
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Publications, Agencies and Staff of the U.S. 
Department of Commerce U.S. Department of Commerce 

2004 

Use of Next Generation Weather Radar Data and Basin Use of Next Generation Weather Radar Data and Basin 

Disaggregation to Improve Continuous Hydrograph Simulations Disaggregation to Improve Continuous Hydrograph Simulations 

Ziya Zhang 
National Weather Service 

Victor Koren 
National Weather Service 

Michael Smith 
National Weather Service 

Seann Reed 
National Weather Service 

David Wang 
National Weather Service 

Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub 

 Part of the Environmental Sciences Commons 

Zhang, Ziya; Koren, Victor; Smith, Michael; Reed, Seann; and Wang, David, "Use of Next Generation 
Weather Radar Data and Basin Disaggregation to Improve Continuous Hydrograph Simulations" (2004). 
Publications, Agencies and Staff of the U.S. Department of Commerce. 56. 
https://digitalcommons.unl.edu/usdeptcommercepub/56 

This Article is brought to you for free and open access by the U.S. Department of Commerce at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and 
Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17236933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usdeptcommercepub
https://digitalcommons.unl.edu/usdeptcommercepub
https://digitalcommons.unl.edu/usdeptcommerce
https://digitalcommons.unl.edu/usdeptcommercepub?utm_source=digitalcommons.unl.edu%2Fusdeptcommercepub%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=digitalcommons.unl.edu%2Fusdeptcommercepub%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usdeptcommercepub/56?utm_source=digitalcommons.unl.edu%2Fusdeptcommercepub%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages


Use of Next Generation Weather Radar Data and Basin
Disaggregation to Improve Continuous Hydrograph

Simulations
Ziya Zhang1; Victor Koren2; Michael Smith3; Seann Reed4; and David Wang5

Abstract: Currently, the river forecasting system deployed in each of 13 River Forecast Centers of the National Weather Service
primarily uses lumped parameter models to generate hydrologic simulations. With the deployment of the weather surveillance radar 1988
Doppler radars, more and more precipitation data with high spatial and temporal resolution have become available for hydrologic
modeling. Hydrologists inside and outside the National Weather Service are now investigating how to effectively use these data to
enhance river-forecasting capabilities. In this paper, six years of continuously simulated hydrographs from an eight-subbasin model are
compared to those from a single-basin~or lumped! model, both applied to the Blue River basin~1,232 km2! in Oklahoma. The Sacramento
soil moisture accounting model is used to generate runoff in all cases. Synthetic unit hydrographs for each subbasin convey the water to
the outlet of the basin without explicit flow routing. Subdividing the basin into eight subbasins captures spatially variable rainfall reflected
in the next generation weather radar products and produces improved results without greatly increasing the computational and data
requirements. Strategies for calibrating the hydrologic model parameters for multiple subbasins are explored.

DOI: 10.1061/~ASCE!1084-0699~2004!9:2~103!

CE Database subject headings: Hydrologic models; Aggregation; Simulation; Weather forecasting; Oklahoma; Hydrographs.

Introduction

One mission of the National Weather Service~NWS! is to provide
river forecasts across the United States and its territories. Cur-
rently lumped hydrologic models are run for operational river
forecasting at River Forecast Centers~RFCs!. These lumped mod-
els are typically applied to basins ranging in size from 300 to
5,000 km2 using time steps of 6 h or longer. Lumped models are
used because the data available from operational rain gauge net-
works will not support finer resolution modeling. With the estab-
lishment of the next generation weather radar~NEXRAD! pro-
gram, weather surveillance radar 1988 Doppler~WSR-88D!
radars have been deployed across the United States since 1991
~Heiss et al. 1990!. Use of these radar data significantly increases
the spatial and temporal resolution of precipitation inputs that are
available for use in hydrologic models.

This study investigates how gridded radar precipitation data
can be used with existing NWS hydrologic models and software
to improve simulations. The work described here is essentially an
extension of the work described by Smith et al.~1999a!. The
basic idea is to include more basin disaggregation than is in nor-
mally done in NWS forecasting to see what benefits can be gained
from capturing precipitation variability within a basin. The Smith
et al.~1999a! studies considered distributed input but not spatially
variable rainfall-runoff parameters. This study does consider spa-
tially variable rainfall-runoff parameters. The characteristics of
the basin studied here~Blue River above Blue, Oklahoma! are
also quite different from the characteristics of basins studied by
Smith et al.~1999a!, leading to different conclusions.

Two important criteria in defining the modeling approach for
this study were to use existing operational data and a continuous
simulation model with well-defined calibration procedures. Al-
though a large amount of research has been done in using radar-
based precipitation products for hydrologic modeling, few of the
research models satisfy both of these criteria. Many of the re-
search models are event based. Specific references to several of
these research efforts are provided in the next section. Also, by
taking only a small step beyond existing NWS modeling proce-
dures, the results of this work can be applied immediately in the
field using current operational systems. Because we recognize
that there are limitations to this approach, new grid-based model-
ing techniques that use explicit channel routing are also being
developed and tested at the NWS Hydrology Laboratory~Reed
et al. 2002!.

One of our goals is to compare results from a discretized sub-
basin model to results from a lumped model of the type currently
used in operations. The results of Smith et al.~1999a! and the
research of others described below indicate that it is not univer-
sally true that use of higher-resolution precipitation data will lead
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to more accurate basin outlet hydrographs; it requires further
testing.

Literature Review

Radar rainfall estimates have been widely used in hydrologic
modeling~Pessoa et al. 1993; Mimikou and Baltas 1996; Peters
and Easton 1996; Kull and Feldman 1998; Vieux and Bedient
1998; Winchell et al. 1998; Johnson et al. 1999; Koren et al.
1999; Smith et al. 1999a,b; Bedient et al. 2000; Carpenter and
Georgakakos 2000; Yates et al. 2000!.

Vieux and Bedient~1998! and Bedient et al.~2000! compared
NEXRAD radar and rain gauge estimates to evaluate two
reflectivity–rainfall rate relationships used in NEXRAD process-
ing. Both precipitation estimates were used with a lumped model
to generate event hydrographs for basins near Houston, Texas.
For a limited number of events, it was found that the NEXRAD
precipitation estimates lead to more accurate simulations com-
pared to rain gauge forced simulations.

Peters and Easton~1996! applied the modified Clark
~modClark! program, which adapts the Clark conceptual runoff
model using translation and linear storage, to simulate several
selected storm events for the Illinois River watershed above Ten-
killer Lake in northeastern Oklahoma and northwestern Arkansas
using radar data. The modified Puls method was used for channel
routing of hydrographs from the upstream locations. Reasonable
fit to observed flows was provided by the simulations under both
spatially averaged radar-rainfall and grid-distributed rainfall data.
The authors believed that a ‘‘substantial difference would occur
between simulations based on grid-distributed versus spatially av-
eraged rainfall’’ if a storm has marked spatial variability, as is the
case for a localized convective storm. Kull and Feldman~1998!
also demonstrated the ability of themodClarkmodel to account
for the spatially distributed nature of rainfall and runoff. Yates
et al.~2000! combined radar-based quantitative precipitation esti-
mates and forecasts to simulate a single event with a distributed
model. Winchell et al. ~1998! found that infiltration- and
saturation-excess runoff mechanisms respond differently to uncer-
tainty in radar estimates of precipitation.

Smith et al.~1999a! and others~Finnerty et al. 1997; Johnson
et al. 1999; Koren et al. 1999! studied the hydrologic behavior
and responses of several basins of the Illinois River above Ten-
killer Ferry Lake~areas range from 285 to 2,483 km2! in Okla-
homa using radar precipitation as input. Their studies include the
sensitivity of the Sacramento soil moisture accounting~SAC-
SMA! model to radar precipitation forcing at various spatial and
temporal scales, comparisons of mean areal precipitation esti-
mates from NEXRAD Stage III~MAPX! and mean areal precipi-
tation estimates from rain gauge networks~MAP!, numerical ex-
periments on the sensitivity of runoff values to level of basin
disaggregation, and small basin versus large basin modeling tests
using the SAC-SMA model. The major conclusions from the
work of Smith et al.~1999a! are the following:~1! use of radar
precipitation estimates as input to lumped hydrologic models
yields better results than the use of rain gauge data alone for the
RFC basins studied;~2! basin disaggregation for the RFC basins
studied showed limited improvement over the lumped approach;
and ~3! different statistical properties exist between achieved
radar and gauged mean areal precipitation data, although the pe-
riod for radar data analysis may not be long enough to have a
meaningful comparison. Smith et al.~1999b! presented results
from continuous multiyear simulations using radar precipitation

data as input for single-basin lumped and subdivided basin mod-
els. The SAC-SMA model was applied in each subbasin using the
same parameters, so their simulations incorporated only distrib-
uted rainfall input but not distributed parameters.

Stellman et al.~2000! used a method similar to that described
by Smith et al.~1999a! to investigate streamflow simulations for
the Flint River near Culloden, Georgia. The SAC-SMA model
was applied using both MAP and MAPX as inputs. Their simu-
lations from basin disaggregation and lumped modeling produced
very similar results when MAP forcing was used. The MAPX
data were found insufficient for modeling purposes due to under-
estimation compared to MAP data.

Carpenter and Georgakakos~2000! also used Stage III
NEXRAD data to force a small basin hydrologic model~Geor-
gakakos et al. 1996!. In their work, the 4,150 km2 Illinois River
basin is disaggregated into smaller subbasin units with areas rang-
ing from tens of square kilometers to a few hundred square kilo-
meters. The SAC-SMA model is applied to each subbasin. Se-
lected peak events from 1993 to 1996 were simulated. The flow
simulations at the outlet using basin subdivisions were compa-
rable in accuracy to simulations from a lumped model. These
results agree with those of Smith et al.~1999a!.

Baltas and Mimikou~1997! compared lumped modeling re-
sults when both the MAP and MAPX~based on WSR-74S-band
weather radar and calibrated with rain gauge data! were used for
a basin of 2,763 km2 area. It was found that the model performs
better using radar combined with raingauge information than with
raingauge information alone in both simulation and forecasting
modes. They also applied a grid-based rainfall-runoff model to
the Pyli basin located in central Greece~135 km2! and the results
were compared to those derived by the lumped model using radar
data ~Baltas and Mimikou 1997!. The grid model provided
slightly better results. Their results and conclusions were obtained
based on event simulations.

Johnson~1993! compared lumped and distributed simulations
on Goodwin Creek, a 21 km2 basin located in northwestern Mis-
sissippi. Results from lumped and distributed simulations for sev-
eral events were compared. The study was based on event simu-
lations. The rainfall input was based on rain gauge data. His
conclusion was that a distributed model performs better than a
lumped model when there are accurate data describing soil and
land use. If there are sufficient subbasin stream gauge data for
calibration, then lumped simulations are comparable to distrib-
uted simulations. Since Johnson’s study was done on a much
smaller scale than the basin scales discussed in this paper, the
conclusions he made are not necessarily transferable to larger
scale simulations.

As has been shown in a few studies, the use of radar-derived
precipitation data can improve modeling accuracy. Most studies
in which radar-derived precipitation data are used are conducted
separately without comparing the differences between different
approaches~as lumped versus distributed or lumped versus dis-
aggregated!. There are relatively few studies that directly com-
pare lumped and distributed simulations using radar data~Pessoa
et al. 1993; Mimikou and Baltas 1996; Baltas and Mimikou 1997;
Smith et al. 1999b; Stellman et al. 2000!, and most efforts have
been concentrated on event-based analysis where initial condi-
tions before the event are assumed or need to be adjusted. Further
studies are needed to define the performance differences between
lumped models and distributed or discretized models and the con-
ditions under which one simulation mode is better than the other.
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Model Description and Parameter Determination
The Sacramento soil moisture accounting model~Burnash et al.
1973; World Meteorological Organization~WMO! 1975, 1983! is
one of the most common models used to simulate water balances
and river flows at the RFCs~Peck 1976!. It is calibrated based on
multiyear time series of observed discharge and basin average
precipitation.

The SAC-SMA model is a conceptual model that incorporates
a two-layer soil structure~upper zone and lower zone! as its basic
design. Each layer is treated as a reservoir containing both tension
water and free water components that interact to generate soil
moisture states. Runoff consists of five components depending on
the soil moisture conditions. The free water storage in the lower
zone is divided into primary and supplemental storage compo-
nents from which slow and fast base flow are generated, respec-
tively. Rainfall contributes to the processes of surface runoff and
percolation from the upper zone to the lower zone storage. The
partitioning depends on tension water and free water storage
available in the upper zone. Excess rainfall exists when the con-
tent of the upper zone tension water storage exceeds the upper
zone tension water maximum UZTWM. When the rainfall excess
exceeds the upper zone free water capacity UZFWM, it becomes
surface runoff. When the upper zone storages are filled, the runoff
rate will depend on lower zone tension water LZTWM, lower
zone free water capacities LZFSM and LZFPM, and their defi-
ciencies. The runoff rate generated from each reservoir is depen-
dent upon its depletion coefficient, namely, UZK for upper zone
interflow, LZSK for lower zone supplemental base flow, and
LZPK for lower zone primary base flow. Percolation from the
upper zone to the lower zone depends on the upper zone free
water content and the deficiency of lower zone moisture volume.
Two parameters, the maximum rate of percolation ZPERC and an
exponent value REXP also control the percolation function. Per-
colated water is used first to satisfy any tension water deficit in
the lower zone. The remaining amounts of percolated water are
then used to recharge the lower zone primary and supplemental
free water storages. A constant fraction of percolated water
PFREE bypasses the lower zone tension water to directly re-
charge the primary and supplemental free water storages. There
are also five additional parameters in the model to control runoff
from impermeable areas and water losses from evapotranspira-
tion. Estimates of monthly potential evapotranspiration~ET de-
mand! are also required by the SAC-SMA model. First, monthly
and annual estimates of free water surface evaporation~PE! are
derived from observed pan data and climatic means~NWS 1982!.
Twelve monthly adjustment factors are derived to modify the PE
values for the effect of vegetation.

Although the 16 parameters in the SAC-SMA model have
physical meanings, they cannot be measured directly. When ap-
plied to a selected basin, the SAC-SMA model parameters must
be calibrated using historical hydrometeorological data. For un-
gauged basins or subbasins where observed discharges are not
available, it is difficult to estimate the model parameters. Calibra-
tion usually requires at least eight years of observed precipitation
and discharge data~University of Arizona 1995!. About the same
amount of data are recommended for model verification. Koren
et al. ~2000! developed a set of analytical relationships to derive
11 of 16 initial SAC-SMA model parameter values based on Soil
Conservation Service~SCS! ~now Natural Resources Conserva-
tion Service! curve number, soil texture, and soil depth. These
parameter estimates can be readily derived from nationally avail-
able databases. Miller and White~1998!, for example, have pro-
cessed the USDA State Soil Geographic Database~STATSGO! to

produce national soil parameter grids that are more accessible to
the modeling community. Initial parameters estimated from soil
data are used here to describe the spatial variability of parameters.
However, adjustments to these initial values are needed to remove
simulation biases.

Unit hydrographs are used with the SAC-SMA model to con-
vert runoff depths to discharge at the basin outlet. There is no
explicit channel routing algorithm to route water from each sub-
basin to the basin outlet. Instead, an implicit unit-hydrograph-
based approach that utilizes a linear system concept was adopted.
Because of this linearity assumption, an outlet hydrograph can be
constructed as a summation of subbasin hydrographs routed to the
basin outlet

Q~ t !5(
i 51

N E
0

t

qi~z!r i~ t2z,t i !dz (1)

where qi(t)5 lumped inflow to thei th subbasin; andr i(t,t i)
5total unit hydrograph of thei th subbasin. The parametert i

depends on the subbasin lag timet i ,s and the downstream channel
lag timet i ,c .

The total subbasin unit hydrograph is a convolution of a local
subbasin unit hydrographr i ,s(t,t i ,s) and a downstream channel
unit hydrographr i ,c(t,t i ,c):

r i~ t,t i !5E
0

t

r i ,s~z,t i ,s!r i ,c~ t2z,t i ,c!dz (2)

Clark’s approach~Clark 1945! can be used to estimate
r i ,s(t,t i ,s) from digital elevation model~DEM! data, and Nash’s
cascade model~Rosso 1989! can be used for a downstream chan-
nel unit hydrograph. In practical applications with limited flow

Fig. 1. Location map of Blue River basin and basins studied by
Smith et al.~1999a! within ABRFC
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measurement data, it may be easier to estimate the total subbasin
unit hydrograph directly~without breaking it into the two terms
shown above! using DEM data and calibration techniques.

Study Area

In this study we disaggregate the Blue River basin~Fig. 1! near
Blue, Oklahoma into eight subbasins. The Blue River basin is
long and narrow with a drainage area of 1,227 km2. Subbasin
divisions and soil depths are shown in Fig. 2 and subbasin areas
are listed in Table 1. Examining the normalized stream flow of
Blue River together with those of several other basins~shown in
Fig. 1! within the domain of the Arkansas Red Basin River Fore-
cast Center~ABRFC! reveals that the Blue River basin has dis-
tinguishable rainfall-runoff behavior as shown in Fig. 3. From the
hydrograph comparison shown in Fig. 3, the Blue River has a
much faster recession rate than the basins studied by Smith et al.
~1999a!. The soil depth distribution of the Blue River basin~from
STATSGO! is more variable~from 0.8 to 1.8 m! than the five
Illinois River basins~range from 1.0 to 1.6 m with most values
around 1.5 m! studied by Smith et al.~1999a!. When the basin is
disaggregated into eight subbasins, the averaged soil depth for
each subbasin varies from 0.83 to 1.75 m@Table 1 and Fig. 2~b!#.
Soil depth is one indicator of how soil properties vary within the
basin. The conceptual upper and lower zone storages in the SAC-
SMA model are related to soil texture, soil depth, and soil hydrau-
lic properties. The partitioning of the soil profile depth into these
layers was achieved using curve number and soil texture informa-
tion and the methods of Koren et al.~2000!.

Hourly Stage-III radar precipitation data are available for this
region from 1993 to 1999. Hourly observed discharge data at the

outlet were obtained from the USGS. There were no measured
discharges at any location above the selected outlet near Blue.

Experiments and Results

Lumped Simulation

A lumped simulation using a single set of SAC-SMA parameters
for the entire Blue River basin is studied first. The hourly MAPX
time series were used as input forcing. Since there are about six
years of hourly radar precipitation data available for Blue River
basin, the whole period of data was used for the SAC-SMA model
calibration. A manual calibration strategy was used to derive final
values of SAC-SMA parameters and monthly PE demand values.
Basin average total runoff was routed to the outlet using a basin
unit hydrograph. The simulation result is a continuous hourly dis-
charge time series from the summer of 1993 to the spring of 1999.
It should be noted that the lumped retrospective simulations pre-
sented here are not necessarily representative of the quality of
river forecasts generated at the NWS ABRFC. River forecasts for
public use include the expertise of NWS personnel who analyze
real time meteorological and hydrological inputs and conditions
and make modifications to inputs or model states as appropriate.

Fig. 2. ~a! Blue River basin and its subbasins;~b! average soil depth
for each subbasin

Fig. 3. Hydrograph comparison between Blue River basin and other
basins within ABRFC

Table 1. Soil Depths and Areas for Subbasins of the Blue River Basin

Subbasin 1 2 3 4 5 6 7 8 Mean

Depth ~m! 1.19 0.88 0.83 1.7 1.71 1.75 1.75 1.75 1.45
Area ~km2! 153 150 153 144 163 165 170 129 153 Total51,227
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Multiple Subbasin Modeling

The SAC-SMA model is applied to each of the subbasins shown
in Fig. 2~a!. Software was developed to disaggregate the basin
into a number of desired subbasins depending on a predefined
subbasin threshold area~Smith et al. 1999a!. The optimal number
of basin subdivisions is not obvious at the outset. The principle
followed here is to make each subbasin’s area relatively equal and
minimize the flow exchange between subbasins because there is
no mechanism to account for lateral mass exchanges between
them except flow from channels. If possible, the disaggregation
should also account for the variation of soil properties and land
cover such that the properties within each subbasin are as uniform
as possible and the averaged runoff response can be adequately
predicted. However, the storm cell size is also a factor that needs
to be considered, although one still cannot make sure this would
satisfy the condition of uniformity of rainfall for a specific event.
There must be a balance between the number of subbasins and the
uniformity of physical characteristics within them. With more
subbasins, there is more work in setup and calibration; however,
the uniformity assumption within each subbasin becomes more
valid.

When the SAC-SMA model is applied to each subbasin, the
simulated total flow at the basin outlet is the sum of each subba-
sin’s runoff routed to the outlet using its unit hydrograph. The
information about channel length to the outlet and other charac-
teristics for each subbasin has been considered implicitly in the
unit hydrograph@described in Eqs.~1! and ~2!# based on DEM
data and some calibration effort. There is no explicit channel
routing from each subbasin to the outlet. Total simulated dis-
charge is compared to the observed discharge at the outlet.

Compared to the lumped approach, calibration of the subbasin
parameters is a more complicated process. For the Blue River
basin, it is difficult to derive parameters for each subbasin through
analysis of observed historical flow and precipitation data due to
the lack of internal observed discharge information. In this re-
search, the technique developed by Koren et al.~2000! is used to
estimate initial SAC-SMA parameter values for each subbasin.
The Clark approach~Clark 1945! is used to derive unit hydro-
graphs for the lumped basin and the eight subbasins. Unit hydro-
graphs for the eight subbasins are used to transform runoff vol-
ume into discharge and route the discharges to the basin outlet. It
should be pointed out that unit hydrographs for the lumped parent
basin and the eight subbasins were derived independently, so it is
not necessarily true that the unit hydrograph for the lumped case
shown in Fig. 4 is equal to the summation of those of the eight
subbasins. Manual calibration then continues based on these ini-
tial parameter estimates~independently calibrated!. Only slight
changes~time to peak for a couple of subbasins! were made for
unit hydrographs during the manual calibration. A comparison of
the unit hydrographs is shown in Fig. 4. Manual calibration with
the subbasin modeling approach requires the analysis of indi-
vidual storms in which the rainfall distribution is nonuniform. An
example of this calibration approach is discussed in the context of
the results given later in this paper. Due to low spatial variability,
it was assumed that the same ET demand values derived during
the lumped calibration are appropriate for each subbasin.

Results

Both lumped and subbasin simulations were run continuously
from 1993 to 1999. The continuous hydrograph time series for the
lumped basin and each subbasin are output for analysis. Percent
bias, absolute percent bias, and a correlation coefficient were

computed on an event, monthly, and annual basis. Event statistics
were also computed for different flow intervals. The percent bias
is defined as

Bias~%!5
( i 51

N ~Si2Oi !

( i 51
N Oi

~100! (3)

where Si5hourly simulated value;Oi5hourly observed value;
andN5number of values. The percent bias represents an overall
volume comparison between two samples and is one of the major
statistics used to guide manual calibration~Smith et al. 2002!.
Due to the cancellation of positive and negative values during the
summation, this index may not reflect the hydrograph fit compari-
son between simulated and observed data. A small value of per-
cent bias cold exist for an event but the hydrograph comparison
may be far apart. Therefore, the mean absolute error~MAE! as
shown in Eq.~4! is also considered to evaluate simulations

MAE~%!5
( i 51

N uSi2Oi u

( i 51
N Oi

~100! (4)

The correlation coefficient for hourly flows,R, is also determined
for different comparisons. It is calculated as

R5
N•( i 51

N SiOi2( i 51
N Si•( i 51

N Oi

$@N•( i 51
N Si

22~( i 51
N Si !

2#@N•( i 51
N Oi

22~( i 51
N Oi !

2#%0.5

(5)

Table 2 shows the yearly percent bias, mean absolute error,
and correlation coefficient statistics of the subbasin and lumped
simulations for the Blue River basin from 1994 to 1999. Results

Fig. 4. Demonstration of unit hydrograph and time-to-peak
differences between subbasins of the Blue River basin

Table 2. Yearly Percent Bias, Mean Absolute Error, and Correlation
Coefficient Comparison between Eight-Subbasin and Lumped
Simulations for the Blue River Basin

Year

Eight subbasins Single basin

Bias ~%! MAE ~%! R Bias ~%! MAE ~%! R

1994 231 45 0.86 231 46 0.87
1995 244 46 0.92 238 45 0.86
1996 215 37 0.90 214 44 0.88
1997 23 41 0.92 23 46 0.87
1998 18 31 0.95 26 43 0.94
1999 18 53 0.76 7 59 0.56
Average 25 42 0.89 25 47 0.83
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for 1993 are not presented because the simulations only began in
May, and the short period is likely to be dominated by errors in
initial conditions. Although the percent bias for each year is close
between the lumped and eight subbasin simulations, the mean
absolute error and correlation coefficient for the semidistributed
cases are consistently better than for the lumped cases. This
means that the overall annual runoff volumes between the two are

more or less the same, but the hydrograph fit to the observed data
for the eight-subbasin simulation is better than the lumped simu-
lation. Notice that the percent bias statistics for 1994–1996 are
negative while the statistics for 1997–1999 are positive, which is
consistent with the analysis by Wang et al.~2000! showing a tem-
poral shift in the consistency of the radar data relative to gauge-
only estimates.

Fig. 5. Simulated and observed hydrographs and subbasin precipitation for an event in~a! 1994;~b! 1995;~c! 1996;~d! 1997;~e! 1998; and~f!
1999.
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Hydrograph plots for several large events~one from each year!
are shown in Figs. 5~a!–5~f! and their corresponding statistics are
shown in Table 3. The percent biases based on absolute differ-
ences for all events in the eight-subbasin simulation~versus ob-
served hydrograph! are all better than those from the lumped
results~Lmp!. This means that the subbasin simulation~Dst! more
closely fits the observed data than does the lumped simulation.

With one exception@1996 event shown in Fig. 5~c!#, comparison
of the correlation coefficients in Table 3 supports this conclusion.
In Fig. 5~c!, the eight-subbasin hydrograph has much better peak
flow values and overall shape than the single-basin lumped hy-
drograph. So this exception is caused by the timing offset be-
tween the observed hydrograph and the semidistributed simulated
hydrograph. Peak flow errors and improvement of peak flow are
also included in Table 3. The peak flow errors were calculated by
comparing simulated peaks to observed peaks. The peak flow
improvements@Impr ~%!, expressed as percent of (ErrorLmp

2ErrorDst)/ErrorLmp] were evaluated by directly comparing the
peak flow errors of subbasin simulations to lumped cases. In five
out of the six largest events, peak flow predictions from the sub-
basin simulations were better than those from the lumped simu-
lations.

As might be expected, the differences between the eight-
subbasin and lumped simulations seem to be related to the pre-
cipitation distribution over the basin. To illustrate the effect of
rainfall spatial distribution on the simulated results from both the
subbasin and lumped methods, three representative cases are cho-
sen with hydrographs shown in Figs. 6~a!–6~c!. Their statistics
are presented in Table 4. The rainfall pattern for each event is
different. The correlation coefficients for cases having spatially
variable rainfall distributions are much better in eight-subbasin
mode than those in lumped mode. For the case where rainfall is
relatively uniform, the eight-subbasin and lumped simulations are
statistically very similar.

In Figs. 6~a!–6~c!, in addition to showing basin outlet hydro-
graphs, precipitation time series for each subbasin and simulated
individual discharge time series for each subbasin are also shown.
For the event of June 1997@Fig. 6~b!#, the simulated discharge in
the eight-subbasin simulation shows better agreement than the
lumped simulation. Looking at the precipitation distribution for
this event@Fig. 6~b!#, subbasins 7 and 8 have the most intense
rainfall during this period. As seen in Fig. 2, these two subbasins
are close to the basin outlet; therefore they should have faster
responses to rainfall than the other subbasins. As a result, the
discharges at the outlet for this event are mostly from direct sur-
face runoff from subbasins 7 and 8. As seen in the subbasin hy-
drographs in Fig. 6~b!, other subbasin contributions to flow at the
outlet are mainly delayed base flows. In the single-basin lumped
simulation, the precipitation forcing is the result of averaging
grid-based radar data over the basin. The direct consequence of
lumping the radar rainfall estimates is ignoring the spatial varia-
tions of precipitation and reducing the rainfall intensity at local
areas. In this case, the rainfall intensity on subbasins 7 and 8 is
reduced while it is increased for the upper subbasins that have
longer travel time to the outlet. Thus, it is understandable why the
hydrograph from the lumped simulation is lower and flatter than
the one for the eight-subbasin case. This is also true for the large
events shown in Figs. 5~a!, 5~c!, and 5~f!.

For the event of June 1998@Fig. 6~c!#, the hydrograph from
the lumped simulation is much greater than hat from the eight-
subbasin simulation. High rainfall intensities were concentrated
over subbasins 2 and 3, while lesser amounts fell on the remain-
ing subbasins. In the lumped approach, spatial averaging shifts
some of the rainfall from upper subbasins to lower subbasins,
resulting in more rainfall for those fast response subbasins. This
causes the hydrograph from the lumped simulation to be greater
in magnitude than the hydrograph from the eight-subbasin simu-
lation @which is also the case for the large event shown in Fig.
5~b!#. The multipeaked hydrograph of the June 1998 event is well
simulated in the eight-subbasin mode~one can tell from the cor-

Fig. 5. „Continued!
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relation coefficient comparison!. The first peak was mainly pro-
duced by flow from subbasin 8, whereas the second peak came
mainly from subbasin 2. This again shows that a basin disaggre-
gation approach can greatly improve the flow results when there
is a large variation of precipitation distribution.

For the event of November 1996@Fig. 6~a!#, the precipitation
distribution is more uniform. The simulated hydrographs from the
eight-subbasin and single-basin modes are quite similar and both
have high correlation coefficients relative to the observed data.
Contributions to the outlet during this event come from all sub-
basins, with the responses from subbasins 8 and 7 being earlier
and higher than those of the rest of subbasins. The large event in
1998 @Fig. 5~e!# shows a similar result.

Relative Importance of Including Spatial Rainfall
Variability and Parameter Variability

Comparisons of single-basin and eight-subbasin simulations pre-
sented above have shown that for the Blue River basin simula-
tions with the basin disaggregation approach outperform those
from the single-basin approach. This conclusion was not clearly
confirmed in previous studies on several other basins within the
domain of ABRFC~Smith et al. 1999a, b!. However, there are
two major differences between this study and the study conducted
by Smith et al.~1999a, b!. The first difference is basin shape. The
Blue River basin is long, narrow, and orthogonal to typical storm
directions, whereas the others shown in Fig. 1 are relatively round
in shape. For this reason, it is anticipated that the Blue River
basin is more sensitive to spatial variation of precipitation input
and the basin’s physical characteristics. The second difference is
that the variation of soil properties between subbasins is consid-
ered in this study. Differences in soil properties such as soil depth
exist between subbasins, and thus the SAC-SMA parameters de-
rived for these subbasins are also different. The average soil depth
within the Blue River basin@Fig. 2~b!# has more variation be-
tween subbasins than that of other basins studied by Smith et al.
~1999a!. Therefore, assigning variable parameter values among
subbasins of the Blue River basin may have more effect on the
basin’s runoff response than in the other basins shown in Fig. 1.
Determining the relative importance of basin shape and spatially
varying parameters requires further study.

Two tests~described in Table 5! on the Blue River basin are
designed to determine the effect of individual factors on the simu-
lation results. Test 1 is designed to determine the effect of basin
shape on simulations. The idea is to eliminate the shape effect
while keeping other characteristics the same as in the eight-
subbasin semidistributed simulation. In order to isolate the shape
factor and its effect on the travel time to the outlet, the unit
hydrograph from the lumped calibration~adjusted by the subba-

sin’s area! is used for each subbasin, while rainfall-runoff param-
eters for each subbasin are kept the same as in the eight-subbasin
calibration. In this case, the time to peak for each subbasin is
identical, and the spatial distribution of the generated runoffs
from subbasins were ignored. Consequently, the simulation differ-
ence between this test and the distributed test is caused by ex-
cluding only the basin shape factor. Any improvement in simula-
tion results from this test over the lumped simulation is attributed
to the variability of soil properties and precipitation.

The second test is designed to isolate the effect of soil prop-
erties. In this case, it is assumed that the soil depth and other
properties are uniform across all subbasins. The parameters from
the single-basin lumped calibration are used as initial values.
They are then adjusted uniformly up or down during further cali-
bration. The differences between the simulation results from this
test and the case with variable parameters show the effects of
excluding model parameter variations. Any improvement of simu-
lation results from this test over the single-basin lumped simula-
tion is attributed to subbasin location differences~basin shape
factor! in the inherent consideration of precipitation variability. In
these two tests, the MAPX time series for each subbasin are used.
The comparisons of test results together with those from previ-
ously described single-basin lumped and eight-subbasin simula-
tions are shown in Tables 6, 7, and 8.

Hydrographs for these two new tests together with the results
from lumped and eight-subbasin simulations are plotted in Figs.
7~a!–7~f! and 8~a!–8~c!. For most of the cases presented above,
hydrographs and peak flow errors for the two tests fall between
the eight-subbasin and lumped cases. Based on these tests, when
rainfall distribution is considered in the simulation, both basin
shape factor~difference between Test 1 and the semidistributed
simulation! and soil property variation between subbasins~differ-
ence between Test 2 and the eight-subbasin simulation! affect the
model simulation results. Table 8 shows that these effects increase
dramatically when the rainfall pattern is highly variable. Compar-
ing the annual absolute percent bias and correlation coefficient~in
Table 6! and peak flow error for different events~in Table 7!
between the two tests, Test 2 has slightly better simulation results
than Test 1~in four out of six cases shown in Table 6 and five out
of six cases shown in Table 7!. This suggests that the effect of
basin shape is more significant than variation in soil properties in
the test basin. As shown in Fig. 4, the time-to-peak differences
among subbasins of the Blue River basin are obvious. So it makes
sense that the shape factor has a large effect on the runoff re-
sponse in the Blue River. It is also evident in this example that
accounting for both rainfall distribution and soil property varia-
tion contributes to the improvement of model simulation results.

Table 3. Percent Bias, Mean Absolute Error, Correlation Coefficient, Peak Flow Error, and Peak Flow Improvement for the Subbasin and
Single-Basin Simulations for Major Events from 1994 to 1999

Event

Eight subbasins semidistributed Single basin lumped

Peak flow

Error ~%!

Bias ~%! MAE ~%! R Bias ~%! MAE ~%! R Distributed Lumped Improvement~%!

a 21:00 11/13/94 6:00 11/17/94 218 28 0.91 246 47 0.90 17 32 46
b 23:00 5/5/95 11:00 5/11/95 232 32 0.93 224 34 0.83 9 19 52
c 22:00 11/6/96 8:00 11/10/96 20.2 34 0.86 223 37 0.90 20 57 65
d 19:00 2/19/97 4:00 2/24/97 215 18 0.98 226 26 0.96 8 10 20
e 6:00 3/15/98 6:00 3/20/98 2 19 0.94 21 23 0.90 17 13 230
f 7:00 4/3/99 19:00 4/5/99 234 37 0.94 253 62 0.68 33 68 52
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Fig. 6. Simulated and observed hydrographs and subbasin precipitation for an event~a! with a relatively uniform rainfall distribution;~b! for
which rainfall was concentrated on lower subbasins; and~c! for which rainfall was concentrated on upper subbasins
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Table 4. Illustration of Benefit of Using Eight-Subbasin Model for Selected Events where Precipitation Distributions are Different

Event MAPX pattern

Eight subbasins Lumped

Bias ~%! MAE ~%! R Bias ~%! MAE ~%! R

22:00 11/23–13:00 11/27 1996 Relatively uniform 23 21 0.92 20.4 20 0.92
10:00 6/9–7:00 6/12 1997 Concentrated on lower basins 32 71 0.72 230 71 0.38
19:00 6/9–6:00 6/14 1998 Concentrated on upper basins 7 18 0.93 207 220 0.23

Table 5. Description of Two Tests Designed to Understand the Relative Importance of Basin Shape and Spatially Variable Rainfall-Runoff
Parameters

Simulations Description

Eight subbasins semidistributed Simulations are conducted based on basin disaggregation approach. The precipitation, unit
hydrograph, and other parameters are variable among subbasins. Calibration is conducted
based on soil and flow characteristics of individual subbasin.

Test 1
Same unit hydrograph~excludes shape factor!

Simulations are conducted based on basin disaggregation approach. Parameters of each
subbasin are the same as above except the unit hydrograph now is based on the calibrated
lumped unit hydrograph for a single basin and is adjusted according to each subbasin’s
area. Because of usage of this hypothetical unit hydrograph, the effect of basin shape is
eliminated as each subbasin has the same value of time to peak. Comparison of results
from this test and the test described above will show the effect of excluding basin shape
on modeling results.

Test 2
Uniformly adjusted parameters~excludes soil
property variation!

This is the case where initial values of parameters for each subbasin are based on those
from single-basin lumped calibration. The parameters are then adjusted uniformly up or
down across the subbasins during further calibration. Comparison of results from this test
and eight-subbasin test described in the first simulation case of this table will show the
effect of excluding variability of soil properties on the simulations.

Single basin This test is conducted on a single lumped basin. It does not consider spatial variations of
rainfall, soil properties, and other related information. All data are basin averaged.

Table 6. Yearly Comparison of Mean Absolute Error and Correlation Coefficient for Eight-Subbasin Case, Test 1, Test 2, and Lumped Case for
the Blue River Basin

Year

Eight subbasins Test 1~same unit hydrograph! Test 2~uniform adjustment! Lumped

R MAE ~%! R MAE ~%! R MAE ~%! R MAE ~%!

1994 0.86 45 0.85 45 0.87 41 0.87 46
1995 0.92 46 0.89 46 0.90 44 0.86 45
1996 0.90 37 0.91 38 0.89 46 0.88 44
1997 0.92 41 0.90 48 0.88 47 0.87 46
1998 0.95 31 0.93 36 0.94 39 0.94 43
1999 0.76 53 0.66 61 0.67 56 0.56 59
Average 0.89 42 0.86 46 0.86 46 0.83 47

Table 7. Comparison of Peak Flow Error Among Different Simulated Cases and Observed Data for Big Events of 1994–1999

Event

Peak flow error compared to observed~%!

Eight subbasins Test 1~same unit hydrograph! Test 2~uniform Adjustment! Lumped

21:00 11/13/94 6:00 11/17/94 17.3 12.6 18.6 32.3
23:00 5/5/95 11:00 5/11/95 8.9 7.1 7.0 18.5
22:00 11/6/96 8:00 11/10/96 19.7 27.6 17.7 56.9
19:00 2/19/97 4:00 2/24/97 8.4 19.3 8.5 9.6
6:00 3/15/98 6:00 3/20/98 16.9 37.7 21.9 12.5
7:00 4/3/99 19:00 4/5/99 32.9 46.4 39.5 67.9
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Comments on Calibration

Compared to lumped calibration, calibration of multiple subba-
sins requires additional information to guide the adjustment of a
greater number of parameters. Because each subbasin responds to
rainfall ~in terms of flow at the outlet! differently, by looking at
individual events, one can determine which basin’s parameters
need to be adjusted based on rainfall pattern, moisture content in
the soil, and subbasin location. For example, in the event shown
in Fig. 6~b!, subbasins 7 and 8 have the most precipitation during
this event, and they are the closest two subbasins to the outlet.
Therefore, subbasins 7 and 8 contribute most of the peak flow. By
comparing the combined simulated hydrograph to the observed
one and by looking at the moisture conditions for subbasins 7 and
8, one can determine which parameter~s! for subbasins 7 and 8
need to be changed~using the same logic as in the lumped cali-
bration!. Of course, the whole simulation period should be exam-
ined for similar situations. Since changes for subbasins 7 and 8
affect only responses from the two, the hydrograph at the outlet
will show improvement for those events in which subbasins 7 and
8 contribute most of the flow~usually when they have more pre-
cipitation than others!. There is little or no effect on other events.
In other words, this approach does not degrade the results for
events where contributions are mainly from basins other than sub-
basins 7 and 8. So the result at the outlet after adjusting param-
eters for subbasins 7 and 8 usually can be improved throughout
the simulation period. This might not often be the case in a

lumped calibration, where after adjusting a parameter the simu-
lated result may be improved for some events while others are
adversely affected. From this point of view, it may be easier to
calibrate a subdivided basin than a lumped basin when the con-
tribution of flow from each subbasin has great variation.

For the event of June 1998@Fig. 6~c!#, one can see the two
peaks are mainly from responses of subbasins 8 and 2, respec-
tively. So if there are some discrepancies between simulated and
observed hydrographs, one would mainly change parameters for
subbasins 8 and 2. For cases like the event in Fig. 6~a! when
contributions from the subbasins are relatively even~except tim-
ing differences!, one may need to adjust parameters for all sub-
basins uniformly up or down depending how the simulated hy-
drograph compares to the observed one. Alternatively, if one
subbasin’s hydrograph is not distributed as it should be in terms
of timing and quantity when the precipitation is relatively uniform
across the basin, then only that subbasin’s parameters may need to
be adjusted. In conclusion, the basic techniques in multiple-
subbasin calibrations are similar to those in lumped calibrations
except that changes are applied to specific subbasins.

Discussion

A study to compare one-basin lumped versus multiple-subbasin
~through basin disaggregation! semidistributed hydrologic model-
ing in continuous mode has been conducted for the Blue River

Fig. 7. Simulated and observed hydrographs for events of~a! 1994; ~b! 1995; ~c! 1996; ~d! 1997; ~e! 1998; and~f! 1999

Table 8. Comparison of Peak Flow Error Among Selected Cases of Different Precipitation Distributions

Event MAPX pattern

Peak flow error compared to observed~%!

Eight subbasins Test 1~same unit hydrograph! Test 2~uniform adjustment! Lumped

22:00 11/23–13:00 11/27 1996 Relatively uniform 4 14 17 0.5
10:00 6/9–7:00 6/12 1997 Concentrated on lower basins 14 30 29 70
19:00 6/9–6:00 6/14 1998 Concentrated on upper basins 17 25 103 177

JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH/APRIL 2004 / 113



basin of Oklahoma for the time period from 1993 to 1999. This
long, narrow basin has distinguishable hydrologic responses com-
pared to other basins within the domain of ABRFC. Results based
on one-basin lumped and multiple-subbasin semidistributed simu-
lations and their comparisons to observed hydrographs are pre-
sented. Statistics and visual inspection showed that multiple-
subbasin semidistributed simulations are consistently better than
one-basin lumped simulations for this basin. The gain from this
multiple-basin semidistributed modeling was realized primarily
by accounting for the spatial variability of precipitation and soil
parameters within this narrow-shaped basin. Although not used
explicitly in calibration processes, soil information was used to
estimate initial parameters for each subbasin and to establish a
reasonable guess at spatial variability. The fact that calibrated
parameters are different between subbasins is the result of spatial
variability of soil, topography, and other physical characteristics
within the basins. Due to a short period of radar precipitation
data, an independent verification study could not be conducted.

Conclusions

Based on this study, the following conclusions can be made for
the Blue River basin:
1. A subdivided model performs consistently better than a

lumped model for both high- and low-flood events.
2. Tests on isolating the relative importance of accounting for

basin shape and spatial variations in soil properties revealed
that both factors contribute to the improvement in simulation

results. Preliminary results seem to support a conclusion that
accounting for basin shape and orientation has a bigger ef-
fect than soil property variability.

3. When considering storms with nonuniform rainfall, manual
calibration for multiple subbasins can be easier than the
lumped calibration. After initial SAC-SMA parameters are
derived from the procedure described by Koren et al.~2000!,
visual information on the water balance and hydrographs for
subbasins can help to pinpoint which subbasin’s parameters
need to be adjusted while minimizing adverse effects on
other events or other subbasin responses.

4. The proposed strategy for calibrating multiple subbasins is
similar to that for lumped calibration; however, more infor-
mation needs to be examined. Additional factors to consider
include precipitation distribution, soil moisture conditions
for each subbasin, and location of each subbasin in relation
to the basin outlet.

Our study of the Blue River shows more significant gains due
to basin disaggregation. We attribute these differences to the dif-
ferent characteristics of the Blue River; primarily its long narrow
shape and different soil characteristics. Smith et al.~1999a! did
not attempt to account for SAC-SMA parameter variability
among subbasins, so we cannot definitely conclude that account-
ing for this would not have made a difference. However, we do
know that the variations in soil properties within the basins stud-
ied by Smith et al.~1999a! are less than the variations within the
Blue River basin.
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