congruential generator is the most commonly used random number 

generator.  Proposed by Lehmer (1951), it is defined by the recursive function: 

Xi = (aXi-1 + c) mod m 

The statistical quality of the generator is determined by the parameters a, c, and m and the 

seed Xo, such that: 

0 ≤ Xi < m and Ui = Xi/m. 

When c = 0, this results in a multiplicative generator and when c > 0, this is referred to as 

a mixed generator.  This is the method of uniform random number generation in the 

SIMAN simulation language(Pedgen et al., 1990). 

 As shown by Marsaglia (1968), the major drawback with this approach is that 

successive sequences of n numbers from a multiplicative generator all fall on at most 

n!m( )1 n  parallel hyperplanes.  For example, by plotting the sequences of three numbers as 

points in a cube and viewing the cube from the proper angle, then the points plotted 

appear as parallel lines. 

 Based on the work of Tausworthe (1965), a final type of generator, a Tausworthe 

generator, is an additive congruential generator of the form: 

Xi = (aiXi-1 + a2Xi-2 + ••• + anXi-n + c) mod m 

where the modules m equals two.  Because of this, each Xi can equal only zero or one.  

As such this, this type of generator produces a bit stream.  

 All of the above techniques are procedures for generating uniform zero-one 

random numbers.  With a supply of these numbers, alternative algorithms can be used for 

generating random variables from a given distribution.  Several factors should be 

considered when choosing the algorithm (Law and Kelton, 1991): 

• exactness - The algorithm should generate random variables that follow the 

desired distribution better than the algorithms. 
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• efficient - The algorithm should minimize the required storage space and 

execution time. 

• complexity - The algorithm should reflect the desired level of understanding.  A 

more complex algorithm is appropriate if its operation need not be completely 

understood, otherwise a less complex (and more understandable) algorithm is 

more suitable. 

• robustness - The algorithm should be efficient for all parameter values. 

 The first general approach to generating random variables having a continuous 

distribution is the inverse transform method.  Ross (1985) remarks that this procedure is 

based on the following proposition: 

Let U be a Uniform (0,1) random variable.  For any continuous 

distribution function F if we define the random variable X by  

X = F-1(U) 

then the random variable X has distribution function F. 

Law and Kelton (1982) summarize that to generate a random variable X from the 

continuous distribution F, when F-1 is computable, the following two steps are followed: 

 Step 1:   Generate a random number U which is distributed as U(0,1) 

 Step 2:   Set X = F-1(U) and return. 

 The second technique for generating random numbers is the rejection method.  

Ross (1985) explains that it assumes that a density function g(x) exists.  With this, the 

basis for simulating from the continuous distribution f(x) is done by simulating Y from g 

and then accepting this simulated value with a probability proportional to f(Y)/g(Y).  

Specifically, let c be a constant such that  
f (y)
g(y)

≤ c  for all y 

With this, the technique simulates a random variable having density f. 
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 The specific steps of the rejection method are (Ross, 1985):  

 Step 1:  Simulate Y having density g and simulate a random number U from  

  U(0,1). 

 Step 2:  If U ≤ f(Y)/cg(Y) set X = Y.  Otherwise return to Step 1. 

 The composition or mixture technique generates samples from distribution 

function F (or density function f) by using the fact that this function is a convex 

combination of other distributions F1, F2,...Fn (or density function f1, f2, ...,fn) (Law and 

Kelton, 1991).  

 Specifically, it is assumed that for all x, F(x) can be written as F(x) = pjFj (x )
j =1

∞

∑  

where pj ≥ 0, pj =1
j =1

∞

∑ , and each Fj is a distribution function.  Correspondingly, the 

density function f can be written as f (x) = pj f j(x)
j =1

∞

∑ . 

 Sampling a random variable, X, using this method can be described in terms of 

three distinguishable steps .  The first two steps are design steps and are performed only 

once.  The third step is the procedure for sampling a value from the mixed or composite 

distribution.  The first step requires the selection of (Peterson and Kronmal, 1982): 

 • the number n ≥ 1 of elements in the mixture 

 • the mixture weights p1, p2, ...,pn  (pi ≥ 0, i = 1,2,...,n; ∑pi = 1), and 

• the elements (density functions) f1, f2,...,fn of the mixture, subject to the 

constraint that the mixture of the density functions fi, i = 1, 2, ..., n satisfy: 

f (x) = pj f j(x)
j =1

∞

∑  

 The second step of composite sampling involves selecting the methods for 

generating random variables.  It requires the selection of: (Peterson and Kronmal, 1982) 

 • the method for generating the element identifier I, such that P(I = i) = pi, and 

 • the methods for generating each of the X from fi, i = 1,2,..., n. 
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This step identifies the random number generating technique to use for sampling a 

generating distribution and then the method for selecting a random variable from that 

selected distribution. 

 The final step is to develop the procedure for generating the random variables.  

For each sampling of X (a sample from the composite distribution F), the following two 

tasks are performed: 

•  Choose at random an element (distribution) of the mixture.  That is, generate I 

such that  P(I = i) = pi.  

•  Generate a variable from the chosen resource distribution of the mixture.  That 

is, generate a value for X from fI. 

This final step chooses the distribution function FI with probability pi.  By conditioning 

on the value of I, the X (sample of FI) returned by the algorithm will have distribution F 

(Law and Kelton, 1991).  This procedure yields a random variable from distribution F 

since the random variable X has distribution 

P(X ≤ x) = P(
i =1

∞

∑ X ≤ x| I = i)P(I = i) = Fi(x)pi = F(x)
i =1

∞

∑ . 

 Another general technique is the hazard rate method (Ross, 1985).  There are also 

additional specific techniques for generating continuous random variables from certain 

continuous distributions (Normal, Cauchy, Gamma, Chi-Square, Exponential).  The key 

to most of these techniques is through the use of convolution, where the desired random 

variable X is expressed as a sum of other random variables which are independently, 

identically distributed. 
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2.2 Discrete Manufacturing Systems 

 This research is concerned with developing an aggregate simulation model of a 

discrete part flow line manufacturing system.  This section describes defines this type of  

system and explores the different types of performance measures that are sought by 

modeling it.  Section 2.2.1 reviews the components and types of discrete manufacturing 

systems.  Section 2.2.2 explores important performance characteristics of simulation 

models of systems manufacturing simulation studies. 

 

2.2.1 Types of Discrete Manufacturing Systems 

 This section describes the system used for the processing and assembly of discrete 

products in large volumes.  The operation involves the transformation of raw materials 

into goods that have value in the workplace (Groover, 1980).  This transformation 

process involves a sequence of steps, with each step bringing the materials closer to a 

final state.  These steps are called production operations. 

 Depending upon the nature of the production operation, there are two major types: 

manufacturing and process.  Manufacturing industries are typified by discrete production  

operations (Groover, 1980), such as car or computer production.  Process industries are 

typified by a continuous production processes, such as a chemical plant.   

 Within the area of manufacturing operations, there are several basic types (based 

on Groover, 1980): 

(1) Project.  This type of operation produces custom-made products.  The total 

number delivered or produced is usually one.  Examples include the production of 

a ship or space vehicle. 

(2) Job shop production.  The key characteristic of this type of production type is its 

low volume.  Another distinguishing characteristic is that parts are processed in 

small batches.  Examples include a machine tool shop or a commercial printer. 
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(3) Mass production.  This operation involves the continuous manufacture of 

identical products.  It is characterized by producing a high volume of similar parts.  

Examples include an automobile or toy manufacture. 

(4) Batch production.  This category involves the manufacture of medium-size lots of 

the same product.  It is distinguished by producing a medium volume of periodic 

batches.  Examples include furniture or textbook manufacturing operations. 

As an interesting sidenote, Groover (1980) remarks that “as much as 75% of all part 

manufacturing is in lots of size 50 pieces or less.”  He continues and concludes that batch 

production and job shop production constitute a majority of manufacturing activity. 

 A special case of mass and batch production are manufacturing flow lines.  Aneke 

and Carrie (1984) develop a classification for flow line systems based on the number of 

product types, shop layout and flow characteristics.  They concluded that there exists ten 

feasible systems (based on Aneke and Carrie, 1984): 

(1) Single product single machine system - a single product is completely produced by 

a single machine. 

(2) Mixed product single machine system - the same type of operation is required by a 

number of different parts. 

(3) Multi-product single machine system - different products are produced from time 

to time on a single machine. 

(4) Single product sequential flow line - a single product requires more than one 

machine.  This leads to machines being arranged in a line such that the operational 

sequence of all parts is the same. 

(5) Mixed product sequential flow line - all the parts have the same operational 

sequence with no need for tool resetting. 

(6) Multi-product sequential flow line - all the parts have the same operational 

sequence but are produced separately in batches. 
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(7) Mixed product bypass flow line - the operational sequence of parts may vary by 

omitting operational steps. 

(8) Multi-product bypass flow line - a batch may vary from the operational steps only 

by omitting an operation. 

(9) Multi-product backtracking flow line - a batch can vary from the operational steps 

by either omitting a step and/or backtracking to a previous operation.  This 

product flow line is bi-directional. 

(10) Multi-product multi-directional backtracking system - even though the products 

are batched, the operational sequences are so varied that flow is multi-directional.  

An example of this operation is a job shop. 

 As a means to describe discrete manufacturing system, Dietrich (1991) proposes a 

classification scheme based on the production process, the system management, and the 

system behavior.  The production process is the planned sequence of operations required 

to produce a finished part and its specification defines the physical components of a 

manufacturing system.  These physical components are divided into the following four 

categories: 

(1) production process - the planned sequence of operation required to produce a part.  

It consists of the specific operations, the operation sequence for the parts, and the 

distribution of operations among the machines, tools, and operators. 

(2) material flow - the flow of material in a manufacturing systems.  It is composed of 

the possible routes for a part and each routes’ consistency (probability of being 

operational). 

(3) information system - the information required by the manufacturing system is 

stored in and communicated by a single system.  This system consists of a single 

integrated data base or several disjoint ones. 
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(4) contention for resources - unless the availability of all the system resources far 

exceeds the amount required to produce the finished part, there will be 

competition for the resources.  Examples include contention for machines, 

contention for material and contention for material handling. 

 Similar to Dietrich’s work, Ozdemirel (1990, 1993) develops a classification 

scheme for discrete manufacturing.  Her research divides the physical system 

characteristics into the following components: 

(1) Work stations  - any system resource that is not a material handling device.  Of the 

four types, machining stations process a part, assembly stations perform assembly 

operation on a part, inspection stations inspect a part, and load/unload stations are 

where parts arrive and leave the system. 

(2) Material handling - provide a mechanism which allows parts to move from one 

work station to another.  Transports can be done manually, with an automatic 

guided vehicle, or a conveyor system. 

(3) Jobs - characteristics of the part(s) being processed in the manufacturing system. 

(4) Work-in-process storage areas - buffer areas where parts wait for service on a 

machine. 

(5) Equipment breakdown and scheduled maintenance - the specification of 

breakdown and maintenance that the system experiences. 

 

2.2.2 Performance Measures for Simulation Studies    

With simulation, a system wide view of the effects or changes in the 

manufacturing system can be explored.  Specific (potential) benefits of simulation in 

manufacturing are increased throughput, reduced in-process inventories, increased 

utilization of machines and workers, increased on-time deliveries and reduced capital 

requirements. 
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 Ozdemirel (1990, 1993) develops a classification scheme for discrete part 

manufacturing systems.  To extend her classification scheme to include simulation, her 

research identifies a set of user goals of objectives for performing a simulation study of a 

discrete part manufacturing system.  There are three major goals for a simulation study 

(Ozdemirel 1993): 

 • prediction 

 • scheduling alternatives 

 • optimization 

 For predictive simulation studies, there are six specific types of items to study: job 

volume, effect of hot jobs, bottleneck resources, breakdown effects, product quality, and 

absenteeism effect.  Models exploring scheduling alternatives look at the impact of 

product mix, sequencing alternatives and push versus pull inventory systems.  Models 

which seek to optimize a manufacturing system to optimize the fixed shop floor structure 

or optimize structural changes.   

 With fixed shop optimization, specific ideas can be explored:  lot size verses setup 

time, utilization verses cycle time, minimization of buffer stocks, minimization of work-

in-process, and input data accuracy and sensitivity for fine tuning of the model.  A model 

seeking to optimize structural changes explores: optimizing work station layout, 

optimizing use of material handling equipment, optimizing physical work-in-process 

areas, optimizing the use of secondary resources and the general layout of the facility. 

 To measure the effectiveness in meeting the above modeling objectives, the 

system must be measured.  Common measures of performance used in manufacturing 

simulation studies must be included (Law 1986): 

 •  Throughput (number of parts produced per unit of time). 

 •  Time parts spend in queues. 

 •  Time parts spend being transported. 
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 •  Time parts spend in the manufacturing system. 

 •  Sizes of in-process inventories. 

 •  Utilization of equipment and personnel. 

 •  Proportion of time that a machine is broken, blocked, or starved. 

 •  Proportion of parts which must be reworked or scrapped. 

 •  Return on investment for a new or modified manufacturing system. 

 Although not exhaustive, this list indicates the most common measures of 

performances.  The objective of this research is to estimate the cycle time (sojourn time) 

of a part.  This is the total time a part spend in the manufacturing flow line waiting and 

being serviced.  As outlined in Chapter 1, this quantity is important for estimating 

completion dates and can be used for modeling the financial cost of parts currently in 

progress. 
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2.3 Fundamentals of Queueing Theory 

 The terms “waiting line” or “queue” (or resource) are used to characterize a broad 

class of stochastic processes with three primary characteristics which can describe a 

system (Giffin, 1978): 

• An input process.  A process which can be described by a random variable 

which explains how a part or customer arrives to a queue.  Wagner (1969) 

explains that usually the pattern of arrivals into a queue system is described by a 

probability distribution of time between successive arrival events, and the 

number of individuals or parts that appear at each of these events.  Defining the 

arrival distribution involves determining how many parts arrive and the pattern 

of arrivals over a given period of time (Anderson, et al., 1988).   

• A service mechanism.  A process which can be described by a random variable 

which explains how parts or customers are serviced once leaving the queue.  A 

specification of the service mechanism includes a description of the time to 

complete a service, and of the number of individuals or parts whose 

requirements are satisfied at each service event (Wagner, 1969). 

• A queue discipline.  The discipline defines the rules of behavior within the 

queue, and how parts or customers are selected for service from the queue.  

Anderson, et al. (1988) summarizes this as “the manner in which waiting parts 

are ordered for service”. 

Though the following two components are implied in the above listing, Lee (1988) 

specifically separates them: 

• A waiting line.  When parts arrive in such a way that they have to wait for 

service, waiting lines, or queues will develop. 

• Departures.  Once arrivals are serviced, they become departures and leave the 

queueing system. 
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These characteristics describe a system whose performance can be modeled with 

queueing theory.  Queuing theory studies systems by formulating mathematical models of 

their operation and then using these models to derive measures of performance (Hillier 

and Leiberman, 1986).  

 Queueing problems have been actively researched since 1907 (Giffin, 1978).  The 

first published work occurred when A.K. Erlang published his fundamental papers on 

congestion in telephone traffic (Erlang, 1909).  This large history results in queueing 

theory being one of the oldest studied problems in operations research (Lee, 1988). 

 In 1953, D.G. Kendall introduced a compact notation scheme to describe the 

characteristics of a queueing system (Lee, 1988).  The Kendall notation for describing a 

queue is (Giffin, 1978): 

arrival process / service process / number of parallel servers 

When necessary an appendage may be added of the form  

/ limit on the number in the system / number in the source / queue discipline 

If the appendage is omitted it is assumed that there is no limit on the system capacity, 

customers are drawn from an infinite population, and the queue discipline is first come, 

first serve. 

 The uncertainty present in most real systems is what makes model building a 

challenging task.  The solution is to describe the arrival and service processes by their 

interarrival and service time probability distributions (Giffin, 1978).  The number of 

servers is an integer.  Standard queue disciplines are identified by appropriate 

abbreviations.  A common notation is (Giffin, 1978; Mehdi, 1991): 

M Exponential 

Ek Erlangian (gamma) with k identical phases 

D Constant (Deterministic) 

G General 
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GI General independent distribution of interarrival time (also referred to as G) 

H Hyperexponetial  

PH Phase type  

S Number of servers in parallel 

FCFS First come, first served 

LCFS Last come, first served 

RSS Random selection for service 

PR Priority 

Molloy (1989) provides the following additional queue selection rule: 

 RR Round robin, where a small, fixed amount of service is given to each part 

in   a circular fashion. 

To illustrate the notation, 

 M/M/1 Markovian input and service with one server, 

 M/G/1  Markovian input, general service distribution, and one server, 

 G/G/S  General input, general service distribution, and S servers, 

are all descriptions of queueing systems. 

 Plane and Kochenberger (1972) remark that a key term in the analysis of a 

queuing system is the state  of the system. They define this as the number of customers in 

the entire queuing facility system which includes customers both waiting in line and in 

the service facilities.  Once the probability of finding the system in any given state is 

known, it is easy to derive characteristics of the system.  Plane and Kochenberger (1972) 

present the following list of commonly explored system operating characteristics: 

 • the expected number of customers in line 

 • the expected number of customers in the system 

 • the expected waiting time in the line 

 • the expected service time 
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 • the expected time in the system 

 There exists a simple relationship between the expected number of parts present 

under steady state conditions and their expected waiting times: 

L = λ W. 

This relationship is referred to as Little’s formula (Giffin, 1978).  It states that the average 

number of customers in the system is equal to the average arrival rate multiplied by the 

average amount of time spent by the customers in the system (Little, 1961).  The 

significance of this is that a specific arrival or departure process need not be specified.  

The only assumption is that no work is created or destroyed within the queue system 

(Molloy, 1989).  Therefore, Little’s formula is valid for a wide range of systems. 

 An important aspect of queuing theory is that the results give the steady state 

behavior of the system.  The queueing system initially starts in a transient state.  During 

the course of time it approach equilibrium or steady state conditions.  That is, over time 

the system approaches a steady state, in which the characteristics of the system are no 

longer dependent upon the length of time since start-up.  If the part arrival rate is greater 

than or equal to the service rate times the number of servers (this quantity is defined as 

ρ ), steady state conditions cannot exist (Plane and Kochenberger, 1972).  Theoretically, 

when ρ ≥1, the queue length grows without bounds.  Mehdi (1991) proves the general 

relationship that in any queueing system in which arrivals occur one by one and that has 

reached steady state, the probability that an arriving part finds n parts in the system when 

it arrives is equal to the probability that a departing part find n in the system.  The 

development of all the queueing results of this research is based on the assumption that 

the queues (or resources) of the flow line are in steady state. 

 The remainder of this section explores the development of mathematical models 

for estimating the performance of specific queueing systems.  Section 2.2.1 considers the 

case of M/M/S systems.  Section 2.2.2 reviews M/G/S systems.  Section 2.2.3 explores 
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approximations for the G/G/S systems.  Sections 2.2.4 addresses special conditions that 

can occur in a queueing system.  Section 2.2.5 explores the procedures and evaluation of 

networks of queues.  Finally, Section 2.3.6 explores a special queueing network called 

tandem queueing systems. 

 

2.3.1 Exponential Arrivals and Exponential Service 

 There is a class of queueing models for which detailed solutions are quite easy to 

obtain (Ravindran, et al., 1987).  In this class of systems, both the interarrival times and 

service times are negatively exponentially distributed.  The advantage of this distribution 

family is that it can be characterized by a single parameter, namely its mean.   

 The first queue of this system to explore is the M/M/1.  For a queueing system to 

be defined of this type it must meet several assumptions (Anderson et al., 1988): 

• The queue has a single server (or channel) 

• The pattern of arrivals to the queue follows a Poisson probability distribution 

• The service times follows an exponential probability distribution 

• The queue discipline is first come, first serve (FCFS) 

The model describing the performance of a M/M/1 queueing systems is (Lee, 1988): 

 λ  Mean arrival rate 

 1/λ  Mean time between arrivals 

 µ  Mean service time 

 1/µ  Mean service time 

 ρ  Traffic intensity: ρ =
λ
µ

 

 Po Probability the system is empty: Po = 1 - ρ  

 Pn Probability of n parts in the system: Pn = ρ n(1-ρ ) 
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 Lq Expected number in the queue, excluding the parts being serviced, under  

 steady state conditions.  Mean queue length: Lq =
λρ

µ − λ
= Lρ  

 L Expected number in the system, including the parts being serviced, under  

 steady state conditions.  Mean system length: L =
λ

µ − λ
 

 Wq Expected time spent in the queue, excluding service time, by a part at 

steady   state.  Mean waiting time: Wq =
ρ

µ − λ
 

 W Expected time spent in the system, including service time, by a part at  

 steady state.  This is also known as the sojourn time or the cycle time.   

 Mean time in the system: W =
1

µ − λ
 

 A logical extension to the single-server case is a queuing system with multiple 

servers.  The assumptions required of the M/M/S queueing system are: (based on Giffin, 

1978) 

• Parts arrive in a Poisson fashion at rate λ . 

• There are S identical servers in parallel. 

• The service time distribution of each server is exponential with a mean of 1/µ . 

• Servers are noncooperative.  That is, one part is never attended by more than 

one servers. 

• Arriving customers are serviced by the first available server.  When all servers 

are busy, parts form a single queue with unlimited waiting space from which 

they are served in a FCFS fashion. 

 The M/M/S can be described by the following model (Lee, 1988): 

 λ  Mean arrival rate 

 1/λ  Mean time between arrivals 

 µ  Mean service time 
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 1/µ  Mean service time 

 S Number of parallel, identical servers 

 ρ  Traffic intensity: ρ =
λ

Sµ
. 

 Po Probability the system is empty: P0 =
1

λ µ( )n

n!n= 0

S−1

∑
 

  
 

  +
λ µ( )S

S! 1 − ρ( )
 

  
 

  

 

 Pn Probability of n parts in the system: 
Pn =

λ µ( )n

n!
n ≤ S

Pn =
λ µ( )n

S!S (n−S ) n > S

 

 
 

 
 

 

 Lq Mean queue length: Lq =
λρ

µ − λ
= Lρ  

 L Mean system length: L = Lq +
λ
µ

 

 Wq Mean waiting time: Wq =
Lq

λ
 

 W Mean time in system: W = Wq +
1
µ

 

 The results for the M/M/1 queueing system are merely a reduction and 

simplification of the M/M/S formula for the special case when the number of servers is 

equal to one.  An interesting aspect of a M/M/S queueing system in steady state with 

arrival rate λ  and service rate µ  is that the interdeparture times (time between parts 

leaving the queue) are independently and identically distributed as an exponential random 

variable with mean 1/λ .  In other words, the output process of a M/MS queue system is 

Poisson with the same parameter as the input process.  This was formally proven by 

Burke (1956).  In addition,   Rao and Posner (1984) expand this work by exploring the 

output process of an M/M/1 queue with randomly varying system parameters. 

 A major criticisms of queuing theory includes the absence of statistical procedures 

and the indiscriminate use of M/M/S models and steady state results.  Budnick, Mojena, 

and Vollman (1977) claim that all too often, a disconcerting absence of proper sampling, 
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estimation, and hypothesis testing procedures are performed.  All assumptions inherent in 

a model (for example, types of distributions, parameters, state-independence, independent 

arrivals, and so forth) must be tested in order to select the correct model.  While M/M/S 

models are widely available and useful, their assumptions must be reasonably 

substantiated for a particular application.  The limitations and corresponding 

interpretations of steady state solutions must be assessed, as many queuing systems do not 

operate a sufficiently long period of time to achieve steady state.  The decision to base 

conclusions on steady state solutions is not necessarily unjustified, but rather their 

decision should represent the most idealized case. 

 

2.3.2 Exponential Arrivals and General Service 

 The next system to study is one with exponential arrivals and general service 

times.  Studying these systems is aided by the fact that one of the distributions is 

negatively exponentially distributed.  As such, the solution procedure uses a concept of 

“embedding a Markov chain” (Ravindran et al., 1987).  This procedure involves viewing 

the process only at selected moments and ignoring the dynamic behavior of the process at 

intermittent times.  The moments at which the process is viewed, the embedded points, 

are chosen so that the discrete-time Markov assumption will hold.  That is, given the state 

at one of these points, enough information is available to predict the state at the next 

point. 

 The easiest system to study is the M/G/1 queue.  In such a system, a Markov chain 

is embedded at the moments of service completion.  At these times, and only at these 

times, it is necessary to know the number in the system to predict the future.  Giffin 

(1978) discusses the development of the M/G/1 and shows that the resulting performance 

measures are: 

 λ  Mean arrival rate 
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 t  Mean service time 

 σÝ Ý t 
2  Variance of the service time 

 L Mean system length: L = λt +
λt ( )2 + λ2σ t 

2

2 1− λt ( )  

 Lq Mean queue length: Lq =
λ2 t 2 + σ t 

2( )
2 1 − λt ( )  

 Wq Mean waiting time: Wq =
λ t 2 + σ t 

2( )
2 1− λ t ( )  

 W Mean time in system: W = t +
λ t 2 + σ t 

2( )
2 1− λt ( )  

 The important measures of performance can be evaluated with very limited 

knowledge, namely the first two moments of the service distributions.  The formula for L 

is referred to as the Pollacezek-Khintchine (P-K) formula (Gross and Harris, 1974; Giffin, 

1978).  It permits estimates of the expected line length in M/G/1 systems from the 

knowledge of the arrival rate and the mean and variance of the service distribution.   

 A benefit of this formula is that when the service time is exponential, 

t = 1 µ  and σ t 
2 = 1 µ 2 , the formula reduces to the formula for the M/M/1 model (Hillier 

and Lieberman, 1986). 

 An exact formula for the case of two or more servers is not known.  But several 

authors (Hokstad, 1978; Stoyan, 1976) have proposed an approximation of the M/G/S 

queueing system: 

 λ   Mean arrival rate 

 µ  Mean service rate 

 t  Mean service time 

 cvt 
2  Squared coefficient of variation of the service time 

 S  Number of parallel, identical servers 

 ρ
 

Traffic intensity: ρ =
λ
Sµ
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 C The probability that an arriving part has to wait for service: 

C =
(λt )S

S(1− ρ)
P0 .    This is often referred to as Erlang’s C Formula (Mehdi, 

1991). 

 P0 The probability that zero service are busy: 
1

(λt )n

n!
+

(λt )S

S!(1− λt S)n=0

S−1

∑ 
  

 
  

. 

 EM/G/1[Wq] Expected queue waiting time for M/G/1 queue:    

  EM / G / S[Wq ] =
1 + cvt 

2

2λ (1 − ρ)
ρC  

 The key advantage of this approximation is that it is exact for M/M/S and M/G/1 

queueing systems.  Several other approximations of the M/G/S system have been 

proposed (Takahashi, 1977;  Boxma et al., 1979; Tijms et al., 1981; and Kimura, 1986).     

 

2.3.3 General Arrivals and General Service 

 The “embedding a Markov chain” idea does not work for the G/G/S queue 

because “the only possible embedding points are those moments in which an arrival and a 

service completion coincide exactly, but these moments are so rare that they may be 

considered useless for modeling purposes” (Ravindran, et al., 1987).  As such, only 

approximations are available for estimating the performance characteristics of the G/G/S 

queueing system. 

 By interpolating the G/M/S and M/D/S queues, Kimura (1991) obtains a 

distribution-dependent approximation for the mean waiting time in the G/G/S queue: 

 λ   Mean arrival rate 

 cva
2  Coefficient of variation of the arrival time 

 µ  Mean service rate 

 cvt 
2   Coefficient of variation of the service time 

 S  Number of parallel, identical servers 
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 ρ
 

Traffic intensity: ρ =
λ

Sµ
 

 g g ρ,cva
2,cvt 

2( )=
Exp − 2(1− ρ)

3ρ
(1− cva

2 )2

cva
2 + cvt 

2

 

  
 

  , cva
2 ≤1

1, cva
2 >1

 

 
 

  
 

 g1 g ρ,cva
2,1( ) 

 υ  υ s,cva
2 ,cvt 

2( )≈1 +
S

S −1
η

cva
2 + cvt 

2

SµI(S)
− (cva

2 +1)
 
 
 

 
 
 

 

 I(S) I(s) = s +
1− cvs

2

1+ cvs
2

 

 
  

 
 µ

 
 
 

 
 
 

−1

 

 η  η cva
2 ,cvs

2( )=
1.1Exp

−2.4(1 − cva
2 )

cva
2

 

  
 

  − 0.1 cva
2 ≤ 1

Min .35(cva
2 − 6),1( ) cva

2 > 1

 

 
 

  
 

 EG/M/S[Wq] Expected queue waiting time for a G/M/S queue  

 EM/D/S[Wq] Expected queue waiting time for a M/D/S queue 

 EG/G/S[Wq] Expected queue waiting time for a G/G/S queue: 

  EG / G / S Wq[ ]≈ (cva
2 + cvs

2 )g
(cva

2 +1)g1υ
EWq G / M / S( )

+
1 − υ

EWq M / D / S( )
 
 
 

 
 
 

−1

 

This formula is for the case of the squared coefficient of service time variation being less 

than or equal to one.  Kimura proposes a similar formula for when it is larger than one.  

To examine the performance of this estimate, Kimura (1991) carried out numerical 

experiments and compared them with the exact results and previous two-moment 

approximations.  The results indicate that the relative percentage errors are on the order of 

5% in moderate traffic and 1% in heavy traffic. 

 As a special case of the G/G/S results, Kumura (1991) shows that for the G/G/1 

system, the approximation reduces to: 

 λ   Mean arrival rate 

 cva
2  Coefficient of variation of the arrival time 

 µ  Mean service rate 
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 cvt 
2   Coefficient of variation of the service time 

 ρ
 

Traffic intensity: ρ =
λ
µ

 

 g g ρ,cva
2,cvt 

2( )=
Exp − 2(1− ρ)

3ρ
(1− cva

2 )2

cva
2 + cvt 

2

 

  
 

  , cva
2 ≤1

1, cva
2 >1

 

 
 

  
 

 EM/M/1[Wq] Expected queue waiting time for a M/M/1 queue:    

  EM / M / 1 Wq[ ]=
ρ

µ − λ
 

 EG/G/1[Wq] Expected queue waiting time for a G/G/1 queue:    

  EG / G /1 Wq[ ]≈
cva

2 + cvt 
2

2
g EM / M / 1 Wq[ ]{ } 

Kimura (1986) remarks that this approximation matches that proposed by several other 

authors (Whitt, 1983; Kramer and Langenbach-Belz, 1976). 

 Due to G/G/S queues have not having defined solutions, much research effort has 

gone into estimating performance bounds.  For instance, Daley and Rolski (1992) studied 

light traffic approximations in many server queues, Seelen and Tijms (1984) 

approximated the conditional waiting times in the G/G/S queue, and Suzuki and Yoshida 

(1970) explored the specific case of a G/G/2.  Marchal (1978) proposes and Kleinrock 

(1976) presents the following bounds of a G/G/S queue: 

 λ  Mean arrival rate 

 cvt 
2  Squared coefficient of variation of the service time 

 σa
2  Variance of the interarrival time 

 µ  Mean service rate 

 t  Mean service time 

 t2  Second moment of the service time 

 σ t 
2  Variance of the service time 

 S  Number of parallel, identical servers 
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 ρ
 

Traffic intensity: ρ =
λ

Sµ
 

 EG/G/S[Wq] Expected queue waiting time for G/G/S queue 

Thus, the range of the expected waiting time is: 

ρ2cvt 
2 −ρ 2 − ρ( )

2λ 1 − ρ( ) −

S −1( )
S

 
  

 
  t 

2

2t 
≤ EG / G / S Wq[ ]≤

σa
2 + 1 S( )σ t 

2 +
S −1( )

S
 
  

 
  t 

2

2t 1 −ρ( )  

 As with the general server case, much research has looked on bounding the 

expected waiting time (Shanthikumar, 1983; Mori, 1975) of a single server system.  

Kingman (1962) showed that the behavior of the G/G/1 queue in a heavy traffic case (i.e., 

ρ ≅ 1), the waiting time distribution can be approximated by an exponential distribution 

such that the mean waiting time is:Wq ≅
σa

2 + σ t 
2( )

2t 1 − ρ( ) .  Marshall (1968) recounts that for the 

G/G/1 system, the bounds on the expected waiting time for a G/G/1 queue are: 

 λ  Mean arrival rate 

 σa
2  Variance of the interarrival time 

 µ  Mean service rate 

 t  Mean service time 

 σ t 
2  Variance of the service time 

 ρ
 

Traffic intensity: ρ =
λ
µ

 

 EG/G/1[Wq] Expected queue waiting time for G/G/1 queue  

The resulting range on the expected waiting time is: 

 
λ2σ t 

2 + ρ ρ − 2( )
2λ (1 −ρ )

≤ EG / G / 1 Wq[ ]≤
λ σa

2 + σ t 
2( )

2(1− ρ)
 

 

2.3.4 Queueing Variations 

 There are many conditions which can be added to embellish the base queueing 

system model.  Possible changes that can occur include: changes to the arrival process, 
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placing restrictions on the service capacity, or having a different service operation.  

Figure 2.5 (from Saaty, 1961) is an abbreviation of the many variations and special 

conditions that can occur in queueing systems.  It attempts to show the various 

possibilities that influence arrivals, the times of arrivals, the queue and different types of 

queue discipline, the service channels, and the output. 

 

 

 

 

 

 

 

 

Saaty p12 

 

 

 

 

 

 
Figure 2.5. The various conditions and special cases which can occur in queueing 

systems [from Saaty, 1961]. 
 

Service and Arrival Distributions 

 Up to this point, this section has discussed only a limited number of queueing 

models (M/M/S, M/G/S, and G/G/S).  There are many other distributions which can be 

studied.  For example, a G/M/S system is one with general arrivals and exponential 
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service.  For the special case of the G/M/1 queue, the concepts of “embedding a Markov 

chain” can be used, where the embedding occurs at the moments in which arrivals occur 

(Ravindran et al., 1987).  Unfortunately, Plane and Kochenberger (1972) remark that 

even though the assumption of exponential service times is a reasonable assumption for 

real world systems, it has a significant disadvantage in that the exponential distribution 

assumes that the most likely or modal service time is zero.  In other words, zero (or very 

small service time) is the most likely to occur.  This is unlikely to be true in most 

systems. 

 

Finite Storage Capacity 

 Although it is mathematically convenient to assume that a queueing system has 

infinite storage capacity, as a practical matter very few physical systems can meet this 

specification (Giffin, 1978).  In actuality, because the arrival process will continue to 

generate arrivals even when the system is full, those parts that arrive during this condition 

are “blocked” arrivals and are lost to the system (Ravindran et al., 1987).  Page (1972) 

recounts that most practical problems have a limit on the number of parts that may queue 

at any given time.  If this limit is larger than any likely size of the queue it is valid to 

assume the queue is an infinite queue.  Otherwise, a separate study with the limit 

condition applied must be performed.  The mathematics of modeling this condition when 

a system reaches its capacity or truncation point involves reducing the arrival rate to zero 

until such time as a customer is served to again make queue space available.    

 

Finite Population 

 The next queueing extension concerns the case in which there is a limited number 

of customers in the calling population.  Such a situation exists when the potential arrivals 

form a fixed, finite population (Ravindran et al., 1987).  Carmichael (1987) discusses that 
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the calling population can either be infinite or finite in size.  For finite, but large, calling 

populations “the assumption of being infinite in size is often made as this case is 

mathematically the more tractable and predominates the literature.” 

 

Bulk Queues 

 This type of queue is concerned with parts which arrive in a group.  In a 

manufacturing system, rather than have parts arrive singularly to a queue, they may arrive 

grouped as a batch.   

  

Queue Discipline 

 In every model so far discussed, the implied priority scheme has been first come, 

first serve (FCFS).  With such a queue discipline, the part that has been waiting the 

longest is the next to be selected for service.  Giffin (1978) states that other commonly 

encounters queue disciplines are last come, first serve (FCFS) and random selection for 

service (RSS).  A benefit of the wide applicability of Little’s formula is that is valid for 

the LCFS and RSS cases (Ravindran et al., 1987).  Gnedenko and Kolvalenko (1989) 

show that as a corollary to Little’s Theorem of L = λW , in a GI/G/S system under steady 

state conditions, the mean waiting time (duration time in the system) does not depend on 

the queue selection rule.   

 A queue can also allow certain part types a priority over other types in the system.  

In such a system, certain parts types have priority of the service mechanism and can 

interrupt work on a less priority part type. 

 

State-Dependent Rates 

 The final illustration concerns altering the service and arrival rates as functions of 

the number of customers in the system (Giffin, 1978).  Page (1972) remarks that 
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“customers or parts may be discouraged from joining the queue when it is large because 

of the time required for waiting to get served.  In fact, the chance of a customer not 

joining a queue should intuitively increase as the queue gets larger.  That is, the instance 

of customers “balking” increases with the queue size. 

 

2.3.5 Networks of Queues 

 To this point only queuing systems that have a single service facility with one or 

more servers have been considered.  That is, every customer or part demands one service 

and leaves the system as soon as it is obtained (Medhi, 1991).  In many situations, the 

queues will not occur in isolation but as part of an organized system.  Ravindran, Phillips, 

and Solberg (1987) give the following example: a factory ordinarily contain dozens of 

queues, linked together by the logical sequence of the production process.  Systems such 

as this often contain complicated behavior resulting from: 

 • the direct interaction of the arrival and service processes, 

 • branching, 

 • merging, 

 • and looping of traffic streams. 

 Hillier and Leiberman (1986) recount that many queuing systems encountered in 

operations research studies are actually queuing networks.  In such a network of service 

facilities, customers must receive service at some or all of these facilities.  They provide 

the following example: 

Orders being processed through a job shop must be routed through a 

sequence of machine groups (service facilities).  It is therefore necessary to 

study the entire network to obtain such information as expected total 

waiting time, expected number of customers in the entire system, and so 

forth. 
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 Perhaps the most obvious approach to dealing with networks of queues is to 

separate them into subsystems, each which has only one queue, and then analyze each 

subsystem individually (Ravindran, Phillips, and Solberg, 1987).  Such an approach 

permits the use of the wide variety of available models for single queues, while 

immediately extending the range of the applications to systems of arbitrary size.  

Ravindran et al. (1987) states that there are two problems with this approach: (1) it does 

not always work in obtaining valid results, and (2) even when it is technically correct, it 

neglects the interactions among the queues, which is often the most critical aspect 

affecting network behavior. 

 There is a class of queueing networks for which the decomposition strategy works 

well.  Provided that all of the required conditions are satisfied, each queue and its 

associated servers will act, and can be modeled, as if they were an independent 

Markovian queue of the M/M/S type.  The required conditions are: 

• All external arrivals to the network occur in independent Poisson streams.  There 

may be several different streams entering at different points. 

• All service times are negatively exponentially distributed with rates that depend 

at most upon the local queue. 

• All queues have unlimited capacity.  Blocking and overflow are not permitted. 

• Any branching of the internal traffic stream is probabilistic, with probabilities 

that are independent of everything except the position in the network.  In other 

words, after completing service at subsystem i, a customer would go next to 

subsystem j with probability pij.   

 Any network of queues satisfying these conditions is said to be an open network 

having a product form solution.  The open part of the description refers to the fact that 

arrivals from the outside are accepted, and the product form solution refers to the idea 

that the network factors into independent subsystems.  The analysis of each subsystems 
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amounts to straightforward application of the M/M/c results of queuing theory.  The only 

step that may not be obvious is the calculation of the net arrival rate to each subsystem, 

since it comprises (possibly) a direct external arrival stream and several internal traffic 

streams coming from other subsystems (Ravindran et al., 1987). 

 Before algorithms used to solve queuing network systems are presented, the 

problem must first be characterized.  In a queueing network, the input process is often a 

merging of the output processes of other queues.  To begin, it is further necessary to 

characterize the output process of a single queue. 

 The output of a queue is just another stochastic process (Molloy, 1989).  The 

output process depends on the input process, the queueing discipline, and the service 

process.  When  studying the output of a queue, a particular input process must be 

determined.  It can reasonably be assumed that the input process to a queue is Poisson.  If 

the output process is again Poisson, we say that the queue has the M � M (Markov to 

Markov) property (Mehdi, 1991). 

 Since a queue delays arrivals, it will clearly change the timing and possibly the 

order of the arrivals (Molloy, 1989).  The output process is not the same process as the 

input process.  However, if the input process to a queue having the M � M property is 

Poisson, the output process will be another Poisson process with the same parameter 

(Burke, 1956).  That is, the interdeparture time for an M/MS system is the same as the 

interarrival time distribution.  This is intuitive in that the mean output or departure rate 

should be the same as the mean input rate during steady state.  Hence, a M/M/S queueing 

system has no impact on the arrival process of other queues in the network. 

 Carmichael (1987) explains that there is an alternative approach to viewing this 

independence.  For example, in a two stage system, P(n1,n2) = Pn1Pn2.  That is, the 

probability of there being n1 customers in stage 1 and n2 customers in stage 2 is the 

product of the individual probabilities.   
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 There are queues (for instance, the M/M/S) that preserve the Poison nature of their 

inputs.  For instance, if the input of a M/M/1 queue is the output of another M/M/1 whose 

inputs are Poisson, then it is possible to solve the system  (Molloy, 1989).  Since a M/M/1 

queue has the M�M property, a network of such queues can be solved by solving for the 

distribution of each queue independently as long as the network is feedforward.  

Unfortunately, if feedback occurs, one of the assumptions is violated. 

 With feedback, it can no longer be assumed that the input to the queue is Poisson.  

Although it is true that merging independent Poisson processes results in a Poisson 

process.  Molloy (1989) presents the following the following illustration (Figure 2.6) of 

the simplest feedback system. 

 

1 - p

p
arrival 
  rate

 

Figure 2.6. A queue with feedback [from Molloy, 1989]. 

 To understand that the two processes feeding the queue (the Poisson process from 

the outside world and the feedback process) result in a non-Poisson process, consider the 

residual life of an arrival.  Molloy (1989) explains that if the input process were Poisson, 

it would be memoryless.  But the input process depends on the state of the queue because 

of the  feedback.  The state of the queue has memory of the most recent arrivals, so the 

feedback process has memory of the previous arrivals.  Therefore, it cannot be Poisson. 

 To further understand this, consider the following example from Molloy (1989):  

assume that the probability of returning to the queue is close to one and therefore the 

service rate is much larger than the arrival rate.  As the system runs, the input process is 
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dominated by the feedback (looking much like the service process) until the queue 

empties, at which point the input process is simply the slow, outside arrival process. 

 With this understanding of the key issues necessary for a queuing network, 

consider networks which have the following characteristics (Giffin, 1978): 

 • The networks contain more than one service center 

• Each service center is a multi-channel queue with each channel at that center 

having an identical exponential service time distribution. 

• Arrivals at any given center may come from outside the system or from other 

centers in the network. 

• Arrivals from outside the network occur in Poisson fashion. 

• When a unit completes service at a particular center it may leave the system or 

be routed to another center, its path being controlled by a fixed probability 

distribution associated with the center it is leaving. 

• There is unlimited waiting space at every service center. 

• Total arrival rate at every center is less than its potential service rate. 

Networks satisfying this set of characteristics are called Jackson networks.  Note that this 

listing is nearly identical to the previously list of characteristics. 

 A more formal definition of a Jackson network is given by Mehdi (1991).  Parts 

from (say) node i proceed to an arbitrary node and new customers may join node i from 

the outside.  Suppose there are k nodes, where the ith node (i = 1 to k) consists of Si 

exponential servers with parameter µ.  After receiving service from the ith node, 

customers proceed to the jth node with probability pij.  Suppose further that the ith node 

may receive customers from a Poisson stream with rate λ i from outside the system.  

Customers at node i depart from the system with probability: 

 
qi = 1 − pij

j = 1

k

∑
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That is, the input to the ith node consists of outputs of the other nodes as well as the 

external input λ i.  The total arrival rates λ i from outside the system plus the arrival rate 

from arrivals to node i from (other) internal nodes  
p jiα j.

j
∑

  

Medhi (1991) presents Figure 2.7 for the diagram of node i. 
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where: 

a = α1p1i  e = λi  h = 
αipij 

b = α2p2i  f = αipi1  i = αipik  

c = 
α jp ji  g = αipi2  j = αiqi  

d = αkpki    

Figure 2.7. Diagram of node i in a Jackson network [from Mehdi, 1991]. 

  Molloy (1989) credits Jackson with determining that even through input processes 

to a queue are not Poisson, the steady state probability density function for an entire 

Markov system is the product of the steady state probability density functions for the 

individual queues.  More formally, the joint probability density of the number of 

customers in each queue in steady state is the product of the marginal probability density 

functions.   Therefore, even though the arrival processes are not Poisson, the random 
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variables for the number of customers in each queue in steady state are independent.  This 

result has been come to be known as Jackson’s Theorem.   

 As part of his theorem, Jackson shows that it is easy to verify that the parameters 

α i satisfy the equation: 

αi = λi + p ijα j, i = 1, 2,... k
j = 1

k

∑
 

where α i  is the effective arrival rate to the node i or effective rate of flow through node 

i. 

 The major result is that if one properly defines the mean arrival rate at the various 

centers then the steady state distributions at those centers look exactly like the standard 

multi-channel systems with which we are familiar (Giffin, 1978).  Based on this result, a 

complex network can be decomposed into a number of simpler subsystems. This means 

that large networks of queues can be solved by multiplying the results of each queue 

together (Molloy, 1989).  Jackson’s theorem shows that for a Jackson network of 

(Markovian) queues, the particular product-form result of the marginal distribution holds 

in equilibrium, implying the independence of various nodes in the network (Mehdi, 

1991). 

 

2.3.6 Tandem Queues 

 A common type of queueing network is one in which an arriving part must be 

serviced by a variety of service distributions before being discharged.  Each service center 

(resource) may provide the input for subsequent centers (Carmichael, 1987).  That is, the 

service facilities are located in sequence.  Systems of this type are termed serial, series or 

tandem queueing systems.  This research refers to systems of this type as manufacturing 

flow lines. 
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 Examples include manufacturing and assembly line operations where a part 

proceeds through a series of workstations and at each station a different activity is carried 

out until the completed part passes out of the last station. 

 Mathematically, tandem queues are the simplest examples of queueing networks.  

A disadvantage of studying them is that by channeling all parts through a single route 

may magnify the effects of deviations from such “idealized assumptions as independence 

and exponential service times” (Wolff, 1989). 

 A series or tandem queue derives from a sequence of service phases or stages or 

service stations through which a part passes.  The sequence of stages, together with the 

associated queues, forms the queueing system (Figure 2.8).  In this example, arrivals are 

assumed to occur by a Poisson process with a mean rate λ  and service times are assumed 

to be exponential with mean rates µ i , i = 1,...,M for an M phase system. 

 

 

 

 

 

 

 Carmichael p165 

 

Figure 2.8. A series or tandem queueing system [from Carmichael, 1987]. 

 Tandem queueing systems are well studied systems (Table 2.2).  Excluding the 

case when no queues are allowed to form, much of the theoretical development of serial 

queues has concentrated on the case of exponential interarrival times and service times 

under steady state conditions.  Research has focused on two types of systems.  The first is 

where there is no restrictions on the queue size of any of the stages and the second is 
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where there is a part or total restriction on the queue size at the stages (Carmichael, 

1987). 

 When there are no restrictions on the queue size for a stage, each stage may be 

analyzed as a single phase in isolation from the other phases.  This analysis may be 

carried out provided the input to each phase is known and the system input is known and 

this is Poisson with mean rate λ  (Carmichael, 1987). 
 
 

Table 2.2. Survey of tandem flow line research. 
 

Author  Subject 
 
Altiok (1989) 

 
Develops an approximation for queues in series with 
phase-type service times and blocking. 

 
Brandwajin and Jow (1988) 

 
Proposes an approximation method for tandem queues 
with blocking. 

 
Graves (1986) 

 
Develops a discrete-time, continuous-flow model for 
studying the operation of a job shop that experiences a 
mix of input job types. 

 
Hillier and Boling (1967) 

 
Explores finite queues in series with exponential or 
Erlang service times. 

 
Konig and Shmidt (1984) 

 
Develops relationships between the time/customer 
stationary characteristics of tandem queues attended by a 
single server. 

 
Ku and Niu (1986) 

 
Studies the stochastic nature of a Johnson’s two-machine 
flow shop with random processing times. 

 
Hendricks (1992) 

 
Explores the output process of a serial production line of 
exponential machines with finite buffers. 

 
Lee and Zipkin (1992) 

 
Develops an approximation for an exponential tandem 
queueing system with planned inventories. 
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Maaloe (1973) 

 
Offers approximation formulae for estimating the 
waiting-time in multi-channel queueing systems with 
Poisson arrivals and constant or Erlang-distributed service 
times. 
 

 
McCormick, Pinedo, 
Shenker, and Wolf (1989) 

 
Proposes heuristics to maximize output of an assembly 
line with blocking. 

 
Pinedo (1982) 

 
Studies the optimization problem of minimizing the 
completion time in a flow shop. 



 

50 

Table 2.2. cont. 
 

Author  Subject 
 
Shalmon and Kaplan (1984) 

 
Presents a complete analysis of the delays in a tandem 
network of queues with deterministic service and 
multiple, interfering sources. 

 
Suresh and Whitt (1990) 

 
Describes the results of a simulation experiment of 
arranging queues in series. 

 
Wittrock (1988) 

 
Presents an algorithm for scheduling parts through a 
flexible flow line manufacturing system. 

 
Whitt (1983) 

 
Develops methods for estimating a point process 
(departure) by a renewal process. 

 
Whitt (1984) 

 
Explores the departure process for a queue with many 
busy servers. 

 
Wolff (1982) 

 
Explores light traffic results for tandem queues with 
Poisson arrivals and general service times. 

 

 For application purposes, Carmichael (1987) remarks that is it reasonable to treat 

the stages as independent whenever there is sufficiently large queue capacity allowed at 

each stage (and the arrival process to a stage can be estimated).  Lee (1966) suggest this 

to be the case when the probability of a customer being turned away is less than 10%.    

 As soon as restrictions are placed on one or more of the stages’ queue sizes, 

interaction between the phases occurs such that the state of the M-stage system has to be 

considered as a whole instead of at separate states for each of the stages.  In fact, the 

independence property and its implications no longer hold (Hillier and Lieberman, 1986). 

 Because of limited queue capacities between stages, blocking occurs.  Blocking 

prevents the smooth movement of parts through stages.  Generally, any form of 

restrictions of queue capacity at any of the stages produces dependency among the phases 

and all phases have to be considered together in any analysis (Carmichael, 1987). 
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2.4 The Process of Abstraction 

 The process of developing an abstract (aggregate) simulation model has two major 

areas of research.  The premise of many conceptual framework for simulation 

development is a hierarchical, modular structure.  These frameworks offer the ability to 

aid modelers in abstracting a system.  Section 2.4.1 reviews simulation conceptual 

frameworks and concludes that they offer little assistance for this research.  Section 2.4.2 

explores how aggregation is performed in areas other than simulation.   

 

2.4.1 Simulation Conceptual Frameworks 

 Law and Kelton (1982) define discrete event simulation to be the modeling of a 

system as it evolves over time by a representation in which the state variables change only 

at a countable number of points in time.  There are many frameworks for this 

representation to occur. 

 This section focuses on conceptual frameworks for simulation models.  Pritsker 

(1986), provides the following insight, “In developing a simulation model, an analyst 

needs to select a conceptual framework for describing the system to be modeled.”  This 

framework or perspective is the “world view” within which the system functional 

relationships are perceived and described (Pritsker, 1986).  Derrick, Balci, and Nance 

(1989) state that a conceptual framework is the underlying structure and organization of 

ideas which constitute the outline and basic frame that guide a modeler in representing a 

system in the form of a model.  Conceptual frameworks provide both the implementation 

and design guidance for the modeler.   

 Zeigler and Oren (1986) claim that simulation models can be specified in a 

number of formalisms and simulated (i.e., have their behavior generated) by a variety of 

methods.  Formalisms (conceptual frameworks) are set-theoretic short-hands for 

specifying a mathematical dynamic system.  There is no best formalism to represent the 
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variety of behaviors in real systems of interest but  some formalisms are more natural 

than others and correspond more directly with a system.   

 Before a discussion on different world views or conceptual frameworks is 

presented, a review of key terms and concepts of discrete event simulation is required.  

Entities are the objects within the boundaries of a discrete system.  Examples include 

people, equipment, orders, and parts.  The purpose of developing a discrete event model 

is to monitor the activities that the entities engage in so as to analyze the system.  In 

discrete simulation, the state of the system can only change at event times (Pritsker, 

1986).  A simulation model can be formulated by the following (Pritsker, 1986): 

 • defining the changes in the state that occur at each event time. 

 • describing the activities in which the entities in the system engage. 

 • describing the process through which the entities in the system flow interact. 

Figure 2.1 (Pritsker, 1986) depicts the relationship between the concepts of an event, 

activity, and a process.   

    

Time
Arrival 
Event

Start of 
Service 
Event

End of  
Service  
Event

Activity

Process

 

Figure 2.9. Relationship of events, activities, and processes [from Pritsker, 1986]. 

 The scheduling of the next event and the task of updating the system state by the 

next event increment method can be implemented in several ways (Neelamkavil, 1987).  

the common event sequencing approaches are Event Scheduling (ES), Activity Scanning 
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(AS), The Three-Phase Approach (TPA), Process Interaction (PI) and Transaction Flow 

(TF).   These will be first reviewed so as to allow comparisons to recent developments in 

the area of conceptual framework.  These developments have resulted in several 

additional frameworks: System Theoretic Approach (STA), the Conical Methodology 

(CM), and the Product Automaton. 

 

Event Scheduling 

 The event scheduling approach takes a global view of the entire system.  With it, a 

complete description of everything that happens in the model when an individual event 

occurs is given and the events are scheduled explicitly by specifying their time of 

occurrence (Neelamkavil, 1987).  Hooper (1986) explains that the event scheduling time 

control procedure selects from the event list the event notice having the earliest 

occurrence time, updates the simulation clock to that time, and invokes the corresponding 

event routine.  Any testing of conditions, other than on clock time, must occur within 

specific event routines.  Until termination time, events are chosen and processed 

successively.   

 

Activity Scanning 

 In activity scanning, no event list is maintained.  Rather, the simulation progresses 

from event to event by scanning activities (Neelamkavil, 1987).  Activity scanning 

chooses the next event based both on scheduled time and condition testing (Hooper, 

1986).  To achieve this, identification is required for all objects in the system, the 

activities which the objects perform, and the conditions under which the activities take 

place.  Derrick et al. (1989) explain that activity scanning uses a test set of boolean 

conditions to enable determination of the state change that can initiate an activity.  The 
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test conditions link the various activities together and produce the state transitions of the 

model objects and the interactions among them (Derrick et al., 1989).   
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The Three-Phase Method 

 The three-phase approach is a modification of activity scanning.  In this 

simulation world view, a simulation consists of a number of time dependent scheduled 

events, plus a number of conditional events that are scanned.  O’Keefe (1986) presents 

the following three step algorithm: 

 repeat 

 A: advance time to next scheduled event 

 B: execute all scheduled events due to occur at this time 

 C: scan the conditional events 

 until simulation halted 

Activities are classified as B-activities or C-activities.  The B-activities are the “bound-to-

occur” or “book-keeping activities” that represent the unconditional state changes 

(unconditional events) which can be scheduled in advance (Derrick et al., 1989).  The C-

activities are the conditional or cooperative activities that represent the state changes 

which are conditional upon the co-operation of different objects or satisfaction of specific 

(compound) conditions. 

 

Process Interaction 

 The process interaction uses a world view in which components in a system 

progress through a sequence of steps (called a process).  Each step may consist of a 

condition sequence and an action sequence.  Execution of the condition sequence 

determines whether execution of the action segment should occur (Hooper, 1986).  

Neelamkavil (1987) discusses that a list of processes, each ordered according to the time 

of occurrence of the next event, is maintained and the collection of all event sequences 

together describes all events that occur in the system.  Therefore the generation of the 

next event time and the scheduling of the next event can be achieved indirectly by 
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activating the process (scheduling and executing the routines which describe the actions 

of the process) at the head of the list.   

 

Transition Flow 

 Transaction flow handles time and state relationships similar to the process 

interaction approach.  The main difference, according to Derrick et al. (1989), is that in 

transaction flow, “transactions” are created and moved though blocks, executing 

specialized actions that are “associated” with each block.  The block structure generates a 

method by which the examination and communication among system components is 

limited.  In addition, as objects (transactions) pass through these blocks, predefined 

processes are activated which are hidden to the modeler. 

 

System Theoretic Approach  

 Systems Theory is a scientific discipline whose primary concern is to provide 

problem solving methods and tools (Rozenblit, 1988).  Under the system theoretic 

approach, a modeler can identify the static and dynamic structure of the model.  Derrick 

et al. (1989) explains that this approach is based on set theory.  From this the system 

modeling formalism provides a comprehensive, yet general model representation that 

allows hierarchical decomposition and abstraction.  A system model can be informally 

represented by describing (Derrick et al., 1989): 

• components - “the parts from which the model is constructed” 

• descriptive variables - “tools to describe the conditions of the components at 

points in time” 

• component interactions - “the rules by which components exert influence on 

each other, altering their conditions and so determining the evolution of the 

model’s behavior over time” 
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 The major framework based on the concepts of the Systems Theory is the Discrete 

Event System Specification (DEVS) developed by Zeigler (1986, 1987).  DEVS is a 

formal specification for discrete event models which use formalism and provides for a 

variable-time increment time flow mechanism.  Derrick et al. (1989) states that DEVS 

provides the static structure of the model.  The model dynamic structure is obtained 

though how components interact. 

 DEVS provides a means of specifying a mathematical object called a system.  A 

system is composed of a time base, inputs, states, outputs, and functions for determining 

the next states and outputs given current states and inputs (Rozenblit and Jankowski, 

1991). 

 In DEVS formalism, basic atomic models are defined by the following structure: 

 
M = < X, S, Y, δ int , δ ext, λ, τ >

 

where: 

 X is the set of external input event types 

 S is the sequence state set 

 Y is the set of external even types generated as output 

 δ int  ( δext ) is the internal (external) transient function dictating transient  

  due to internal (external input) events  

 λ  is the output function generating external events as the output 

 τ  is the time advance function 

 With DEVS, a model must be viewed as possessing input and output ports 

through which all interaction with the environment is mediated.  Rozenblit and 

Jankowski (1991) state that a basic model contains the following information. 

• the set of input ports through which external events are received 

• the set of output ports through which external events are sent 

• the set of variables and parameters 
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• the time advance function which controls the timing of internal transitions 

• the internal transition function which specifies to which next state the system 

will transmit after the time given by the time advance function has elapsed 

• the external transition function which specifies how the system changes when 

an input is received; the next state is computed on the basis of the present state, 

the input port and value of the external event, and the time that has elapsed in 

the current state. 

• the output function which generates an external output just before an internal 

transition takes place. 

 Basic or atomic models may be coupled to form a multi-component model.  In 

DEVS, these are referred to as coupled models.  This approach allows for the 

development of hierarchical model construction.  The development of the hierarchy 

allows for a component in the composition tree to be an atomic model or a coupled 

model. When a coupled model is used, it is constructed from one or more components.  

Figure 2.10 illustrates the general recursive pattern for model construction. 

 

 

component

⇓

coupled model

couplingcomponent

|||
component

atomic model

 
 
Figure 2.10. Recursive hierarchical model construction with DEVS [from Zeigler, 

1986] 
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 The development of modular discrete event models using this framework requires 

looking at model differently.  A model must be viewed as processing input and output 

ports through which all interactions with the environment are controlled.  Events 

determine the values appearing at the ports.  Appearances occur when external events 

(those arising outside the model) are received on input ports.  Internal events (those 

arising within the model) change the state and are themselves events which need to be 

transmitted to other model components.  The goal of the model is to decide how to 

respond to these event.  

 

Product Automaton 

 The Product Automaton formalism, proposed by Portier (1987), is a formalism for 

discrete simulation that allows one to specify a discrete simulation model in “a precise 

and unambiguous manner.”  The approach of the product automaton is similar to DEVS 

in that it uses modularity and a hierarchy.  In addition, both define a system as a finite 

decomposition of subsystems which are maintained in a modular fashion (Portier, 1987). 

The differences arise in their perceptions of the world view, the definition of state, and 

state transitions.  

 The product automaton can be described as a mathematical object.  Let T be a 

rooted tree, then T ≡ <N, E, r> where N is a finite set called the node set, E is a subset of 

N x N called the edge set and the node r ∈N is called the root and <N, E> is a tree. 

 A product automaton is a structure 

  PA ≡  <N, E, r, {Mi}, {Zi,j}> 

 where <N, E, r> is a rooted graph 

  Mi ≡  <Xi, Si, ∂ i, tai> for all i ∈  N 

 Each Mi is called a component.  Each component is made up of the following. 

 Xi is a finites set, the inputs to i 
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 Si is a set, the state set of i 

 ∂ i is a function, the state transition function of i 

 tai ∈  R+0, � is the natural update time of i 

 The product automaton framework is a collection of interacting and interrelated 

components.  The components are arranged in a decomposition tree and interact only with 

adjacent components as defined by the tree (Portier, 1987).  To make the relationship 

between the components more complete a factor is defined as part of some 

decomposition, and a product is a component that has many factors. 

 Similar to how Zeigler defines a system as an atomic model or a coupled model,  

Portier defines a system to be either atomic or made up of subordinate subsystems (i.e. 

coupled). As part of the formalism, every component i maintains a current state (an 

element of Si), accepts inputs (from Xi), and changes state (using ∂ i). An atom has state 

transitions based only on its received input and on its internal state whereas a product 

changes based on the state of its factors. 

  

Conical Methodology 

 The conical methodology provides the “fundamental requirements that underlie a 

model development system” (Overstreet and Nance, 1985).  The objective of a model 

development systems is to provide tools to reduce the cost of constructing simulation 

experiments while improving the quality of the information those experiments produce.  

Overstreet and Nance states that “the CM (conical methodology) provides a carefully 

structured approach for documented, effective model specification construction.”   

 The conical methodology, developed for simulation modeling tasks, uses a top-

down model definition followed by a bottom-up model specification (Balci and Nance, 

1987).  Top-down model definition produces a static model representation and is 
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accomplished through a hierarchical decomposition of the model into successive 

submodels.  This is accomplished by requiring the modeler to perform an object 

decomposition, assigning attributes to objects based on the system being described and 

the objectives of the simulation study.  At each level of decomposition, attributes are 

assigned and classified by type (Derrick, Balci, and Nance, 1989). 

 The model-specification phase (bottom-up specification) uses the static 

representation to produce a dynamic representation.  Specification is started at a base-

level submodel in the decomposition hierarchy and is performed successively at higher 

levels until the model level is reached. 

 

Relationship Between This Research and Conceptual Formalisms 

 Conceptual frameworks provide two types of guidance.  First is the 

implementation guidance (algorithmic, managerial supervisory) which directly impacts 

the subsequent executable form of any model.  Conceptual frameworks also provide 

design (structural, existential, skeletal) guidance (Derrick et al., 1989).  With this, the 

modeler is assisted in the development of the static and dynamic model structure for 

identifying the objects, their attributes, and their rules of interaction. 

 Conceptual frameworks other than the classical ones provide design guidance.  

They are used in the development of the static and dynamic structure of the model.  This 

research focuses on developing an aggregate model of a system description.  Within this 

scope, emphasis is on identify how to lump or combine system components in the 

development of the conceptual model. 

 The conceptual model and the conceptual frame are not the same (Figure 2.11).  

The model is the “picture” developed by the modeler of the necessary components, 

features and their associated interaction.  The conceptual frame (world view) is the 
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underlying structure and organization of this conceptual model which is used to develop 

the simulation model.   

 The conceptual framework identifies and builds a model of those features 

identified in the development of the conceptual model.  The relationship between the two 

is analogous to the relationship between flour and cake.  The conceptual model is the 

flour and the conceptual frame (or world view) is the cake.  Thus, the conceptual model is 

an ingredient (the primary ingredients) which makes for the conceptual framework.  But 

to make a cake (conceptual framework) other ingredients and items are required.  For 

instance, a pan is needed.   

Conceptual  
    model

Conceptual  
Framework

System 
  Data

 

Simulation 
    Model

Real or Proposed 
       System

     
 
Figure 2.11. Relationship between the conceptual model and the conceptual 

framework. 

 Several of the reviewed conceptual frameworks are based on the premise of 

hierarchical, modular development with decomposition.  A conceptual framework is only 

the “skeleton” which a modeler uses for creating a model.  It can be argued that the 

conceptual framework, by providing a structure for aggregation assists the modeler.  

Unfortunately, the conceptual frameworks do not provide the means to identify a correct 

hierarchy or module.  Thus, the task of developing modules and forming them into a 

hierarchy is based on a modelers ability.  For instance, does a cake have any influence on 
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how the flour was produced?  That is, does the conceptual framework have any influence 

on how the conceptual model is specified?  It can be reasonably assumed that the 

conceptual framework (cake) has no influence in the development of the conceptual 

model (flour).   

 To develop a conceptual framework using any of these formalisms requires the 

modeler to develop the system entity structure by deciding on what entities exist in the 

system, the relationship between them.  In short, development of the conceptual model is 

the modeler’s task.  Conceptual formalisms offer the “shell” for storing the model 

information, but do not offer techniques for aiding in the abstracting (aggregating) the 

system. 

 

2.4.2 Aggregation Research 

 Formally, abstraction is the technique of reducing a system description to a level 

of detail which can more easily be managed.  One of the primary abstraction techniques is 

aggregation.  This technique involves combining or lumping details into a single, 

equivalent function.  As indicated in Chapter 1, many authors claim that developing an 

abstract (aggregate) simulation model is an “art”.  This belief among simulation 

researchers and practitioners is prevalent since there are no formal techniques for 

developing an abstract (aggregate) simulation model.    

 The complexity of a manufacturing system is determined largely by the number of 

resources explicitly modeled (Dietrich, 1991).  Rogers et al. (1991) remarks that, “A 

fundamental issue in the use of optimization models is the tradeoff between the level of 

detail and the ease of solving the model.”  Aggregation and disaggregation techniques 

have proven a valuable tool for manipulating data and determining the appropriate 

policies for this tradeoff.  Rogers et al. (1991) develops a general framework for 
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aggregation and disaggregation methodology, and explore its potential for solving 

optimization problems such as linear programming problems and network flow problems.   

 In developing a simulation model, most descriptions state that it is the 

responsibility of the modeler to “model at an appropriate level of detail”.  Unfortunately, 

there are no formal guidelines or rules to follow.  Seeing this as a problem, Antonelli et 

al. (1986) developed a useful tool for the development of flexible automation.  This tool 

is a system description language which can generate a complete functional description of 

a manufacturing cell of arbitrary complexity.  It proposes a description system based on 

the concept of hierarchical decomposition utilizing the Ada programming language in 

conjunction with established diagramming decomposition methods.  The distinguishing 

aspect of this work is that is takes advantage of certain features of Ada (such as type 

checking) to create a description that can be automatically verified for consistency.  

 One of the few papers relating to this research is a paper that Henry Friedman 

published in 1965 on reduction methods for tandem queuing systems.  He developed a 

reduction procedure based on the dominance of a queue’s impact on the other queues of 

the flow line.  Applying his procedure results in modeling only the dominant queues of 

the system.  The other, less dominant, queues are represented by only their service means. 

 Gershwin (1987) presents a decomposition method for evaluating performance 

measures of tandem queueing systems with finite buffers in which blocking and 

starvation are important.  In general, these system are difficult to evaluate because they 

have large state spaces and cannot be decomposed exactly.  The procedure works by 

approximating a single k-machine flow line by a set of k-1 two-machine lines.  

Performance measures are developed for the two-machine lines and combined to form 

estimates of the overall system.  Expanding on this work, Gershwin (1989) refines his 

original algorithm to consider the case of unreliable tandem queueing systems.  Takahashi 
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(1989) offers a similar procedure which works by looking at a node at a time, two 

adjacent nodes at a time, three adjacent nodes at a time, and so on. 

 Schweitzer and Altiok (1989) develop an aggregation procedure of modeling 

tandem queues without intermediate buffers.  Their work is limited to the case of 

exponential service times.  One of the underlying premises is the belief that aggregation 

permits a system to be reduced to (say) one server at a time or (say) two servers at a time. 

 A subset of other authors researching the concept of approximate decomposition 

of tandem queueing model include: Hunt (1956), Hillier and Boling (1966), Takahashi, 

Miyahara, and Hasegawa (1980), Altiok (1982), Gun and Makowski (1989). The majority 

of these efforts focus on exponential queueing systems with finite buffers. 
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2.5 Chapter Summary 

 The objective of this chapter was to provide a foundation for which the 

aggregation methodology for creating an aggregate simulation model of a manufacturing 

flow line can be developed.  To achieve this, this chapter reviews: 

(1) Simulation.  After the definition of a model is presented, the concept of a 

computer simulation model is discussed.  The components and steps of a model’s 

development are reviewed.  In addition, the important task of how to generate 

random variable with simulation is summarized.  This will be key to 

understanding the final step of the aggregation methodology presented in the next 

chapter. 

(2) Discrete Manufacturing System.  Since this research is concerned with production 

flow line systems, general discrete manufacturing systems are defined and a 

detailed discussion of flow line manufacturing systems is given.  In addition, 

common performance measures for a manufacturing simulation study are 

reviewed.   

(3) Queueing Theory.  As the next chapter will illustrate, the core techniques of the 

aggregation methodology are based on queueing theory.  An introduction to 

queueing and queueing estimates for the M/M/S, M/G/S, and G/G/S queueing 

systems are given.  In addition, the concept of a queueing networks are reviewed.  

As a special case of a queueing network, tandem queueing systems are studied. 

(4) Aggregation.  Conceptual simulation frameworks were extensively reviewed with 

the hope that they would offer techniques for how to develop an abstract 

(aggregate) simulation model.  Though several of them provide the means for 

aggregation to occur, they offer no specific rules or procedures for accomplishing 

it.  In addition, a review of relevant aggregation research from different areas is 

studied. 



 

68 

The presentation of these topics establishes the groundwork for the next chapter to 

present the methodology for creating an aggregate simulation model of a flow line 

manufacturing system.  



CHAPTER 3 

RESEARCH METHODOLOGY 

 In developing a simulation model, most of the actual features of the system under 

study must be ignored and an abstraction must be developed.  If done correctly, this 

idealization provides a useful approximation of the real system.  Aggregation is one of the 

available techniques for abstracting a system.  It involves aggregating or lumping details 

into approximately equivalent functions (Pegden et al., 1990).  Potential benefits of 

developing an aggregate simulation model include a reduced run length, a less complex 

model, and less demand of system resources. 

 The objective of this research is to develop a formal methodology for creating an 

aggregate simulation model that can be used to estimate average part cycle time.  The 

methodology operates by aggregating or lumping together resources of the system into 

equivalent aggregation resources.  Determining the specifications for representing these 

aggregation resources in an aggregate simulation model is the key task of this research. 

 Developing a simulation model is an iterative process.  Developing an aggregate 

simulation model of a manufacturing systems follows a similar evolution.   The chapter 

first discusses what a flow line manufacturing system is and develops a formalism for 

specify the data of such a system.  From this description, summary statistics are 

computed.  Using these results, the simulation data is combined such that an aggregate 

simulation model can be developed.  A pictorial view of the steps of the aggregation 

procedure are described in Figure 3.1. 
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STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

System Formalism

Aggregate Resource  
Cycle Time

Aggregate Resource 
Service Mean

Resource Weighting  
Procedure

Develop Aggregate  
Simulation Model  

 
Figure 3.1. Steps of the aggregation methodology. 

 The remainder of this chapter will be devoted to addressing each of these steps.  

Issues relating to the purpose, development, and application of each will be presented. 

 

3.1 System Formalisms 

 A necessary task in any simulation project is to collect or specify data on the 

system under study.  This section provides a formalism for collecting and representing the 

information of a manufacturing flow line.  Section 3.1.1 defines a flow line 

manufacturing system and presents a formalism for representing it.  Section 3.1.2 

introduces the manufacturing flow line of MPD manufacturing company.  To illustrate 

the application of the methodology, this example flow line will be continued throughout 

this chapter.  Section 3.1.3 mirrors 3.1.1 in that a formalism is developed for representing 

the aggregation of a flow line system.  Section 3.1.4 continues the MPD manufacturing 

system example by developing its aggregate representation. 
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3.1.1 Flow Line Formalism 

 Pinedo (1982) defines a flow line (flow shop) system as a manufacturing facility 

in which there are n machines and m job types to be processed.  The m parts or jobs are 

processed by the same n  machines with the ordering of processing at different machines 

being the same for all jobs.  Hence, each part has to be processed first on machine 1, then 

on machine 2, etc.  

 Unfortunately, Pinedo’s definition is both too broad and too narrow for certain 

aspects of this research.  It exceeds this research in that it allows for m part types to flow 

through the manufacturing system.  This research assumes that there is only one part type 

in the system.  Pinedo’s definition is to restrictive in that it states that parts go from 

machine to machine in a sequence.  While this is technically true, it in not entirely 

accurate, for parts go from a machine to a queue or buffer area, and then to the next 

machine.   

 The need for these adjustments will become more apparent as the methodology is 

discussed later in this chapter.  To adjust for these problems, consider the following 

modification to Pinedo’s (1982) definition: The single part type is processed at N 

production stations (resource) with the ordering of processing at a production station 

(resources) being the same for all parts.  The phrase “production station” replaces 

machines and “single part type” has been added.  Thus, a flow line is a sequence of N 

production steps or resources (Ri), consisting of a machine and associated buffer (or 

queue) area.  This relationship is illustrated in Figure 3.2.  A description of the basic 

notation and definitions are given in Table 3.1.   
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Figure 3.2. A flow line consisting of N production steps, where each resource or 
production step consists of a machine and associated waiting or buffer 
area. 
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Table 3.1. Description of flow line notation. 
 
 

R  Receiving area 

S  Shipping area 

N  Number of production steps to produce a part 

Ri  A resource or production step consisting of a queue and associated 

machine  (i  = 1 to N) 

Mi  Machine i (i = 1 to N) 

Qj  Queue or buffer proceeding Mj+1 (j = 0 to N-1).  For simplicity, Q0 is 

 represented as a separate queue when in fact it is part of R, the receiving 

 area. 
 

 The basic assumptions associated with the flow line production system that this 

research explores are summarized in Table 3.2 (based on Hendricks, 1992).  The most 

important assumptions are that the time between which parts arrive to the service area 

follows an exponential arrival and that the queues or buffers between the queues have 

infinite capacity. 

 



 

6 

Table 3.2. Basic assumptions of manufacturing flow line [based on Hendricks, 1992]. 
 
 

1. The production line (flow line) is a series arrangement of a finite number of N 
resources.  The machine component of a resource has si parrallel servers and 
each server can operate on one part at a time and has internal storage for that 
part.  

2. The production line is operating under steady state conditions.  

3. The machines Mi (i = 1,...,N) have mutually independent processing times.  The 

coefficient of variation of the service time is required to be less than or equal 

to one. 

4. Parts leave the receiving area (arrive to Q0) following an exponential 

distribution with density function f (t) = λ exp(−λt). 

5. The shipping area has unlimited storage capacity and the receiving area has an 

unlimited supply of parts. 

6. All machines are reliable and produce no bad (or scrap) parts. 

7. No batching and no setup times are allowed. 

8. All queues between machines have infinite storage capacity.   

9. The flow line does not allow for feedback or rework. 
 

 From this description and listing of assumptions, a more symbolic relationship can 

be used to describe the flow system.  This description is used to collect all the necessary 

data for developing the aggregate representation of the system.  Table 3.3 provides the 

formalism which symbolically describes a manufacturing flow line.  Items within angular 

brackets (i.e., < >) are information that must be defined by the user or will be specified by 

the aggregation methodology. 
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Table 3.3. Flow line formalism. 
 
 

FL = R, R1, ... , RN ,S

R = 1 λ , Z

S = U

Ri = Qi −1,Mi i = 1,.. ., N

Qi −1 = vi−1, xi −1 i = 1,... , N

Mi = Fi ,mi ,si i = 1,. .., N

 

 

 A flow line (FL) consists of three primary components, the receiving area (R), the 

shipping area (S), and N production steps (Ri).  The receiving area (R) is described by the 

mean time between arrivals (1 λ ), where λ  is the arrival rate, and Z, which is the 

maximum number of parts that can arrive from the storage area.  The shipping area (S) is 

characterized by its storage capacity (U).  From the assumptions of Table 3.2, λ  follows 

an exponential distribution and Z and U are assumed to be infinite. 

 Each production step or resource (Ri) is composed of a queue (Qi-1) and a 

machine (Mi) which is to service (process, inspect or machine) a part.  The queue 

component of a resource represents the waiting space preceding the machine on which a 

part waits until a server becomes available to process it.  It is characterized by its buffer 

capacity (xi-1) and the variability between arrivals to the queue.  Table 3.2 indicates that 

this research assumes that there is infinite queue or buffer capacity (i.e., xi-1 = ∞ ).  The 

variability between arrivals (vi-1) to the buffer is important for applying the aggregation 

techniques of this research.  This value is not specified, but rather it will be calculated 

with a procedure that will be discussed in Chapter 4. 

 Each machine (Mi) is specified by its service time distribution (Fi) and service 

mean (mi) to service a single part.  For example, this characterization might be: uniform 

with a minimum of 10 and a maximum of 20 such that the mean is 15.  The only 
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restriction placed on these values is that the coefficient of variation (standard deviation 

divided by the mean) of the service mean is less than or equal to one.  The need for this 

restriction will be discussed in Chapter 4.  Though this requirement is restrictive, it does 

allow for the use of all common simulation distributions (e.g., triangular, uniform, 

normal, exponential, Erlang, beta, and Weibell).   

 A machine is also characterized by the number of parrallel, identical servers that 

perform the machine’s task.  This research assumes that the number of servers (Si) is 

greater that or equal to one (i.e., si ≥ 1). 

 

3.1.2 MPD Flow Line 

 To illustrate the use of the formalism in describing a production flow line system, 

consider the following example from company MPD that will be used throughout this 

chapter.  The picture depicting MPD’s system is presented in Figure 3.3.  Table 3.4 

provides the mathematical formalism that describes this system.  It should be understood 

that the MPD example is only an illustration and does not represent a true manufacturing 

system.  It has been artificially designed to illustrate all the steps required of the 

aggregation methodology.  More detailed examples will be presented in Chapter 4. 

 

SR

R
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Figure 3.3. MPD manufacturing flow line.  This system consists of 6 resources, where 

R1, R5, and R6 each have 1 servers, R2 and R3 each have 2 servers, and R4 
has 4 servers. 
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Table 3.4. Flow description of MPD’s system.  Distributions are specified for the 
arrival and service time of parts. 

 
 

FL = R, R1, R2 , R3 ,R4 ,R5, R6 ,S

R = 100,∞

S = ∞

R1 = QO ,M1

QO = vO ,∞

M1 = Uniform(75,85),80,1     

R2 = Q1, M2

Q1 = v1,∞

M2 = Normal(130,15),130,2       

R3 = Q2, M3

Q2 = v2 ,∞

M3 = Triangular(120,150,180),150, 2

R4 = Q3, M4

Q3 = v3,∞

M4 = Normal(320,25),320, 4

R5 = Q4 ,M5

Q4 = v4,∞

M5 = Triangular (32,43,60), 45,1

R6 = Q5 ,M6

Q5 = v5, ∞

M6 = Uniform(64,80),72,1                

 
 

 The MPD flow line system consists of six resources, where resources R1, R5, and 

R6 each have single server machines, R2 and R3 each have two servers, and R4 has four 

parallel, identical servers.  Parts arrive to the flow line following an exponential 

distribution with a mean time between arrivals of 100 minutes.  Each of the resource 

queues is characterized by its arrival variability (to be discussed in Chapter 4) and its 

storage capacity (assumed to be infinite).  Each machine is summarized by its service 

distribution (e.g., Normal with a mean of 130 and a standard deviation of 15), its mean 

service time, and its service capacity (1, 2, or 4 in this example). For instance, the service 

distribution of resource R3 is the triangular distribution with parameter values of 120, 150 

and 180 as the minimum, mode, and maximum, respectively.  In addition, it has a mean 

service time of 150 and two parallel, identical servers for performing the production task. 
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3.1.3 Aggregate Formalism 

 The formalism presented previously describes the “as is” flow line manufacturing 

system.  At present, it offers no means to account for the aggregation of manufacturing 

steps in the production sequence of a part. 

 This research proposes that in an aggregation representation of a system, all 

resources with a given server capacity are aggregated together to form a new aggregate 

resource, ARi, where i represents the aggregate resource service capacity.  For example, 

AR1, represents all single server resources from the original system and AR2 represents 

all two server resources. 

 Obviously many other characteristics of a flow line system could have been used 

as the aggregation feature.  Examples include the type of work performed by the resource 

(machining, inspection, assembly, etc.), the service time distributions, the coefficient of 

variation, or even the utilization level of a resource.  The decision to aggregate on the 

service capacity of a resource is based on the fact that this is the one characteristic that 

remains constant for any type of flow line system.  For instance, all flow line systems 

have a set numbers of servers for each resource, whereas they do not have all assembly or 

inspection stations.  Thus, to make the aggregation approach general to the widest type of 

flow line system, resources are aggregated together based on the number of parrallel, 

identical servers performing that resource’s operation. 

 Figure 3.4 provides a possible pictorial representation of an aggregated system.  

As with the original system (Figure 3.2), parts arrive to a receiving area and exit the 

system by a shipping area.  The figure demonstrates that a part is processed through a 

series of aggregated resources (ARi), where each represents the aggregation of all i server 

capacity resources from the original flow line.   
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Figure 3.4. Aggregate flow line representation of a manufacturing system.  Resources 

are aggregated according to their service capacity.  The original system is 
aggregated into a total of O aggregated resources, where O is the 
maximum service capacity of all resource in the original system. 

 The representation demonstrated in Figure 3.4 indicates that a part first proceeds 

to queue Q1* where is waits to be processed on machine M1* which has a single server.  

After processing, a part next waits in queue Q2* for service on machine M2* which has 

two servers.  This continues until the part is processed by all the O aggregation resource.  

Note that the representation of how aggregation resources are positioned or ordered is but 

one of the many possible combinations.  This research assumes (see Chapter 1) that 

resources act independently of one another in estimating the cycle time of part.  Thus, 

Figure 3.4 would be valid if the flow was ARO to AR2 to AR1.  The ordering is not 

important since the objective of this research is to aggregate in order to estimate the 

average cycle time of a part.   

 As such, Figure 3.5 is a more accurate description of how aggregate resources will 

be modeled in the aggregate simulation model.  In this representation, resources are 

modeled independently of one another, such that the order is insignificant.  As the figure 

indicates, when a part arrives to the aggregate flow line (following an exponential 

distribution), it is sent to each of the aggregation resources.  Thus, order is removed, and 

the arrival distribution of a part to any aggregate resource can be assumed to be 

exponential.  This procedure follows the work of Kleinrock (1976).  He showed that for 

Poisson arrivals, general service, and FIFO queues, one can approximate each station in a 

tandem flow line system as an M/G/S queue.  Otherwise, the arrival process to each 
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station (aggregation resource) must be determined.  Chapter 4 will further discuss this 

case. 
 

SR

• • •

AR 2

Q2 M2
* *

AR 1

Q1 M1
* *

AR O

QO MO
* *

 
 

Figure 3.5. Representation of an aggregate flow line to estimate cycle time. 

 As with the original system description, the abstract system can be described with 

a symbolic formalism (Table 3.5).  Items within angular brackets are those that must be 

defined by the user.  Curly brackets (i.e.,{ }) indicate that of the items within the brackets, 

only one should be selected or specified. 
 

Table 3.5. Aggregate flow line formalism. 
 
 

AFL = R, AR1, .. ., ARO ,S

ARi = ∅, Qi
*, Mi

*{ } i = 1,.. .,O

Qi
* = xi

* i = 1,... ,O

Mi
* = Fi

*,δ i
* i = 1,.. .,O

 

 

 An aggregated flow line consists of a receiving area (R), a shipping area (S), and a 

collection of O aggregation resources (ARi), where O is the maximum number of parallel, 
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identical servers used by any machine in the flow line.  For those aggregation resources 

that exist (i.e., not the empty set), they are characterized by a queue and associated 

machine with server capacity i. 

 The queue (Qi*) component of an aggregation resource is defined by its storage 

capacity.  As with the original system, the buffer capacity is assumed to be infinite (i.e., xi 

= ∞ ).  The machine, Mi*, represents all the machines of the original system with capacity 

i.  That is, Mi
* = Mj :Sj = i{ }i = 1,.. .,O

j = 1, ..., N
.  A machine in an aggregation resource is 

characterized by its service distribution (Fi*) and its average service mean (δ i
* ).  That is, 

Fi* represents the combined distribution for all the aggregated resource service times for 

each of the original machines and δ i
*  is the average service mean.  Developing the 

procedure to estimate these values from the original system resource distribution (Fi) is 

the objective of this research.  

 

3.1.4 MPD Aggregation Flow Line 

 Figure 3.6 presents the aggregate description of the MPD flow line system.  In the 

aggregated representation of the system, resources R1, R5, and R6 (each with one server) 

are aggregated to form aggregation resource AR1 (aggregation of all single server 

resources), which is represented by queue Q1* and machine M1*.  In addition, resource 

R2 and R3 have been aggregated to form AR2.  Aggregate resource AR3 is defined as the 

empty set, since there are no three server resources in the original system.  As such, it is 

not explicitly modeled.  R4 is the only four server resource in the original system, thus it 

has nothing to aggregate with and is directly mapped to AR4. 
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Figure 3.6. Aggregation of MPD’s flow line system.  AR3 is not represented since no 

three server resources exist in the system. 

 The aggregate flow line formalism of MPD’s system is presented in Table 3.6.   

Note that the aggregate resource service distributions F1*, F2*, and F4* are not specified.  

The reason for this is that they are not known at this time.  It is the objective of this 

aggregation methodology to develop a procedure so as to estimate them. 
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Table 3.6. Aggregate flow line formalism of MPD’s system. 
 
 

AFL = R,AR1, AR2, AR3, AR4 ,S

AR1 = Q1
*, M1

*

Q1
* = ∞

M1
* = F1

*,δ 1
*

AR2 = Q2
*, M2

Q2
* = ∞

M2
* = F2

*,δ 2
*

AR3 = ∅ AR4 = Q4
* ,M3

Q4
* = ∞

M4
* = F4

* ,δ4
*

 

 



 

16 

3.2 Cycle Time of an Aggregation Resource 

 The previous section defined the manufacturing flow line and its equivalent 

aggregate representation.  It showed how resources of a flow line system are aggregated 

into aggregation resources, where each aggregation resource represents all resources with 

the same capacity from the flow line system.  For instance, aggregation resource AR3 

represents the aggregation of all three server resources of the flow line.  Section 3.2.1 

summarizes a technique for determining the average cycle time of an aggregation 

resource (Ti
* ).  Determining this key value is the second step in developing the procedure 

for developing an aggregate simulation model.  Section 3.2.2 applies the procedures of 

Section 3.2.1 to the MPD manufacturing example. 

 

3.2.1 Computing Cycle Time 

 The first step in determining the average cycle time of each of the O aggregation 

resource is to compute the expected cycle time (T j ) of all N resources in the flow line.  

That is, determine the total steady state processing/service and waiting time (also refereed 

to as the sojourn time) that a part will experience at each of the resources.  By applying 

the assumption that the cycle time of a resource is independent of one another, the order 

of resources in the flow line does not matter.  The case when order does impact the 

analysis will be further discussed in Chapters 4.  Combining the independence 

assumption with the fact that parts arrive to the flow in a Poisson fashion, the time 

between part arrival to any resource can be modeled with an exponential distribution.  In 

actuality, the only resource with a true Poisson arrival is the first resource of the flow line 

(except for the case of resources having exponential service time).  Applying the 

independence assumption means that any of the resource could be first resource of the 

flow line.  Since parts arrive following an exponential distribution, the arrival to any 
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resource can be modeled with the exponential distribution (since it could be the first in 

the flow line). 

 With the arrival of parts to any resource assumed to be Poisson, the time between 

arrivals can be modeled with an exponential distribution.  In the case when a resource 

service time distribution is exponential, determining the cycle would allow the use of 

standard M/M/S queuing formulas, since the arrival and service distributions are both 

exponential.  Correspondingly, if a resource has a general service distribution (e.g., 

Normal, Uniform) and the service capacity is one, then M/G/1 queueing results can be 

used.   

 This research allows for exponential arrivals, general service time distributions, 

and unlimited server capacity, thus M/G/S queueing formulas must be used for computing 

the cycle time.  To provide general results for the widest set of cases, the M/G/S formula 

presented in Chapter 2 will be used.  The advantage of this formula is that it is relatively 

simple to use and it is exact for the M/M/S and M/G/1 queuing systems.  Rewriting this 

formula in terms of the flow line terminology results in the following estimator of a 

resource’s cycle time: 

E[T j ] =
1 + cvmi

2

2λ (1 −ρ j )
ρjCj + mj j = 1,... ,N  

where: E[Tj]  Expected cycle time of resource j (j = 1,...,N) 

  cvm j

2   Squared coefficient of variation of the service time  of resource j (j 

=    1,...,N)  

  λ   Arrival rate of parts to the flow line 

  ρ j

 
Traffic intensity of resource j (j = 1,...,N):

 
ρ j =

λmj

s j

 j (j = 1,...,N) 

  sj Number of parallel, identical servers for resource j (j = 1,...,N) 

  mj Mean service time of resource j (j = 1,...,N) 
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  Cj The probability that a part arriving to resource j (j = 1,...,N) has to  

  wait for service: Cj =
(λmj )

s j

sj !(1 − ρ j)
P0 j

 

  P0J The probability that zero service are busy for resource j (j = 1,...N):  

   P0 j
=

1
(λmj )

n

n!
+

(λm j)
sj

sj !(1 − λm j sj )n= 0

s j −1

∑
 

  
 

  

. 

Apply this formula allows one to compute a resource’s cycle time.  Once values have 

been computed for all N resource, the next step is to determine the average cycle time of 

the O aggregation resources in the aggregate flow line system.  Applying the assumption 

that all resources are independent of each other, determining the average cycle time of a 

aggregation resource reduces to determining the individual cycle times for all the 

resources represented by an aggregation resource and then summing the cycle time (Tj) of 

the Pi resource aggregated by ARi to obtain the total aggregate cycle time (Ti*).  That is,  
 

Ti
* = T j

Rj ∈ARi

∑
i = 1,... ,O
j = 1,.. ., N

. 

But an aggregation resource is defined to be the average of all the resources it represents. 

Thus, the average cycle time of an aggregation resource is defined as: 

Ti
* =

Ti
*

Pi

i =1,.. .,O  

That is, the average cycle time of an aggregation resource is the sum of all resource cycle 

time aggregated by the aggregation resource divided by the number of resources 

aggregated. 

 

3.2.2 Cycle Times for MPD Example 

 To illustrate the concepts of this chapter, this section continues the example for 

MPD’s manufacturing flow line.  In this example, there are six resources (R1,...,R6) in the 
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original flow line.  While the previous section defined the system, this section seeks to 

determine the average cycle time for each of the three aggregate resources of the 

aggregate flow line. 

 Table 3.7 presents the results of computing summary statistics of the resources.  

For instance resource R1 has one server, a mean service time of 80 minutes, and a service 

time variance of 8.3333 minutes2.  As such, the squared coefficient of variation is 

computed to be .00130208.  Applying the techniques of this section (the M/G/S queuing 

formula) results in R1 having an estimated cycle time of 240.208 minutes.  That is, on 

average, a part will spend 240.208 minutes waiting for service and being service by R1.  

Correspondingly, the cycle times for the other resources are: R2 (178.187 minutes), R3 

(247.071 minutes), R4 (440.015 minutes), R5 (63.7106 minutes), and R6 (164.952 

minutes). 
 

Table 3.7. Summary statistics for the resources of the MPD flow line system.  The 
variance, squared coefficient of variation, and cycle time has been  

computed for each of the resources. 
 
 

 R1 R2 R3 
Servers (sj) =  1  2  2 
Mean (mj) =  80  130  150 

Variance (σm j

2 ) =  8.3333  225  150 
 SQ. C of V (cvm j

2 ) =   .00130208  .0133136  .00666667 
Cycle Time (Tj) =   240.208  178.187  247.071 

    
 R4 R5 R6 

Servers (sj) =  4  1  1 
Mean (mj) =  320  45  72 

Variance (σm j

2 ) =  625  33.1667  21.3333 
SQ. C of V (cvm j

2 ) =   .00610352  .0163786  .00411523 
Cycle Time (Tj) =   440.015  63.7106  164.952 



 

20 

 
 

 With the six resource cycle times computed, the next task is to compute the 

average cycle time for an aggregation resource.  For illustration, consider the case of AR1.  

This aggregation resource represents all single server resources (AR1 = {R1, R2, R5}).  

The total cycle time for AR1, T1*, is the sum of the cycle time of all the resources it 

represents.  Therefore,  
T1

* = T1 + T5 + T6

= 240.208 + 63.7106 +164.952
= 468.8706

. 

But an aggregation resource represents the average of all the resources it aggregates.  

Thus, the average cycle time for AR1 is:  

T1
* =

T1
*

3
=

468.8706
3

= 156.2902  

Hence, on average, a part processed by AR1 spends a total of 156.2902 minutes waiting 

and being serviced.   

 Similarly, AR2 represents all two server resources (AR2 = {R2, R3}).  The total 

cycle time of AR2 is: 

T2
* = T2 + T3 = 178.187 + 247.071 = 425.259  

and the average cycle time of AR2 is: 

T2
* =

T2
*

2
=

425.2580
2

= 212.629 . 

 Since aggregation resource AR4 represents a single resource (AR4 = {R4}), 

obviously both T4* and T4
*  are equal to T4.  Thus, T4

* = T4 = 440.015 and 

T4
* =

T4
*

1
=

440.015
1

= 440.015. 

 For MPD’s manufacturing flow line, the procedures of this section have provided 

a method for determining the cycle time of the original flow line resources.  These values 

are then used to compute the average cycle time for each of the three aggregation 
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resources.  The next section will use these estimates of average cycle time to determine 

the mean service time for each of the aggregate resources. 

 

 



 

22 

3.3 Service Mean of an Aggregation Resource 

 The previous section discussed a procedure for determining the average cycle time 

of an aggregation resource.  Using this average cycle time, Section 3.3.1 determines the 

service mean that is necessary for create an aggregation resource with this given cycle 

time.  This computed service mean will later be used by the aggregation methodology to 

weight the resource service time distributions of an aggregation resource.  Section 3.3.2 

continues the MPD example by finding the mean service time for the three aggregation 

resources. 

 

3.3.1 Determining the Service Mean 

 The procedure for solving for the mean service time of an aggregation resource 

involves applying queueing formulas backwards.  Most uses of queueing formula involve 

specifying the parameters (arrival rate, service mean, and capacity) of a resource or 

queueing system and computing the cycle or waiting time (such as was done in the 

previous section).  Where this research differs is in that it seeks to specify the arrival rate, 

capacity, and cycle time of an aggregation resource with the objective of computing the 

mean service time.  Hence, it is solving for the mean service time given the cycle time. 

 To understand this concept, consider a single server queueing system where 

service times are exponentially distributed.  In this system, the M/M/1 queue performance 

can be summarized by the following formulas presented in Chapter 2: 
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ρ = λ
µ

Po = 1− ρ

Lq =
λρ

µ − λ

Wq = Lq
λ

W = 1
µ − λ

 

Thus, W (the cycle time) is equal to one divided by the service rate minus the service 

mean.  Solving for µ , the service rate, results in: 

µ =
1
W

+ λ . 

That is, the service rate is equal to one divided by the cycle time plus the service rate.  

Solving for the mean service time, 1/µ , yields: 

1 µ =
W

1 + λW
. 

Since the value of λ  is known from the definition of the flow line and W (cycle time) is 

computed (with the procedure of the previous section), the mean service time necessary to 

create an aggregation resource with cycle time W can be found. 

 Correspondingly, the procedure for the M/M/2 (two server) queueing system 

follows a similar development.  As outlined in Chapter 2, the formula for computing the 

total weighting time (cycle time) with two servers is: 
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ρ =
λ
2µ

P0 =
1

λ µ( )0

0!
+

λ µ( )1

1!
 

  
 

  +
λ µ( )2

2! 1 − ρ( )
 

  
 

  

Lq =
P0 λ µ( )2ρ
2! 1 − ρ( )2

Wq =
Lq

λ
W = Wq +1 µ

 

Unfortunately, unlike the M/M/1 case, µ  is not as easily computed.  But by substitution, 

W can be expressed as: 

W =

λ3

2µ 3

2λ 1 − ρ( )2 1 + λ
µ

+
λ µ( )2

2 1 − ρ( )
 

  
 

  

 

 

 
 
 

 

 

 
 
 

+1 µ . 

By simplification, this reduces to: 

W =
4µ

4µ 2 − λ2 . 

Solving for µ  requires using the quadratic formula and results in the following estimate 

of the mean service rate: 

µ =
1± 1+ W 2λ2

2W
. 

Expressing this in terms of the mean service time (which must be greater than or equal to 

zero) results in the following estimate: 

1 µ( )=
−2 + 2 1 + W2λ2

Wλ 2 . 

Hence, the mean service time for a M/M/2 queueing system can be expressed in terms of 

it  waiting time (cycle time) and arrival rate. 
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 Unfortunately, the above results only apply to systems with exponential arrivals 

and exponential service times.  By the assumption of independence, an arrival to an 

aggregation resource can be assumed to follow an exponential distribution.  This 

combined with the fact that general service distribution times are allowed for means that a 

similar procedure must be followed but with the M/G/S queueing formula. 

 The previous section presented the M/G/S formula for computing the expected 

cycle time (Tj) of each resource.  Summing each of these cycle times and dividing by the 

number of resources represented by an aggregation resource results in an estimates of Ti
* , 

the average cycle time of an aggregation resources.  This step of the aggregation 

methodology seeks is to estimate the service mean which creates an aggregation resource 

with cycle time, Ti
* .  The M/G/S queueing formula for computing this value of an 

aggregation resource is: 

E Ti
*[ ]=

1 + cvδ i

2

2λ (1− ρi
* )

ρi
*Ci

* + δ i
* i =1,.. .,O  

where: E Ti
*[ ] Expected average cycle time of aggregate resource i (i = 1,...,O) 

  cvδ i

2  Squared coefficient of variation of the unknown service time δ i
*  

for    aggregation resource i (i = 1,...,O)  

  λ  Arrival rate of parts to the flow line 

  ρi
*

 
Traffic intensity of aggregation resource i (i = 1,...,O):

 
ρi

* =
λδ i

*

i
  

  δ i
*   Mean service time of aggregate resource i (i = 1,...,O) 

  Ci* (λδi
* )i

i!(1 − ρi
* )

P0 i

* i = 1,... ,O  

 Poi

*
 = Poi

* =
1

(λδ i
* )n

n!
+ (λδi

* )i

i!(1− λδi
* i)n= 0

i −1

∑ 

  
 

  

i =1,.. .,O . 

 As an example of this procedure, consider the case of aggregation resource AR1.  

Since AR1 represents all single server resources from the original flow line, determining 
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the mean serve time (δ1
* ) involves applying the M/G/1 queuing results backwards.  

Solving the M/G/1 formula for δ1
*  generates the following estimate: 

δ1
* =

1+ λ T1
*( )± 1+ 2λ2 − 2λ T1

* + λ2 T1
* 2

+ 2λ2cvδ1

2

2λ
 

With values for T1
*  (average aggregate resource cycle time) and λ  (arrival rate) known, 

the only remaining unknown is the squared coefficient of variation (cvδ1

2 ) of an aggregate 

resources service mean (δ1
* ).  But since the mean is unknown (it is the quantity that this 

entire procedure is attempting to compute), a value of cvδ1

2  must itself be estimated.   

 The procedure for estimating the squared coefficient of variation cvδ i

2  for an 

aggregation resource is: 

 (1) Compute cvm j

2 =
s j

2

m j
2 j = 1,..., N  

 (2) Compute cvδ i

2 =
T j

Ti
*

 

 
  

 
 cvm j

2

Rj ∈ARi

∑
i = 1,... ,O
j = 1,..., N

 

That is, the squared coefficient of variation for an aggregation resource is a weighted 

average of the squared coefficient of variation of each of the service distributions 

aggregated by the aggregation resource.  The weighting is a resource’s cycle time.  The 

procedure works by: 

(1) Computing the squared coefficient of variation for each of the resources: 

cvm j

2 =
s j

2

m j
2 j = 1,..., N , where mJ2 is the squared mean service time and sj2 

is the variation associated with the resource service time distribution Fj. 

(2) For each of the O aggregation resources, weight the squared coefficient of 

variation of a resource’s service time by the proportion of that resource’s 

cycle time (Tj) contribution of the aggregate resources total cycle time (Ti
* ).  

Applying the above procedure to estimate cvδ i

2  allows the mean service rate to be 

determined for all aggregation resources.  
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 This section illustrated several examples (M/M/1, M/M/2, and M/G/1) in how to 

work formulas backwards to find the necessary service mean for an aggregation resource 

with an arrival rate of λ  and a cycle time of Ti
* .  The reader will note that this section 

does not present a table of formulas for larger capacity systems (i.e., three or more 

servers).  The reason for this omission is that the resulting formulas for the mean service 

time of these higher service capacity systems are extremely complex and each would take 

several pages to present.  The approach of this research has been to demonstrate the 

technique for generating the formulas.  As such, they can easily be implemented into a 

computer.  Approaches for accomplishing this will be demonstrated in Chapter 4.   
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3.3.2 Mean Service Times for MPD Example 

 Applying the procedures Section 3.3.1 to the MPD manufacturing example results 

in estimates of the mean service time for each of the three aggregation resources.  

Consider aggregation resource AR1.  The previous section computed the average cycle 

time to be 156.2902.  Before computing the mean service time needed to create a resource 

with cycle time of 156.2902, the squared coefficient of variation of the service time for 

AR1 must be estimated.  This involves weighting the squared coefficient of variation of 

each resource’s service time by the percentage of that resource’s cycle time to the overall 

total cycle time of the aggregation resource.  For AR1, the estimate of cvδ1

2  is: 

cvδ1

2 =
240.208
468.8706

 
 

 
 .00130208 

  
 
  +

63.7106
468.8706

 
 

 
 .0163786 

  
 
  +

164.952
468.8706

 
 

 
 .00411523 

  
 
  

=.00434038
 

Using this value, the mean service rate of AR1 (δ1
* ) can be found.  Solving results in δ1

*  

being equal to 70.6877. 

 Results of computing the mean service time for the other aggregation resources 

are summarized in Table 3.8.  The interesting case to note is AR4.  Since this aggregation 

resource represents only a single resource, the estimate of the squared coefficient of 

variation of the aggregation service mean is the squared coefficient of variation of the 

single resource service mean. 
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Table 3.8. Estimates of the mean service time and squared coefficient of variation for 
each of the three aggregation resources. 

 
 

 AR1 AR2 AR4 
Cycle Time (Ti*) =   468.871  425.259  440.015 

Ave. Cycle Time (Ti
*  )=  156.29   212.629   440.015 

Est. SQ. C of V (cvδ i

2 ) =   .00434038  .0070735  .003125 
Est. Service Mean (δ i

* ) 

=  
 70.6877  141.3730   320.000 

 
 

 The techniques of this section have provided a means for computing the service 

mean necessary required by an aggregation resource with a specified average cycle time.  

This service mean will next be used to develop a procedure for weighting the original 

resource service means.   
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3.4 Resource Weighting Procedure 

 The previous sections of this chapter summarized procedures for computing the 

total waiting time represented by an aggregation resource and summarized methods for 

computing the average service mean of an aggregate resource.  Section 3.4.1 continues 

the aggregation methodology by developing a procedure for weighting the service time 

means of the resources aggregated by an aggregation resource.  Section 3.4.2 illustrated 

this procedure on the MPD manufacturing example. 

 

3.4.1 Determining Resource Weights 

 The weights developed in this section represent the percentage contribution of 

each resource service mean towards an aggregation resource service mean.  These 

weights, must satisfy two conditions: (1) the sum of all the resource weights multiplied by 

the original resource mean service time is equal to the average service time of the 

aggregation resource (δ i
* ) that was computed by the procedures of the previous section 

and, (2) the sum of the weights is equal to one.  More formally, these two conditions are: 

(1) wj
*mj = δ i

*

Rj ∈ARi

∑
i = 1,.. .,O

j = 1,... , N
  and  (2) wj

* = 1
Rj ∈ARi

∑
i = 1,. ..,O

j =1,... , N
 

This convex relationship thus determines the proportional weight that each resource 

service mean contributes towards the average service time of the aggregation resource.  In 

the next section, these weights will be used in combination with the original resource 

service distributions (Fi) to develop a procedure for estimating the service time 

distributions of the aggregation resources (Fi*). 

 The easiest case to determine distribution weights for is one in which an aggregate 

resource represents a single resource.  In such a case, since the aggregation resource 

represents a since resource, the aggregate service mean (δ i
* ) is merely the resource 

service mean, mj, where Rj ∈ARi .  Thus, the distribution weight for the resource service 
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mean, wj* of resource Rj is 1.0.  Clearly this satisfies the two weighting conditions: wj * 

mj = δ i
*  and wj* = 1.0. 

 The case of determine the distribution weights for when two resources is 

aggregated together is similarly easy.  Here, the aggregation resource (e.g., AR2) 

represents the aggregation of two resources (e.g., R2 and R5).  Our objective in 

determining the weights is to decide how to weigh the two individual service resource 

means (m2 and m5) such that they equal the aggregate service mean (δ 2
* ).  Applying the 

two weighting conditions results in the following equations: 

 (1) (w2
* × m2 ) + (w5

* × m5 ) = δ 2
* ,  and (2) w2

* + w5
* =1. 

Since the values of m2, m5, and δ 2
*  are known, the task of solving for w2* and w5* simply 

involves applying standard algebraic procedures for solving two equations with two 

unknowns. 

 By following similar logic, considers what occurs when an aggregation resource 

consists of three resources.  To determine the distribution weights reduces to having to  

solving two equations and with three unknowns.  For example:  

(1) (w1
* × m1) + (w3

* × m3) + (w5
* × m5 ) = δ 4

* ,  and (2) w1
* + w3

* + w5
* = 1. 

In this instance, the solution can only be reduced to a set of relationships among the 

variables.  Determining a more specific solution requires much trial and error.  Consider 

what happens when an aggregate resource represents (say) 20 resources.  Here, the current 

solution technique involves solving 2 equations with 20 unknowns (the weight for each of 

the 20 resource service means).  Quite a difficult, if not impossible task! 

 The technique to determine the service time weighting for the case when three or 

more resources are represented by an aggregation resource must be expanded.  The 

expanded procedure combines the techniques of the previous sections (determining total 

cycle time and deriving the average aggregate resource service mean) with a recursive 
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algorithm to reduce (by aggregating) the Pi resources of an aggregation resource to only 

two resources.  In essence, it aggregates within the aggregation resource to reduce the 

resources represented by the aggregation resource to only two, much as how the original 

system of N resources were combined.  As demonstrated, determining the distribution 

weights for an aggregation resource representing two resource is easily derived by solving 

a set of two equations with two unknowns. 

 To illustrate this recursive technique, consider the case (Figure 3.7a) of 

aggregation resource (AR2) which represents the aggregation of 5 resources (R1, R3, R4, 

R6, and R7).  Each of these resources is characterized by its service mean (m1, m3, m4, 

m6, and m7).  Without an expanded procedure, determining the distribution weights 

requires solving: 

 (w1
* × m1) + (w3

* × m3) + (w4
* × m4 ) + (w6

* × m6) + (w7
* × m7 ) = δ 2

* , and (3.1) 

w1
* + w3

* + w4
* + w6

* + w7
* = 1.   

As discussed prior, solving these two equations of five unknowns is a difficult task. 

 

R R R R R1 3 4 6 7

AR2

R R6 7

R R6 7

R 7

R4
AR

1|3

AR
1|3|4

AR
1|3|4|6

(a)

(b)

(c)

(d)
 

 
Figure 3.7. Recursive procedure to determine the distribution weight for an 

aggregation resource consisting of three or more resources.   
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 The first step of the recursive algorithm is to aggregate two resources (e.g., R1 and 

R3).  This is done by determining the total cycle time of the two resources (T1 and T3), 

and divide this by two, to find the average cycle time of the “new” aggregate resource.  

That is, the average cycle time of aggregate resource, A1|2 (an aggregate resource within 

an aggregation block) is T1|3
* , where T1|3

*  = (T1+T3)/2.  Next, using the techniques of the 

previous section, compute the mean service time (δ1|3
* ) for a resource with average cycle 

time T1|3
* . 

 This aggregation (Figure 3.7b) reduces the number of distinct resources 

represented by the aggregation resource by one (since two were aggregated together).  

Thus, determining the weights reduces to solving: 

   (w1|3
* × δ 1|3

* ) + (w4
* × m4 ) + (w6

* × m6 ) + (w7
* × m7 ) = δ 2

* , and  (3.2) 

w1|3
* + w4

* + w6
* + w7

* =1 

where w1|3* is the weight and δ1|3
*  is the average service time computed for the aggregate 

resource resulting in aggregating R1 and R3.  This aggregation process should continue 

until only two resources are represented by AR2, where one is an original system resource 

and the other is an aggregate resource itself. 

 Continuing this example, by aggregating an addition resources (R4), determining 

the distribution weights reduces to solving (Figure 3.7c): 

   (w1|3|4
* × δ1|3|4

* ) + (w6
* × m6 ) + (w7

* × m7) = δ2
* , and   (3.3) 

 w1|3|4
* + w6

* + w7
* =1.   

where w1|3|4* is the weight and δ1|3|4
*  is the average service time computed for the 

aggregate resource resulting from aggregating R1, R3, and R4. 

 By continuing to incrementally aggregate an additional resource (R6), there are 

now only two resources represented by the AR2 (one of which is an aggregation resource 

itself).  This system generates the following equations (Figure 3.7-d): 

    (w1|3|4|6
* × δ1|3|4|6

* ) + (w7
* × m7 ) = δ 2

* ,   (3.4) 
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 and w1|3|4|6
* + w7

* =1.   

 At this point, since the values for m7 is known and the values of δ1|3|4|6
*  and δ 2

*  

have been previously computed, the above equations (3.4) can easily be solved using the 

standard algebraic techniques for solving two equations with two unknowns.  Doing so 

results in distribution weights which represent the proportionally weight of each service 

time distribution to generate an aggregate service mean of δ 2
*   The value computed for 

w7* is the distribution (or percentage) weight that m7 adds towards an aggregate resource 

service mean of δ 2
* .  The value for w1|3|4|6* is the percentage weight of all the other 

(aggregated) resources of the aggregation resource. 

 The reason this approach has been termed recursive is that now that the problem 

has been reduced to a point in which it can be solved, the procedure works incrementally 

backwards using this and subsequent solutions to solve the previous level of resource 

aggregation.  This process continues until all original resources represented by the 

aggregation resource have distribution weights.   

 Thus, since a value for w7* is known from solving (3.4), the equations (3.3) 

reduce to a set of two equations with two unknowns.  Solving these generates a value for 

w6*.  With this value, the equations in (3.2) reduces to two equation and two unknowns 

and the value of w3* can be found.  With this value, equations (3.1) can be solved to 

provide a value of w1*. 

 Applying this recursive algorithm has found all the distribution weight values for 

the case when the aggregation resource represents three or more resources.  The general 

approach to determine the distribution weighting for any aggregate resource (ARi) is 

presented in Table 3.9. 
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Table 3.9. Procedure for determining the resource weightings of  
an aggregation resource. 

 
 

 PROCEDURE Weight (resources aggregated by ARi (i.e., Pi), aggregation   
    resource mean, total probability) 

 
  (* ARi represents one resource *) 
  IF (Pi = 1) THEN 

   (* Resource weight is equal to 1*) 
   wj* = 1, where  Rj ∈ARi  

  END IF 
 
  (* ARi represents two resource with unknown weights *) 
  IF (Pi = 2) THEN 
   (* Solve the two equations of two unknowns for their weights *) 

   
(wj

* × mj ) + (wk
* × mk ) = δi

* 

wj
* + wk

* = 1,
where Rj  and Rk ∈ARi  

  END IF 
 
  (* ARi represents three or more resources, need to aggregate *) 
  IF (Pi ≥ 3) THEN 
   Aggregate 2 resources within ARi 
   Determine the average service time of the new resource 
   Call Weight (resources aggregated by AR-1 (i.e., Pi - 1), AR mean, 
             total probability) 
   Adjust aggregate resource mean and total probability 
   Call Weight (resources aggregated by AR, adjusted AR   
            mean, adjusted total probability) 
  END IF 
  
  END PROCEDURE 
 

 The interested reader is referenced to Appendix B where the recursive algorithm 

is implemented in the Mathematica modules DistWeight1 and DistWeight2.  Discussion 

of these modules and their implementation will be discussed in Chapter 4. 
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3.4.2 Resource Weights for MPD Example 

 This fourth step of the aggregation methodology uses the mean service time of a 

resource to determine its contribution towards the aggregate service time mean.  For the 

MPD manufacturing system, weights must be determined for each of the six resource 

service time means.  The easiest case is aggregation resource AR4.  In this instance, AR4 

has a service mean of δ 4
*  = 320 and represents a single resource with a mean service time 

of 320.  Due to the aggregation resource representing a single resource, the weight of w4* 

is: 
320w4

* = 320

w4
* = 1

 

Solving yields w4* = 1.  Thus, the weight of m4 towards δ 4
*  is 1.0 (one hundred percent). 

 For aggregation resource AR2, δ 2
*  was previously computed to be 141.373.  Since 

AR2 represents two resources, determining the weights requires solving: 
130w2

* +150w3
* = 141.373

w2
* + w3

* = 1
 

Solving the set of two equations with two unknowns yields w2* = .431361 and w3* = 

.568639.  This means that m2 (130) contributes 43.1361% towards the aggregate service 

mean of 141.373 and m3 (150) contributes the remaining 56.8639%. 

 Aggregation resource AR1 represents three resources.  As such, determining the 

weights involves applying the recursive procedure.  It was previously computed that δ1
*  

was equal to 70.6876.  Determining the weights requires solving: 
80w1

* + 45w5
* + 72w6

* = 70.6877
w1

* + w5
* + w6

* = 1
 

As discussed, solving these two equations and three unknowns requires using a recursive 

algorithm.  The first task is to aggregate two of the resources within the aggregation 

resource.  Thus, aggregating (applying the techniques of Sections 3.2 and 3.3) R1 and R5 
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yields a new aggregation resource: AR1|5 = {R1, R5}.  The total cycle time of this 

resource is: 

T1|5* = T1 + T5 = 240.208+63.7106 = 303.9186 

The average cycle time of AR1|5 is: 

T1|5
* =

T1|5

2
=

303.9186
2

= 151.95930  

To determine the mean service time needed to generate an average cycle time of 151.9593 

requires estimating the squared coefficient of variation:  

cv1|5
2*

=
240.208
303.9186

 
 

 
 .00130208 

  
 
  +

63.7106
303.9186

 
 

 
 .0163786 

  
 
  

=.004463
 

Using this value, the mean service time is computed to be δ1|5
*  = 69.9882. 

 Now that R1 and R5 have been aggregated, the aggregation resource reduces to 

AR1 = {AR1|5, R6}.  Thus, the aggregation resource represents two resource, AR1|5 

which has a service mean of 69.9882 and R6 with a service mean of 76.  With only two 

resources represented, the weights can be determined: 
69.9882w1|5

* + 72w6
* = 70.6877

w1|5
* + w6

* = 1
 

Solving yields w1|5* = .652321 and w6* = .347679.  Thus, the contribution of m6 towards 

the aggregation resource service time is 34.7679%, while the other (currently aggregated) 

resources contributes 65.23211%.   

 The next step, now that a value of w6* is known, is to go to the to the previous 

level of aggregation and plug this value into the equations: 
80w1

* + 45w5
* + 72(.347679) = 70.6877

w1
* + w5

* +.347679 = 1
 

These equations reduce to: 
80w1

* + 45w5
* = 45.654812

w1
* + w5

* =.652321
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Solving yields the values: w1* = .465724 and w5* = .186597.  Note that the sum of w1*, 

w5*, and w6* is 1.00.   

 These weights (summarized in Table 3.10) will next be used to develop the 

aggregate simulation model of the flow line system.  Each weight will represent the 

weight of the resource service time distribution in estimating the aggregation resource 

service time distribution. 
 

Table 3.10. Summary of distribution weights for MPD example. 
 
 

Aggregate Resource #1 Distribution Weight 
Resource #1 .465724 
Resource #5 .186597 
Resource #6 .347679 

 
Aggregation Resource #2 Distribution Weight 

Resource #2 .431361 
Resource #3 .568639 

 
Aggregation Resource #4 Distribution Weight 

Resource #4 1.0 
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3.5 Aggregate Simulation Model 

 In the previous sections of this chapter, the flow line system used for this research 

has been defined, procedures to compute weighting times for a resource have been 

summarized, techniques for computing the service time of an aggregate resource have 

been presented, and a method to weight the resource service time means to estimate an 

aggregation resource service mean has been developed. 

 The final task is to develop an aggregate simulation model for estimating part 

cycle time.  Section 3.5.1 summarizes the statistics that must be collected and specifies 

how the aggregate simulation should be defined.  Section 3.5.2 concludes the MPD 

example by developing the specifications of the aggregate simulation model. 

 

3.5.1 Developing the Aggregate Simulation Model 

 In the aggregate simulation model, each of the aggregation resources is explicitly 

modeled to represent the average of all the resources it has aggregated.  Previously, 

Figure 3.5 described this system.  Given the assumption of aggregate resource 

independence, the technique needed to estimate the cycle time of a part involves 

modeling each of the aggregate resources in the aggregate simulation model, where each 

aggregation resource is modeled as a standard “queue-seize-delay-release” simulation 

relationship. 

 Since aggregation capabilities are not included in most simulation languages, the 

computation of the average cycle time for a part is a challenging task.  Assume that by 

running the aggregate simulation model a total of r parts “flow” through the model.  If so,  

Table 3.11 summarizes the four types of data that must be collected. 
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Table 3.11. Statistics needed to be collected by aggregate simulation model. 

 
 

Yij = Average Cycle Time of Part # j on AR i
i = 1, ..., O
j = 1 to r

Yij = True Cycle Time of Part # j on AR i
i = 1, ..., O
j = 1 to r

Zj = Total Cycle Time of Part # j  j = 1 to r

Z =  Average Cycle Time for all r Parts

 

 
 

 Since an aggregate resource is an average of all the original resources (Ri), the 

cycle time of a part through an aggregation resource (ARi) is really an average of the true 

aggregate resource processing time (Yij ).  The true processing time of an aggregate 

resource is Yij = Pi * Yij , where Pi is the number of resources aggregated in ARi.  

Correspondingly, the total cycle time of part #j (j = 1,...,r) is equal to the sum of the 

processing and waiting time that part #j spends at all the O aggregate resources.  Hence,  
 

Zj = Yij
i =1

O

∑ j = 1,... ,r  

where Zj is the total cycle time of a part. 

 The final statistic to be collected or computed is the average cycle time of all r 

parts which “flow” through the simulation model.  That is,  

Z =
Z j

i =1

r

∑
r

 

 By knowing which statistics are to be collected, the next step is to determine how 

to estimate the service distribution (Fi*) of an aggregation resource.  The solution is to use 
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the weights, wi* (i = 1 to N), developed in the previous section.  These distribution 

weights are the key to creating an aggregate simulation model of a manufacturing system.   

 Consider any aggregate resource, ARi.  This resource is characterized by Fi*, its 

service time distribution, which represents the Pi system resource service distributions 

(Fi) that have been aggregated to form ARi.  Unfortunately, since the individual service 

distributions (Fi) can be any general distribution, developing a combined or joint 

distribution of the aggregate service time density function (fi*) may be neither feasible, 

efficient, nor possible.  An alternative is to represent this unspecified service time 

distribution not as a mathematical function, but rather as a relationship that random 

numbers can be sampled from. 

 What this research requires is a method for generating a random variable from Fi* 

(the aggregation resource service time distribution) during the execution of the aggregate 

simulation model.  As discussed above, this distribution represents all the service time 

distributions an aggregation resource represents.  Unfortunately, deriving this joint 

distribution is not feasible for most practical problems due to the time, complexity, and 

feasibility involved.  Thus, the aggregate service time distribution is unknown.  But the 

individual service time distributions (Fi) composing Fi* (whose mathematical 

representation is unspecified) plus the weights (wi*) specifying the importance 

(contribution) of each resource service time mean (mi) toward an aggregation resource are 

known.  With only this information, an effective solution technique is to use a procedure 

known as the composition or mixture method for generating random variables.  This 

procedure was introduced in Chapter 2.  Thus, the aggregate resource service time 

distribution is never specified, but rather, values from it will be sampled during the 

execution of the aggregate simulation model. 
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 Pritsker (1986) summarizes this technique assumes that “the density function can 

be written as a weighted sum of component distribution functions with the sum of the 

weights totaling one.”  Kronmal and Peterson (1979) continue and explain that some 

continuous distribution are efficiently generated by representing them as mixtures of 

several other (continuous) distributions that are easy to generate.  For this research, this is 

exactly the case, in that the aggregate service distribution (Fi*) must be estimated (a very 

difficult task), but is defined in terms of the service time distributions (Fi) (which are 

easier to estimate) making up the aggregation resource.  In addition, the original service 

time distributions are related to the aggregate service time distribution by the distribution 

weights (wi*) derived in the previous section, which were defined to sum to one. 

 In terms of this research, each aggregation block (ARi) density function (fi*) can 

be defined with the following functions and weighting relationship among the 

distributions: 

 1. the number Pi ≥ 1 of resources aggregated in ARi 

 2. the distribution weights w1*, w2*, ...,wN*.  Subject to: 
 

wj
* ≥ 0, Rj ∈ ARi j = 1, ..., N  

wj
* = 1

Rj ∈ARi

∑ j = 1,... , N
 

3. the elements (density functions) f1, f2,...,fn aggregated by ARi, subject to the 

constraint that the mixture of the density functions fi, i = 1, 2, ..., Pi satisfies: 

f i
*(x) = wj

* f j(x)
j =1

Pi

∑ i = 1, ..., O  

 The general composition algorithm for sampling the service distribution of an 

aggregate resource (ARi) is as follows: 

 1. Generate a positive random integer J such that  

P(J = j) = wj*  (j=1,2,...)  
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 2. Return the random variable, X, with a sample from density function fJ. 

Thus, to generate a random sample for an aggregation resource service time (fi*), one first 

uses an inverse transformation method (dependent upon the simulation language) to 

select one of the component density functions (fJ).  A sample, X, is drawn from this 

distribution (FJ) and it becomes the sample for the aggregate distribution (Fi*).  By 

repeated sampling, each of the component distributions are selected in accordance with 

their weights and, hence, the samples are generated in accordance with the aggregate 

service time distribution (Law and Kelton, 1991). 

 

3.5.2 Aggregation Simulation for MPD Example 

 For the MPD manufacturing flow line, three aggregation resource (AR1, AR2, and 

AR4) must be represented in the aggregate simulation model. 

 The topology of the aggregate simulation model was depicted in Figure 3.5.  The 

time between parts arriving follows an exponential distribution with a mean of 100 

minutes.  Upon arrival, a part is sent to each of the aggregate resources, where it waits for 

service and is eventually serviced.  Upon completion, the part leaves the system.  

Throughout this process, the statistics identified in Table 3.9 must be collected to 

estimate the average cycle time of a part. 

 The final component of the aggregate simulation model is the procedure for 

estimating the service time distribution of an aggregation resource.  The presentation of 

this section introduced a procedure for solving this.  It showed that the service time 

distribution of an aggregation resource can be estimated by the service time distributions 

of the resources it aggregates in combination with the distribution weights computed in 

the previous section. 

 For instance, AR4 represents a single resource, R4, with service distribution F4 = 

Normal (320, 25) and weight w4* = 1.0.  The service distribution of AR4 is: 
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F4
*(I) = Normal(320,25){ for all I  

where I is a uniform random variable with minimum value 0 and maximum 1 that is 

generated when a sample is sought (i.e., a service time must be assigned) from F4*. 

 AR2 represents two resources, R2 and R3 with service distributions F2 = Normal 

(130, 15) and F3 = Triangular (120, 150, 180) and weights w2* = .431361 and w3* = 

.56839.  The service distribution of AR2 is: 
 

F2
*(I) =

Normal(130,15) 0 ≤ I <.431361
Triangular(120,150,180) .431361 ≤ I ≤ 1

 
 
 

 

where I is a Uniform (0,1) random variable that is generated when a sample from F2* is 

required. 

 Resources R1, R5, and R6 are represented by AR1.  These resources are 

characterized by their service distributions, F1 = Uniform (75,85), F5 = Triangular (32, 

43, 60), and F6 = Uniform (64, 80), and their distribution weights, w1* = .465724, w5* = 

.186597, and w6* = .347675.  The service distribution of AR1 is: 
 

F1
*(I) =

Uniform(75,85) 0 ≤ I <.465724
Triangular(32, 43,60) .465724 ≤ I <.652321

Uniform(64,80) .652321 ≤ I ≤1

 
 
 

  
 

where I is a Uniform(0,1) random number that is generated when a sample from F1* is 

needed. 

 Using this specification, the aggregate simulation model can be developed to 

estimate the cycle time of the MPD manufacturing system.  Appendix A presents a listing 

of the SLAM simulation model of the full (non-aggregated) MPD flow line system along 

with its aggregate equivalent. 
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3.6 Chapter Summary 

 The objective of this chapter was to present the aggregation methodology for 

creating an aggregate simulation model for estimating part cycle time.  The specific steps 

of the methodology are: 

(1) Describe the manufacturing system.  From the description of the “as is” system, 

an aggregate description can be developed by aggregated all same capacity 

resources into aggregation resources. 

(2) Estimate the average cycle time for each aggregation resource.  This estimate is 

the average of all the cycle times of the resources aggregated by an aggregation 

resource.   

(3) Find the mean service rate of each aggregation resource.  This is found by 

applying queueing formulas backwards, in that the mean service time is for given 

the arrival rate and cycle time. 

(4) Determine the distribution weights.  Using the mean service time of an 

aggregation resource, the percentage contribution of each resource’s mean toward 

this value is determined using a recursive algorithm. 

(5) Specify the aggregate simulation model.  With the distribution weights, use 

composite sampling to specify an aggregate simulation model which replicates the 

original system. 

It is hypothesized that applying this methodology results in an aggregate simulation 

model which accurately estimates the average part cycle time when compared to the full 

model.  An evaluation of this procedure is presented in the next chapter. 



CHAPTER 4 

APPLICATION OF AGGREGATION METHODOLOGY 

 The objective of the aggregation methodology is to generate the specifications 

necessary for creating an aggregate simulation model for approximating the average cycle 

time of a part through the flow line.  Several methods will be used to demonstrate the 

effectiveness of applying the methodology.  Section 4.1 divides the analysis of the 

aggregation methodology into three specific types of flow lines: a flow line with all 

exponential servers, a flow line with only single capacity servers, and a flow line with 

multiple servers of any service distribution.  Section 4.2 discusses the development of a 

computer program which implements the aggregation methodology for finding the 

specifications of an aggregate simulation model.  Section 4.3 illustrates using the 

methodology for each of the three types of flow line systems. 

 

4.1 Impact of the Aggregation Methodology 

 The key component of the aggregation methodology is the procedure used for 

estimating the cycle time for each of the N resources.  These cycle time values are 

summed and averaged to compute the average cycle time for each of the O aggregation 

resources.  The average aggregate resource cycle time are used to determine the mean 

service time needed for each of the O aggregation resources.  Next, distribution weights 

are determined from computing the aggregation resource service means in terms of the 

resource service means.  With these weights, running the aggregate simulation model 

attempts to replicate each of the average aggregate resource’s cycle times.  But since this 

value is based on the individual resource cycle time, the entire aggregation procedure is 

dependent upon these original estimates. 

 In Chapter 3, based on the work of Kleinrock (1976), the cycle time for each 

resource was computed using a M/G/S queueing formula.  Doing so allowed this research 
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to assume that the arrival distribution to any resource in the flow line is Poisson, and thus 

can be described by an exponential distribution.  In actuality this is not true.  To 

understand, image a flow line system.  By definition, parts arrive to R1 (the first resource 

of the flow line) in a Poisson fashion, and can be modeled by an exponential distribution.  

Thus, the mean and standard deviation of the arrival process are equal.  That is, the 

coefficient of variation of the arrival process, cva, is equal to one.  Computing the cycle 

time for R1 is appropriately computed by the M/G/S queueing formula.  Once a part 

finishes being processed at R1, it goes to R2.  Obviously, during steady state, the mean 

time between arrivals to R2 is the same as the time between arrivals to R1, but if the 

service time of R1 is not exponential, then the standard deviation (or variation) of the 

arrival time to R2 will not be equal to the mean.  In fact, it will later be shown in Section 

4.1.3 that the coefficient of variation of the service time is less than or equal to one.  

Thus, the arrival process to R2 is probably not Poisson.  The remainder of the section 

seeks to address this dilemma. 

 The aggregation methodology’s success will be judges on its effectiveness for 

three types of systems.  Section 4.1.1 discusses the application of the aggregation 

methodology for the case when resource service times are all exponentially distributed.  

Section 4.1.2 presents an extension to the aggregation methodology for the case when a 

flow line consists of only single capacity resources.  Section 4.1.3 determines that 

applying the aggregation methodology to a flow line system with the assumption of 

independence among resource results in an upper bound of the expected cycle time. 

 

4.1.1 Flow Line with Exponential Service Times 

 In the special case when all servers (of any service capacity) in the flow line have 

exponential service time distributions, then the aggregation methodology will create an 

aggregate simulation model which approximates the average cycle time quite well.  The 
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reason for this is that with all service time distributions being exponential, each resource 

cycle time (the key component of the aggregation methodology) will be computed with 

the M/G/S queueing formula.  This formulas is exact for estimating the steady state 

performance of a M/M/S resource (queueing system). 

 Burke (1956) showed that the output process of a M/M/S queue is itself Poisson 

with a mean equal to its arrival mean.  Thus, in a flow line system with all exponential 

service times, the arrival process to any resource is Poisson.  Hence, the problem of 

changing arrival time variability is not relevant for this special case.  In fact, because the 

arrival process to each resource is the same, the assumption of independence is in fact 

true.   

 Even with all exponential service times, the aggregation methodology works 

exactly as before.  First the system is defined and then the resource are aggregated into 

their appropriate aggregation resources.  Next, the cycle time for each resource is 

computed.  These will be exact estimates of the steady state performance.  These cycle 

time values will be summed and an average aggregation resource cycle time will be 

computed for each of the aggregation resources.  The service mean necessary to create 

each of the aggregation resource’s average cycle times will be computed.  To accomplish 

this requires an estimate of the squared coefficient of variation for each of the aggregation 

resources.  As outlined in Section 3.3, this is computed as a weighted average of the 

squared coefficient of variations of the resource times.  But since the service times are all 

exponential and have a coefficient of variation of one, then a weighted estimate of them 

will also be one.  This seems logical in that if an aggregation resource represents all 

exponential resources, then the aggregation resource service time distribution will also be 

exponential (i.e., have a coefficient of variation equal to one).   

 The M/G/S queue results are applied backwards to find the mean service time 

resulting in an exact estimate of the steady state mean service time necessary to create an 
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M/M/S aggregation resource with the given average cycle time.  This mean value will be 

used to determine the distribution weights of each of the resource service time 

distributions.  Finally, developing an aggregate simulation model with the distribution 

weights attempts to replicate each of the average aggregate resource cycle times.  Since 

these cycle time values are exact at steady state, running the resulting aggregate 

simulation model should provide an accurate estimate of the cycle time. 

 

4.1.2 Flow Line with Single Service Capacity Resources 

 If a flow line consists of only single capacity servers for all resources, applying the 

extension of this section will create an aggregate simulation model which should 

approximate the original flow line system.  Obviously, the aggregate equivalent of a flow 

line consist of only single server capacity resources is a single aggregation resource, 

namely AR1.   

 The extension necessary for accomplishing this is to use a more detailed 

procedure for computing the cycle time of an aggregation resource.  As such, the 

assumption of independence of  Chapter 3 is not required, for a resource’s order now has 

a vital role in determining an estimate of each resource’s cycle time.  

 This research assumes that parts arrive to the first resource, R1, by a Poisson 

process.  Thus, the cycle time for a part at R1 can be estimated by the Pollaczek-

Khinchine formula (discussed in Section 2.3.2) for an M/G/1 queue (Kleinrock, 1976): 
 

E T1[ ]=
λ m1

2 + σm1

2( )
2 1− ρ( ) + m1  

where: E[T1] Expected cycle time for the first resource (R1) 

  λ  Arrival rate to R1 

  m1  Average service time of R1.   



 

5 

  σm
2   Service time variation for R1 

  ρ   Traffic intensity of R1 

 Burke (1955) showed that the output of a M/M/S queue is Poisson.  Thus, if the 

service distribution of R1 is exponential, its output process (arrival process to R2) will 

also be Poisson with the same parameter values.  But since general service time 

distributions are allowed, this condition only aides the special case when exponential 

service time distributions occur or when independence is assumed.   

 Without these conditions, a G/G/1 (general arrival and general service) queueing 

formula must be used for estimating the cycle time for subsequent resources in the flow 

line.  As presented in Section 2.3.3, Kumura (1991) proposes the following 

approximation: 

 λ   Mean arrival rate 

 cva
2  Coefficient of variation of the arrival time 

 µ  Mean service rate 

 cvt 
2   Coefficient of variation of the service time 

 ρ
 

Traffic intensity: ρ =
λ
µ

 

 g g ρ,cva
2,cvt 

2( )=
Exp − 2(1− ρ)

3ρ
(1− cva

2 )2

cva
2 + cvt 

2

 

  
 

  , cva
2 ≤1

1, cva
2 >1

 

 
 

  
 

 EM/M/1[Wq] Expected queue waiting time for a M/M/1 queue:    

  EM / M / 1 Wq[ ]=
ρ

µ − λ
 

 EG/G/1[Wq] Expected queue waiting time for a G/G/1 queue:    

  EG / G /1 Wq[ ]≈
cva

2 + cvt 
2

2
g EM / M / 1 Wq[ ]{ } 

Rewriting this formula in terms of the flow line methodology results in the following 

resource cycle time estimator: 
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E Ti[ ]=
cvai

2 + cvmi

2

2
g

ρi

1 mi − λ
 
 
 

 
 
 

 

  
 

  + mi i = 2,... , N  

This formula specifically requires the rate of arrival to a resource and the squared 

coefficient of variation of the arrival process.  To compute the coefficient of variation of 

the arrival process requires knowing the variation of the arrival process.   

 To determine this quantity, it is necessary to explore the output process of a single 

server queue.    First, some notation must be defined (Medhi, 1991): 

Let: tn ≡  instant of arrival of the nth part to the resource 

 un ≡  interarrival time between the nth and (n+1)th part = tn+1 - t1 

 vn ≡  service time of the nth part 

 Xn ≡  vn - un 

 Wn ≡  waiting time in the queue of the nth part 

 Dn ≡  instant of departure of the nth part 

 In-1 ≡  idle time (if any) proceeding the nth arrival. 

With these definitions, the interdeparture interval, τn , between the nth and (n+1) 

departure of the queue (resource) is given by (Marshall, 1968): 
τn = Dn+1 − Dn

= tn+1 + wn+1 + vn +1 − (tn + wn + vn )
= ( tn+1 − tn ) + wn+1 − wn + vn +1 − vn

 

But, in steady state, E(Wn+1) = E(W), so the expected interdeparture interval is given by: 

 
E(τn ) = E(tn+1 − tn )

= E(un )

= 1
λ

 

Therefore, in steady state, the time between the arrival of parts to subsequent resource in 

the flow line is the same as the arrival process.  Hence, the mean time between arrivals 

does not change and remains constant throughout the flow line.  Unfortunately, because 
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the resource service time distributions are not required to be as variable as the exponential 

service time distribution, the variability of the arrival times does change (in fact, it usually 

decreases). 

 To estimate the change in the arrival time variability for subsequent resources of 

the flow line.  Marshall (1968) shows that the variance of the interdeparture interval 

(output process) is:   

Var(τn ) = σv
2 −

(1 − ρ)2

λ2 +
1− ρ

λ
 
 

 
 

vh
(2)

vh

 

  
 

   

The proof is as follows: 

τn = vn+1 + In  

where vn+1 and In are independent.  Hence, 

Var(τn ) = Var (vn+1 ) + Var(In ) . 

Again, 
Wn+1 − In = Wn + Xn = Wn + un − vn

Var(Wn+1 − In ) = Var(Wn ) + Var(un ) +Var (vn )

= σW
2 + σu

2 + σv
2

 

But, 

Var(Wn+1 ) = Var(Wn+1) + Var(In ) − 2Cov(Wn+1In ). 

Now Wn+1In = 0, and hence 
Cov(Wn+1In) = E(Wn+1In ) − E(Wn+1 )E(In )

= −E(W)
1
λ

−
1
µ

 

  
 

  
 

Substituting, we get 

σW
2 + σu

2 + σv
2 = σW

2 + Var(In ) + 2E(W)
1
λ

−
1
µ

 
 
  

 
 

so that 

Var(In ) = σu
2 + σv

2 − 2
1
λ

−
1
µ

 
 
  

 
E(W) 

and combining, we get 
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Var(τn ) = σu
2 + 2σv

2 −
2
λ

(1 −ρ )E(W)       (4.1) 

Using the definition of E(W), we get: 

Var(τn ) = σv
2 −

(1 − ρ)2

λ2 +
1− ρ

λ
 
 

 
 

vh
(2)

vh

 

  
 

   

But estimating the values of vh and vh(2), the first and second moments of the idle period 

I is extremely difficult.  A solution is to use equation (4.1), which is in terms of E(W), a 

value which can be computed using the G/G/1 formula.   

 Rewriting this formula in terms of the flow line terminology results in the 

following estimator of the output variability for a resource: 

Var(Ri) = σai

2 + 2σm i

2 −
2
λ

(1 − ρi)EG / G /1 Ti[ ]      (4.2) 

where: Var(Ri) Variability of the output process of resource Ri (i = 1,...,N) 

 σai

2  Variability of the arrival process to resource Ri (i = 1,...,N) 

 σm i

2  Variability of resource Ri’s service time (i = 1,...,N) 

 ρi   Traffic intensity at resource Ri: ρi =
λ
µ i

 (i = 1,...,N) 

 λ   Arrival rate to the flow line 

 µ i   Average service rate at resource Ri (i = 1,...,N) 

 EG/G/1[Ti] Expected waiting time for resource Ri (i = 1,...,N) using the  

   G/G/1 formula.  The cycle time for Resource 1 (i.e., R1) is   

  computed using the M/G/1 formula. 

 Therefore, for a single server flow line, the cycle time of R1 is computed with the 

M/G/1 queuing formula while subsequent queues use the G/G/1 formula.  The mean time 

between arrivals is the same as the arrival mean to R1, but the variability must be 

estimated with equation (4.2) and must be computed sequentially through the flow line. 
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 To illustrate this extended procedure for computing the cycle time of a resource 

consider the following example (Figure 4.1) of a three resource flow line, which consists 

of only single capacity servers. 

 The data describing this example is summarized in Table 4.1.  Note that values for 

the variability of the arrival to the queue of each resource (vi-1) have been computed.  For 

instance, with the mean time between part arrivals being 100, vo, the variability of the 

arrival process to Qo of R1 is 1002, since arrivals to the first resource are assumed to be 

exponential. 
 

SR

R
1

R2

Q0 M1 Q1 M2 3M

R3

Q2

1 1 1

 
 
Figure 4.1. Example of a three resource, single server capacity flow line 

manufacturing system. 

 
 

Table 4.1. Definition of the single server flow line. 
 
 

FL = R, R1,R2 ,R3,S
R = 100,∞

S = ∞
R1 = QO , M1

QO = 1002 ,∞
M1 = Uniform(75,85),80,1     

R2 = Q1, M2

Q1 = 3608.33,∞
M2 = Triangular(32,43,60),45,1       

R3 = Q2, M3

Q2 = 3358.62, ∞
M3 = Uniform(64,80),72,1

               
 
 

 With all the necessary data for R1, its cycle time (T1) can be computed, so that the 

variance of the output process can be estimated: 
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T1 =
λ m1

2 + σ m1

2( )
2 1 − ρ1( )

+ m1 =
1 100 802 +8.3333( )

2(1−.8)
+ 80 = 240.2083 

The variability of the arrival process to R2, v1, can be estimated by equation (4.2), which 

computes the variability of resource R1’s output process: 

v1 = Var (R1) = σa1

2 + 2σ m1

2 − 2
λ

(1 −ρ1)E T1[ ]

= 1002 + 2(8.3333) −
2

.01
(1−.8)(240.2083 − 80)

= 3608.3333

 

Thus, the arrival process to R2 has a mean of 100 (since the mean time between arrival 

remains constant throughout the flow line) and a variance of 3608.33333.  Therefore, the 

squared coefficient of variation of the arrival variation is 3608.33333/1002 = .360833.  

Using the G/G/1 formula, the expected cycle time of R2 can be estimated: 

T2 =
cva2

2 + cvm2

2

2
g ρ2

1 m2 − λ
 
 
 

 
 
 

 

  
 

  + m2

=
.360833+.0163786

2
.413758( ) .45

.02222−.01
   

   
 
  

 
  + 45

= 47.8732

 

 With an estimate of the cycle time for R2, the arrival variability to R3 (output 

variability of R2) can be computed: 

v2 = Var(R2 ) = σa2

2 + 2σ m2

2 − 2
λ

(1− ρ2 )E T2[ ]

= 3608.3333 + 2(33.1667) −
2

.01
(1−.45)(47.8732 − 45)

= 3358.62

 

Thus, the arrival process to R3 has a mean of 100 and a variance of 3358.62.  The squared 

coefficient of variation of the arrival variation is 3358.62/1002 = .335862.  Using the 

G/G/1 formula, the expected cycle time of R3 can be estimated: 

T3 =
cva3

2 + cvm3

2

2
g ρ2

1 m3 − λ
 
 
 

 
 
 

 

  
 

  + m3

=
.335862+.00411523

2
.714367( ) .72

1.3889−.01
   

   
 
  

 
  + 72

= 94.4827
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 With all cycle times computed, the average cycle time of the aggregation resource, 

AR1, can be determined: 

T1
* = T1 + T2 + T3

3

T1
* =

240.2083 + 47.8732 + 94.4827
3

=
382.564

3
=127.521

 

 The results of determining the average aggregate cycle time are summarized in 

Table 4.2.  The remainder of the aggregation methodology works exactly as before in that 

the next step is to determine the aggregation resource service mean and then develop the 

distribution weights.  It is hypothesizes that this extension to the aggregation 

methodology results in an average aggregation resource cycle time of AR1 which is a 

better estimate that the case when independence is assumed.  Since running the aggregate 

simulation model attempts to replicate this estimate, the resulting estimate of cycle time 

should be a good approximation.   
 
 

Table 4.2. Summary of results for single server example. 
 
 

 Resource #1 Resource #2 Resource #3 
Arrival Mean 100 100 100 
Arrival Variability 10,000 3608.33 3358.62 
Est. Cycle Time 240.208 47.8732 94.4827 

 
 
 

 

4.1.3 Upper Bound Estimate of the Expected Cycle Time 

 In the case of a flow line with resources having general service time distributions 

(i.e., not all exponential) and service capacity not all one, then applying the aggregation 

methodology provides the specifications for creating an aggregate simulation model 

which is an upper bound estimate of the expected cycle time of a part. 
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 Unlike the single server case presented in Section 4.1.2, there are no easy 

techniques for estimating the variability of the queue output for more than one server.  

Whitt (1983) does develop a method for estimating a point process (departure) by a 

renewal process.  Unfortunately, this technique is not at a point in where it is available for 

a general class of queueing systems.   

 There is a theorem, Khintchine’s Theorem, which states that the superposition of n 

renewal processes becomes Poisson, when properly rescaled, as n goes to infinity.  Wolff 

(1989) remarks that in general it is not useful for obtaining approximations.  The reason is 

that the quality of the approximation from the theorem depend not only on n and the 

interarrival distribution, but also on the application.  For instance, if the composition 

process is the input into a queue, is traffic heavy or light?  In light traffic, the 

approximation only needs to be good for the next few arrivals.  For heavy traffic, the 

variability of the arrival process over many arrivals is important.  Based on this work, 

Whitt (1984) shows that the output process in a large class of G/G/S systems is 

approximately Poisson when there are many busy slow servers.   

 Rather than estimate the output process, this research assumes resource are 

independent of one another and that order has no impact on estimating the cycle time.  

The cycle time of all resources is computed with the M/G/S queueing formula, since each 

could be the first resource in the flow line (which by definition has a Poisson arrival 

pattern).  Thus, the problem of estimating the shift or change in the variability has been 

removed. 

 Running the aggregate simulation model provides an upper bound estimate of the 

expected cycle time.  To understand, realize that the arrival process to a resource is 

probably not Poisson.  Thus, the cycle time of a resource should be computed with a 

G/G/S formula (presented in Section 2.3.3).  But this formula requires an estimate of the 

arrival variability, which is unknown and cannot be easily estimated.  It is assumed to be 
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Poisson when in fact it probably is not.  Therefore, by using a M/G/S estimates of a 

resource’s cycle time (Section 3.2) in place of a G/G/S estimate, the aggregation resource 

cycle time is being overestimated. 

 To show this, first it is necessary to show that the coefficient of variation of the 

output process of an M/G/S queue is less than or equal to one given the restriction that the 

service time coefficient of variation is less than or equal to one.  This is stated in 

Assertion 4.1.  The assertion shows this true for the single server case and it will be 

assumed that it holds valid for any capacity resource.  The assertion is written in the 

perspective of the output process, cvτ n
.  This quantity is equivalent to cva , the coefficient 

of variation of the arrival process.  The only difference between these two is their 

perspective to the queue, in that one addresses the arrival coefficient of variation and the 

other address the output. 

 
 
Assertion 4.1 If the service time coefficient of variation of a resource is less than one (as 

defined in Chapter 3), then the coefficient of variation of the resource 
(queue) output must also be less than or equal to one.  That is, if cvt  ≤ 1, 
then cvτ n

 ≤ 1.  Correspondingly, this can also be written as if cvt  ≤ 1, then 
cva  ≤ 1. 

 

Discussion: By assuming that cvτ n
 > 1, a contradiction will be reached, thus showing 

cvτ n
 ≤ 1.  Section 4.1.2 showed that the variance of τn  , the interdeparture 

interval between the nth and (n+1) departures variance of the output 

process is:  

στ n

2 = σt 
2 +

1− ρ2

λ2  

 Multiplying λ2  to both sides results in: 

λ2στ n

2 = λ2σ t 
2 +1− ρ2  

 But, cvτ n
= λστ n

 and cvt = λσ t .   Thus, cvτ n

2 = λ2στ n

2  and cvt 
2 = λ2σ t 

2 . 
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 Replacing these yields: 

cvτ n

2 = λ2σ t 
2 +1 −ρ 2  

 Assuming that cvτ n
 > 1: 

cvτ n

2 = λ2σ t 
2 +1 −ρ 2 > 1  

 Thus: 

λ2σ t 
2 − ρ2 > 0  

λ2σ t 
2 > ρ2  

 But ρ = λt ,  thus ρ2 = λ2t 2 , where t  is the service mean.  Replacing 

yields: 

λ2σ t 
2 > λ2t 2  

 Since by definition 0 ≤ λ ≤ 1, thus 0 ≤ λ2 ≤1.  Multiplying both sides by 

1 λ2  yields: 

σ t 
2 > t 2  

 Since t 2  is non-negative (there cannot be non-negative service time): 
σ t 

2

t 2
> 1 

 But, cvt 
2 =

σ t 
2

t 2
, thus: 

cvt 
2 >1 and cvt > 1 

 Hence, by assuming that cvτ n
 > 1 it has been shown that cvt > 1.  But, by 

definition cvt ≤ 1.  Thus, a contradiction has occurred. Therefore, cvτ n
 ≤ 1. 

 

 Assertion 4.1 demonstrates that if the coefficient of variation of the service time is 

restricted to be less than one (which it is defined to be), then the coefficient of variation 

of the output (cvτ n
) from a queue in the flow line must also be less than or equal to one.  

This assertion shows this for the single server case.  The variance of the multiple server 

case is unknown, but it will be hypothesized that it is also less than one.  
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 This fact can be used in combination with the upper bound estimate of the 

expected waiting time (cycle time) in a G/G/S queue (Section 3.3.3) to show that the a 

M/G/S queue overestimates a G/G/S queue: 

 λ  Mean arrival rate 

 σa
2  Variance of the interarrival time 

 µ  Mean service rate 

 t  Mean service time 

 t 2  Second moment of the service time 

 σ t 
2  Variance of the service time 

 S  Number of parallel, identical servers 

 ρ
 

Traffic intensity: ρ =
λ
Sµ

 

 EG/G/S[W] Expected waiting time for G/G/S queue 

   EG / G / S W[ ]≤
σa

2 + 1 S( )σt 
2 +

S −1( )
S

 
  

 
  t 

2

2t 1− ρ( ) + t  

 If the arrival process is Poisson (the variability of the interarrival time is equal to 

1 λ2 ) the following upper bound estimate for the expected waiting time of a M/G/S 

queue is: 

   EM / G / S W[ ]≤

1
λ2

 
 

 
 + 1 S( )σ t 

2 +
S −1( )

S
 
  

 
  t 

2

2t 1 − ρ( ) + t  

 EM/G/S[W] will always be greater than EG/G/S[W] when 
1

λ2 ≥ σa
2 .  This simplifies 

to: λ2σa
2 ≤ 1.  But, λ2σa

2 = cva
2 , where cva

2  equals the squared coefficient of variation of 

the arrival time.  Thus, EM/G/S[W] is an upper bound to EG/G/S[W] when cva
2 ≤1 or 

correspondingly, when cva ≤ 1.  But, cvt ≤ 1 by definition (Assertion 4.1 showed this 

fact).  Therefore, EM/G/S[W] is an upper bound estimate of EG/G/S[W]. 



 

16 

 To summarize, by restricting the service time coefficient of variation to be less 

than or equal to one, Assertion 4.1 showed that the coefficient of variation of the output 

process (arrival process) must also be less than or equal to one.  Hence, the exponential 

distribution which has a coefficient of variation of one is the largest variation that 

satisfies this requirement.  Intuitively this makes since considering the statement: the 

more varied the arrival pattern, the longer the waiting time (Hendricks, 1992).  Thus, by 

modeling the G/G/S resource with an M/G/S queueing estimate provides an upper bound 

estimate of the expected queue waiting time.   
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4.2 Computer Implementation of Aggregation Methodology 

 The aggregation methodology as presented in Chapter 3 and the single server 

extension presented in Section 4.1.2 have been implemented into a computer program 

using the Mathematica programming language.  Figure 4.2 describes the relationship 

between the different program modules.  Table 4.3 summarizes each of the program 

modules and describes its function.  A listing of the complete program is presented in 

Appendix B. 
 

1

2 3

4 5 6 7

8 9 10 11

12 13

14
16

17

19

B

A

15

18

=  

=   Decision 
     Node

Program 
Module

 
 

Figure 4.2. Relationship between aggregation program modules. 



 

18 

Table 4.3. Definition of the modules in the computer implementation  
of the aggregation methodology. 

 
 

Module Purpose 
1 Aggregation - main program module, controls overall 

execution. 
2 GenerateMain - main module for controlling the 

generation of a flow line. 
3 UserMain - main module for controlling a user inputted 

flow line. 
4 Step1Generate - generates the flow line description. 
5 enterGenServer - generates the number of servers for a 

resource. 
6 Step1 - inputs the flow line description. 
7 enterserver - inputs the number of servers for a resource. 
8 GG1CycleTime - computes the cycle time of a resource 

using G/G/1 formula. 
9 Step2 - control the computation of a resources cycle time. 
10 Step2Single - controls the computation of a resources 

cycle time for a single server flow line. 
11 MGSCycleTime - computes the cycle time of a resource 

using M/G/S formula. 
12 Step3 - controls the computation of the service mean for 

an aggregation resource. 
13 MGSServiceMean - computes the service mean for an 

aggregation resource. 
14 FPrint - prints a description of each resource in the flow 

line. 
15 Step4 - controls the computation of the distribution 

weights  
16 Swap - stores and orders values before solving for 

distribution weights. 
17 DistWeight1 - recursive algorithm for determining the 

distribution weights composing an aggregation 
resource service mean using a pairwise aggregation. 

18 DistWeight2 - recursive algorithm for determining the 
distribution weights composing an aggregation 
resource service mean using a consecutive 
aggregation. 

19 APrint - prints the characteristics of the aggregation 
resources, including the distribution weights. 
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A Decision Node - enter flow line description or have the 
computer randomly generate a test case 

B Decision Node - only single servers or multiple servers  
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 Once started, the program initially ask the user whether a flow line is to be 

manually entered or whether one is to be randomly generated.  By selecting the manual 

input option, the user specifies whether the flow line has only single capacity servers or 

not.  Next, the user specifies the time between the arrival of parts to the flow line.  The 

last task for the user is to sequentially enters each resource of the flow line by selecting its 

service distribution from a menu and specifying the its distributions parameters and the 

number of parallel servers.  Available service distributions include: 

 • Exponential 

 • Lognormal 

 • Normal 

 • Triangular 

 • Uniform 

Once this information is entered, the aggregation program computes the cycle time for 

each resource.  The procedure for accomplishing this depends upon whether or not the 

flow line has only single capacity resources.  If it does, the extension of Section 4.1.2 for 

estimating the arrival variability is used, otherwise the procedure of Section 3.2 is 

applied.  Next, the average aggregate resource cycle time is computed.  Each of the 

aggregate resource cycle times are used to compute the aggregate resource service mean 

necessary for creating a resource with the given cycle time and arrival mean.   

 Once all aggregate service means have been computed, the program prints out a 

description of each resource in the flow line.  This description includes such information 

as each resource’s arrival mean, arrival rate, arrival variability, arrival coefficient of 

variation, and arrival squared coefficient of variation.  It also specifies the number of 

parallel resources for the resource, the service distribution and its parameters, the service 

mean, the service variability, the service time standard deviation, the service time 

coefficient of variation, the service time squared coefficient of variation, and the resource 
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utilization.  In addition, the estimated queue waiting time for the resource is included 

along with the resource’s estimated cycle time. 

 The next task of the aggregation program is to compute the resource distribution 

weights for each of the aggregation resources.  This is done using the recursive algorithm 

presented in Section 3.4.  Once all the resource distribution weights have been computed, 

the program prints out a description of each aggregation resource specifying its arrival 

mean, arrival rate, total aggregate cycle time, average aggregate cycle time, estimated 

service time squared coefficient of variation (determined with the weighting procedure of 

Chapter 3), and the estimated aggregation resource service mean and rate.  Also, the 

distribution weights for each of the resources of the aggregation resource are specified. 

 Appendix C provides the program generated description from entering the MPD 

manufacturing flow line (described throughout Chapter 3).  This flow line is one with 

multiple capacity servers.  Hence, the arrival to each resource is assumed to be 

independent, with a mean rate of 100.  Note that the listing (of Appendix C) indicates that 

the arrival variability to each of the six resources of the flow line is 10,000 (1002).  In 

comparison, Appendix D presents the program generated description for the single server 

flow line described in Section 4.1.2.  In this system, the arrival variability is computed for 

resources two and three of the flow line. 

 If the user initially selects the computer generated flow line option, the program 

prompts the user to specify whether it should generate an exponential test case (all 

exponential servers), a single server test case (all single capacity servers), or a multiple 

server case (multiple servers).  Once a choice is made, the program randomly generates 

the number of resources in the flow line.  For an exponential or multiple server test case, 

the number of resources is an integer between 5 and 20.  Thus, a test case consists of 

between 5 and 20 resources.   
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 It should be noted that a single server test case consists of between 5 and 10 

resources.  In this type of system, all resources are aggregated together to form a single 

aggregation resource, namely AR1.  In (say) a ten resource single server flow line, all ten 

resource means must be weighted to find their percentage contribution towards the 

aggregate resource service mean.  The procedure to find these weights is to use a 

recursive algorithm to aggregate within an aggregation resource.  Experimentation has 

shown that with an aggregation resource that represents more than ten resources, applying 

the recursive algorithm significantly reduces the mean values of the resources.  The result 

of this drastic reduction is that solving the resulting two equations of two unknowns 

(representing the percentage weight of the two resources represented by the aggregation 

resource) yields a negative value (since both means are less that the mean they are trying 

to estimate).  For example, 2x + 3y = 5 and x + y = 1 will yield a negative value for one 

of the factors.   

 Intuitively this makes since in that there should be a limit to the number of times 

something can be aggregated before it becomes insignificant.  This limit appears to be ten 

resources.  To deal with this limitations, the aggregation program uses twelve solve 

techniques for finding the distribution weights (using modules DistWeight1 and 

DistWeight2 in combination with the Swap module).  The program initially attempts to 

find the distribution weights using module DistWeight1 (which aggregates successive 

resources together).  For instance, it aggregates R1 and R2 into R1|2, and aggregates R3 

and R4 into R3|4.  If any of the resulting distribution weights are negative, the program 

calls the Swap Module, which sorts the resources using one of five different techniques 

(high to low, low to high, alternating high-low, etc.) and attempts to solve for the weight 

using DistWeight1.  If all six attempts fail, then the aggregation program follows a 

similar procedure but uses the recursive algorithm of DistWeight2 (which successively 

aggregates resources - as demonstrated in Section 3.4).  For example, it aggregates 
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resource R1 and R2, then resource R1|2 with R3,  etc.  Experimentation has shown that for 

the majority of systems with ten or fewer servers, one of the twelve solution techniques 

finds a solution.   

 For each resource of any type of flow line system, an estimate of the resource’s 

utilization is generated as a values between ten percent and ninety percent.  For the 

exponential and multiple server test cases, the number of resource servers (from one to 

eight) is also generated.  For the single server case, this value is obviously one.  The next 

component to be generated is the service distribution for the resource.  For an exponential 

test case, the exponential distribution is always selected. 

 To determine the parameters for each of the service distribution requires differing 

techniques.  For the exponential service distribution, the only parameter which needs to 

be estimated is its mean.  Using the relationship that a resource’s utilization (i.e., ρ ) is 

equal to its arrival rate multiplied by the service mean divided by the number of servers, 

the service mean can be determined since the time between arrival (defined to be 100) 

and the utilization and number of servers are all known. 

 For the lognormal and normal service distributions, the mean value is generated 

using the service time utilization relationship.  For simplicity, the standard deviation is 

specified as a number between one and ten percent of the generated mean value. 

 To generate a value from the triangular distribution requires estimating three 

parameters: a maximum, a mode, and a minimum.  To estimate these, a maximum mean 

value is computed using the utilization relationship.  The program then randomly 

generates a maximum value, a mode (a value between zero and the maximum), and a 

minimum (a value between zero and the mode).  The program computes the mean for 

these three parameter estimates.  If this mean is less than the originally generated 

maximum mean, then these are the parameters of the triangular distribution.  Otherwise, 

the program generates three more estimates of the maximum, mode, and minimum.  This 
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procedure continues until the mean of the set of parameters is less than the maximum 

mean. 

 For the uniform distribution, a mean and standard deviation are computed 

following the procedure of how the lognormal and normal distributions parameter values 

were generated.  To generate the parameter values (a minimum and a maximum) for the 

uniform distribution, the following relationship is used (Pritsker, 1986):  

  minimum = mean − 3 × (standard deviation) 

  maximum = mean + 3 × (standard deviation) 

to allow both of the parameter values to be computed. 

 The randomly generated components necessary for computing a test case are 

summarized in Table 4.4.  It was decided that these parameter ranges create a set of 

generated test cases that represent a diverse set of flow line systems.  Once all the data for 

the flow line has been generated, the remaining parts of the aggregation program 

(computing cycle times, finding distribution weights, etc.) operate exactly the same as 

before. 
 

Table 4.4. Range  of generated parameters for each test case type. 
 
 

 Exponential Single Multiple 
Number of Resources 5 - 20 5 - 10 5 - 20 
Resource Utilization 10% - 90% 10% - 90% 10% - 90% 
Number of Servers ≤ 8 1 ≤ 8 
Service Distributions Only expon.  Any Any 
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4.3 Testing the Aggregation Methodology 

 The aggregation methodology was tested for three types of flow line systems: a 

flow line with all exponential service time, a flow line of only single server capacity, and 

a flow line of multiple servers of any service capacity.  For each of the three types of 

systems, ten test cases were generated using the aggregation program presented in Section 

4.2.  Testing involved developing and running a total of fifty simulation models on a 

computer. 

 The simulation models were written in the SLAM simulation language and run on 

a SUN SparcCenter 2000 in the College of Engineering and Applied Science at Arizona 

State University.  The goal was to compare the estimated cycle time achieved by the 

aggregate simulation model to that of the full flow line model (or to the analytical steady 

state results which can be computed for the exponential system).  To ensure accurate 

results, each of the fifty models was run thirty times with the terminating condition that 

250,000 parts pass through the flow line.  Given a default arrival rate of 100 (which is 

assumed by the program generator), this equates to each run being approximately 

25,000,000 (simulation) minutes in length. 

 The total run time (time required of the computer central processing unit) for all 

fifty models was in excess of 180 hours, or equivalently, 7
1
2

 days.  Simplistic estimates 

indicate the SUN SparcCenter is eighteen times faster that a 386 (16 mHrtz) personal 

computer belonging to the System Simulation Laboratory.  To obtain the same simulation 

data with the personal computer would of required in excess of 7
1
2

  x 18 = 135 days. 

 During each model’s execution, the statistical arrays are not cleared.  

Experimentation showed that by requiring 250,000 parts to pass through the flow line 

system reduced the initial simulation transient and completely negates its impact on the 

simulation results. 
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 Section 4.3.1 will discuss the results of applying the aggregation methodology to 

the exponential test cases.  Section 4.3.2 reviews the single server results.  Section 4.3.3 

discusses the multiple server results. 

 

4.3.1 Results for the Exponential Test Cases 

 To test the effectiveness of applying the aggregation methodology to a flow line 

with all exponential service times, ten test cases were generated by the aggregation 

program.  Their description is presented in Appendix E.  Included is all information 

necessary for creating the full and aggregate simulation models. 

 To judge how well the aggregation methodology works for this type of flow line, 

the aggregate simulation models results are compared to the analytical steady state results 

(which can be computed for an exponential system).  The results are compared in Table 

4.5.  The results indicate that the average relative error,  

RE =100% ×
Average aggregate cycle time -  steady state estimate

steady state estimate
 
  

 
   

associated with the aggregate estimate of the cycle time is only 1.1390%.  A 95% 

confidence interval computed on the average relative error or the cycle time resulting 

from applying the aggregation methodology to ten exponential flow line systems is: 

(.5955%, 1.6825%). 
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Table 4.5. Comparison of average cycle time of the aggregate results to the steady 
state results for the exponential test cases. 

 
 

Test Case  Average Cycle Time 
(Aggregate Model) 

Steady State 
Estimate of Cycle 

Time 

Relative Error 

1 3998.93 3964.1910 0.8763% 
2 3631.20 3558.4360 2.0448% 
3 7501.87 7402.9133 1.3367% 
4 1433.77 1433.6360 0.0093% 
5 6312.80 6255.3200 0.9189% 
6 2946.87 2926.5100 0.6959% 
7 7468.73 7349.5300 1.6219% 
8 7501.87 7402.9133 1.3367% 
9 2202.83 2182.5710 0.9282% 
10 7468.73 7349.5300 1.6219% 
   

Average =  
 

1.1390% 
  SD =  .5773% 

 
 

 In an attempt to explore the distribution of simulation output, Table 4.6 

summarizes the difference between the coefficient of variation (the ratio of the standard 

deviation compared to the average cycle time) for the aggregate and full simulation 

models.   
 

Table 4.6. Difference in the coefficient of variation for each of the  
exponential test cases. 

 
 
       Full Simulation Model     Aggregate Simulation Model 

Test 
Case 

Ave. 
Cycle 
Time 

SD  COV 
 

Ave. Cycle 
Time 

SD COV Diff. 

1 4000 28.7 .00717500 3940 38.4 .00974761 -.00257119 
2 3630 33.8 .00931129 3550 59 .01661972 -.00719202 
3 7500 59.2 .00789333 7420 84 .01132075 -.00337208 
4 1430 2.03 .00141958 1430 1.55 .00108392 .00032867 
5 6310 26.44 .00419017 6250 42.2 .00675200 -.00251956 
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6 2950 8.87 .00300678 2920 11.1 .00380137 -.00077694 
7 7470 48.2 .00645248 7360 52.9 .00718750 -.00071984 
8 6590 33.3 .00505311 6500 49.3 .00758462 -.00249947 
9 2200 5.79 .00263182 2180 5.48 .00251376 .00011847 
10 8300 93.2 .01122892 8180 166 .0202934 -.00887846 
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 Consider the results for test case 1.  The coefficient of variation of the cycle time 

from running the full simulation model (rather than the steady state estimate) is .007175.  

That is, the standard deviation .7175% of the mean cycle time.  For the corresponding 

aggregate simulation model, the coefficient of variation is .00974619, or .9746% of the 

mean cycle time.  The difference is .00257119, or .2%.  An average difference for all test 

cases is computed to be .00285407, or .2854%.  That is, the standard deviation for the full 

model and aggregate model estimate of the cycle time differ by and average of .2854%.  

Thus, it appears that the variability of the output distribution generated by the aggregate 

and full model are similar.   

 

4.3.2 Results for the Single Server Test Cases 

 To test the single server extension presented in Section 4.1.2, ten test cases were 

generated and modeled.  This involved running twenty simulation models (a full model 

and it corresponding aggregate models for each test case description).  A description of 

these test cases is included in Appendix F.  The results are summarized in Table 4.7. 

 The results indicate that the average relative error,  

RE =100% ×
 Average aggregate cycle time -  Average Full Model Cycle Time 

Average Full Model Cycle Time
 
  

 
   

of the aggregate’s estimate of the cycle time is 4.8735%.  A 95% confidence interval 

computed on the average relative error or the cycle time resulting from applying the 

aggregation methodology to ten single server flow line systems is: (4.3333%, 5.4137%). 
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Table 4.7. Comparison of average cycle time of the aggregate results to the full 
model simulation results for the single server test cases. 

 
 

Test Case  Average Cycle Time 
(Aggregate Model) 

Average Cycle Time 
(Full Model) 

Relative Error 

1 284.340 266.060 6.8706% 
2 341.947 313.707 9.0020% 
3 957.280 938.357 2.0166% 
4 684.470 654.050 4.6510% 
5 612.100 590.790 3.6070% 
6 677.427 676.797 0.0931% 
7 691.490 643.930 7.3859% 
8 214.980 203.470 5.6569% 
9 258.057 23.940 7.5506% 
10 1012.400 993.5100 1.9013% 

   
Average =  

 
4.8735% 

  SD =  2.9179% 
 
 

 As was done with the exponential test cases, an analysis of the variability of the 

output distribution is presented in Table 4.8. 
 

Table 4.8. Difference in the coefficient of variation for each of the  
single server test cases. 

 
 
       Full Simulation Model     Aggregate Simulation Model 

Test 
Case 

Ave. 
Cycle 
Time 

SD  COV 
 

Ave. Cycle 
Time 

SD COV Diff. 

1 284 .779 .00274296 266 .436 .00163910 .00110386 
2 342 .630 .00184211 314 .525 .00167197 .00017013 
3 957 8.80 .00919540 938 6.84 .00729211 .00190329 
4 684 4.32 .00631579 654 3.20 .00489297 .00142282 
5 612 2.8 .00457516 591 1.81 .00306261 .00151256 
6 677 1.48 .00218612 577 1.49 .00220089 -.00000147 
7 691 3.32 .00480463 644 3.14 .00487578 -.00000711 
8 215 .512 .00238140 203 .234 .00115271 .00122869 
9 258 .529 .00205039 240 .390 .00162500 .00042539 
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10 1010 6.04 .0059802 994 7.4 .00744467 -.00146447 
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 For the single server flow line system, the average difference in the variation for 

all test cases is computed to .00062164, or .0621%.  That is, the standard deviation for the 

full model and aggregate model estimate of the cycle time differs by an average of .06%.  

Thus, it appears that the variability of the output distribution generated by the aggregate 

and full model is similar for the single server system.   

 

4.3.3 Results for the Multiple Server Test Cases 

 For the multiple server system, ten test cases (flow lines with multiple servers of 

any general distribution) were generated and tested (see Appendix G).  For each test case, 

the full and corresponding aggregate simulation model were run.  As outlined in Section 

4.1.3, it is hypothesized that for this type of system, due to the independence assumption, 

the aggregate results should provide an upper bound to the average cycle time.  The 

results are summarized in Table 4.9. 
 

Table 4.9. Comparison of average cycle time of the aggregate results to the full 
model simulation results for the multiple server test cases 

 
 

Test Case  Average Cycle Time 
(Aggregate Model) 

Average Cycle Time 
(Full Model) 

Relative Error 

1 3591.57 3339.00 7.5642% 
2 3735.00 3492.00 6.9382% 
3 2496.17 2438.67 2.3578% 
4 1078.50 1042.33 3.4701% 
5 2707.87 2701.70 0.2284% 
6 2519.67 2315.73 8.0670% 
7 1320.97 1279.70 3.2250% 
8 2287.40 2278.80 0.3774% 
9 1468.13 1458.60 0.6534% 
10 2436.37 2367.47 2.9103% 

   
Average =  

 
3.5792% 

  SD =  2.9706% 
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 In terms of the relative error,  

RE =100% ×
 Average aggregate cycle time -  Average Full Model Cycle Time 

Average Full Model Cycle Time
 
  

 
   

the aggregate cycle time overestimated by an average of a little more than 3
1
2

 percent.  

As expected, the average aggregate cycle time is always larger than the full model 

estimate.   

 The results are quite interesting considering in that they are very close even 

though the multiple server case assume independence among resources and models each 

with a Poisson arrival process.  A possible explanation follows the discussion of Section 

4.2.3 in which Whitt remarks that in a G/G/S queueing system with many busy servers, 

the output process of a resource tends to be exponential.  These results indicate that this is 

in fact true. 

 As was done with the previous two types of test cases, an analysis of the 

variability of the output distribution is presented in Table 4.10. 
 

Table 4.10. Difference in the coefficient of variation for each of the  
multiple server test cases. 

 
 
       Full Simulation Model     Aggregate Simulation Model 

Test 
Case 

Ave. 
Cycle 
Time 

SD  COV 
 

Ave. Cycle 
Time 

SD COV Diff. 

1 3590 3.8 .00105850 3340 2.92 .00087425 .00018424 
2 3740 5.29 .00141444 3490 4 .00114613 .00026831 
3 2500 4.05 .00162000 2440 3.1 .00127049 .00034951 
4 1080 2.21 .00204630 1040 1.9 .00182692 .00021937 
5 2710 2.33 .00085978 2700 2.02 .00074815 .00011163 
6 2520 3.26 .00129365 2320 2.13 .00091810 .00037555 
7 1320 1.4 .00106061 1280 .596 .00046563 .00059498 
8 2290 2.01 .00087773 2280 1.56 .00068421 .00019352 
9 1470 .776 .00052789 1460 .724 .00049589 .00000320 
10 2440 2.24 .00091803 2390 1.87 .00078243 .00013561 
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 For the multiple server flow line system, the average difference in the variation for 

all test cases is computed to .00024647, or .02467%.  That is, the standard deviation for 

the full model and aggregate model estimate of the cycle time differ by an average of 

.02467.  Thus, it appears that the variability of the output distribution generated by the 

aggregate and full model is similar for the multiple server system.   
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4.4 Chapter Summary 

 This chapter illustrates the application of the aggregation methodology.  It 

achieves this by: 

(1) Dividing the application of the aggregation methodology into three types of 

systems.  The first is a pure exponential system in which all service distributions 

are exponentially distributed with any number of parallel, identical servers 

allowed.  It is hypothesized that the aggregation methodology will work well for 

this system since the exact steady state results are used by the aggregation 

methodology for creating the aggregate simulation model.  The second type of 

system is a single server capacity flow line, in which each resource of the flow 

line has one server performing the resource’s service task.  There is no restriction 

of the type of service distribution other than the coefficient of variation of the 

service time must be less than or equal to one.  To model this system requires the 

aggregation methodology to be extended such that the arrival variability to a 

resource is estimated.  The final type of system is one with multiple servers of any 

service distribution (also with the restriction that the service time coefficient of 

variation is less than or equal to one).  It is hypothesized that in this system, the 

average cycle time estimate produced by running the aggregate simulation model 

will be an upper bound estimate of the average cycle time for the full (or true) 

system. 

(2) Explains the development of a computer program which implements the 

aggregation methodology.  The program either computes the distributions weights 

from a user inputted flow line description or randomly generates a test case of one 

the three types (exponential, single, or multiple). 

(3) Compares the effectiveness of each of the three types of systems in estimating the 

average part cycle time.  All three methods produce good estimates in terms of the 
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relative error of the mean cycle time  In comparing the variability of the output 

distribution for each of the three types of test cases, the resulting error or 

difference in the variability of the cycle time estimated is minor.  This indicates 

that the output distributions for the full and aggregate simulation model are 

similar.  As hypothesized, for the multiple server system, all test cases show that 

the aggregate results is an upper bound estimate of the full models estimate of the 

cycle time. 



CHAPTER 5 

SUMMARY, LIMITATIONS, CONCLUSIONS, AND RECOMMENDATIONS 

 The many uses of simulation range from comparing alternative systems to 

answering capacity and feasibility questions.  Unfortunately, the potential benefits that 

discrete event simulation offers are impeded by the high level of expertise necessary to 

successfully conduct a sound simulation study.  As a solution, this research proposes 

aggregation techniques for aiding in the development of manufacturing flow line 

simulation models.  Section 5.1 summarizes the general approach of applying the 

aggregation methodology.  Section 5.2 discusses the limitations associated with the 

aggregation methodology.  Section 5.3 reviews the specific achievements of this research 

and summarizes the effectiveness of applying the aggregation techniques to three types of 

flow line systems.  Section 5.4 concludes the discussion by discussing future research 

work on this topic.  

 

5.1 Summary of Research Results 

 The objective of this research was to develop a formal methodology for creating 

an aggregate simulation model that can be used to estimate part cycle time for a flow line 

manufacturing system.  The resulting aggregation methodology integrates aspects of 

queueing theory, a recursive algorithm, and simulation to develop the specifications 

necessary for combining the resources of a flow line so that they can represented by 

aggregation resources.   

 The first step of the methodology (Section 3.1) defines the parameters of a 

production flow line manufacturing system.  To collect this information, a mathematical 

formalism (Table 3.3) describing a flow line system is developed.  It provides a 

foundation for identifying and collecting information about the manufacturing system.  

From this description, an aggregate representation is developed.  This research proposes 
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that in an aggregate representation of a system, all resources with a given service capacity 

are aggregated together to form aggregation resources.  A flow line system can thus be 

described by an equivalent aggregate system, in which all same capacity resources are 

aggregated.  Section 3.1.3 develops an aggregate mathematical formalism (Table 3.5) for 

summarizing all the information describing this equivalent aggregate system.   

 Once a manufacturing flow line and its aggregate equivalent is described, the 

average cycle time of an aggregation resource is computed (Section 3.2).   Using a M/G/S 

queueing formula (Section 2.3.2), the cycle time is computed for each resource 

represented by an aggregation resource.  The cycle times of the resources aggregated by 

an aggregation resource are summed and their average is computed.  This value is the 

average cycle time that the aggregation resource represents.  In the special case of a flow 

line with one single server resources (Section 4.1.2), the cycle time of the resources is 

computed using a G/G/1 formula (Section 2.3.3) in combination with a procedure for 

estimating the arrival time variability of resources in the flow line.   

 With the average aggregate cycle time computed for all aggregation resources, the 

service mean needed to create an aggregate resource with the given cycle time, arrival 

rate, and number of servers is computed for each of the aggregate resource (Section 3.3).  

The procedure for accomplishing this involves applying queueing formulas backwards, in 

that the mean service time of an aggregation resource is estimated from the average cycle 

(waiting) time.  This differs from the more common approach of specifying the mean 

service time and computing the cycle (waiting) time. 

 The next step of the aggregation methodology involves using a recursive 

algorithm for weighting the resource service time means of the aggregate resource 

(Section 3.4).  These weights represent the percentage contribution of each resource’s 

service mean towards its aggregation resource service mean.   
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 The final step of the aggregation methodology is to specify the aggregate 

simulation model.  This task is complicated by the fact that since general service times 

are allowed, developing a combined or joint distribution of an aggregation resource 

service time density function may be neither feasible, efficient, nor possible.  The 

approach of this research is to represent this unspecified service time distribution not as a 

mathematical function, but rather as a relationship that random numbers can be sampled 

from (Section 3.5).  The resource distribution weights are used in combination with 

composition sampling (Section 2.1.4) to generate samples from the unspecified aggregate 

resource service time distribution during the execution of the aggregate simulation model.   
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5.2 Limitations of the Research 

 To develop the aggregation methodology required several assumptions to be 

made.  These result in the following limitations in applying the methodology: 

(1) Basic flow line system: 

The manufacturing flow line assumed for this research is a basic system that 

requires that all parts pass though the same sequence of resources with no feedback, 

scrap, or rework.  In this system, workers and machines only operate at an assigned 

resource (station) and do not aid or assist other resources in the system.  In addition, 

it is assumed that resources are one hundred percent reliable and never experience a 

breakdown. 

(2) Single part type: 

 The aggregation methodology only works for a flow line system producing a single 

part type.  This single part type is assumed to arrive from an infinite supply one at a 

time according to an exponential distribution.  Batch arrivals or batch processing are 

not considered. 

(3) Only part cycle time is estimated: 

 This research applies the aggregation methodology to a system to estimate a single 

characteristic of the flow line system, the average cycle time of a part to be 

processed by all resources in the manufacturing system.  While this is an important 

system characteristic, others such as resource utilization would also be useful.  As 

shown in Section 4.3.1 and Section 4.3.2, for an exponential or single server flow 

line, an average cycle time error interval must be used to bound the true average 

cycle time.  The disadvantage of this that the range of the error interval is much 

larger (wider) than a simple confidence interval on the aggregate simulation model 

mean. 



 

5 
(4) Queues have unlimited storage capacity: 

 Resources have no set storage capacity.  With the assumption that the system is 

running in steady state, one can be guaranteed that none of the queues grow 

unbounded.  In actuality, queue capacity may be a constraining factor of a system, 

and thus it may be inappropriate to make this assumption.   The ability to account 

for queue capacity of a resource and the receiving area of the flow line are included 

in the formalism describing the production flow line (see Table 3.3).  At present, 

this research assumes these values are infinity. 

(5) Simplified part selection: 

 All resources select parts for their associated queue using a first come, first serve 

(FCFS) selection rule.  While this may not necessarily be true in most systems, 

Section 2.3.4 does address the fact that the impact of the queue selection is 

minimized in a general queueing system operating under steady state conditions. 

(6) An aggregate resource is limited to representing at most ten resources: 

 As explained in Section 4.2, when more than ten resources are represented by an 

aggregation resource, the process of recursively determining the distribution weights 

is quite difficult.  In fact, experimentation shows that when more than ten resources 

are represented by an aggregation resource, the success rate (for determining the 

distribution weights) is only ten percent or less. 

(7) The coefficient of variation of the service time distribution is less than or equal to 

one: 

 This requirement is necessary to be assured that the coefficient of variation of the 

output (departure) process from a queue is also less than or equal to one (shown in 

Section 4.1.3).  While this may be a restrictive assumption in that it excludes certain 

distributions, it does allows for the modeling of many of the common simulation 

service time distributions: normal, lognormal, triangular, exponential, uniform.   
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5.3 Conclusions 

 This research has made an important first step in applying analytical procedures to 

the process of developing a simulation model.  It demonstrates that analytical techniques 

such as queueing analysis can be integrated with simulation to reduce the effort necessary 

to address simulation questions.  Specific achievements of this research include: 

(1) Development of system formalisms (Table 3.3 and Table 3.5) for describing a 

production flow manufacturing system and its aggregate equivalent (Section 3.1).  

From the description of the “as is” system, an aggregate description can be 

developed by aggregated all same capacity resources into aggregation resources. 

The two formalisms provide a necessary foundation for identifying and collecting 

information for flow lines to be defined and compared. 

(2) Identification of procedures for computing the average cycle time of an aggregate 

resources (Section 3.2 and Section 4.1.2).  For a flow line system with all 

exponential servers or one with multiple servers with any service time 

distributions, this is accomplished by computing the average cycle time of all 

resources aggregate by an aggregation resource.  The individual resource cycle 

time estimates are computed using a M/G/S queueing formula (Section 2.3.2).  

For a flow line in which all resources have only single capacity servers, a G/G/1 

(Section 2.3.3) queueing formula is used in conjunction with a technique for 

estimating the arrival (output) variability to a resource in the flow line (Section 

4.1.2) for estimating the average aggregate cycle time. 

(3) Development of a technique for estimating the mean service time of an aggregate 

resource (Section 3.3).  The procedure involves applying queueing formulas 

backwards, in that the mean service time of an aggregation resource is estimated 

from the average cycle (waiting) time.   
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(4) Creation of a method for describing the mean service time of an aggregation 

resource in terms of the resource service means that it represents (Section 3.4).  

Using a recursive algorithm (Table 3.9), the percentage contribution (or 

distribution weight) of each resource’s service mean towards the aggregate 

resource service mean is computed for each aggregation resource.  

(5) Specifications for creating an aggregate simulation model (Section 3.5).  The key 

to this model development involves combining the distribution weights with 

composition sampling (Section 2.1.3) to sample from the unspecified aggregate 

resource service time distribution during the execution of the aggregate simulation 

model.  Appendix A presents an example flow line.  It contain the SLAM 

simulation code for the full simulation model and its aggregate equivalent. 

(6) Creation of a computer program which implements the aggregation methodology 

(Section 4.2).  The program (Figure 4.2, Table 4.3, Appendix B), written in the 

Mathematica programming language, computes the resource distribution weights 

from a user inputted flow line description or for a randomly generated test case (a 

pure exponential flow line, a single server flow line, or a multiple server flow 

line).  Parameter ranges used by the program for generating a test case are 

summarized in Table 4.4.  Examples of the output generated by the aggregation 

program are listed in Appendix C and D. 

(7) Testing of the aggregation methodology on three types of systems to compare its 

effectiveness in estimating the average part cycle time (Section 4.3) : 

(a) The first system that was studied is a pure exponential system in which all 

service distributions are exponentially distributed with any number of 

parallel, identical servers allowed (Section 4.1.1).  It is hypothesized that the 

aggregation methodology will work well for this system since the exact 

steady state results are used by the aggregation methodology for creating the 
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aggregate simulation model.   Testing (Section 4.3.1) on ten randomly 

generated diverse test cases (listed in Appendix E) results in a relative error 

between the average aggregate estimate of cycle time and the true steady state 

solution (which can be computed for an exponential system) as being 1.139% 

(Table 4.5).  A 95% confidence interval computed on the average relative 

error or the cycle time resulting from applying the aggregation methodology 

to ten exponential flow line systems is: (.5955%, 1.6825%).  In comparing 

the variability of the output distribution, the resulting error or difference in 

the variability of the cycle time estimated is on average .2854%. 

(b) The second type of flow line that the aggregation methodology was applied to 

is a single server capacity flow line.  This type of flow line has one server 

performing each of the resource’s service task with no restriction of the type 

of service distribution other than the requirement that the coefficient of 

variation of the service time be less than or equal to one.  To model this 

system requires the aggregation methodology to be extended such that the 

arrival variability to a resource is estimated (Section 4.1.2).  Ten test cases 

(Appendix F) were generated and the results indicate an average relative error 

of 4.8735%.  A 95% confidence interval computed on the average relative 

error or the cycle time resulting from applying the aggregation methodology 

to ten single server flow line systems is: (4.3333%, 5.4137%).  In comparing 

the variability of the output distribution, the resulting error or difference in 

the variability of the cycle time estimated is on average .06214%. 

(c) The final type of system that the aggregation methodology was tested on is 

one with multiple servers of any service distribution.  Assertion 4.2 of 

Section 4.1.3 showed mathematically that in this type of system the average 

cycle time estimate produced by running the aggregate simulation model 
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should be an upper bound estimate of the average cycle time for the full (or 

true) system.  To test this assertion, ten simulation models (Appendix G) 

were generated by the aggregation program and the corresponding full and 

aggregate simulation models were modeled.  The results (Table 4.9) indicate 

a relative error between the average aggregate cycle time and the average full 

model cycle time of only 3.5%.  In comparing the variability of the output 

distribution, the resulting error or difference in the variability of the cycle 

time estimated is on average a low .0246%.  As hypothesized, for the 

multiple server system, all test cases show that the aggregate results is an 

upper bound estimate of the full models estimate of the cycle time. 
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5.4 Recommendations for Future Research 

 The aggregation methodology is an initial attempt to add analytical techniques to 

the process of creating an abstract, or aggregate simulation model.  Areas where this work 

can be extended include:    

(1) Estimating multiple performances characteristics of the flow line system from the 

aggregate simulation model: 

This research estimates the average cycle time of a part through the flow line 

using the aggregate simulation model.  Other performance characteristics such as 

the utilization, the cycle time, and queue waiting time of the individual resources 

are not computed.  But, the aggregate methodology can possibly be extended to 

obtain estimates of these values.  By running the aggregate simulation mode, one 

obtains an estimate of not only the average cycle time of a part, but also of the 

average cycle time of the part on each of the aggregation resources.  Using the fact 

that an aggregation resource represents a group of resources which are related to 

one another by their distribution weights, preliminary results indicate that the 

average utilization of each resource can be obtained by multiplying its aggregation 

resource service utilization by the resource’s distribution weight.  For example, 

(say) R2 (resource two) has two servers and a distribution weight of .43.  Its 

utilization can be estimated by multiplying the service utilization of AR2 (an 

output obtained by running the aggregate simulation model) by .43.  It also 

appears that possibly an aggregation resource’s cycle time can be partitioned using 

these weights to estimate the cycle time of each of the original resources.  It is 

hypothesized that this involves solving a set of linear equations, similar to how 

the distribution weights were found.  Thus, apply a similar (recursive?) technique. 
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(2) Including procedures for estimating the departure/arrival variability for G/G/S 

resources: 

 Using a procedure similar to that of the single server system, a procedure can be 

incorporated for estimating the output variability of a queue such that its impact 

can be incorporated into the aggregation.  As the multiple server test cases 

indicate, modeling the resources as M/G/S queues under the independence 

assumption provide close approximations when the average utilization is high.  

Another possible approach is to artificially set (or increase) an aggregate 

resource’s  utilization to a high so that the simulation estimate is accurate.  Once 

the simulation results are obtained, possibly the results are scaled (or reduced) to 

adjusts for the artificial increase. 

(3) Incorporate feedback, rework, and scrap into the flow line. 

 To incorporate feedback, rework, and scrap into the aggregation procedure, the 

variability of the output process must be estimable.  Currently only the single 

server type of system meets this requirement.  The method to incorporate scrap 

appears quite straightforward in that after a part is finished being worked on by a 

resource, it has a certain probability of leaving the system (being scrap) and a 

certain probability of continuing to the next resource.  Obviously the mean time 

between arrivals will reduce to: (mean time between arrivals) x ( 1 - probability of 

scrap).  Correspondingly, the arrival variability must also be adjusted.  Rework 

and feedback create an additional demand on a resource, for it modifies the arrival 

distribution (affecting both the mean and arrival variability).  It appears that this 

can be incorporated using a similar procedure as scrap, except that rather than 

have parts leave the system, they return to a previous point within it, thus adding 

to the arrival mean and variability.  These changes can possible lead to Assertion 
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4.1 of Section 4.3.3 to no longer be valid, in that coefficient of variation of the 

arrival time may be larger than one. 

(4) Model resources with limited resource queue capacity: 

 The impact of limiting a queue’s capacity involves estimating its effect on the 

upstream resources (prior resources in the flow line).  The specific issue that 

needs to be addressed is: what happens when a queue is at capacity?  Obviously, if 

no balking is allowed, when the system becomes blocked such that upstream 

resources can no longer send their parts to the blocked resource, the upstream 

resource become blocked themselves.  Depending upon the length of the delay, 

this has a domino effect in that all the upstream resources will eventually be 

blocked.  Thus, the part arrival pattern is being severely impacted by the queue 

capacity.  A measure of this impact must be computed/calculated so that the 

aggregation methodology can incorporate it. 

(5) Develop a procedure for measuring the reduction in model run time: 

 To fully apply or recommend the aggregation methodology, a measure must be 

developed for summarizing the gains of using it to model a flow line system.  

Simple time estimated can be determined by timing the run time (time until steady 

state is reached) of the full simulation model versus the run time of an aggregate 

simulation model for a series of case studies.  A more ambitious approach is to 

mathematically determine or describe these events. 
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;****  Full Model of MPD Manufacturing System  - all resources explicitly modeled  
 
GEN, Savory, MPD Full,10/15/93,30,,,,,,72;        
LIMITS,6,1,2000; 
; 
NETWORK: 
  CREATE,EXPON(100),,1; 
; 
F1  COLCT,BET,TIME BET. ARR 1; 
  QUEUE(1); 
  ACT(1)/1,UNFRM(75,85); 
; 
F2  COLCT,BET,TIME BET. ARR 2; 
  QUEUE(2); 
  ACT(2)/2,RNORM(130,15); 
; 
F3  COLCT,BET,TIME BET. ARR 3; 
  QUEUE(3); 
  ACT(2)/3,TRIAG(120,150,180); 
; 
F4  COLCT,BET,TIME BET. ARR 4; 
  QUEUE(4); 
  ACT(4)/4,RNORM(320,25); 
; 
F5  COLCT,BET,TIME BET. ARR 5; 
  QUEUE(5); 
  ACT(1)/5,TRIAG(32,43,60); 
; 
F6  COLCT,BET,TIME BET. ARR 6; 
  QUEUE(6); 
  ACT(1)/6,UNFRM(64,80); 
; 
BYE COLCT,BET,TIME BET. ARR BYE; 
  COLCT,INT(1),TIME IN SYSTEM; 
  TERM,250000; 
  END; 
FIN; 
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;****  Aggregate Model of MPD Manufacturing System  - resources modeled as 
aggregates  
 
GEN, Savory, MPD Agg,10/15/93,30,,,,,,72;       
LIMITS,16,6,1000; 
NETWORK; 
  CREATE,EXPON(100),,1; 
; 
  COLCT,BET, TM BET. ARRIVAL; 
  ASSIGN, II=II+1;       
  ASSIGN, ATRIB(6)=II;    
; 
  GOON,3; 
   ACT,,,AR1; 
   ACT,,,AR2; 
   ACT,,,AR4; 
; 
;============================================================= 
; 
AR1  COLCT,BET,TIME BET. ARR 1; 
  GOON,1; 
   ACT,,.465724,A11; 
   ACT,,.186597,A12; 
   ACT,,.347679,A13; 
A11 ASSIGN, ATRIB(3)=UNFRM(75,85); 
   ACT,,,D1; 
A12 ASSIGN, ATRIB(3)=TRIAG(32,43,60); 
   ACT,,,D1; 
A13 ASSIGN, ATRIB(3)=UNFRM(64,80); 
   ACT,,,D1;            
; 
D1 Queue(1); 
   ACT(1)/1,ATRIB(3); 
; 
  ASSIGN,ATRIB(2)=TNOW-ATRIB(1)-ATRIB(3); 
  ASSIGN,ATRIB(4)=ATRIB(2)+ATRIB(3); 
  COLCT,ATRIB(3),AR1 SERVICE TM; 
  COLCT,ATRIB(4),AR1 CYCLE TM; 
  ASSIGN,ATRIB(5)=ATRIB(4)*3; 
  COLCT,ATRIB(5),AR1 TOTAL CYCLE; 
   ACT,,,GO1; 
; 
;============================================================= 
; 
AR2 COLCT,BET,TIME BET. ARR 2; 
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  GOON,1; 
   ACT,,.431361,A21; 
   ACT,,.568639,A22; 
A21 ASSIGN, ATRIB(3)=RNORM(130,15); 
   ACT,,,D2; 
A22 ASSIGN, ATRIB(3)=TRIAG(120,150,180); 
   ACT,,,D2; 
; 
D2 Queue(2); 
   ACT(2)/2,ATRIB(3); 
; 
  ASSIGN,ATRIB(2)=TNOW-ATRIB(1)-ATRIB(3); 
  ASSIGN,ATRIB(4)=ATRIB(2)+ATRIB(3); 
  COLCT,ATRIB(3),AR2 SERVICE TM; 
  COLCT,ATRIB(4),AR2 CYCLE TM; 
  ASSIGN,ATRIB(5)=ATRIB(4)*2; 
  COLCT,ATRIB(5),AR2 TOTAL CYCLE; 
   ACT,,,GO2; 
; 
;============================================================= 
; 
AR4 COLCT,BET,TIME BET. ARR 4; 
  GOON,1; 
   ACT,,1,A41; 
A41 ASSIGN, ATRIB(3)=RNORM(320,25); 
   ACT,,,D4; 
; 
D4 Queue(4); 
   ACT(4)/4,ATRIB(3); 
; 
  ASSIGN,ATRIB(2)=TNOW-ATRIB(1)-ATRIB(3); 
  ASSIGN,ATRIB(4)=ATRIB(2)+ATRIB(3); 
  COLCT,ATRIB(3),AR4 SERVICE TM; 
  COLCT,ATRIB(4),AR4 CYCLE TM; 
  ASSIGN,ATRIB(5)=ATRIB(4)*1; 
  COLCT,ATRIB(5),AR4 TOTAL CYCLE; 
   ACT,,,GO4; 
; 
;=============================================================; 
GO1 QUEUE(9),,,,MTCH; 
GO2 QUEUE(10),,,,MTCH; 
GO3 QUEUE(11),,,,MTCH; 
GO4 QUEUE(12),,,,MTCH; 
GO5 QUEUE(13),,,,MTCH; 
GO6 QUEUE(14),,,,MTCH; 
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GO7 QUEUE(15),,,,MTCH; 
GO8 QUEUE(16),,,,MTCH; 
; 
MTCH MATCH,6,GO1/AA,GO2/AA,GO4/AA; 
AA  ACCUM,3,3,SUM;                  
; 
BYE COLCT,BET,TIME BET. ARR BYE; 
  COLCT,ATRIB(5),TIME IN SYSTEM; 
  TERM,250000; 
  END; 
FIN; 



 

 

 

 

 

 

 

 

 

APPENDIX B 

MATHEMATICA CODE FOR AGGREGATION PROGRAM  
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Aggregation[]:= 
Module[{}, 
 typeRun = Input["Enter Parameters or Randomly Generate?\n 
           [ 0  = Enter   1 = Generate ]  "]; 
 (* Test whether generate a flow line or have user enter it *) 
 If[(typeRun == 0),  
      UserMain[], 
      GenerateMain[] 
 ] 
] 
 
 
 
 
 
 
APrint[]:= 
Module[{}, 
  
(* Print out the Aggregation Description *) 
Print["  "]; 
Print["Aggregate Flow Line Description..."]; 
  
(* Find service means for each aggregation block *) 
For [i=1, i <= maxServers, i++, 
 
If[(numServer[i] > 0), 
     
Print[" "]; 
Print["Aggregate Resource #",i]; 
Print["  Arrival Mean is ",TBA]; 
Print["  Arrival Rate is ",N[L]]; 
Print["  Total AR Cycle Time is ",TWAR[i]]; 
Print["  Average AR Cycle Time is ",AAR[i]]; 
Print["  Est. Service Time SQCOV is ",estSQCV[i]]; 
Print["  Est. AR Service Mean is ",MAR[i]]; 
Print["  Est. AR Service Rate is ",N[1/MAR[i]]]; 
Print["  Distribution Weights for AR #",i]; 
For[j=1,j<=numServer[i],j++, 
        For[k=1,k<=numServer[i],k++, 
           If[(where[i,k] == j), 
              Print["    Weights of Resource #",rNum[i,k]," is ",DWT[i,k]]; 
          ] 
        ] 
] 
] 
] 
] 
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DistWeight1[i_, start_, total_, numAR_, meanAR_, sumAR_]:=  
Module [{temp1,temp2,temp3,temp4}, 
 
 
 (* One resource is aggregated *) 
 If[(numAR == 1), 
  DWT[i,start] = 1; 
 ] 
  
 (* Two resources are aggregated, solve for weights *) 
 If[(numAR == 2), 
  Clear[xX, yY]; 
        If[(tAVG[i,start] != tAVG[i,(start+1)]), 
        Unprotect[temp1]; 
  temp1=Solve[{((xX*tAVG[i,start])+(yY*tAVG[i,(start+1)]))==meanAR,xX+yY ==     
    sumAR},{xX,yY}];  
  DWT[i,start]=Part[(xX/.temp1), 1]; 
  DWT[i,(start+1)]=Part[(yY/.temp1), 1]; 
           
         If[(tAVG[i,start] == tAVG[i,(start+1)]), 
           DWT[i,start] = .500; 
           DWT[i,(start+1)] = .500; 
         ] 
 ] 
  
 (* More than two resoruces aggregated, aggregate fist two and recurse *) 
 If[(numAR > 2), 
  (* Determine new aggregate resource total and average cycle time *) 
 
  rTWT = (tWT[i,start]+tWT[i,(start+1)]); 
  rAVG = rTWT/2; 
   
  (* Determine estimated squared COV *) 
  rSQCV = (((tWT[i,start]/rTWT)*tSQCV[i,start]) 
     +((tWT[i,(start+1)]/rTWT)*tSQCV[i,(start+1)])); 
 
  (* Determing estimated mean for new aggregate resource *) 
  MGSServiceMean[i, rSQCV, rAVG]; 
     
  tWT[i,(total+1)] = rAVG; 
  tSQCV[i,(total+1)] = rSQCV; 
  tAVG[i,(total+1)] = meanVal; 
  (*tAVG[i,(total+1)] = Input["Enter meanVal"];*) 
 
  DistWeight1[i, (start+2), (total+1),(numAR-1),meanAR,sumAR]; 
  Unprotect[temp1]; 
  temp1 = meanAR - (meanAR - (tAVG[i,(total+1)]*DWT[i,(total+1)])); 
  Unprotect[temp2]; 
  temp2= DWT[i,(total+1)]; 
  If[((start > 0)&&(DWT[i,(total+1)])>0), 
      DistWeight1[i, start, total, 2,temp1,temp2]]; 
 ];  
]; 
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DistWeight2[i_, start_, numAR_]:=  
Module [{}, 
 
 (* One resource is aggregated *) 
 If[(numAR == 1), 
  DWT[i,start] = 1; 
 ] 
  
 (* Two resources are aggregated, solve for weights *) 
 If[(numAR == 2), 
  Clear[xX, yY]; 
        If[(tAVG[i,start] != tAVG[i,(start+1)]), 
  temp1=Solve[{((xX*tAVG[i,start])+(yY*tAVG[i,(start+1)]))==meanAR,xX+yY ==     
    sumAR},{xX,yY}];  
  DWT[i,start]=Part[(xX/.temp1), 1]; 
  DWT[i,(start+1)]=Part[(yY/.temp1), 1]; 
         ] 
          
         If[(tAVG[i,start] == tAVG[i,(start+1)]), 
           DWT[i,start] = .500; 
           DWT[i,(start+1)] = .500; 
         ] 
            
  Unprotect[meanAR]; 
  meanAR = meanAR - (tAVG[i,(start+1)]*DWT[i,(start+1)]); 
  Unprotect[sumAR]; 
  sumAR= sumAR - DWT[i,(start+1)]; 
   
  tWT[i,start] = WT[i,start]; 
  tSQCV[i,start] = SQCV[i,start]; 
  tAVG[i,start] = AVG[i,start]; 
   
  If[((start > 0)&&(DWT[i,(start+1)]>0)&&(DWT[i,start]>0)), 
                        DistWeight2[i, (start - 1), numAR]]; 
 ] 
  
 (* More than two resoruces aggregated, aggregate fist two and recurse *) 
 If[(numAR > 2), 
   
  (* Determine new aggregate resource total and average cycle time *) 
 
  rTWT = (tWT[i,start]+tWT[i,(start+1)]); 
  rAVG = rTWT/2; 
  (* Determine estimated squared COV *) 
  rSQCV = (((tWT[i,start]/rTWT)*tSQCV[i,start]) 
     +((tWT[i,(start+1)]/rTWT)*tSQCV[i,(start+1)])); 
  (* Determing estimated mean for new aggregate resource *) 
  MGSServiceMean[i, rSQCV, rAVG]; 
     
  tWT[i,(start+1)] = rAVG; 
  tSQCV[i,(start+1)] = rSQCV; 
  tAVG[i,(start+1)] = meanVal; 
  DistWeight2[i, (start+1), (numAR-1)]; 
 ]  
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] 
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enterGenServer[]:= 
Module[{}, 
 
 (* Check if single server queue *) 
 If[(singleCheck == 0),  
  servers = Random[DiscreteUniformDistribution[8]], 
  servers = 1 
 ] 
  
 (* Keep track of largest number of servers in the flow line *) 
 If[(servers > maxServers), maxServers = servers]; 
 
 (* Count the number of the each type of servers *) 
 numServer[servers]=numServer[servers]+1;  
 numSame=numServer[servers]; 
 
 (* Store the row and column of the matrix where stored *) 
 origRow[i] = servers; 
 origCol[i] = numSame; 
] 
 
 
 
 
 
enterServer[]:= 
Module[{}, 
 
 (* Check if single server queue *) 
 If[(singleCheck == 0), 
  servers=Input["Number of Parallel Servers for the Resource?"], 
  servers=1 
 ] 
 
 (* Keep track of largest number of servers in the flow line *) 
 If[(servers > maxServers), maxServers = servers]; 
 
 (* Count the number of the each type of servers *) 
 numServer[servers]=numServer[servers]+1;  
 numSame=numServer[servers]; 
 
 (* Store the row and column of the matrix where stored *) 
 origRow[i] = servers; 
 origCol[i] = numSame; 
] 
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FPrint[]:= 
Module[{}, 
 
(* Print out flow line description *) 
Print["Flow Line Description......."]; 
 
For[i=1,i<=numQue,i++, 
 
(* Create temporary variables - find position *) 
aA = origRow[i]; 
bB = origCol[i]; 
 
Print[" "]; 
Print["Resource #",i," of the Flow Line"]; 
Print["  Arrival Mean is ",TBA]; 
Print["  Arrival Rate is ",N[L]]; 
Print["  Arrival Variability is ",VA[aA,bB]]; 
Print["  Arrival COV is ",N[Sqrt[VA[aA,bB]]/TBA]]; 
Print["  Arrival SQCOV is ",N[VA[aA,bB]]/(TBA^2)]; 
Print["  Number of Parallel Resources is ",aA]; 
Print["  ",dD[aA,bB]]; 
 
Print["  Service Mean is ",AVG[aA,bB]]; 
Print["  Service Variability is ",VAR[aA,bB]]; 
Print["  Service SD is ",Sqrt[VAR[aA,bB]]]; 
Print["  Service Time is COV is ",CV[aA,bB]]; 
Print["  Service Time SQCOV is ",SQCV[aA,bB]]; 
Print["  Resource Utilization is ", (L*AVG[aA,bB])/aA]; 
Print["  Est. Queue Waiting Time is ",WTQ[aA,bB]]; 
Print["  Est. Resource Cycle Time is ",WT[aA,bB]]; 
 
] 
] 
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GenerateMain[]:= 
Module[{}, 
                    
           (* Read in what type of case to generate *) 
  typeCase = Input["Generate: 1 = Exponential Test Case\n 
               2 = Single Server Test Case\n 
               3 = Multiple Server Test Case"]; 
   
   numTest = Input["Number of Test Cases to Generate?"]; 
   
  
    numQue = Random[DiscreteUniformDistribution[16]]+4; 
           
             Print[" "]; 
             If[(typeCase == 1),  Print["Exponential Test Case #", mpd," (",numQue," Queues) of     
 ",numTest]]; 
    If[(typeCase == 2),  Print["Single Server Test Case #",mpd,"(",numQue," Queues) of ",numTest]]; 
    If[(typeCase == 3),  Print["Mulitple Server #",mpd,"(",numQue," Queues) of ",numTest]]; 
       
      (* Set flag as to whether this is a single case - thus require compute variance *) 
    If[(typeCase == 2),  
       singleCheck = 1, 
       singleCheck = 0; 
    ] 
      
    (* Generate actual data *)    
     Step1Generate[]; 
    
    If[(singleCheck == 0), 
  Step2[], 
  Step2Single[]; 
    ] 
       
    Step3[]; 
    FPrint[];  
    Step4[]; 
    APrint[]; 
        ] 
] 
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GG1CycleTime[j_,wqPrevious_]:= 
Module[{}, 
 
 (* Compute rho for previous resource *) 
 r = L*AVG[1,(j-1)]; 
 
 (* Compute the variability of the arrival process *) 
 VA[1,j]=arrivalVar+(2*VAR[1,(j-1)])-((2/L)*(1-r)*wqPrevious); 
  
 (* Squared coefficient of variaton of arrival process *) 
  sqcvA = VA[1,j] / (TBA^2); 
 
 (* Compute rho for current resource *) 
 r = L*AVG[1,j]; 
 
 (* compute the estimated waiting time *) 
 wqMM1=r/((1/AVG[1,j])-L); 
 
 g=Exp[(-2*(1-r)*((1-sqcvA)^2)) / (3*r*(sqcvA+SQCV[1,j]))]; 
  
 (* Queue waiting time *) 
 wqGG1=((sqcvA+SQCV[1,j])/2)*g*wqMM1; 
  
 (* Cycle time *) 
 wGG1 = wqGG1 + AVG[1,j]; 
 
 arrivalVar = VA[1,j]; 
 Clear[wqMM1,g,sqcvA]; 
  
] 
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HighLow[i_]:= 
Module[{Temp1, Temp2,Temp3, Temp4, Temp5}, 
 
        (* Perform a selection sort and swap values - original values are lost *)      
         For[j=2, j < numServer[i],, 
              
             Temp1=AVG[i,j]; 
             Temp2=WT[i,j]; 
             Temp3=SQCV[i,j]; 
             Temp4=rNum[i,j]; 
             Temp5=where[i,j]; 
              
             AVG[i,j]=AVG[i,numServer[i]]; 
             WT[i,j]=WT[i,numServer[i]]; 
             SQCV[i,j]=SQCV[i,numServer[i]]; 
             rNum[i,j]=rNum[i,numServer[i]]; 
             where[i,j]=where[i,numServer[i]]; 
                 
        For[k=numServer[i], k >= (j+1), k--, 
             AVG[i,k]=AVG[i,(k-1)]; 
                  WT[i,k]=WT[i,(k-1)]; 
                  SQCV[i,k]=SQCV[i,(k-1)]; 
                  rNum[i,k]=rNum[i,(k-1)]; 
                  where[i,k]=where[i,(k-1)]; 
             ]; 
              
             AVG[i,(j+1)] = Temp1; 
             WT[i,(j+1)] = Temp2; 
             SQCV[i,(j+1)] = Temp3; 
             rNum[i,(j+1)] = Temp4; 
             where[i,(j+1)] = Temp5; 
              
             j = j + 2; 
 ]; 
]; 
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MGSCycleTime[i_,j_]:=  
Module [{}, 
 
 LM = L * AVG[i,j]; 
 
 (* Compute rho *) 
 r = LM / i; 
 
 (* Probability in state zero *) 
 pO = (Sum[(LM^n)/Factorial[n],{n,0,(i-1)}])  
      + ((LM^i)/(Factorial[i]*(1-r))); 
 pO = 1 / pO; 
 
 (* Erlangs loss *) 
 cC = ((LM^i) / (Factorial[i]*(1-r)))*pO; 
 
 (* Queue waiting time *) 
 wqMGS = ((1+SQCV[i,j])/(2*L*(1-r)))*r*cC; 
 
 (* Cycle time *) 
 wMGS = wqMGS + AVG[i,j]; 
  
 Clear[LM,r,pO,cC]; 
] 
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MGSServiceMean[i_,estSQCV_,cycle_]:=  
Module [{}, 
 
 LM = L * zzZZ; 
 
 (* Compute rho *) 
 r = LM / i; 
 
 (* Probability in state zero *) 
 pO = (Sum[(LM^n)/Factorial[n],{n,0,(i-1)}])  
      + ((LM^i)/(Factorial[i]*(1-r))); 
 pO = 1 / pO; 
 
 (* Erlangs loss *) 
 cC = ((LM^i) / (Factorial[i]*(1-r)))*pO; 
 
 (* Queue waiting time *) 
 wqMGS = ((1+estSQCV)/(2*L*(1-r)))*r*cC; 
 
 (* Cycle time *) 
 wMGS = wqMGS + zzZZ; 
 
 temp1 = Solve[wMGS == cycle, zzZZ]; 
  
 (* Remove "zzZZ ->" arrow from solutions, thus all numbers now *) 
 temp2 = zzZZ/.temp1; 
 numList = Length[temp2]; 
  
 (* Pick among the solutions for the one which satisfies rho requirements *) 
 For[j=1, j<=numList, j++, 
           (* Read the real part of number j from the list *) 
  temp3 = Re[Part[temp2,j]]; 
   
  (* Compute rho with this number *) 
  temp4 = ((L * temp3) / i); 
   
  (* Check if it satisfies rho *) 
  If[((temp4 > 0)&&(temp4 < 1)), 
   meanVal = temp3; 
  ] 
 ] 
 Clear[temp1, temp2, temp3, temp4, zzZZ]; 
] 
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Step1[]:= 
Module[{}, 
 
 (* Initialize default values on number of each type of server *) 
 (* Note limit of 25 servers -> 25 Aggregation resources *) 
 maxServers = 0; 
 For[i=1, i<=25, i++, 
  numServer[i] = 0; 
 ] 
 
 Unprotect[numQue]; 
 numQue=Input["Number of Resources in the Flow Line?"]; 
  singleCheck=Input["Does the Flow Line Have only Single Capacity Servers? ( 0 = No  1 = Yes )"];  
   
 (* read in the time between arrivals *) 
 TBA = Input["Time Between Part Arrivals?"]; 
 L = 1/TBA; 
   
 (* Read in, compute, and store information for each resource *) 
 For[i=1, i <= numQue, i++,  
  
 (* Read in the service distribution *) 
 temp1= "Select the Service Distribution for Resource #"; 
 temp2= ToString[i]; 
 temp3 = StringJoin[temp1,temp2,":  \n\n 
       1 = Exponential    4  = Triangular\n 
       2 = Lognormal      5  = Uniform\n 
       3 = Normal"];    
 choice=Input[temp3]; 
     
 idString= StringJoin["Resource #",temp2,":  "]; 
  
 
 (* Service Distribution is Exponential *) 
 If[(choice == 1),  
  aa=Input[StringJoin[idString,"Service Mean"]]; 
  enterServer[]; 
   
  AVG[servers,numSame]=N[aa]; 
  VAR[servers,numSame]=N[aa^2]; 
  CV[servers,numSame]=Sqrt[VAR[servers,numSame]]/AVG[servers,numSame]; 
  SQCV[servers,numSame]=CV[servers,numSame]^2; 
   
  (* store which distibution and the parameters *) 
  dist1="Service Dist is Exponential ("; 
  dist2=ToString[aa]; 
  dist3=")"; 
  dD[servers,numSame] = StringJoin[dist1,dist2, dist3]; 
 ] 
 
 (* Service Distribution is Lognormal *) 
 If[(choice == 2),  
  aa=Input[StringJoin[idString,"Mu"]]; 
  bb=Input[StringJoin[idString,"Standard Deviation"]]; 
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  bb=bb^2; 
  enterServer[]; 
   
  AVG[servers,numSame]=N[aa]; 
  VAR[servers,numSame]=N[bb]; 
  CV[servers,numSame]=Sqrt[VAR[servers,numSame]]/AVG[servers,numSame]; 
  SQCV[servers,numSame]=CV[servers,numSame]^2; 
   
  (* store which distibution and the parameters *) 
  c=", "; 
  dist1="Service Dist is Lognormal ("; 
  dist2=ToString[aa]; 
  dist3=ToString[Sqrt[bb]]; 
  dist4=")"; 
  dD[servers,numSame] = StringJoin[dist1,dist2, c, dist3,dist4]; 
 ] 
 
 (* Service Distribution is Normal *) 
 If[(choice == 3),  
  aa=Input[StringJoin[idString,"Mu"]]; 
  bb=Input[StringJoin[idString,"Standard Deviation"]]; 
  bb=bb^2; 
  enterServer[]; 
     
  AVG[servers,numSame]=N[aa]; 
  VAR[servers,numSame]=N[bb]; 
  CV[servers,numSame]=Sqrt[VAR[servers,numSame]]/AVG[servers,numSame]; 
  SQCV[servers,numSame]=CV[servers,numSame]^2; 
   
  (* store which distibution and the parameters *) 
  c=", "; 
  dist1="Service Dist is Normal ("; 
  dist2=ToString[aa]; 
  dist3=ToString[Sqrt[bb]]; 
  dist4=")"; 
  dD[servers,numSame] = StringJoin[dist1,dist2, c, dist3,dist4]; 
 ] 
 
 (* Service Distribution is Triangular *) 
 If[(choice == 4),  
  aa=Input[StringJoin[idString,"Minimium"]]; 
  bb=Input[StringJoin[idString,"Mode"]]; 
  cc=Input[StringJoin[idString,"Maximium"]]; 
  enterServer[]; 
   
  AVG[servers,numSame]=N[(aa+bb+cc)/3]; 
  VAR[servers,numSame]=N[(aa^2+bb^2+cc^2-(aa*bb)-(aa*cc)-(bb*cc))/18]; 
  CV[servers,numSame]=Sqrt[VAR[servers,numSame]]/AVG[servers,numSame]; 
  SQCV[servers,numSame]=CV[servers,numSame]^2; 
   
  (* store which distibution and the parameters *) 
  c=", "; 
  dist1="Service Dist is Triag ("; 
  dist2=ToString[aa]; 
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  dist3=ToString[bb]; 
  dist4=ToString[cc]; 
  dist5=")"; 
  dD[servers,numSame] = StringJoin[dist1,dist2,c,dist3,c,dist4,dist5]; 
 ] 
 
 (* Service Distribution is Uniform *) 
 If[(choice == 5),  
  aa=Input[StringJoin[idString,"Minimium"]]; 
  bb=Input[StringJoin[idString,"Maximium"]]; 
  enterServer[]; 
   
  AVG[servers,numSame]=N[(aa+bb)/2]; 
  VAR[servers,numSame]=N[((bb-aa)^2)/12]; 
  CV[servers,numSame]=Sqrt[VAR[servers,numSame]]/AVG[servers,numSame]; 
  SQCV[servers,numSame]=CV[servers,numSame]^2; 
   
  (* store which distibution and the parameters *) 
  c=", "; 
  dist1="Service Dist is Uniform ("; 
  dist2=ToString[aa]; 
  dist3=ToString[bb]; 
  dist4=")"; 
  dD[servers,numSame] = StringJoin[dist1,dist2,c, dist3,dist4]; 
 ] 
  
 (* Store which resource this is *) 
 Unprotect[rNum[servers,numSame]]; 
 rNum[servers,numSame] = i; 
  
 Clear[choice,dist1,dist2,dist3,dist4,dist5,aa,bb,cc]; 
 Clear[temp1, temp2, temp3, idString]; 
  
 (* Compute rho *) 
 temp1=(L*AVG[servers,numSame])/servers; 
  
 (* Test whether rho is in range *) 
 If[((temp1 >= 1)||(temp1 < 0)), 
      Print[" "]; 
      Print["<<<<<    ERROR: Resource #",i," >>>>> "]; 
      Print["<<<<<     Rho >=1 or Rho < 1   >>>>>>"]; 
      Abort[];  
 ] 
 ] 
] 
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Step1Generate[]:= 
Module[{}, 
 
 (* Initialize default values on number of each type of server *) 
 (* Note limit of 25 servers -> 25 Aggregation resources *) 
 maxServers = 0; 
 For[i=1, i<=25, i++, 
  numServer[i] = 0; 
 ] 
 
 (* Arrival rate is set to a constant of 100 *) 
 Unprotect[TBA]; 
 TBA = 100; 
 L = 1/TBA; 
 
 (* Read in, compute, and store information for each resource *) 
 For[i=1, i <= numQue, i++,  
 
 (* Set Value of Rho *)  
 rho = Random[UniformDistribution[.20,.80]]; 
  
 (* Select a service distribution *) 
 If[(typeCase == 1),  
  choice = 1, 
  choice = Random[DiscreteUniformDistribution[5]] 
 ] 
   
 (* Service Distribution is Exponential *) 
 If[(choice == 1),  
  enterGenServer[]; 
   
  (* compute mean using rho *) 
  aa=rho*servers*TBA; 
  AVG[servers,numSame]=N[aa]; 
  VAR[servers,numSame]=N[aa^2]; 
  CV[servers,numSame]=Sqrt[VAR[servers,numSame]]/AVG[servers,numSame]; 
  SQCV[servers,numSame]=CV[servers,numSame]^2; 
   
  (* store which distibution and the parameters *) 
  dist1="Service Dist is Exponential ("; 
  dist2=ToString[aa]; 
  dist3=")"; 
  dD[servers,numSame] = StringJoin[dist1,dist2, dist3]; 
 ] 
 
 
 (* Service Distribution is Lognormal *) 
 If[(choice == 2),  
  enterGenServer[]; 
   
  (* compute mean using rho *) 
  aa=N[rho*servers*TBA]; 
   
  (* compute sd using a generated coefficient of variation *) 
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  bb=(Random[UniformDistribution[.01,.10]])*aa; 
  bb=N[bb^2]; 
  
  AVG[servers,numSame]=N[aa]; 
  VAR[servers,numSame]=N[bb]; 
  CV[servers,numSame]=Sqrt[VAR[servers,numSame]]/AVG[servers,numSame]; 
  SQCV[servers,numSame]=CV[servers,numSame]^2; 
   
  (* store which distibution and the parameters *) 
  c=", "; 
  dist1="Service Dist is Lognormal ("; 
  dist2=ToString[aa]; 
  dist3=ToString[Sqrt[bb]]; 
  dist4=")"; 
  dD[servers,numSame] = StringJoin[dist1,dist2, c, dist3,dist4]; 
 ] 
 
 (* Service Distribution is Normal *) 
 If[(choice == 3),  
           enterGenServer[]; 
   
  (* compute mean using rho *) 
  aa=rho*servers*TBA; 
   
  (* compute sd using a generated coefficient of variation *) 
  bb=(Random[UniformDistribution[.01,.10]])*aa; 
  bb=bb^2; 
     
  AVG[servers,numSame]=N[aa]; 
  VAR[servers,numSame]=N[bb]; 
  CV[servers,numSame]=Sqrt[VAR[servers,numSame]]/AVG[servers,numSame]; 
  SQCV[servers,numSame]=CV[servers,numSame]^2; 
   
  (* store which distibution and the parameters *) 
  c=", "; 
  dist1="Service Dist is Normal ("; 
  dist2=ToString[aa]; 
  dist3=ToString[Sqrt[bb]]; 
  dist4=")"; 
  dD[servers,numSame] = StringJoin[dist1,dist2, c, dist3,dist4]; 
 ] 
 
 (* Service Distribution is Triangular *) 
 If[(choice == 4),  
  
  enterGenServer[]; 
   
  (* Compute mean using rho *) 
  Unprotect[mean]; 
  mean=rho*servers*TBA; 
   
  pass = 0; 
   
  For[qq=1,pass == 0, qq++, 
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                (* Generate maximum *) 
                cc = Random[UniformDistribution[0,TBA]]; 
                 
       (* Generate mode *) 
       bb = Random[UniformDistribution[0, cc]]; 
        
       (* Generate minimium *) 
       aa = Random[UniformDistribution[0, bb]]; 
        
       (* Compute Mean value for this parameter set *) 
       Unprotect[temp]; 
       temp = (aa+bb+cc)/3; 
      
       (* Quit for if the mean of this parameter set is less than req/ given rho *) 
       If[(temp <= mean)), pass = 1] 
  ] 
   
  Unprotect[AVG[servers,numSame]];   
  AVG[servers,numSame]=N[(aa+bb+cc)/3]; 
  VAR[servers,numSame]=N[(aa^2+bb^2+cc^2-(aa*bb)-(aa*cc)-(bb*cc))/18]; 
  CV[servers,numSame]=Sqrt[VAR[servers,numSame]]/AVG[servers,numSame]; 
  SQCV[servers,numSame]=CV[servers,numSame]^2; 
   
  (* store which distibution and the parameters *) 
  c=", "; 
  dist1="Service Dist is Triag ("; 
  dist2=ToString[aa]; 
  dist3=ToString[bb]; 
  dist4=ToString[cc]; 
  dist5=")"; 
  dD[servers,numSame] = StringJoin[dist1,dist2,c,dist3,c,dist4,dist5]; 
 ] 
 
 (* Service Distribution is Uniform *) 
 If[(choice == 5),  
  
  enterGenServer[]; 
   
  (* Compute mean using rho *) 
  mean=N[rho*servers*TBA]; 
   
  (* Compute SD using a generated coefficient of variation *) 
  sd=N[(Random[UniformDistribution[.01,.10]])*mean]; 
   
  (* Compute min and max ranging values from the mean and sd *) 
  aa = N[mean - (Sqrt[3]*sd)]; 
  bb = N[mean + (Sqrt[3]*sd)]; 
    
  AVG[servers,numSame]=N[(aa+bb)/2]; 
  VAR[servers,numSame]=N[((bb-aa)^2)/12]; 
  CV[servers,numSame]=Sqrt[VAR[servers,numSame]]/AVG[servers,numSame]; 
  SQCV[servers,numSame]=CV[servers,numSame]^2; 
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  (* store which distibution and the parameters *) 
  c=", "; 
  dist1="Service Dist is Uniform ("; 
  dist2=ToString[aa]; 
  dist3=ToString[bb]; 
  dist4=")"; 
  dD[servers,numSame] = StringJoin[dist1,dist2,c, dist3,dist4]; 
 ] 
  
 (* Store which resource this is *) 
 Unprotect[rNum[servers,numSame]]; 
 rNum[servers,numSame] = i; 
   
 Clear[choice,dist1,dist2,dist3,dist4,dist5,aa,bb,cc]; 
 Clear[temp1, temp2, temp3, idString]; 
  
 (* Compute rho *) 
 Unprotect[temp1]; 
 temp1=(L*AVG[servers,numSame])/servers; 
 
 (* Test whether rho is in range *) 
 If[((temp1 >= 1)||(temp1 < 0)), 
      Print[" "]; 
      Print["<<<<<    ERROR: Resource #",i," >>>>> "]; 
      Print["<<<<<     Rho >=1 or Rho < 1   >>>>>>"]; 
      Abort[];  
 ] 
 ] 
] 
 
 
 
 



 

20 

Step2[]:= 
Module[{}, 
 
 For[i=1, i <= maxServers, i++, 
  TWAR[i] = 0; 
   
  (* Find cycle time for each of the resources *) 
  For[j=1, j <= numServer[i], j++, 
   (* Call cycle time procedure *) 
   MGSCycleTime[i,j]; 
 
   (* Queue waiting time *) 
   WTQ[i,j] = wqMGS; 
 
   (* Cycle time *) 
   WT[i,j] = wMGS; 
 
   (* Compute total aggregate resource cycle time *) 
   TWAR[i] = TWAR[i]+WT[i,j]; 
    
   (* Set the arrival avariability to TBA since Poisson arrival *) 
   VA[i,j] = TBA^2; 
    
   Clear[wqMGS,wMGS]; 
  ] 
   
  If[(numServer[i] > 0), 
      (* Compute average aggregate resource cycle time *) 
      Unprotect[AAR[i]]; 
     temp = numServer[i]; 
     AAR[i] = TWAR[i]/temp; 
          ] 
 ] 
] 
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Step2Single[]:= 
Module[{}, 
 
 (* Compute first resource with MGS formulas *) 
 MGSCycleTime[1,1]; 
  
 (* Queue waiting time *) 
 WTQ[1,1] = wqMGS; 
 
 (* Cycle time *) 
 WT[1,1] = wMGS; 
 
 (* Compute total aggregate resource cycle time *) 
 TWAR[1] = WT[1,1]; 
 arrivalVar = TBA^2; 
 VA[1,1]=arrivalVar; 
 Clear[wqMGS,wMGS]; 
 
 (* Find cycle time using G/G/1 for each of the resources *) 
 For[j=2, j <= numServer[1], j++, 
 
  (* Call cycle time procedure *) 
  GG1CycleTime[j,WTQ[1,(j-1)]]; 
  
  (* Queue waiting time *) 
  WTQ[1,j] = wqGG1; 
 
  (* Cycle time *) 
  WT[1,j] = wGG1; 
 
  (* Compute total aggregate resource cycle time *) 
  TWAR[1] = TWAR[1]+WT[1,j]; 
 
  Clear[wqGG1,wGG1]; 
 ] 
  
 (* Compute average aggregate resource cycle time *) 
 Unprotect[AAR[1]]; 
 AAR[1]=TWAR[1]/numServer[1]; 
] 
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Step3[]:= 
Module[{}, 
 
 (* Estimate the service time coefficient of variation for each AR *) 
 For [i=1, i <= maxServers, i++, 
     estSQCV[i] = 0;  
     If[(numServer[i] > 0), 
  For [j=1, j<= numServer[i], j++, 
   estSQCV[i] =estSQCV[i] + ((WT[i,j] / TWAR[i])*SQCV[i,j]); 
  ] 
      ] 
 ]  
 
 (* Compute service mean for each aggregation resource *) 
 For[i=1, i<=maxServers, i++, 
  
           (* No need to solve if the AR consists of only 1 resource *) 
  If[(numServer[i] == 1), 
   MAR[i] = AVG[i,1]; 
  ] 
   
  (* Solve for mean value *) 
  If[(numServer[i] > 1), 
   MGSServiceMean[i,estSQCV[i],AAR[i]]; 
   MAR[i] = meanVal; 
  ] 
  Clear[meanVal]; 
 ] 
] 
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Step4[]:= 
Module[{att}, 
 
  
(* Find service means for each aggregation block *) 
For [i=1, i <= maxServers, i++, 
 
  If[(numServer[i] > 0), 
   
    (* Copy original values and save them *) 
    For[j=1, j<=numServer[i],j++, 
         where[i, j] = j; 
         origAVG[i,j]=AVG[i,j]; 
         origSQCV[i,j]=SQCV[i,j]; 
         origWT[i,j]=WT[i,j]; 
    ]; 
    
   For[att=1, att<=12, att++, 
       
       For[j=1,j<=numServer[i],j++, 
            where[j]=j; 
            AVG[i,j] = origAVG[i,j]; 
            SQCV[i,j] = origSQCV[i,j]; 
            WT[i,j] = origWT[i,j]; 
       ]; 
        
       (* att = 1 -> solve as is, distweight 1 
            att = 2 -> sort alternating mean, high-low, use distweight 1 
            att = 3 -> sort by highest mean, use distweight 1 
            att = 4 -> sort by lowest mean, use distweight 1 
            att = 5 -> sort by largest cycle time, use distrweight 1 
            att = 6 -> sort by smallest cycle time, use distweight 1 
            att = 7 -> solve as is, distweight 2 
            att = 8 -> sort alternating mean, high-low, use distweight 2 
            att = 9 -> sort by highest mean, use distweight 2 
            att = 10 -> sort by lowest mean, use distweight 2 
            att = 11 -> sort by largest cycle time, use distrweight 2 
            att = 12 -> sort by smallest cycle time, use distweight  
        *) 
         
        If[((att != 1)&&(att != 7)), Swap[i,att]]; 
              
        If[((att == 2)||(att == 8)),  HighLow[i]]; 
         
        For[j=1, j<= numServer[i], j++, 
      tAVG[i,j]=AVG[i,j];  
      tSQCV[i,j]=SQCV[i,j]; 
      tWT[i,j]=WT[i,j]; 
      DWT[i,j]=0; 
        ]; 
      
     
        (* Set global variables for recursive algorithm *) 
        Unprotect[meanAR]; 
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        meanAR = MAR[i]; 
        Unprotect[sumAR]; 
        sumAR = 1; 
 
        (* Call the recursive algorithm - will determine AR #i's weights *) 
        If[(att <= 6),  
             DistWeight1[i, 1, numServer[i], numServer[i], meanAR, sumAR], 
             DistWeight2[i,1,numServer[i]]; 
        ]; 
              
        Unprotect[fail]; 
        fail = 0; 
        For [j=1, j<= numServer[i],j++, 
             If[(DWT[i,j] < 0), fail = 1]; 
        ]; 
         
        (* Passes - YEA! *) 
        If[(fail == 0), att = 13]; 
     ]; 
]; 
]; 
]; 
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Swap[i_,type_]:= 
Module[{Temp1}, 
(*Print["Enter Swap"];*)  
       
      If[((type != 1)||(type != 7)), 
        (* Perform a selection sort and swap values - original values are lost *)      
         For[j=numServer[i], j >= 2, j--, 
             m = 1;  
 
    For[k=2, k<=j, k++, 
      
      (* Sort mean largest to smallest *) 
      If[((type == 2)||(type == 3)||(type == 8)||(type ==9)), 
           If[(AVG[i,m] > AVG[i,k]),  m = k]; 
          ]; 
         
          (* Sort mean smallest to largest *) 
          If[((type == 4)||(type == 10)), 
           If[(AVG[i,m] < AVG[i,k]),  m = k]; 
          ]; 
           
          (* Sort weight largest to smallest *) 
          If[((type == 5)||(type == 11)), 
           If[(WT[i,m] > WT[i,k]),  m = k]; 
          ]; 
         
          (* Sort weight smallest to largest *) 
          If[((type == 6)||(type == 12)), 
           If[(WT[i,m] < WT[i,k]),  m = k]; 
          ];  
               
    Unprotect[Temp1]; 
    Temp1=WT[i,m]; 
    WT[i,m] = WT[i,j]; 
    WT[i,j] = Temp1; 
 
    Temp1=AVG[i,m]; 
    AVG[i,m ] = AVG[i,j]; 
    AVG[i,j] = Temp1; 
        
    Temp1=SQCV[i,m]; 
    SQCV[i,m ] = SQCV[i,j]; 
    SQCV[i,j] = Temp1; 
         
    Temp1=rNum[i,m]; 
    rNum[i,m] = rNum[i,j]; 
    rNum[i,j] = Temp1; 
       
    Temp1=where[i,m]; 
             where[i,m] = where[i,j]; 
    where[i,j] = Temp1; 
   ] 
         ] 
   ] 
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] 
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UserMain[]:= 
Module[{}, 
  
 Step1[]; 
 If[(singleCheck == 0), 
  Step2[], 
  Step2Single[]; 
  ] 
 
 Step3[]; 
 FPrint[]; 
 Step4[]; 
 APrint[]; 
] 
 



 

 

 

 

 

 

 

 

 

APPENDIX C 

OUTPUT OF THE AGGREGATION PROGRAM FOR THE MPD EXAMPLE 



 

2 

Flow Line Description....... 
  
Resource #1 of the Flow Line 
  Arrival Mean is 100 
  Arrival Rate is 0.01 
  Arrival Variability is 10000 
  Arrival COV is 1. 
  Arrival SQCOV is 1. 
  Number of Parallel Resources is 1 
  Service Dist is Uniform (75, 85) 
  Service Mean is 80. 
  Service Variability is 8.33333 
  Service SD is 2.88675 
  Service Time is COV is 0.0360844 
  Service Time SQCOV is 0.00130208 
  Resource Utilization is 0.8 
  Est. Queue Waiting Time is 160.208 
  Est. Resource Cycle Time is 240.208 
  
Resource #2 of the Flow Line 
  Arrival Mean is 100 
  Arrival Rate is 0.01 
  Arrival Variability is 10000 
  Arrival COV is 1. 
  Arrival SQCOV is 1. 
  Number of Parallel Resources is 2 
  Service Dist is Normal (130, 15) 
  Service Mean is 130. 
  Service Variability is 225. 
  Service SD is 15. 
  Service Time is COV is 0.115385 
  Service Time SQCOV is 0.0133136 
  Resource Utilization is 0.65 
  Est. Queue Waiting Time is 48.1872 
  Est. Resource Cycle Time is 178.187 
  
Resource #3 of the Flow Line 
  Arrival Mean is 100 
  Arrival Rate is 0.01 
  Arrival Variability is 10000 
  Arrival COV is 1. 
  Arrival SQCOV is 1. 
  Number of Parallel Resources is 2 
  Service Dist is Triag (120, 150, 180) 
  Service Mean is 150. 
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  Service Variability is 150. 
  Service SD is 12.2474 
  Service Time is COV is 0.0816497 
  Service Time SQCOV is 0.00666667 
  Resource Utilization is 0.75 
  Est. Queue Waiting Time is 97.0714 
  Est. Resource Cycle Time is 247.071 
  
Resource #4 of the Flow Line 
  Arrival Mean is 100 
  Arrival Rate is 0.01 
  Arrival Variability is 10000 
  Arrival COV is 1. 
  Arrival SQCOV is 1. 
  Number of Parallel Resources is 4 
  Service Dist is Normal (320, 25) 
  Service Mean is 320. 
  Service Variability is 625. 
  Service SD is 25. 
  Service Time is COV is 0.078125 
  Service Time SQCOV is 0.00610352 
  Resource Utilization is 0.8 
  Est. Queue Waiting Time is 120.015 
  Est. Resource Cycle Time is 440.015 
  
Resource #5 of the Flow Line 
  Arrival Mean is 100 
  Arrival Rate is 0.01 
  Arrival Variability is 10000 
  Arrival COV is 1. 
  Arrival SQCOV is 1. 
  Number of Parallel Resources is 1 
  Service Dist is Triag (32, 43, 60) 
  Service Mean is 45. 
  Service Variability is 33.1667 
  Service SD is 5.75905 
  Service Time is COV is 0.127979 
  Service Time SQCOV is 0.0163786 
  Resource Utilization is 0.45 
  Est. Queue Waiting Time is 18.7106 
  Est. Resource Cycle Time is 63.7106 
  
Resource #6 of the Flow Line 
  Arrival Mean is 100 
  Arrival Rate is 0.01 
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  Arrival Variability is 10000 
  Arrival COV is 1. 
  Arrival SQCOV is 1. 
  Number of Parallel Resources is 1 
  Service Dist is Uniform (64, 80) 
  Service Mean is 72. 
  Service Variability is 21.3333 
  Service SD is 4.6188 
  Service Time is COV is 0.06415 
  Service Time SQCOV is 0.00411523 
  Resource Utilization is 0.72 
  Est. Queue Waiting Time is 92.9524 
  Est. Resource Cycle Time is 164.952 
   
Aggregate Flow Line Description... 
  
Aggregate Resource #1 
  Arrival Mean is 100 
  Arrival Rate is 0.01 
  Total AR Cycle Time is 468.871 
  Average AR Cycle Time is 156.29 
  Est. Service Time SQCOV is 0.00434038 
  Est. AR Service Mean is 70.6877 
  Est. AR Service Rate is 0.0141467 
  Distribution Weights for AR #1 
    Weights of Resource #1 is 0.465724 
    Weights of Resource #5 is 0.186597 
    Weights of Resource #6 is 0.347679 
  
Aggregate Resource #2 
  Arrival Mean is 100 
  Arrival Rate is 0.01 
  Total AR Cycle Time is 425.259 
  Average AR Cycle Time is 212.629 
  Est. Service Time SQCOV is 0.0094518 
  Est. AR Service Mean is 141.373 
  Est. AR Service Rate is 0.0070735 
  Distribution Weights for AR #2 
    Weights of Resource #2 is 0.431361 
    Weights of Resource #3 is 0.568639 
  
Aggregate Resource #4 
  Arrival Mean is 100 
  Arrival Rate is 0.01 
  Total AR Cycle Time is 440.015 
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  Average AR Cycle Time is 440.015 
  Est. Service Time SQCOV is 0.00610352 
  Est. AR Service Mean is 320. 
  Est. AR Service Rate is 0.003125 
  Distribution Weights for AR #4 
    Weights of Resource #4 is 1 
 
 



 

 

 

 

 

 

 

 

 

APPENDIX D 

OUTPUT OF THE AGGREGATION PROGRAM FOR  

A SINGLE SERVER FLOW LINE 



 

2 

Flow Line Description....... 
  
Resource #1 of the Flow Line 
  Arrival Mean is 100 
  Arrival Rate is 0.01 
  Arrival Variability is 10000 
  Arrival COV is 1. 
  Arrival SQCOV is 1. 
  Number of Parallel Resources is 1 
  Service Dist is Uniform (75, 85) 
  Service Mean is 80. 
  Service Variability is 8.33333 
  Service SD is 2.88675 
  Service Time is COV is 0.0360844 
  Service Time SQCOV is 0.00130208 
  Resource Utilization is 0.8 
  Est. Queue Waiting Time is 160.208 
  Est. Resource Cycle Time is 240.208 
  
Resource #2 of the Flow Line 
  Arrival Mean is 100 
  Arrival Rate is 0.01 
  Arrival Variability is 3608.33 
  Arrival COV is 0.600694 
  Arrival SQCOV is 0.360833 
  Number of Parallel Resources is 1 
  Service Dist is Triag (32, 43, 60) 
  Service Mean is 45. 
  Service Variability is 33.1667 
  Service SD is 5.75905 
  Service Time is COV is 0.127979 
  Service Time SQCOV is 0.0163786 
  Resource Utilization is 0.45 
  Est. Queue Waiting Time is 2.87319 
  Est. Resource Cycle Time is 47.8732 
  
Resource #3 of the Flow Line 
  Arrival Mean is 100 
  Arrival Rate is 0.01 
  Arrival Variability is 3358.62 
  Arrival COV is 0.579536 
  Arrival SQCOV is 0.335862 
  Number of Parallel Resources is 1 
  Service Dist is Uniform (64, 80) 
  Service Mean is 72. 



 

3 

  Service Variability is 21.3333 
  Service SD is 4.6188 
  Service Time is COV is 0.06415 
  Service Time SQCOV is 0.00411523 
  Resource Utilization is 0.72 
  Est. Queue Waiting Time is 22.4827 
  Est. Resource Cycle Time is 94.4827 
   
Aggregate Flow Line Description... 
  
Aggregate Resource #1 
  Arrival Mean is 100 
  Arrival Rate is 0.01 
  Total AR Cycle Time is 382.564 
  Average AR Cycle Time is 127.521 
  Est. Service Time SQCOV is 0.00388349 
  Est. AR Service Mean is 65.4155 
  Est. AR Service Rate is 0.0152869 
  Distribution Weights for AR #1 
    Weights of Resource #1 is 0.0344865 
    Weights of Resource #2 is 0.254089 
    Weights of Resource #3 is 0.711425 
 
 



 

 

 

 

 

 

 

 

 

 

 

APPENDIX E 

EXPONENTIAL SERVER TEST CASES 



 

 

2 Type of Test:  Exponential Servers       Test Case Number: 1 
  

Resource 
# 

# Servers Distribution Mean Weight (AR) 

1 7 EX(641.524) 641.524 .851779 (7) 
2 6 EX(310.426) 310.426 .350778 (6) 
3 6 EX(103.1111) 103.1111 .319653 (6) 
4 5 EX(183.41) 183.41 .254892 (5) 
5 1 EX(41.7156) 41.7156 .321298 (1) 
6 4 EX(266.471) 266.471 .594674 (4) 
7 5 EX(161.954) 161.954 .251310 (5) 
8 5 EX(75.0584) 75.0584 .246956 (5) 
9 6 EX(127.46) 127.46 .329568 (6) 

10 7 EX(253.901) 253.901 .148221 (7) 
11 4 EX(168.712) 168.712 .405326 (4) 
12 2 EX(140.706) 140.706 1 (2) 
13 8 EX(162.162) 162.162 1 (8) 
14 5 EX(60.221) 60.221 .246843 (5) 
15 1 EX(40.5197) 40.5197 .314838 (1) 
16 1 EX(48.5339) 48.5339 .363864 

 
 
  Aggregate Simulation Results    Steady-State Result 

 
Number of Runs: 

 
30 

  

 
Average Cycle Time: 

 
3998.93 

 
Average Cycle Time:  

 
3964.191 

 
Variance: 

 
825.651 

  

 
Standard Deviation: 

 
28.7341 

  

 
Relative Error:  .8763% 
 



 

 

3 Type of Test:  Exponential Servers       Test Case Number: 2 
  

Resource 
# 

# Servers Distribution Mean Weight (AR) 

1 4 E(188.996) 188.996 1 (4) 
2 3 E(83.9377) 83.9377 .232116 (3) 
3 3 E(99.1005) 99.1005 .328082 (3) 
4 3 E(185.716) 185.716 .328082 (3) 
5 8 E(460.681) 460.681 1 (8) 
6 3 E(43.833) 43.833 .200618 (3) 
7 5 E(32.9265) 32.9265 .0926063 (5) 
8 2 E(146.099) 146.099 .37258 (2) 
9 2 E(128.224) 128.224 .28291 (2) 

10 5 E(464.574) 464.574 .907394 (5) 
11 2 E(141.492) 141.492 .34451 (2) 

 
  
  Aggregate Simulation Results      Steady-State Result 

 
Number of Runs: 

 
30 

  

 
Average Cycle Time: 

 
3631.2 

 
Average Cycle Time:  

 
3558.436 

 
Variance: 

 
1142.99 

  

 
Standard Deviation: 

 
33.8082 

  

 
Relative Error:  2.0448% 
 



 

 

4 Type of Test:  Exponential Servers       Test Case Number: 3 
  

Resource 
# 

# Servers Distribution Mean Weight (AR) 

1 3 E(58.8783) 58.8783 .447214 (3) 
2 8 E(104.824) 104.824 .200541 (8) 
3 8 E(679.662) 679.662 .512008 (8) 
4 3 E(143.636) 143.636 .552786 (3) 
5 1 E(74.4635) 74.4635 .524694 (1) 
6 5 E(435.68) 435.68 .629902 (5) 
7 4 E(308.982) 308.982 .143820 (4) 
8 4 E(27.2446) 27.2446 .0580466 (4) 
9 4 E(197.227) 197.227 .138475 (4) 

10 2 E(130.989) 130.989 .151827 (2) 
11 8 E(186.296) 186.296 .287451 (8) 
12 6 E(181.325) 181.325 .50157 (6) 
13 5 E(387.702) 387.702 .370098 (5) 
14 2 E(116.68) 116.68 .127278 (2) 
15 2 E(185.617) 185.617 .720896 (2) 
16 4 E(349.964) 349.964 .503261 (4) 
17 1 E(71.81) 71.81 .475306 (1) 
18 6 E(134.895) 134.895 .49843 (6) 
19 4 E(111.034) 111.034 .156398 (4) 
20 7 E(92.1506) 92.1506 1 (7) 

 
   
  Aggregate Simulation Results      Steady-State Result 

  
Number of Runs: 

 
30 

  

 
Average Cycle Time: 

 
7501.87 

 
Average Cycle Time:  

 
7402.9133 

 
Variance: 

 
3508.6 

  

 
Standard Deviation: 

 
59.2335 

  

 
Relative Error:  1.3367% 
 



 

 

5 Type of Test:  Exponential Servers       Test Case Number: 4 
  

Resource 
# 

# Servers Distribution Mean Weight (AR) 

1 7 E(164.999) 164.999 1 (1) 
2 8 E(392.161) 192.161 .508823 (8) 
3 5 E(171.873) 171.873 .502199 (5) 
4 8 E(290.42) 290.42 .491177 (8) 
5 4 E(220.934) 220.934 1 (4) 
6 5 E(156.27) 156.27 .497801 (5) 

 
  
  Aggregate Simulation Results      Steady-State Result 

 
Number of Runs: 

 
30 

  

 
Average Cycle Time: 

 
1433.77 

 
Average Cycle Time:  

 
1433.636 

 
Variance: 

 
4.11609 

  

 
Standard Deviation: 

 
2.02882 

  

 
Relative Error:  .0093% 
 



 

 

6 Type of Test:  Exponential Servers       Test Case Number: 5 
  

Resource 
# 

# Servers Distribution Mean Weight (AR) 

1 8 E(613.651) 613.651 .612957 (8) 
2 6 E(284.327) 284.327 .177185 (6) 
3 5 E(428.332) 428.332 1 (5) 
4 3 E(168.152) 168.152 .257442 (3) 
5 1 E(68.1015) 68.1015 .487263 (1) 
6 1 E(42.53) 42.53 .270454 (1) 
7 1 E(35.8477) 35.8477 .242283 (1) 
8 8 E(403.528) 403.528 .387043 (8) 
9 3 E(85.1781) 85.1781 .188898 (3) 

10 4 E(304.81) 304.81 .511806 (4) 
11 7 E(536.997) 536.997 1 (7) 
12 4 E(175.376) 175.376 .256852 (4) 
13 6 E(529.389) 529.389 .645171 (6) 
14 6 E(191.892) 191.892 .177644 (6) 
15 3 E(200.374) 200.374 .332109 (3) 
16 3 E(136.342) 136.342 .221552 (3) 
17 4 E(63.6065) 63.6065 .231342 (4) 
18 2 E(137.432) 137.432 1 (2) 

 
  
  Aggregate Simulation Results      Steady-State Result 

 
Number of Runs: 

 
30 

  

 
Average Cycle Time: 

 
6312.8 

 
Average Cycle Time:  

 
6255.320 

 
Variance: 

 
696.924 

  

 
Standard Deviation: 

 
26.3993 

  

 
Relative Error:  .9189% 
 



 

 

7 Type of Test:  Exponential Servers       Test Case Number: 6 
  

Resource 
# 

# Servers Distribution Mean Weight (AR) 

1 1 E(40.4746) 40.4746 .601017 (1) 
2 6 E(302.213) 302.213 .520419 (6) 
3 1 E(10.3324) 10.3324 .398983 (1) 
4 8 E(539.917) 539.917 .306553 (8) 
5 2 E(21.0607) 21.0607 1 (2) 
6 8 E(645.478) 645.478 .463343 (8) 
7 7 E(76.2595) 76.2595 1 (7) 
8 6 E(182.238) 182.238 .479581 (6) 
9 8 E(126.784) 126.784 .230103 (8) 

10 5 E(311.865) 311.865 1 (5) 
11 4 E(265.834) 265.834 1 (4) 

 
  
  Aggregate Simulation Results      Steady-State Result 

 
Number of Runs: 

 
30 

  

 
Average Cycle Time: 

 
2946.87 

 
Average Cycle Time:  

 
2926.512 

 
Variance: 

 
78.7402 

  

 
Standard Deviation: 

 
8.87357 

  

 
Relative Error:  .6956% 
 



 

 

8 Type of Test:  Exponential Servers       Test Case Number: 7 
  

Resource 
# 

# Servers Distribution Mean Weight (AR) 

1 7 E(470.654) 470.654 .558678 (7) 
2 6 E(220.377) 220.377 .336040 (6) 
3 4 E(105.943) 105.943 .09910831 (4) 
4 3 E(109.351) 109.351 .347358 (3) 
5 8 E(649.843) 649.843 .418376 (8) 
6 3 E(70.1249) 70.1249 .322024 (3) 
7 5 E(348.024) 348.024 .593461 (5) 
8 8 E(694.79) 694.79 .581624 (8) 
9 1 E(46.1787) 46.1787 .181615 (1) 

10 6 E(162.55) 162.55 .330655 (6) 
11 2 E(130.033) 130.033 .371503 (2) 
12 5 E(232.932) 232.932 .406539 (5) 
13 2 E(135.876) 135.876 .403708 (2) 
14 6 E(191.226) 191.226 .333305 (6) 
15 4 E(359.396) 359.396 .595162 (4) 
16 4 E(291.785) 291.785 .330617 (3) 
17 3 E(83.759) 83.759 .330617 (3) 
18 2 E(78.1607) 78.1607 .22479 (2) 
19 1 E(88.0561) 88.0561 .818355 (1) 
20 7 E(335.127) 335.127 .441322 (7) 
21 4 E(23.584) 23.854 .10113 (4) 

 
  
  Aggregate Simulation Results      Steady-State Result 

 
Number of Runs: 

 
30 

  

 
Average Cycle Time: 

 
7468.73 

 
Average Cycle Time:  

 
7349.53 

 
Variance: 

 
2320.96 

  

 
Standard Deviation: 

 
48.1764 

  

 
Relative Error:  1.6219% 
 



 

 

9 Type of Test:  Exponential Servers       Test Case Number: 8 
  

Resource 
# 

# Servers Distribution Mean Weight (AR) 

1 7 E(495.698) 495.698 .182187 (7) 
2 3 E(117.996) 117.996 .177563 (3) 
3 7 E(140.256) 140.256 .128570 (7) 
4 3 E(230.082) 230.082 .406138 (3) 
5 7 E(334.679) 334.679 .139292 (7) 
6 2 E(123.768) 123.768 1 (2) 
7 8 E(312.374) 312.374 .499315 (8) 
8 6 E(101.246) 101.246 .261468 (6) 
9 4 E(367.38) 367.38 .893172 (4) 

10 7 E(549.771) 549.771 .252735 (7) 
11 3 E(186.345) 186.345 .255546 (3) 
12 3 E(72.7947) 72.7947 .161753 (3) 
13 7 E(161.871) 161.871 .147352 (7) 
14 6 E(410.749) 410.749 .371133 (6) 
15 8 E(323.68) 323.68 .500685 (8) 
16 6 E(367.965) 367.965 .367399 (6) 
17 5 E(178.907) 178.907 1 (5) 
18 4 E(69.1653) 69.1653 .106828 (4) 
19 7 E(275.838) 275.838 .149863 (7) 
20 1 E(36.9879) 36.9879 1 (1) 

 
  
  Aggregate Simulation Results      Steady-State Result 

 
Number of Runs: 

 
30 

  

 
Average Cycle Time: 

 
7501.87 

 
Average Cycle Time:  

 
7402.9133 

 
Variance: 

 
3508.6 

  

 
Standard Deviation: 

 
59.2335 

  

 
Relative Error:  1.3367% 
 



 

 

10 Type of Test:  Exponential Servers       Test Case Number: 9 
  

Resource 
# 

# Servers Distribution Mean Weight (AR) 

1 4 E(185.463) 185.463 1 (4) 
2 5 E(183.962) 183.962 1 (5) 
3 6 E(427.187) 427.187 1 (6) 
4 8 E(352.682) 352.682 1 (8) 
5 1 E(71.9968) 71.9968 .719422 (1) 
6 3 E(101.039) 101.039 1 (6) 
7 7 E(472.028) 472.028 1 (7) 
8 1 E(28.1978) 28.1978 .280578 (1) 

 
  
  Aggregate Simulation Results      Steady-State Result 

 
Number of Runs: 

 
30 

  

 
Average Cycle Time: 

 
2202.83 

 
Average Cycle Time:  

 
2182.571 

 
Variance: 

 
33.523 

  

 
Standard Deviation: 

 
5.7899 

  

 
Relative Error:  .9282% 
 



 

 

11 Type of Test:  Exponential Servers       Test Case Number: 10 
  

Resource 
# 

# Servers Distribution Mean Weight (AR) 

1 2 E(76.0439) 76.0439 1 (2) 
2 1 E(25.7639) 25.7639 .325856 (1) 
3 7 E(523.191) 523.191 .326682 (7) 
4 7 E(463.291) 463.291 .262130 (7) 
5 4 E(135.344) 135.344 .119145 (4) 
6 1 E(9.20471) 9.20471 .266427 (1) 
7 7 E(120.806) 120.806 .205178 (7) 
8 3 E(107.919) 107.919 .0998117 (3) 
9 3 E(100.199) 100.199 .097916 (3) 

10 8 E(477.738) 477.738 .455455 (8) 
11 3 E(277.263) 277.263 .721439 (3) 
12 7 E(212.576) 212.576 .206011 (7) 
13 4 E(341.757) 341.757 .443696 (4) 
14 5 E(338.501) 338.501 .163881 (5) 
15 1 E(40.669) 40.669 .407717 (1) 
16 8 E(523.321) 523.321 .544545 (8) 
17 3 E(77.6403) 77.6403 .0808333 (3) 
18 4 E(335.98) 335.98 .437159 (4) 
19 5 E(469.706) 469.706 .836119 (5) 

 
   
  Aggregate Simulation Results      Steady-State Result 

  
Number of Runs: 

 
30 

  

 
Average Cycle Time: 

 
7468.73 

 
Average Cycle Time:  

 
7349.53 

 
Variance: 

 
2320.96 

  

 
Standard Deviation: 

 
48.1764 

  

 
Relative Error:  1.6219% 
 



 

 

 



 

 

 

 

 

 

 

 

 

APPENDIX F 

SINGLE SERVER TEST CASES 



 

2 

Type of Test:  Single Servers         Test Case Number: 1 
  

Resource 
# 

# 
Servers 

Distribution Mean Weight (AR) 

1 1 TR(6.03438,7.37826,38.9414) 17.418 .143870 (1) 
2 1 LN(36.9703,3.5081) 36.9703 .166009 (1) 
3 1 UN(29.8977,39.1813) 34.5395 .0392006 (1) 
4 1 EX(31.008) 31.008 .292399 (1) 
5 1 UN(33.7436,39.5302) 36.6369 .219948 (1) 
6 1 LN(56.2609,1.60176) 56.2609 .138574 (1) 

  
 
  Aggregate Simulation Results     Full Simulation Results 

 
Number of Runs: 

 
30 

 
Number of Runs: 

 
30 

 
Average Cycle 

Time: 

 
284.34 

 
Average Cycle 

Time: 

 
266.06 

 
Variance: 

 
.60731 

 
Variance: 

 
.190069 

 
Standard Deviation: 

 
.779301 

 
Standard Deviation: 

 
.435969 

 
Relative Error:  6.8706% 
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Type of Test:  Single Servers         Test Case Number: 2 
  

Resource 
# 

# 
Servers 

Distribution Mean Weight (AR) 

1 1 UN(52.6808,69.1178) 60.8993 .125833 (1) 
2 1 EX(21.5976) 21.5676 .134422 (1) 
3 1 RN(28.9176,1.65069) 28.9176 .119716 (1) 
4 1 RN(35.8158,.58196) 35.8158 .416657 (1) 
5 1 TR(3.85609,10.5231,14.2538) 9.5443 .0681083 (1) 
6 1 UN(43.679,47.7504) 45.7147 .0531856 (1) 
7 1 UN(45.9126,60.7263) 53.3194 .0820775 (1) 

  
 
  Aggregate Simulation Results     Full Simulation Results 

 
Number of Runs: 

 
30 

 
Number of Runs: 

 
30 

 
Average Cycle 

Time: 

 
341.947 

 
Average Cycle 

Time: 

 
313.707 

 
Variance: 

 
.397057 

 
Variance: 

 
.275506 

 
Standard Deviation: 

 
.630125 

 
Standard Deviation: 

 
.524886 

 
Relative Error:  9.0020% 
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Type of Test:  Single Servers         Test Case Number: 3 
  

Resource 
# 

# 
Servers 

Distribution Mean Weight (AR) 

1 1 EX(75.167) 75.167 .201597 (1) 
2 1 RN(62.0906,1.2018) 62.0906 .146909 (1) 
3 1 LN(76.2963,4.58497) 76.2963 .133501 (1) 
4 1 RN(24.1441,.64017) 24.1441 .0982238 (1) 
5 1 EX(70.0376) 70.0376 .109578 (1) 
6 1 LN(36.0415,2.89278) 36.0415 .123802 (1) 
7 1 RN(53.8442,4.40897) 53.8442 .0338425 (1) 
8 1 EX(38.5093) 38.5093 .152546 (1) 

  
 
  Aggregate Simulation Results     Full Simulation Results 

 
Number of Runs: 

 
30 

 
Number of Runs: 

 
30 

 
Average Cycle 

Time: 

 
957.28 

 
Average Cycle 

Time: 

 
938.357 

 
Variance: 

 
77.4338 

 
Variance: 

 
46.7232 

 
Standard Deviation: 

 
8.7997 

 
Standard Deviation: 

 
6.83544 

 
Relative Error:  2.0166% 
 



 

5 

Type of Test:  Single Servers         Test Case Number: 4 
  

Resource 
# 

# 
Servers 

Distribution Mean Weight (AR) 

1 1 TR(13.2021,14.3314,29.062) 18.8652 .0844431 (1) 
2 1 EX(67.6241) 67.6241 .214037 (1) 
3 1 TR(6.49979,7.09306,91.9114) 35.1681 .0985627 (1) 
4 1 LN(22.7481,1.02535) 22.7481 .0881934 (1) 
5 1 EX(53.7082) 53.7082 .0583586 (1) 
6 1 EX(49.96) 49.96 .148159 (1) 
7 1 TR(17.0748,21.1078,39.0845) 25.7557 .125346 (1) 
8 1 TR(33.5248,68.6314,87.2534) 63.1365 .1829 (1) 

  
 
  Aggregate Simulation Results     Full Simulation Results 

 
Number of Runs: 

 
30 

 
Number of Runs: 

 
30 

 
Average Cycle 

Time: 

 
684.47 

 
Average Cycle 

Time: 

 
654.05 

 
Variance: 

 
18.6194 

 
Variance: 

 
10.2647 

 
Standard Deviation: 

 
4.31502 

 
Standard Deviation: 

 
3.20385 

 
Relative Error:  4.6510% 
 



 

6 

Type of Test:  Single Servers         Test Case Number: 5 
  

Resource 
# 

# 
Servers 

Distribution Mean Weight (AR) 

1 1 RN(25.1093,2.33693) 25.1093 .071339 (1) 
2 1 RN(24.2974,.991618) 24.2974 .116718 (1) 
3 1 LN(49.3307,1.34513) 49.3307 .188758 (1) 
4 1 LN(63.8064,3.33453) 63.8084 .081345 (1) 
5 1 EX(62.045) 62.045 .136191 (1) 
6 1 EX(41.4581) 41.4581 .236257 (1) 
7 1 UN(58.1551,72.0328) 65.094 .0492735 (1) 
8 1 UN(42.0843,52.6536) 47.3689 .120123 (1) 

  
 
  Aggregate Simulation Results     Full Simulation Results 

 
Number of Runs: 

 
30 

 
Number of Runs: 

 
30 

 
Average Cycle 

Time: 

 
612.1 

 
Average Cycle 

Time: 

 
590.79 

 
Variance: 

 
7.84828 

 
Variance: 

 
3.28162 

 
Standard Deviation: 

 
2.80148 

 
Standard Deviation: 

 
1.81152  

 
Relative Error:  3.6070% 
 



 

7 

Type of Test:  Single Servers         Test Case Number: 6 
  

Resource 
# 

# 
Servers 

Distribution Mean Weight (AR) 

1 1 UN(37.2913,40.3897) 38.8405 .110414 (1) 
2 1 EX(50.1321) 50.1321 .107848 (1) 
3 1 LN(53.8684,4.58105) 53.8684 .160653 (1) 
4 1 UN(69.2811,74.3105) 71.7958 .0793943 (1) 
5 1 TR(20.3,28.4779,50.2513) 33.0097 .132721 (1) 
6 1 RN(64.4865,3.53079) 64.4865 .0428772 (1) 
7 1 RN(72.1901,3.86079) 72.1901 .063162 (1) 
8 1 TR(9.3663,34.0359,67.2058) 36.8693 .265565 (1) 
9 1 EX(57.1739) 57.1739 .0373651 (1) 

  
 
  Aggregate Simulation Results     Full Simulation Results 

 
Number of Runs: 

 
30 

 
Number of Runs: 

 
30 

 
Average Cycle 

Time: 

 
677.427 

 
Average Cycle 

Time: 

 
676.797 

 
Variance: 

 
2.19099 

 
Variance: 

 
2.22585 

 
Standard Deviation: 

 
1.4802 

 
Standard Deviation: 

 
1.49193 

 
Relative Error:  .0931% 
 



 

8 

Type of Test:  Single Servers         Test Case Number: 7 
  

Resource 
# 

# 
Servers 

Distribution Mean Weight (AR) 

1 1 TR(6.73922,10.0269,15.1726) 10.6463 .085642 (1) 
2 1 EX(38.882) 38.882 .129118 (1) 
3 1 TR(7.02216,16.2104,26.0004) 16.411 .0926933 (1) 
4 1 EX(68.167) 68.167 .24496 (1) 
5 1 LN(39.8866,1.6883) 39.8866 .0676431 (1) 
6 1 UN(34.4051,35.7375) 35.0713 .109277 (1) 
7 1 RN(77.5448,5.28714) 77.5448 .110844 (1) 
8 1 TR(21.5809,49.4403,84.5969) 51.8727 .159823 (1) 

  
 
  Aggregate Simulation Results     Full Simulation Results 

 
Number of Runs: 

 
30 

 
Number of Runs: 

 
30 

 
Average Cycle 

Time: 

 
691.49 

 
Average Cycle 

Time: 

 
643.93 

 
Variance: 

 
11.0416 

 
Variance: 

 
9.87597 

 
Standard Deviation: 

 
3.32289 

 
Standard Deviation: 

 
3.1426 

 
Relative Error:  7.3859% 
 



 

9 

Type of Test:  Single Servers         Test Case Number: 8 
  

Resource 
# 

# 
Servers 

Distribution Mean Weight (AR) 

1 1 TR(11.4769,16.802,41.894) 23.391 .211893 (1) 
2 1 TR(6.7004,27.2152,31.2644) 21.7267 .162140 (1) 
3 1 RN(29.7351,1.71058) 29.7351 .149073 (1) 
4 1 TR(7.36975,9.48395,32.2309) 16.3615 .123412 (1) 
5 1 EX(35.1738) 35.1738 .142700 (1) 
6 1 UN(35.3489,37.5103) 36.4296 .111561 (1) 
7 1 TR(5.93027,7.74329,10.6431) 8.10556 .0992203 (1) 

  
 
  Aggregate Simulation Results     Full Simulation Results 

 
Number of Runs: 

 
30 

 
Number of Runs: 

 
30 

 
Average Cycle 

Time: 

 
214.98 

 
Average Cycle 

Time: 

 
203.47 

 
Variance: 

 
.261655 

 
Variance: 

 
.0545862 

 
Standard Deviation: 

 
.511522 

 
Standard Deviation: 

 
.233637 

 
Relative Error:  5.6569% 
 



 

10 

Type of Test:  Single Servers         Test Case Number: 9 
  

Resource 
# 

# 
Servers 

Distribution Mean Weight (AR) 

1 1 TR(11.0186,17.0233,66.269) 31.437 .0812232 (1) 
2 1 UN(42.3664,47.2833) 44.8249 .0810911 (1) 
3 1 TR(14.197,30.0482,40.8699) 28.3717 .275825 (1) 
4 1 RN(59.6102,4.03677) 59.6102 .253205 (1) 
5 1 LN(29.4613,1.06546) 29.4613 .308655 (1) 

  
 
  Aggregate Simulation Results     Full Simulation Results 

 
Number of Runs: 

 
30 

 
Number of Runs: 

 
30 

 
Average Cycle 

Time: 

 
258.057 

 
Average Cycle 

Time: 

 
239.94 

 
Variance: 

 
.2779782 

 
Variance: 

 
.152138 

 
Standard Deviation: 

 
.528944 

 
Standard Deviation: 

 
.390049 

 
Relative Error:  7.5506% 
 



 

11 

Type of Test:  Single Servers         Test Case Number: 10 
  

Resource 
# 

# 
Servers 

Distribution Mean Weight (AR) 

1 1 TR(37.4795,48.9889,74.2355) 53.658 .0762831 (1) 
2 1 TR(14.6084,15.4301,44.7675) 24.9353 .0569433 (1) 
3 1 RN(60.6976,1.1293) 60.6976 .0666616 (1) 
4 1 LN(23.324,1.18517) 23.324 .0662817 (1) 
5 1 RN(28.5769,1.29901) 28.5769 .0802676 (1) 
6 1 EXPON(78.5979) 78.5979 .150786 (1) 
7 1 TR(2.38702,5.48268,16.7479) 8.20586 .052658 (1) 
8 1 EX(73.075) 73.075 .157072 (1) 
9 1 TR(18.7301,25.2577,74.6774) 39.555 .159243 (1) 
10 1 UN(49.1881,67.4646) 58.3264 .133804 (1) 

 
 
  Aggregate Simulation Results     Full Simulation Results 

 
Number of Runs: 

 
30 

 
Number of Runs: 

 
30 

 
Average Cycle 

Time: 

 
1012.4 

 
Average Cycle 

Time: 

 
993.51 

 
Variance: 

 
36.5241 

 
Variance: 

 
54.6989 

 
Standard Deviation: 

 
6.04352 

 
Standard Deviation: 

 
7.39587 

 
Relative Error:  1.90134% 
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