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Extracting ecological and biophysical information 
from AVHRR optical data: An integrated 
algorithm based on inverse modeling 

B. H. Braswell, •'2 D. S. Schimel 2 j. L Privette 3 B Moore III, 
W. J. Emery 4 E. W Sulzman, 2 and A. T Hudak • 

Abstract. Satellite remote sensing provides the only means of directly observing the entire 
surface of the Earth at regular spatial and temporal intervals. Key Earth system variables 
can be obtained from satellite data by integrating appropriate processing, interpretation, and 
modeling. For example, the amount of photosynthetically active radiation absorbed by 
plants (APAR) and land surface albedo can be inferred from remotely sensed optical meas- 
urements. Radiative transfer model inversion exploits the dependence of reflectance on the 
relative source-sensor geometry to estimate surface parameters. In contrast, geometrical ef- 
fects are suppressed in most other approaches. We present an algorithm for the retrieval of 
fractional APAR (fAPAR), albedo, and other parameters from AVHRR (advanced very 
high resolution radiometer) reflectance measurements by inverting a modified version of the 
SAIL (scattering by arbitrarily inclined leaves) canopy radiative transfer model. The model 
is inverted using an effective bidirectional reflectance factor (BRF) distribution created by 
aggregating AVHRR data into cells of size comparable to those used in current terrestrial 
biosphere models (50x50 km). Successful inversion results over an area in central Africa 
are presented and compared with a vegetation index-based analysis and other satellite data. 
The procedure also provides unique information on phenology derived from timing of 
changes in leaf optical properties and canopy structure. Our methods are unique in that they 
explicitly incorporate a priori ecological knowledge in the choice of model parameters and 
constraints. This approach can eventually be employed at pixel resolution with the EOS sen- 
sors, MODIS (moderate-resolution imaging spectrometer) and MISR (multiangle imaging 
spectro-radiometer). 

Introduction 

Background 

The terrestrial biosphere plays an important role in regu- 
lating the interaction between climate and global biogeo- 
chemical cycles, especially on interannual-to-decadal 
timescales [Sellers et al., 1992; Schimel, 1995]. Indeed, a 
great deal of the uncertainty in the response of the Earth 
system to human perturbations hinges on an understanding 
of the behavior of terrestrial ecosystems. This is due pri- 
marily to the coupling of the global carbon cycle to the 
Earth's radiation budget, and to the complexity of terres- 
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trial processes that govern biosphere-atmosphere exchange 
of CO2, water, and energy. Process models can be used in 
concert with field observations to represent the dynamics of 
terrestrial systems, alone, or coupled to a climate model. 
Few of these models, however, are designed to accurately 
predict spatial and interannual variability. 

Satellite remote sensing instruments such as the AVHRR 
(advanced very high resolution radiometer) [Kidwell, 1991] 
are potentially powerful tools for constraining modeled spa- 
tial and temporal patterns of land surface interactions with 
the atmosphere. The links between modeling and remote 
sensing are primarily associated with calculations of plant 
production and of the energy budget. Ecosystem net pri- 
mary productivity (NPP) may be estimated from optical 
measurements (e.g., by the AVHRR) because of the bio- 
physical nature of photosynthesis; actively photosynthesiz- 
ing leaves have a unique spectral signature, exhibiting high 
absorptance in the visible wavelengths (0.4-0.7tam) and 
high reflectance in the near-infrared wavelengths (0.7- 
1.2tam). This signature (Plate 1) is enhanced or modified 
by the architecture and physiological status of the plant 
canopy. Water and energy exchanges are, in part, a func- 
tion of the total solar energy that is absorbed by the land 
surface. Albedo, the fraction of solar energy that is not ab- 
sorbed, can also be determined using remote observations 
of reflected solar radiation in the visible and near-infrared 

wavelengths. 
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Plate 1. Typical leaf (green line) and soil (red line) reflectance spectra, the advanced very high resolution 
radiometry (AVHRR) visible and near infrared (NIR) sensor response curves (gray regions), and the solar 
spectrum (black line). 

Interpretation of Remotely Sensed Data 

To obtain information about vegetation structure and 
thnction from remote sensing, a model is needed to convert 
the signal measured by the satellite sensor (reflected solar 
radiation) into variables that are meaninglhl at the stand or 
ecosystem level. One approach is to use empirical models 
that relate algebraic combinations of spectral reflectances, 
known as vegetation indices (VI), with the ecological or 
biophysical variable of interest. One of the most widely 
used indices is the normalized difference vegetation index 
(NDVI), which is the difference between the reflectance 
measured in the red and near-infrared channels divided by 
their sum. There is a theoretical and experimental basis for 
the relationship between NDVI and a number of ecosystem 
variables, including canopy photosynthetic efficiency, ab- 
sorbed photosynthetically active radiation, and stomatal 
conductance [e.g., Asrar et al., 1984; Running et al., 
1989; Myneni et al., 1992b; Sellers et al., 1992]. Also, 
there is a nonlinear relationship with leaf area index (LAI), 
approaching an asymptotic value at moderate to high values 
of LAI (generally for LAI > 3). 

The use of remotely sensed vegetation indices as a direct 
proxy for surface variables, however, ignores some impor- 
tant dependencies, even when atmospheric corrections have 
been applied to the data. Predominately, these are the ef- 
fects of solar and viewing geometry and the effects of vari- 
able background reflectance. Moreover, because of its 
asymptotic dependence, NDVI can be used to infer LAI 
only over a limited range of LAI. Although the relationship 
between NDVI and fAPAR is generally linear, it is well- 
known to be sensitive to the status of many soil-vegetation- 

atmosphere system parameters that exhibit high spatial 
and/or temporal variability [Goward and Huemmrich, 
1992]. Thus, a one-to-one relationship between a VI and a 
biophysical variable may not be generally applicable, ex- 
cept through carethi consideration of complicating thctors; 
by inventing indices that are less sensitive to atmospheric 
or soil influences [Huete, 1988; Pinty and Verstraete, 
19921, by normalizing the index [Roujean and Breon, 
1995], or by selecting pixels with preferred view angles 
[Cihlar et al., 1994]. Such considerations (especially the 
latter two) potentially involve the use of radiative transfer 
(RT) models, approaching in a technical sense the method 
of inversion. 

Inverse modeling uses physical models of the radiation 
regime within a plant canopy to retrieve information about 
the surface. Specifically, models are required that simulate 
plant canopy reflectance given a unique parameterization of 
the structural and optical characteristics of vegetation com- 
ponents. In this approach, an optimization scheme is used 
to calculate the parameter set that yields modeled reflec- 
tance most consistent with the observed reflectance data. 

Radiative transfer models vary in complexity from empiri- 
cal techniques [Walthall et al., 1985] that require only a 
few parameters and represent highly idealized canopies, to 
three-dimensional discrete ordinates methods [Myneni et 
al., 1992a] that account tbr all known scattering processes 
but require a large number of parameters. The inversion 
technique is analogous to solving N equations with M un- 
knowns; in order to retrieve M parameters we need the 
equivalent of N>_M independent observations of the target. 
Therefore, there is an inherent compromise between model 
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complexity, the number of measurements of a given target, 
and accuracy of parameter retrieval. 

Radiative transfer model inversion has a number of dis- 

tinct advantages over other approaches: it is physically 
based, so that the relationship between measured reflectance 
and surface biophysics is self-adjusting instead of empiri- 
cally calibrated, it deals with mechanisms that would other- 
wise contaminate the signal, and it allows the researcher to 
incorporate ecological knowledge and field measurements 
in a consistent way. The degree to which the model physics 
(assuming they are adequately represented) adjust to novel 
environments depends on the quality of ancillary ecological 
information provided, but the retrieved parameters should 
not be less accurate those derived from methods that do not 

incorporate such data. The main disadvantage of inversion 
is that it is computationally more intensive. The requirement 
of multiple measurements may be considered a disadvan- 
tage, but we will demonstrate a practical solution to that 
problem. 

The objectives of this paper are (1) to present an algo- 
rithm for the retrieval of land surface information over large 
areas using a physical model and a global optical data set, 
and (2) to present initial results that demonstrate the poten- 
tial for this algorithm to be used operationally. Past RT 
model inversions have been limited to point analyses. We 
extend these efforts by developing a technique that facili- 
tates inversions at regional to global scales. Our method 
works with the AVHRR Pathfinder product, which is read- 
ily available, and the only current global reflectance data set 
suitable for this use. 

The AVHRR Pathfinder Data Product 

Since 1981, optical reflectance data has been gathered 
from the AVHRR on board the NOAA 7 through 11 polar 
orbiting platforms. This instrument measures exiting radi- 
ance in five channels: red (0.58-0.68 [tm), near-infrared 
(NIR; 0.73-1.10 [tm), and three in the thermal infrared. 
These satellites approximately cover the globe each day, 
and the highest spatial resolution possible is about 1.1xl.1 
km. The Pathfinder AVHRR Land (PAL) product [Agbu 
and James, 1995] is a global data set, with 8x8 km spatial 
resolution and a 10-day compositing interval. The data are 
projected onto a Goode's Homolosine equal-area map base. 
There are 12 data layers; each pixel contains the two opti- 
cal reflectances (R*•i and R*•2), temperatures from the 
three thermal bands, sun and sensor zenith angles (0 and 
0'), the relative azimuth angle (u/), and the day/hour of ob- 
servation. Also included is a quality control (QC) flag, an 
estimate of the extent of cloud contamination calculated us- 

ing the thermal bands, and NDVI. The QC and cloud flag 
layers are described in detail in work by Agbu and James 
[1995] and are used in our algorithm to filter pixels that po- 
tentially contain errors or extensive cloud contamination. 

The Pathfinder reflectances are derived from the "global 
area coverage" (GAC) data that are produced on board the 
satellite. Because of on-board data storage limitations, the 
nominal 1.1 km "local area coverage" (LAC) spatial reso- 
lution of AVHRR is not automatically retained for the en- 
tire globe. Instead, measurements are aggregated by 
averaging four adjacent samples out of every five in a scan 
line, then skipping the next two scan lines [Kidwell, 1991]. 

The resulting GAC spatial resolution is approximately lx4 
km at nadir. In the Pathfinder data set, pixels are mapped 
on to a global grid from the raw GAC data. Global area 
coverage data has coarser resolution and potentially poorer 
quality than the 1.1 km LAC data because of reduced spa- 
tial sampling, but logistical issues associated with recover- 
ing LAC measurements are being addressed by an 
International Geosphere Biosphere Program core project 
[Townshend et al., 1994] and global "1 km AVHRR" data 
will soon be available for a limited time domain, including 
the ancillary information (described above) that is neces- 
sary for our analysis. 

The data are temporally composited (during Pathfinder 
processing) by choosing the GAC reflectances and the as- 
sociated ancillary information from the observation that 
yielded the highest NDVI in the 10-day window, a common 
practice because almost all factors (particularly aerosols 
and water vapor) that contaminate the signal from the land 
surface tend to reduce NDVI [Holben, 1986]. Bidirectional 
effects on NDVI are a complex function of sun-sensor ge- 
ometry and land surface conditions and thus they will not 
be selected out of the data by this compositing technique. 
Moreover, the compositing process has the effect of in- 
creasing the sampling of sun-sensor geometry from pixel to 
pixel because the uncorrected atmospheric effects that lead 
to decreased NDVI tend to be spatially and temporally het- 
erogeneous, and because each consecutive overpass will 
have a unique (random) scan angle. Thus, it is very likely 
that nearby pixels in the product are derived from different 
overpasses. This effect of compositing on the local distribu- 
tion of sun-sensor angles facilitates the application of the 
method introduced in this paper. 

The PAL global data product currently covers 1981- 
1994 (see also WWW site http://xtreme.gsfc.nasa.gov). In 
our analysis we have used two subsets of the data for two 
related applications. First, an initial large-scale stratifica- 
tion and geostatistical description was performed using all 
of the 10-day composited data for the African continent for 
the years 1986-1988. Second, for the set of inversion ex- 
periments, we extracted clusters of pixels (cells) along a 
transect in central Af¾ica for all 12 months of 1986. 

Theoretical Background 

Spaceborne radiometers (e.g., AVHRR) measure solar 
radiation that has been transmitted through the atmosphere, 
interacted with the surface (including vegetation, soil, wa- 
ter, etc.), and then transmitted back through the atmosphere 
to the satellite. A radiometer measures the photon energy 
flux received within fixed intervals of wavelength and solid 
angle. This information can be translated into reflectance, a 
physical variable that is independent of instrument charac- 
teristics and solar flux, through radiometric calibration 
[Brown et al., 1985]. The variation of reflectance with re- 
spect to wavelength and sun-sensor geometry is called the 
bidirectional reflectance factor (BRF) and is given by 

R(r,r',X) = rrL(r,r', •) E,,(r', •) , (1) 
where E s is the solar irradiance (watts per squared meter) 
incident from the r' direction, and L is the outgoing radi- 
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ance (watts per squared meter per steradian) measured at r. 
This is an approximate expression because there is usually 
a small flux of radiation incident from all directions 

("skylight") in addition to the direct solar beam. 
Canopy radiative transfer models simulate the BRF for a 

given wavelength band as a function of sun-sensor geome- 
try, and a set of parameters P describing the architectural 
and optical characteristics of the components for the vege- 
tated surface, that is, R=Rv(r,r',X). In this study, we used 
the SAIL (scattering by arbitrarily inclined leaves) model 
[Verhoef, 1984, 1985] because it is intermediate in com- 
plexity, and represents a compromise between physical re- 
alism and the number of input parameters. Parameters of 
the SAIL model include leaf area index (LAI), leaf optical 
properties, and leaf angle distribution. The SAIL model 
calculates Rv by solving the radiative transfer equations for 
scattering of diffuse and direct sunlight by a distribution of 
small flat elements (leaves) in a semi-infinite medium. 

We have modified SAIL to simulate the reflectance of 

two-component canopies [cf., Qin, 1993], including a hot 
We have modified SAIL to simulate the reflectance of 

two-component canopies [cf., Qin, 1993], including a hot 
spot parameterization [Kuusk, 1991] for both components. 
Table 1 shows the full set of parameters used in this im- 
plementation of the model (SAIL-2). It is important to rep- 
resent nonphotosynthetic vegetation (NPV) components in a 
radiative transfer model because almost all plant canopies 
contain stems, standing dead, or senescent leaves that inter- 
act with radiation and affect estimates of physical parame- 
ters. For example, fully senescent grasslands in the dry 
season can absorb a significant amount of radiation in the 
PAR wavelengths that is not associated with biological ac- 

tivity. The hot spot parameterization allows for the treat- 
ment of self-shading effects of both components; when the 
observer is looking from the backscatter direction, fewer 
shadows are seen than from the forward scatter direction, 

leading to greater observed radiance (a reflectance peak at 
r = r' ). The width of this peak is related to the shape and 
size of canopy elements, thus the hot spot parameter is rep- 
resentative of the ratio of leaf (or stem) size to canopy 
height and varies from 0 to 1 [Kuusk, 1991]. 

The most common method of inverting a radiative trans- 
fer model is to use an iterative optimization procedure that 
attempts to find the global minimum of a least-squares 
measure of error, the merit function: 

(2) 

where E 2 is the sum-squared error, Oi=(0i 0' i 14/i! repre- 
sents the set of sun-sensor geometries (ri r'i), R is the 
measured reflectance, and the summation is over the total 
number of measurements at hand: the unique geometrical 
configurations (i=1 ..... N) times the number of spectral 
bands per measurement. Goel and Thompson [1984] have 
shown that the SAIL model is mathematically invertable in 
this manner. In the case of AVHRR, j is either 1 (visible) 
or 2 (near-infrared). In addition, a set of weighting coeffi- 
cients wij may be applied to reflect the relative importance 
of directions and wavelengths with respect to the slope of 
the merit function [Privette et al., 1996] and thus improve 
the convergence of the optimization. We have left all wi•.= 1 
in this study, but are planning to investigate the usefulness 
of nonunit weights. Equation (2) assumes that there is a 

Table 1. The SAIL-2 Model Parameters and their Bounds or Default Values for three Inversion Experiments 

Configuration G1 Configuration G2 Configuration F 

i Parameter (Pi) Mode Value Mode Value Mode Value 
1 Plant area index lYee 0.5-10.0 lYee 0.5-10.0 free 0.5-10.0 

2 Stem fraction l•ee 0.0-0.5 free 0.5-1.0 free 0.1-0.9 

3 Leaf red reflectance range 0.05-0.17 free 0.05-0.17 free 0.05-0.17 

4 LeafNIR reflectance linked J'(P3) linked JIP3) linked J'{P3) 

5 Leaf Red transmittance linked J•P3) linked J•P3) linked J•P3) 

6 LeafNIR transmittance linked J•P3) linked f(P3) linked J•P3) 

7 Stem red reflectance free 0.1-0.4 range 0.1-0.4 range 0.1-0.4 

8 Stem NIR reflectance linked J•P7) linked J'(P7) linked J•P7) 

9 Mean leaf angle linked J'(P7) linked J•P7) fixed 0.0 

10 Stem NIR transmittance linked J•P7) linked J•P7) fixed 0.0 

11 Mean leaf angle fixed 50 ø fixed 50 ø fixed 50 ø 

12 Mean stem angle fixed 50 ø fixed 50 ø fixed 60 ø 

13 Leaf hot spot parameter fixed 0.4 fixed 0.4 fixed 0.1 

14 Stem hot spot paramter fixed 0.4 fixed 0.4 fixed 0.5 

15 Soil red reflectance range 0.06-0.4 range 0.06-0.4 range 0.06-0.4 

16 Soil NIR reflectance linked J(Pis) linked J'(PI5) linked 

17 Horizontal visibility fixed 50 km fixed 50 km fixed 50 km 

18 Cover fraction range 0.5-0.8 range 0.8-1.0 fixed 0.99 

The mode indicates how each parameter was treated in the inversion process: 'free' means optimization was performed to 
retrieve these parameters, 'fixed' means these parameters were specified prior to inversion and held constant, 'range' means these 
parameters were fixed for each optimization in an ensemble, and 'linked' mean these parameters were determined as a function of 
some other parameter (based on field data). 
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multiple sampling of geometry, which is not strictly possi- 
ble with AVHRR for a single target and satellite overpass, 
but we present one method for approximating this sampling 
in the next section. 

Given that the principal independent variables are © and 
;k, the shape of the BRF with respect to the sun-sensor ori- 
entation and to wavelength is the fundamental profile used 
to characterize the land surthce. A basic fact of remote 

sensing is that in order to retrieve some quantity P,, the 
BRF must be sensitive to small changes in that parameter, 
illustrated by 

dR(©,)•;P) 
> •, (3) 

where • represents some measure of the noise threshold in 
the data. As an example, reflectance in both the red and 
NIR bands saturates with increasing LAI. This implies (as 
mentioned in the Introduction) that the derivative in (3) ap- 
proaches zero, and thus it is increasingly difficult to deter- 
mine LAI at high values of LAI. An additional directional 
measurement (i.e., incremental sampling of ©) is useful for 
determining P when the derivative with respect to some pa- 
rameter Pi at the new measurement geometry O' is not 
equal to the derivative at another available O I. The meas- 
urement is then said to be independent and it contains new 
information. The number of independent measurements 
needed depends on the quality of model and data, the nature 
of the target, and the desired number of retrieved parame- 
ters. 

If there are M parameters and 2N measurements, and if 
one attempts to retrieve m <M free parameters, then an ob- 
vious requirement is that 2N'e_m. However, due to the exis- 
tence of noise in the data and inaccuracy in the model it is 
desirable to have N as large as possible and m as small as 
possible. Because reducing the number of fi'ee parameters 
m in the inversion increases the likelihood of a successful 

optimization (retrieval), those with less sensitivity can be 
held fixed at little cost to accuracy. In addition, if func- 
tional relationships can be found between parameters, it 
will reduce the dimensionality of the parameter space. Fi- 
nally, it may also be useful to apply an ensemble of fixed 
parameters and average the results. All of these techniques 
have been used in this study. 

When an acceptable parameter set P of the RT model 
has been recovered from the data (i.e., a minimum of E2(P) 
has been found), daily total fAPAR (H) [e.g., Goward and 
Huemmrich, 1992] is obtained by diurnal integration: 

at[cos(O'(t)). 
I, 

(4) 

where T is the number of daylight hours (dependent on lati- 
tude and time of year), •,= is the photosynthetically active 
radiation (PAR) portion of the spectrum, and fp is the in- 
stantaneous PAR absorbed by the canopy. Albedo (ct) is 
computed by hemispheric integration [Ross, 1981]: 

IA d)•lco, df'2'[cøs(0')' Rp (r, r',)•). 
(5) 

where A is the entire solar spectrum (-0.03-1.2 [tm) and co 1 
is the upper hemisphere. 

Methods 

The basis of our approach is the simulation of a geomet- 
rical sampling of the BRF by aggregating the reflectance 
data into cells that contain many individual 8-km pixels, re- 
taining the associated location-specific values of reflec- 
tance, sun-sensor geometry, and quality control indicators. 
Because of the Pathfinder compositing, spatially adjacent 
pixels are otlen obtained with significantly different sun- 
sensor angles. Thus, within regions and 10-day composites, 
significant angular intbrmation exists, although each pixel 
is at a single angle. We reasoned that most relatively undis- 
turbed systems, which are heterogeneous at sub-kilometer 
scales, may represent reasonably homogeneous mixtures at 
1-km scales and larger, and that pixels within a region may 
each contain consistent mixtures of the same types (e.g., 
x% trees, y% shrubs, and z% grasses). Thus, multiple pix- 
els within some grid cell could be used to produce a syn- 
thetic BRF for that grid cell, simulating multiple 
measurements of a (cell-sized) target. 

Stratification of the Continental-Scale Data Using a 
Vegetation Index 

We chose a region in central Africa for initial testing. 
The region was chosen because it contains extensive con- 
tinuous mixtures of natural vegetation and because it is the 
site of an ongoing interdisciplinary investigation. The first 
step was to perform a series of large-scale analyses with 
AVHRR data using a vegetation index in order to assess: 
(1) the appropriate cell size and shape, and (2) a basis for 
excluding pixels from a cell that are outliers. We took 
NDVI from the Pathfinder data tbr the African continent 

and created a VI climatology by recompositing to maxi- 
mum monthly NDVI, cloud and QC filtering (rejecting 
questionable observations), then averaging over the 3 years 
for each month, that is, 

where /-(Jan ..... Dec) and j:(1986 ..... 1988). We then per- 
formed a principal components (PC) rotation on the NDVI 
to define a set of new, orthogonal variables. The first three 
PCs explain 96% of the total variance. As the principal 
components of a stationary time series are equivalent to 
Fourier components, the first three PCs roughly correspond 
to the mean greenness, and the amplitude and phase of the 
seasonal cycle. Higher-order components are significant 
only for some isolated areas, amounting to a very small per- 
centage of all pixels in Africa. The images in Plate 2a, and 
2b show the first three PCs as a mixture of red(1), green(2), 
and blue(3). Functional ecotypes can be identified as having 
approximately the same color; this mapping may be thought 
of as a continuous, unlabeled vegetation characterization. A 
discrete characterization can also be obtained by clustering 
the PCs into a number of unique, idealized classes. Similar 
multi-temporal characterizations of spatial data have been 
presented in the literature [Andres eta/., 1994; Running et 
al., 1995]. 
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Plate 2. Phenological characterization of Africa. (a) Principal components 1,2, and 3 as a mixture of red, 
green, and blue. Inset is 2b, showing the transect line. (b) The transect of 15 "cells" from grassland (blue 
pixels) to evergreen forest (orange pixels). Also shown are field sites where soil/litter reflectance was meas- 
ured. 

We initially classified African vegetation using the first 
three PCs of the NDVI into forest, savanna and grassland, 
and desert, using the K-means method [Spath, 1980]. We 
then computed the semivariance of the NDV! in the N-S 
and E-W directions within types, focusing on the direc- 
tional semivariance because of the strong anisotropy of 
vegetation density (at the continental scale) in Africa. Sills 
for the semivariance were typically higher E-W than N-S 
because of the influence of the strong N-S precipitation 
gradient in the Sahel. We set as a maximum threshold fbr 

grid cell radius the scale length (typically less than 200 km) 
of the E-W semivariance, and we set as a minimum the 

grid cell size sufficient to obtain an adequate sampling of 
the BRF as determined by the number of unique geometri- 

cal configurations. Empirical evaluation of these joint con- 
straints for this region resulted in grid cell sizes of 50-km 
radius. At this resolution, the spatial continuity is approxi- 
mately isotropic, so the choice of circular grid cells is ap- 
propriate. Plate 2b shows the transect of overlapping grid 
cells used in this analysis. For future reference, we adopted 
the convention of numbering the cells from 1 to 15 starting 
at the northernmost cell. The discrete classification (for the 
entire continent) mentioned above resulted in this transect 
being broken into two classes, with the between-class line 
falling very close to cell 11. We thus refer to cells 1-10 as 

being a savanna/grassland mosaic, cells 12-15 as being ev- 
ergreen/deciduous forest, and cell 11 as "transitional". 
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Figure 1. Leaf reflectance and transmittance data, convolved to the four leaf optical variables used in SAIL- 
2 and plotted against one another. The solid line is the line of best fit, and the dashed line is the relationship 
obtained by writing all four variables in terms of the first PC of the leaf data. 

38 

Leaf and Soil Optical Measurements 

It is useful to obtain relationships between model pa- 
rameters in order to reduce the number of free parameters 
in the inversion. This can be accomplished by specifying a 
functional relationship between a variable and another 
(independent) variable, thus each time that variable is ref- 
erenced during the optimization, it is assigned a value ac- 
cording to the prescribed function. We identified the leaf 
and soil/background optics variables as being most appro- 
priate for data reduction because of the typically strong 
autocorrelation in their reflectance/transmittance spectra. 

An integrating sphere was used to measure the leaf opti- 
cal properties of a set of savanna plants that were grown in 
a greenhouse. The leaves were of varying age and mor- 
phology. The measured reflectance and transmittance spec- 
tra were convolved with the AVHRR sensor bandwidths 

and the solar spectrum to produce visible (channel 1) and 

NIR (channel 2) values for reflectance and transmittance. 
Each point on Figures la-ld represents one of these re- 
duced-spectral measurements. We wished to represent the 
four leaf optical parameters with a single variable, but this 
cannot be accomplished using the pairwise lines of best fit 
(solid lines in Figure 1). Principal components analysis 
yielded a 60% explanation of total variance by the first PC. 
Thus, we used the first PC of these data to express visible 
leaf transmittance and NIR leaf reflectance and transmit- 

tance as a linear function of visible leaf reflectance. The re- 

sulting relationships are shown as dashed lines in Figure 1 
and represent the best way (in the least squares sense) to 
represent all the leaf optical parameters with one free vari- 
able. 

The same spectral averaging technique was used for 
soil/litter reflectance. In January-February, 1995, we (co- 
authors EWS and ATH) visited a series of sites in the Cen- 
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Figure 2. Similar to Figure 1 except for field measured 
soil spectra. The line of best fit was used in the inversion. 

• 30 

rr 20 

z 

tral African Republic (C.A.R.) spanning the forest- 
savanna-grassland transition (Plate lb). LAI and soil/litter 
reflectance were measured at each site, including back- 
ground spectra from areas that were recently burned. Wet 

5O 

soil reflectance was also measured at each site. The com- 

bined soil and litter reflectance data were transformed into 

AVHRR-equivalent values using the same convolution 
method as for leaves. Using the transformed data, we de- 
veloped a relationship between soil reflectance in the visi- 
ble and NIR wavelength regions (Figure 2). The soil line 
function, together with the leaf optics function, effectively 
reduce six of the model parameters (four for leaves, two 
for soil) down to two model parameters. 

Inversion Methodology 

We then extracted synthetic BRFs from a transect of 
grid cells in the C.A.R. (Plate 2a and 2b) for all months of 
1986. The transect is 800 km long and consists of 15 cells; 
each cell is approximately 50 km in radius and consists of 
121 Pathfinder (8x8 km) pixels. This focused study region 
represents an ecological gradient from grassland in the 
north to evergreen tropical forest in the south, with mix- 
tures of grassland, savanna, and woodland in between. 

Multiple, geometrically unique observations of a target 
are required in order to use the bidirectional information to 
retrieve parameters, so this technique has operational value 
only if each cell contains pixels with significantly different 
sun-sensor geometry, and if the degree of sampling is con- 
sistent over time. This is true for the cells on our transect, 
as demonstrated in Plate 3a for cell number 1. Sun-sensor 

phase angle is a proxy for the full geometrical configura- 
tion (Plate 3b shows the September geometries), so we 
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Plate 3. (a) Sun-sensor phase angle for a typical site as a function of time. (b) The full sun-sensor geometry 
for September. (c) Measured visible and NIR reflectances for the same data as in 3b. (d) Measured versus 
modeled reflectance after inversion on the data from 3b and 3c. 
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Figure 3. A typical cell characterized by a PC analysis of multitemporal normalized difference vegetation 
index (NDVI) data. Individual pixels are rejected if they differ from the modal cell value for any PC by more 
than 10% of the continental range of values for that PC. 

have color-coded all points in Plate 3a-3d by the phase an- 
gle. Plate 3c is the realization of an actual BRF distribution; 
pixels with similar geometry have similar reflectance 
values. In fact, this is a fairly typical profile, showing high 
backscatter reflectance, and lower reflectance in the 
forward scatter directions and at nadir. 

Outlier pixels within grid cells were rejected on the ba- 
sis of a similarity criterion, following the PC characteriza- 
tion of Africa. This effectively excluded lakes, villages, 
some river corridors, and vegetated areas that differ greatly 
from the dominant local structural-phenological type. The 
first three PCs of the NDVI data were used to apply a 
consistent requirement of similarity to each cell. Any pixel 
that differed from the modal PC/ value (for i= 1,2,3) by 
more that 10% of the total range of PC/values for Africa 
was excluded. No more than half of the pixels were ex- 
cluded from any given cell. On average, 70% of pixels 
were retained. Figure 3 shows the PC1-PC3 values and the 
rejected pixels for a typical cell (number 1). 

A number of free parameter retrievals were performed 
on the transect of AVHRR data for 1986. We used three 

fixed parameter sets, shown in Table 1 as G1, G2, and F. 
Parameters in each configuration could be free and 
bounded, fixed at different values in an ensemble, constant, 
or functionally linked to another variable. The three con- 
figurations in this experiment correspond to an idealized 

grassland in the dry season (G1; more dead grass than live 
grass), a grassland in the wet season (G2; mostly green 
grass), and an ideal forest (F). For the grassland sets, 
stems were assumed to be senescent leaves and thus the re- 

lationship between NPV optical variables is the same as for 
leaves. Also, having the same shape as green leaves, they 
are assigned the same leaf hot spot parameter. The main 
difference between G1 and G2 is that the optical properties 
of NPV are free in the G1 inversion, and fixed in the G2 
inversion (Table 1). This is because the relative abundance 
of NPV versus active leaves dictates, in part, the sensitivity 
of the optical parameters (see equation 3). In the forest set, 
stems are assumed to be tall (large hot spot effect) and the 
green leaves small with respect to canopy height. Tree 
stems are also assumed to have zero transmittance. 

For all the retrievals we inverted the SAIL-2 model on 

three free parameters: plant area index, stem fraction, and 
component (leaf/stem) reflectance in the visible. We used 
the optimization routine E04JAF (a quasi-Newton algo- 
rithm •ith simple bounds) from the Numerical Algorithm 
Group , to perform the inversions. Nearly all attempts at 
inverting with four free parameters failed, as did attempts 
where one of the three parameters above was fixed and any 
other parameter (e.g., soil reflectance) was free. By failure 
we mean that the optimization routine could not find a 
minimum of the merit function (equation 2) given the pa- 
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rameter defaults and constraints (Table 1). It is a conven- 
ient and important fact that when a parameter set is too 
unrealistic to allow a solution within the bounds provided, 
the inversion returns with a null result. Our subsequent in- 
ference that the three "key" parameters above have the 
greatest BRF sensitivity (equation 3) over the range of can- 
opy conditions encountered in this study is consistent with 
the analysis of Privette [1994]. 

A successful inversion, by definition, yields reflectances 
that agree as closely as possible with the measured AVHRR 
reflectance values. Plate 3d shows a typical (described 
above) set of modeled versus measured reflectances, corre- 
sponding to Rr and R* in (2). The two clumps correspond 
to channel 1 (circles)and channel 2 (triangles). The 1:1 re- 
lationship in this figure is indicative of the success of the 
optimization, and the scatter reflects the magnitude of the 
merit function E 2 in (2). The plot of R v versus R* (Plate 3d) 

indicates that the inversion has succeeded, and that the rela- 

tionship between measured and modeled reflectances are 
well-behaved with respect to geometry. 

Results 

The SAIL-2 model was inverted on the harvested 

AVHRR data to obtain P for each cell and for each month 

of 1986, using parameter configurations G1, G2, and F 
(Table 1). Given the retrieved canopy structural and optical 
parameters, forward integrations (equations 4 and 5) 
yielded daily total fAPAR [Goward and Huemmrich, 1992] 
and broad band albedo. These secondary products are as- 
sumed to be more robust than the elements of P (e.g., LAI) 
because they integrate all of the model canopy properties 
and because they are radiative quantities. Our field meas- 
ured LAI (sites shown in Plate 2b) data are not directly 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

0.00 

0 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

0.00 

A. February Transect; 01/02 and F 
' ' ' ' I .... I .... I 

Grassland/Savanna Forest 

o 

- o e •...o. ,,'/,• o- -e- - •-e/, 

I , I 

5 10 15 
Site 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

0.00 

0 

Grosslond/Sovonno Forest 

I I i I 

5 10 15 

Site 

C. Site 1 Time Series; (31/(32 
--' ' ' I ' ' ' I ' ' ' I ' ' ' I ' ' ' I ' ' ' I ' 

i i i i i i i , 

6 8 10 12 
Month 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

0.00 

0 

D. Site 14 Time Series; F 
' ' ' I ' ' ' I ' ' ' I ' ' ' I ' ' ' I ' ' ' I ' 

, , , I , , , I , , , I , , , I , , , I , , , I , 

2 4 6 8 10 12 

Month 

Figure 4. (a) Retrieved fAPAR along the transect in the dry season (February). The solid line connects the 
points with parameterizations that are appropriate for the vegetation type. G1, triangles; G2, squares; F, cir- 
cles (see text). (b) The same as 4a except for September. (c) An fAPAR time series for the northernmost cell 
(1), using the G 1 and G2 parameterizations. (d) The same as 4c except for the southernmost cell (15). 
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Figure 5. Retrieved fAPAR values along the transect as a 
function of time. 

comparable to the SAIL-2 retrievals of LAI (Pi.(1-P3)), 
primarily because of the 9-year time difference, but they 
can provide a check on the results. In Jan. 1995, forest site 
LAIs were observed, ranging from 5.5+0.6 in the ever- 
green tropical forests to 3.0_+0.4 in disturbed, upland sites. 
By comparison, retrieved forest LAI ranged from 4.6_+2.0 
(cell 11) to 2.8_+0.5 (cell 14). 

We merged the fAPAR results tbr the three parameter 
configurations (G1, G2, and F) using the classification dis- 
cussed above. The "grassland" parameterizations G1 and 
G2 were assumed to represent cells 1-10, results for cells 
12-15 were taken from the "forest" F inversions, and cell 

11 was assigned the mean of the G1/G2 and F results 
(Figure 4a-4b). Figures 4a and 4c also demonstrate the im- 
portant success/failure phenomenon of the inversion. An 

unrealistic parameterization does not generally allow for a 
solution, so the "dry grass" G1 inversions fail during the 
peak growing season months, and the "green grass" G2 in- 
versions are successful only during this period. The merged 
fAPAR results for all sites for one year are shown in Fig- 
ure 5. The spatial-temporal patterns of daily total fAPAR 
seen in Figures 4a-4d and in Figure 5 are a realistic depic- 
tion (based on field experience and accepted ecological 
knowledge) of the vegetation canopy dynamics in this re- 
gion. The amplitude and timing of the seasonality decreases 
from north to south, producing a sharper N-S gradient in 
the dry season than in the wet season (consistent with the 
geostatistical description discussed above). A slight bimo- 
dal seasonality can also be seen at the southern points, in 
agreement with analyses of Olsson and Eklund [1994]. 

We compared our fAPAR results to those calculated us- 
ing the VI-based method of Sellers et al. [1994] for the 
Simple Biosphere (SiB) model. There is roughly a 1'1 
agreement (Figures 6a-6b) between the two approaches, but 
with a moderate amount of scatter (R 2 = 0.88). Error bars 
for the Sellers et al. [1994] fAPAR result from within-cell 
variation of NDVI, while error bars on our estimates re- 

flect the uncertainty propagated from the parameter ranges 
that were applied as part of an ensemble (Table 1). The 
forest NDVI were transformed into fAPAR using the equa- 
tions for the SiB tropical evergreen class, and for the re- 
maining cells, we used the SiB savanna equations (Figure 
6a) and the SiB grassland equations (Figure 6b). These fig- 
ures show an offset between the SAIL-2 and the Sellers et 

al. [1994] determination of fAPAR, as well as a depend- 
ence on which VI transformation was used to get the sa- 
vanna/grassland points. Also, the difference becomes 
amplified at high fAPAR values. The existence of a good 
relationship is possibly due to the fact that averaging VI 
values over a 50-km radius cell reduces the effects of vari- 

able sun-sensor geometry and background reflectance. Less 
correspondence would likely be observed if data from a 
multi-angle like MISR [Diner et al., 1989] was used, be- 
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Figure 6. (a) A comparison of fAPAR derived from the SAIL-2 inversion and fAPAR using the vegetation 
index-based method of Sellers et al. [1994] for SiB forest (circles) and savanna (squares) types. (b) The same 
as 6a except using SiB forest (circles) and grassland (squares) types. 
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Table 2. Broadband Albedo Estimates From the SAIL-2 Inversions Compared with 
the SiB Model and METEOSAT Data 

Location/Time SAIL-2 SiBa METEOSAT b 
Cell 1, January (dry) 0.10 0.15-0.20 0.09 
Cell 1, September (wet) 0.15 0.10-0.15 0.16-0.18 
Cell 15, January 0.11 0.15-0.20 0.10 

Cell 15, September 0.12 0.10-0.15 0.16-0.17 
Cell 1 is centered at 8 ø N, and cell 15 is centered at 4 ø N. 
aDorrnan and Sellers [1989]. 
bBecker et al. [1988]. 

cause less spatial averaging would be required in the inver- 
sion. 

Finally, we evaluated our estimated land surface albedo 
for the transect against the SiB model-derived estimates of 
Dorman and Sellers [1989] and an approximation using 
METEOSAT (a narrow-band visible weather monitoring 
instrument) data [Becker et al., 1988] along a transect at 
20 ø E. Table 2 shows the albedo comparison for both ends 
of the transect at two times of the year. Compared to SiB, 
our values are of comparable magnitude but they do not co- 
vary with respect to vegetation type and seasonality. How- 
ever, the METEOSAT-derived albedo appears to show 
good agreement in magnitude and seasonality at both lati- 
tudes. An effort to compare our results to Earth Radiation 
Budget Experiment data is forthcoming and will provide 
more insight into the accuracy of these estimates. 

The two comparisons with SiB formulations do not con- 
stitute validation of our inverse modeling results. At this 
time, VI-based algorithms are the only other way to esti- 
mate biophysical parameters at regional-to-global scales. 
The comparison demonstrates that our results (using un- 
conventional methods) are comparable to other estimates, 
but it reveals some intriguing differences. Further, though 
it is likely that the fAPAR values derived from inverse 
modeling are more accurate than those using VI's because 
of their greater information content, the two techniques are 
suited for somewhat different applications. A VI-based ap- 
proach is computationally fast, and more applicable for 
coarse resolution (e.g., GCM-scale) analyses. Inverse 
modeling applications are more computationally intensive, 
but are based on physical and ecological theory, and thus 
are more appropriate for detailed studies. Moreover, in- 
verse modeling may feed back into the development of bet- 
ter VI algorithms, as is currently planned for the NASA- 
EOS MODIS instrument [S. Running, personal com- 
munication, 1996]. 

Discussion and Conclusions 

Satellite remote sensing allows for direct observation of 
the status of global vegetation at regular spatial and tempo- 
ral intervals. This density of observation is important for 
monitoring terrestrial ecosystems because of the high spa- 
tial and temporal variability in climate forcing and because 
of the nonlinear response of tmrest•ial biogeochemistry • 
particularly factors relating to water and nutrient status. 
We have presented an algorithm for extraction of land sur- 
face biophysical information (LAI, fAPAR, and albedo) 
that is relevant for biogeochemical, ecological, and bio- 

physical modeling, and that has the following unique char- 
acteristics' 

1. It uses real satellite data and a physically based model 
to retrieve parameters over large spatial areas. The SAIL-2 
parameter set consists of measurable quantities (Table 1) 
and leads to estimates of fAPAR(x,t) and albedo(x,t). 

2. It simulates a multidirectional sampling of the BRF 
by gathering a spatial-temporal neighborhood of pixels with 
an assumed spatial continuity. This assumption is enforced 
by a principal components (or Fourier) decomposition 
analysis of a vegetation index climatology. 

3. It allows for the incorporation of a priori ecological 
knowledge in the choice of parameter constraints and of the 
inversion mode (i.e., which parameters are held fixed, and 
which are free). This method highlights the importance of 
data describing soil and leaf optical properties keyed to 
global soils and vegetation databases. These data are read- 
ily but rarely measured. 

4. It allows for direct incorporation of field measure- 
ments of plant canopy and surface soil/litter (background) 
characteristics, which typically reduce the number of free 
parameters in the inversion and may be applied over large 
areas, as in this study. 

There are significant differences between our approach 
and VI-based, empirical approaches [Potter et al., 1993' 
Sellers et al., 1994' Ruimy et al., 1994]. First, we use both 
optical channels simultaneously instead of combining them 
into one index. Second, we retrieve parameters for a clus- 
ter of pixels (one cell) instead of for each pixel, effectively 
trading lower resolution for increased accuracy. Third, we 
explicitly account for the two factors that are most respon- 
sible for the distortion of the vegetation signal' background 
spectral variation and bidirectional effects. Fourth, we ac- 
count for PAR interception by nonphotosynthetic vegetation 
which allows estimation of fAPAR for leaves. Finally, with 
inverse modeling, the uncertainty associated with lack of 
knowledge of some surface characteristics (parameters) and 
the validity of ecologically based assumptions may be quan- 
tified using fixed-parameter ensembles. 

Our conclusion, based on these preliminary results, is 
that it is possible to retrieve land surface parameters from 
remotely sensed data using physical model inversions. Al- 
though we used a relatively simple RT model (SAIL), this 
method could easily be adapted to more sophisticated mod- 
cl• Lœttvcttc et I• tt ...... , li u•., •,•,uJ. •x•w•v•l iore •.,•111DIC;A 111•IAC;I• 

generally have more parameters; thus they may not be ad- 
vantageous unless (1) the remote sensing data contains 
more BRF information per unit area and less atmospheric 
noise (e.g., MISR), or (2) more ecological constraints are 
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available. Because our method is based on physical model- 
ing, it is probably more accurate than those achieved using 
VI-based algorithms (except those that are highly tuned), 
but this has yet to be established experimentally. Our 
method requires no empirical calibration between reflec- 
tance (or a VI) and any of the estimated variables: fAPAR, 
albedo, or LAI. Field validation is essential, but difficult, 
because of scaling issues associated with the estimation of 
LAI, albedo, or fAPAR over an area greater than or equal 
to 2500 km 2. One way to attack the problem of verification 
is by using spectral unmixing techniques and data from 
other, higher-resolution sensors to bridge the gap between 
field measurements and continental-scale (e.g., AVHRR) 
data. These methods could also feed back to the large-scale 
parameter estimation by providing better quantification of 
canopy component properties. Indeed, the combination of 
inversion and unmixing techniques has been proposed as a 
"paradigm shift" in the remote sensing of vegetation bio- 
physics [Hall et al., 1995]. 

Although the AVHRR Pathfinder data set is carefully 
processed, there are two "minor" problems with the first 
release of the data [Prince and Goward, 1996]: (1) the in- 
cident solar radiation was not adjusted for solar zenith an- 
gle; and (2) there was an error in the correction tbr 
atmospheric Rayleigh and ozone scattering. These translate 
into RMS reflectance errors for a typical composite of as 
much as 1-3% (M. James, official communication, 1995). 
Moreover, the data have not been corrected for the effects 
of scattering by atmospheric aerosols, which can be large. 
Further processing of Pathfinder data is currently being 
planned to correct these problems, which could lead to im- 
proved accuracy of our analysis. We feel that the successful 
inversions presented in this study using imperfect AVHRR 
data demonstrate the robustness of our algorithm. 

This method can easily be used in the EOS framework, 
particularly with the MODIS and MISR sensors. Data from 
both sensors will be atmospherically corrected and cali- 
brated with state-of-the-art techniques, and sampling rates 
of MODIS are comparable to those of AVHRR [Sellers and 
Schimel, 1993]. While MISR repeat samples are up to 9 
days apart, that sensor's ability to measure a target at nine 
angles per satellite pass will likely result in smaller (and 
less heterogeneous) aggregation cells. Both sensors have 
spatial resolutions of less than 1 kilometer at nadir over 
several visible and NIR bands. The higher-resolution sam- 
pling of solar and PAR spectral wavelengths by MODIS 
should allow for better estimation of land surface properties 
such as fAPAR and albedo. 

With algorithms such as the one presented in this paper, 
inversion methods will soon be mature enough for large- 
scale applications. Automation of decisions that are based 
on geography, climate, time of year, etc. will be possible in 
conjunction with consideration of ecological factors. Be- 
cause they are easily incorporated into inversion methods, 
improved understanding of ecosystems, radiative transfer, or 
optimization techniques as well as refinement of global eco- 
logical and soils databases will translate directly into a more 
accurate retrieval of biophysical parameters and may lead to 
a better understanding of the role of the terrestrial biosphere 
in the Earth system. 
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