
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Industrial and Management Systems
Engineering Faculty Publications

Industrial and Management Systems
Engineering

1998

A Multithreaded Scheduler for a High-Speed Simulator A Multithreaded Scheduler for a High-Speed Simulator

Gene Saghi

Kirk Reinholtz

Paul Savory
University of Nebraska at Lincoln, psavory2@gmail.com

Follow this and additional works at: https://digitalcommons.unl.edu/imsefacpub

 Part of the Computational Engineering Commons, Computer Engineering Commons, Industrial

Engineering Commons, Operational Research Commons, and the Other Operations Research, Systems

Engineering and Industrial Engineering Commons

Saghi, Gene; Reinholtz, Kirk; and Savory, Paul, "A Multithreaded Scheduler for a High-Speed Simulator"
(1998). Industrial and Management Systems Engineering Faculty Publications. 60.
https://digitalcommons.unl.edu/imsefacpub/60

This Article is brought to you for free and open access by the Industrial and Management Systems Engineering at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Industrial and Management
Systems Engineering Faculty Publications by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/imsefacpub
https://digitalcommons.unl.edu/imsefacpub
https://digitalcommons.unl.edu/imse
https://digitalcommons.unl.edu/imse
https://digitalcommons.unl.edu/imsefacpub?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/310?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/310?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/imsefacpub/60?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages

G. Saghi, K. Reinholtz, and P. Savory (1998), “A Multithreaded Scheduler for a High-Speed Simulator,”
Software Practices and Experiences, Volume 28, No. 6, pp. 641-656

A Multithreaded Scheduler
for a High-Speed Spacecraft Simulator*

Gene Saghi

Advanced Designs, Inc.
1495 Garden of the Gods Road
Colorado Springs, CO. 80919
gsaghi@a-d-inc.com

Kirk Reinholtz Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive, MS 303/310
Pasadena, CA 91109-8099
kirk@zipcode.jpl.nasa.gov

Paul A. Savory Industrial and Management Systems Engineering
University of Nebraska – Lincoln
175 Nebraska Hill
Lincoln, NE 68588-0518
savory@engrs.unl.edu

October 1997

Submitted to Software Practice and Experience

* For this research effort, Dr. Saghi and Dr. Savory were supported through Summer Faculty Fellowships
provided by the American Society of Engineering Educators (ASEE) in combination with the National
Aeronautic and Space Administration (NASA). Portions of the work described were performed at the Jet
Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and
Space Administration.

mailto:gsaghi@a-d-inc.com�
mailto:kirk@zipcode.jpl.nasa.gov�
mailto:savory@engrs.unl.edu�

G. Saghi, K. Reinholtz, and P. Savory (1998), “A Multithreaded Scheduler for a High-Speed Simulator,”
Software Practices and Experiences, Volume 28, No. 6, pp. 641-656

Summary

The Cassini spacecraft is on its journey to Saturn to perform a close-up study of

the Saturnian system; its rings, moons, magneto-sphere, and the planet itself. Sequences

of commands will be sent to the spacecraft by ground personnel to control every aspect of

the mission. To validate and verify these command sequences, a bit-level, high-speed

simulator (HSS) has been developed. To maximize performance, the HSS is

implemented with multiple threads and runs on a multiprocessor system. A key

component of the HSS is the scheduler, which controls the execution of the simulator.

The general framework of the scheduler can be adapted to solve a wide variety of

scheduling problems. The architecture of the scheduler is presented first, followed by a

discussion of issues related to performance and multiple threads. Second, the avoidance

of deadlocks and race conditions is discussed and an informal proof for the absence of

both in the scheduler is described. Finally, a study of various scheduling policies is

provided.

Key Words - deadlock, multiprocessing, multithreaded, object-oriented, scheduling

policy, simulation.

 1

Introduction

An international endeavor involving the National Aeronautic and Space Agency

(NASA), the European Space Agency, and the Italian Space Agency has developed the

Cassini spacecraft to learn more about Saturn's atmosphere, magnetic field, rings, and

moons. Unlike the Voyagers that flew past Saturn on their way out of the solar system,

Cassini's mission is a four-year, close-up study of the Saturnian system. The mission

represents a rare opportunity to gain significant insights into major scientific questions

about the creation of the solar system and the conditions that led to life on Earth. (A

detailed description of the spacecraft and its mission can be found at the NASA Cassini

home page: http://www.jpl.nasa.gov/cassini/)

During Cassini's mission, sequences of commands will be sent to the spacecraft

by ground control personnel. Each sequence instruction will direct the spacecraft to

perform some operation such as firing a thruster or sending a control command to one of

the on-board scientific instruments. To validate and verify these command sequences, a

“bit-level” high-speed simulator (HSS) has been developed by NASA.

The HSS provides models of each of the thirty-one data system hardware

components on the spacecraft. Examples of hardware components include: the 1750a

central processing unit, the intercommunication bus, the Reed-Solomon downlink, and

the solid state data recorder. The HSS is implemented as a “bit-level”, software-only

simulator derived directly from the hardware specifications. That is, the thirty-one HSS

models are actually hardware emulators for the Cassini spacecraft data systems. Because

the emulator models are bit-level representations of the actual hardware, the HSS directly

executes the flight software that is to be loaded on the spacecraft.

One of the key control components in the HSS is the scheduler, whose task is to

schedule the execution of models so as to minimize execution time while keeping the

models synchronized with one another. To meet its high-performance goal, the Cassini

HSS is implemented with multiple threads that run on multiple processors. Thus, the

scheduler must manage how “threads” execute each of the thirty-one hardware emulators.

Race conditions and deadlock are potential problems with any parallel program. The

 2

HSS scheduler has the additional goals of being provably free of race conditions and

deadlocks.

This paper describes the design and development of a general-purpose,

multithreaded scheduler that has high performance and is provably free of race conditions

and deadlocks. In addition, the selection of a scheduling heuristic is described. Although

this paper focuses on the Cassini HSS scheduler, the framework described here can be

easily applied to many other scheduling problems where a multithreaded approach is

desired. The following sections describe some of the key issues associated with

multithreaded programming, the HSS scheduler's object-oriented framework, the

scheduler algorithm, the prevention of race conditions and deadlocks, and the choice of a

scheduling policy.

Multithreaded Programming Considerations

Before discussing the design of the HSS scheduler, it is necessary to briefly

discuss the multithreaded programming paradigm. Readers that are familiar with

multithreaded programming issues may wish to bypass this section. Those interested in

reading more about multithreaded programming are referred to references [1] and [2].

Our discussion on threads is based on Sun Microsystem's Solaris 2 threads

implementation.

A process is defined here as a running program and all of the state information

associated with it. A thread is an independent stream of control within a process.

Traditional processes have a single thread of control and possess sole ownership of the

process's memory and other resources. In a multithreaded environment, a process can

have many active threads, with all threads sharing the process' memory and resources.

On a multiprocessor system, different threads may execute on different processors. The

threads execute concurrently, which can result in a substantial improvement in

performance. Better performance often results on uniprocessors due to better utilization

of the processor. For example, when one thread blocks on an I/O request, another thread

can execute and the processor remains fully utilized.

 3

A process is made up of several lightweight processes. Each lightweight process

(LWP) can be viewed as a virtual processor that is available for code execution. On a

multiprocessor system, each LWP can concurrently execute on a different processor.

LWPs are scheduled onto the available processors according to their scheduling class and

priority. Every LWP can have many threads associated with it, but threads assigned to

the same LWP run sequentially with respect to one another. In the general case, the user

does not know how threads are distributed among LWPs. However, it is possible for the

user to create a bound thread, which is a thread that is permanently tied to a specific

LWP.

As stated earlier, threads share memory and other system resources. This can lead

to race conditions. Races are events with nondeterministic outcomes in otherwise

deterministic programs. For example, consider two threads, A and B with the code

segments:

Thread A Thread B
x = x + 1; x = x - 1;

If the value of x is 2 before the code segments execute, the value of x afterward

could be 1, 2, or 3, depending on the order in which the reads and writes associated with

the code segments are actually performed. This type of nondeterministic behavior is

generally undesirable.

To prevent the above variety of race condition, access to shared data must be

serialized. In multithreaded programming, this is done through the use of a mutual

exclusion lock, or mutex. The first thread that calls the lock on a mutex gets ownership

of the mutex. It can then proceed to access the shared data protected by the mutex.

Further calls to lock the mutex will fail, causing the calling thread to sleep. When the

mutex owner unlocks the mutex, one of the sleeping threads will be awakened and given

the chance to lock the mutex, although another thread could actually obtain ownership of

the mutex first.

It is important to realize that the proper use of mutexes alone does not prevent the

occurrence of all race conditions. Consider the following example:

 4

 Thread A Thread B
mutex_lock(&m); mutex_lock(&m);

x = x + 1; x = x * 2;

mutex_unlock(&m); mutex_unlock(&m);

If the value of x is again 2 before the code segments execute, the value of x

afterward could be 5 or 6 depending on which thread obtained the mutex first.

The amount of code protected by mutexes in a multithreaded program should be

minimized because the use of mutexes significantly reduces the concurrency of the

program. Although the use of mutexes is necessary to control access to shared resources,

their use can lead to another significant problem called deadlock. Deadlock can occur

whenever a circular chain of threads exists in which each thread owns one or more

mutexes that are requested by the next thread in the chain. For example, consider the

case where thread A owns mutex m1 and is waiting to obtain mutex m2, while thread B

owns mutex m2 and is waiting to obtain mutex m1. Neither thread can continue.

Deadlock also occurs when one thread already owns a mutex, but tries to obtain

ownership of the mutex again.

Among the goals for the HSS scheduler were high performance and the absence

of race conditions and deadlocks. In the following sections, the way in which these goals

were achieved is discussed.

Scheduler Architecture

The HSS scheduler is implemented in C++ because of that language's runtime

efficiency and its support for object-oriented programming. A simplified representation

of the overall architecture of the HSS is shown in Figure 1. The simulation elements, or

models, are connected to each other via specialized interface objects called splices. Each

model splice is a unidirectional communication channel. Additionally, the scheduler is

connected to each model by dedicated scheduler splices. There are two user interfaces

available in the HSS: a command-line interface and a graphical-user interface. These

interfaces are implemented using an embedded Tcl (“tool command language”)

 5

interpreter, a freely distributed interpretive language developed at the University of

California at Berkeley [3].

The remainder of this section discusses the architecture of the HSS scheduler. A

graphical representation of the structure of scheduler is depicted in Figure 2.

Barriers

The HSS scheduler framework is based on a barrier mechanism. A barrier is an

object used to synchronize models. Each barrier has an entered set, an entry set, an event

set, and an exit set. The entered set is used to track which models have arrived at the

barrier. No model in the barrier entry set may proceed beyond the barrier until all models

in the entry set have arrived at the barrier. Once all models in the entry set have reached

the barrier, the events associated with the event set are performed. Then, the models in

the barrier exit set are released, i.e., enabled for execution. The only restrictions on

model entry and exit sets are as follows:

Given barriers bi and bj that occur at times bi(t) and bj(t), respectively,

1. If bi(t) = bj(t), model mk can be a member of at most one of the barrier entry sets

and one of the barrier exit sets.

2. If bi(t) < bj(t), model mk can be in the entry set for bi and bj if and only if it is also in

the exit set for bi.

Figure 3 illustrates the use of barriers to synchronize model execution.

The Cassini spacecraft is a real-time system. To simulate real-time behavior, the

HSS must track the passage of time from the view point of the Cassini system. This is

done by storing within each barrier object the simulated time at which the barrier will be

encounterred. In addition, each barrier includes a flag that indicates the presence of a

barrier breakpoint. The use of this flag is discussed further in the next section.

Barriers can be made periodic. Each barrier has three parameters to control the

barrier's periodicity. The phase describes the offset of the barrier's first occurrence from

time zero. The cycles and nanoseconds parameters describe the period of the barrier in

cycles per number of nanoseconds. In the Cassini spacecraft, there are two reference

clocks that are available to all of the system modules. These clocks are used by the

 6

modules for the purpose of synchronization. In the Cassini HSS, the same function is

accomplished with two periodic barriers.

Models and the Model Queue

As discussed earlier, every hardware entity to be emulated in the spacecraft has an

associated model object. These models emulate the hardware in response to the flight

software and other models. In the scheduler, a model object stores:

• the identity of the next barrier at which it must stop,

• the time of that barrier,

• a list of barrier stop times for every known barrier the model will encounter in the

future,

• the current time for the model in cycles,

• the model state,

• and the cycle rate for the model expressed in cycles per number of nanoseconds.

Models cannot be stopped in the middle of an instruction execution and some models

have variable length instructions. The cycle rate information and the instruction to be

executed determine the points in time at which a model can be stopped. Thus, the

concept of a barrier is relaxed such that a model that reaches a barrier will actually stop

after that barrier if the current instruction is not yet complete when the barrier occurs.

A model can be “waiting” for a thread on which to run, “running” on a thread,

“at_barrier”, or “suspended.” A model that encounters a breakpoint becomes suspended.

The user can then interrogate the model to determine its state information. In addition,

the scheduler will stop executing all other models. The user can then interrogate the

simulation models for troubleshooting purposes. Although execution is suspended by the

scheduler when any model hits a breakpoint, the models are not guaranteed to be

completely synchronized. However, barriers can be used to set bounds on the degree to

which models may be out of synchronization.

The model queue holds models waiting to be executed. Figure 4 shows the model

queue and demonstrates its use. Models are put on the model queue only when a barrier

has been reached, i.e., when every model in the barrier entry set has reached the barrier.

At that time, the scheduler reads the barrier exit set, which is the list of models that will

 7

continue execution beyond the barrier. Then, the scheduler orders the list of models

according to its scheduling policy. The models are then placed on the model queue in the

order in which they should be executed. A thread that is ready for more work will

remove the next available model from the model queue and execute it. A detailed

description of the scheduling policy and its effect on the performance of the scheduler is

provided in a later section.

Tasks, Threads, and the Thread Queue

Because the scheduler's goal is to minimize runtime by maximizing parallelism,

the scheduler uses bound threads to execute models. This allows each scheduler thread to

be scheduled globally by the operating system and results in good performance when the

number of LWPs is equal to or slightly greater than the number of processors in the

system. For single-processor systems, it is generally better to use unbound threads in

order to reduce the operating system overhead.

Every scheduler thread has an associated task object. A task can be in one of three

states: idle, running, dying. When a task has a model to run, it is in the running state.

When a thread is marked for deletion, the associated task is put in the dying state.

Otherwise, the task is in the idle state. Every task also stores the number of the model to

run and the time of the next barrier at which the model must stop (both valid only when

the task is in the running state). The task also stores its unique identity number.

Every task has a mutex associated with it. This mutex is used to implement a

sleep-wait barrier for the task. When a task (thread) is created, its mutex is locked. The

thread then executes the code shown below for a sleep-wait barrier.

When it tries to re-acquire the mutex, it is put to sleep. When the user is ready to

advance the simulation, a run command is issued to the scheduler, which causes the task

mutex to be released. Now the thread will acquire the mutex and then proceed do useful

work. Once the thread has done all the work it can, it returns, goes to the top of the loop,

and tries to re-acquire the mutex. Once again, it will be put to sleep until another user run

command is issued.

 8

Sleep-Wait Barrier Spin-Wait Barrier
while(!done) { while(!done) {
 task.lock(); while (task.cond == 0){};

 if (task.state == dying) if (task.state == dying)
 done = 1; done = 1;
 else else {
 do_work(); do_work();
}; task.cond = 0;
 };
 };

Another possible approach is the spin-wait barrier (shown above). With this

approach, the task condition would initially be set to 0. The thread would stay in the

inner-most while loop until the user run command changed the task condition to some

other value. Then the thread could go on to do useful work. Once finished, the task

would once again enter the spin-wait barrier. The difference between these two

approaches is that a sleeping thread does not compete for execution time on a processor.

This is not an issue if every thread in the HSS has its own processor. However, when

there are more threads than processors, the sleep-wait barrier has been found to be a far

superior approach in terms of performance.

The thread queue holds the task identity numbers for threads that are currently

sleeping at the sleep-wait barrier. During initialization of the scheduler, all created tasks

are placed on the thread queue. When a thread is needed, a task identity number is

removed from the thread queue and the corresponding task mutex is released. When a

thread has no work left, it puts its task identity number back on the thread queue before

entering the sleep-wait barrier.

Scheduler Algorithm

This section describes some of the details of the Cassini HSS scheduler

implementation. Particular attention is focused on measures taken to improve

performance and to prevent deadlock and race conditions. The paragraphs that follow

refer to the simplified pseudo code provided in Figures 5−8.

In the Cassini spacecraft, the hardware components synchronize with one another

every one-eighth second, at a real-time interrupt (RTI). The HSS mimics this behavior

through the use of a periodic barrier with the period set to one-eighth second. Other

 9

barriers are added as needed to provide additional synchronization points among models.

The user can specify to the scheduler the length of emulated time or the number of RTIs

that the scheduler should execute. In response, the scheduler sets up a special barrier,

known as a breakpoint barrier, that has the desired stop time and stop flag set.

When the scheduler is initiated, a user-specified number of threads are created.

The corresponding task identifiers are loaded into the thread queue. The task mutexes are

locked and each thread then begins to execute the sleep-wait barrier code in the

threadloop() function (Figure 5). Each thread will attempt to lock its task mutex

again and will thus sleep on the call to lock(). This method of rendezvous incurs

overhead costs on the order of microseconds on a Sun SPARCstation 10. As mentioned

earlier, there are other methods to cause the scheduler threads to wait for work, such as

spin-wait barriers and condition variables. However, we found that other system-

provided methods of rendezvous result in greater overhead costs (often much greater).

As the result of a user “run” command, issued through a Tcl interface, the

scheduler creates a breakpoint barrier and then loads all of the models (all active models

must belong to the entry set and exit set of the breakpoint barrier) onto the model queue.

Finally, the user interface thread calls model_onto_thread() (Figure 6). This

function obtains a thread from the thread queue and then a model from the model queue.

Next, the model is assigned to the thread and the task mutex is unlocked. That thread can

now move beyond the sleep-wait barrier in the threadloop() function. The Tcl

interface thread will continue to pair threads with models in this fashion until the thread

queue is empty. At that time the Tcl interface thread will return and the scheduler threads

will continue executing on their own.

In threadloop(), a thread that obtains its mutex proceeds to call do_work()

(Figure 7). When the thread returns from do_work(), it will again try to obtain its

mutex and will thus sleep-wait at that point. An outside event, such as a user command,

must unlock the task mutex to allow the thread to continue.

In do_work(), a thread will run the model it was assigned in

model_onto_thread(). One of three results can occur:

1. the model may not complete all of its assigned cycles (i.e., the model does not hit

a barrier),

 10

2. the model executes enough cycles to hit a barrier, or

3. the model hits a breakpoint (a model breakpoint set by a user for troubleshooting

purposes).

In the first case, the model is left on the thread and will be run again. In the second case,

model_hit_barrier() is called. In the third case, the scheduler sets a global

suspended flag and the model state is set to “suspended”.

In model_hit_barrier() (Figure 8), the model is added to the entered set

for the barrier. If some models in the entry set have not yet been added to the entered set,

the function returns. Otherwise, if all of the models in the entry set have arrived at the

barrier, the barrier entered set is cleared, the events associated with that barrier are

performed, and the next stop time for the barrier is established. If the barrier has its

stopped flag set, no models are loaded onto the model queue. Otherwise, the models in

the exit set for the barrier are all loaded onto the model queue and

model_onto_thread() is called to start up the other threads.

Because the model queue and the thread queue are both accessed by multiple

threads, each must be protected by a mutex. When accessing either queue, a thread first

obtains the correct mutex, then pushes or pops an element from the queue, and then

immediately releases the mutex. When using mutexes, the best code performance is

achieved by keeping those mutexes locked for as short a time as possible. As will be

shown in the next section, the fact that a thread will not own more than one mutex at a

time when accessing the model and thread queues means that no deadlock can occur.

Each barrier object is also protected by a mutex unique to itself. The barrier

mutex guarantees that only one thread can access the barrier object at a time. Thus, only

one thread can find that its model was the last to enter a barrier. The other threads return

from model_hit_barrier() knowing that the barrier has not yet been hit. Each of

these threads attempts to obtain another model from the model queue. If successful, each

thread will then execute that model and the process will continue. However, if the model

queue is empty, the thread will put its identifier on the thread queue and return from

do_work() only to perform a sleep-wait in threadloop(). The thread that had the

model that was last to hit the barrier, the master thread, is thus responsible for loading the

model queue and starting the other threads up by calling model_onto_thread().

 11

After doing so, the master thread will return to do_work(), where it will attempt to

obtain a model to execute.

When the master thread encounters a barrier that has its breakpoint set, it will put

its identifier on the thread queue and will signal the Tcl interface thread that the scheduler

is finished. The master thread will then return from do_work() and end up at the

sleep-wait barrier in threadloop(). Thus, all of the scheduler threads are back to the

same state they were in prior to the launch of the scheduler.

Deadlocks and Race Conditions
Being provably free of deadlocks and race conditions was an important goal

during the development of the HSS scheduler. This section describes how deadlocks and

race conditions can be avoided. Informal proofs for the absence of deadlocks and race

conditions in the scheduler are also presented.

Deadlocks

One important requirement for the scheduler is that it must be free of deadlocks.

There are three classical approaches to deadlocks in the literature: deadlock prevention,

deadlock avoidance, and deadlock detection and recovery [4]. Deadlock avoidance and

deadlock detection and recovery schemes involve runtime overhead to detect and avoid

unsafe states or to detect when deadlock has occurred. Deadlock prevention, on the other

hand, can be implemented without runtime overhead. Thus, in the interest of maximizing

performance, deadlock prevention was chosen as the approach to deadlock for the Cassini

HSS scheduler.

Reference [5] provides the following four necessary conditions that must be in

effect for deadlock to exist:

1. Processes claim exclusive control of the resources they require.

2. Processes hold resources already allocated to them while waiting for additional

resources.

3. Resources cannot be removed from the processes holding them until the resources

are used to completion.

 12

4. A circular chain of processes exists in which each process holds one or more

resources that are requested by the next process in the chain.

Because all four of the above conditions are necessary for deadlock to occur, the

absence of any one or more of the conditions eliminates the possibility of deadlock. The

first condition cannot be avoided when multiple processors cooperate to solve a problem

and they must share one or more resources. Deadlock prevention seeks to eliminate the

occurrence of one or more of conditions (2), (3), or (4). For the scheduler, we chose to

concentrate on preventing condition (2) and condition (4).

The shared objects controlled by the scheduler are the model queue, the thread

queue, the barrier objects, the task objects, and the model objects. As discussed above,

the model and thread queues are each protected by unique mutexes. In all of the

scheduler code, when the scheduler obtains either of these mutexes, it accesses the

protected data and then releases the mutex without attempting to obtain any other

mutexes. To help insure this, there are no function calls performed between the acquire

and release of the queue mutexes.

In model_hit_barrier(), a thread must obtain the mutex for the barrier that

the executed model hit, prior to adding the model to the entered set. The barrier mutex is

released before the function returns. Only two functions called from within

model_hit_barrier() attempt to obtain mutexes. These are

put_models_onto_queue(), and model_onto_thread(). Both of these

functions must obtain the model queue mutex. Thus condition (2) is met. However,

because the model queue mutex is obtained and released without attempting to acquire

other mutexes, there can be no circular chain of requests for mutexes, and condition (4) is

denied.

Task objects are not actually protected by mutexes. There is a one-to-one

correspondence between a task and a thread. Only the thread corresponding to a task

object ever manipulates that task's data. Thus, no real sharing of data takes place. The

task mutex is instead used to put the thread to sleep and to wake it up later (as presented

in the Scheduler Architecture Section and the Scheduler Algorithm Section). When all of

the scheduler threads go to sleep, the scheduler can in fact make no progress without

 13

outside intervention. However, a user thread can unlock the task mutexes to start

scheduler operation. Outside threads never lock task mutexes, with the exception of

scheduler initiation, where each task mutex is locked only when the corresponding thread

is created.

Model objects are not protected by mutexes even though they are shared objects.

Thus, deadlock is not possible with regard to contention for model objects among

threads. Instead, race conditions are the concern with models and are discussed in the

next subsection.

Race Conditions

From the discussion above, it should be clear that with the exception of model

objects, all shared data are protected by mutexes. In the case of models, the barrier

mechanism combined with the existence and use of the model queue guarantees that no

two threads will try to access a model object at the same time. The restrictions on

barriers presented in the Scheduler Architecture Section insure that only one barrier can

stand in the way of a model at any one time. Further, a model is placed on the model

queue only when a barrier has been reached and only one thread will ever “reach” a

barrier, because only one thread can own the last model to enter a barrier. This

implementation of barriers combined with the use of a model queue that is protected by a

mutex, guarantees that a model can only be assigned to one thread at any point in time.

Thus, there is never any contention between threads for a particular model object.

Recall that in the Scheduler Architecture Section, it was shown that race

conditions can occur even with the proper use of mutexes. This is possible when two

threads write different values to a shared variable and the ultimate result depends on the

order in which the threads obtain access to that shared variable. In the case of the

scheduler, we can show that this will never occur.

Consider the model queue. Model identities are put onto the model queue either

by a user Tcl thread or by a scheduler thread when a barrier has been reached. In the first

case, the scheduler does not accept run commands from a user thread until the scheduler

has finished with the previous run command (a simple handshake scheme assures this).

In the latter case, recall that only one thread can have the model that is last to reach a

 14

barrier. The other threads arrive earlier and, upon finding that the model queue is empty,

put themselves to sleep. Thus, regardless of which thread loads the model queue, the

model queue always ends up with the same models on it (those models in the exit set of

the last barrier encountered).

In regard to the thread queue, the one-to-one correspondence between a thread

and a task object insures that a thread can only write its corresponding task identifier to

the thread queue. Further, it does not overwrite other task identifiers already on the

queue. Because every thread is created equal in the eyes of the scheduler, the order that

task identifiers appear on the thread queue makes no difference.

Once a barrier object is created, only two data items associated with the object are

updated. These are the time at which the barrier is to occur and the entered set for the

barrier. Regardless of which thread reaches the barrier, the time for the next occurrence

of the barrier will be updated in exactly the same way. As for the entered set, it is

represented as a bit vector, so each model that reaches a barrier results in changing the

state of one unique bit in the vector. Thus, no race condition can occur.

To summarize this section, we have shown that the HSS scheduler is free from

deadlocks and race conditions. While the approach used depends on the particular

algorithm and data structures involved, the techniques used here can be readily applied to

other software design efforts.

Scheduling Policy

To empirically explore the impact of various scheduling policies for the

scheduler, we developed a discrete-event simulation model [6]. The model was

developed to mimic the operation of the scheduler. The key performance variable we

measured was the total estimated time for the HSS to execute all thirty-one models for

100 RTIs.

Once the simulation model was verified and validated, we developed fifty-six

variations of it. Each differed by the number of threads available to process models (1

thread, 2 threads, 3 threads, 4 threads, 8 threads, 12 threads, and 16 threads) and the

queue priority rule for the model queue. By running forty replications of each simulation

 15

model, we performed a total of 2240 simulation runs. For these simulation runs, it was

assumed that every thread was bound to a unique processor.

Table 1 summarizes the experimental design used for our study. The data in the

table is the estimated average time for the HSS to run all of the thirty-one hardware

models for the varying scenarios. For example, our simulation model estimates that with

two threads and Rule 4, the HSS will have an execution time of 38.8 seconds. That is, it

is estimated that it will take the HSS 38.8 seconds to simulate 12.5 seconds (100 RTI x

1/8 second per RTI) of the spacecraft data control system. These results indicate that the

HSS is slower than real-time. However, since the time that these execution-time

measurements were made, significant improvements have been made to the code of the

hardware models. Currently, the HSS is faster than real time.

Table 1: Average runtime estimates for the HSS to execute all thirty-one emulators for
100 RTIs. The results are indexed by the queue priority rule for the model queue and the
number of threads to process models.

 Number of Threads
Rule Description 1 2 3 4 8 12 16

1 First-in, first-out - priority
given to model arriving at
model queue first

76.4

42.1

38.2

23.5

23.0

22.9

22.9

2 Last-in, first-out - priority
given to model arriving at
model queue last

76.4

39.4

33.3

22.9

22.9

22.9

22.9

3 Priority given to model that
has been in process for the
least time

76.5

42.1

38.2

23.5

23.0

22.9

22.9

4 Priority given to model that
has been in process for the
most time

76.4

38.8

32.8

22.9

22.9

22.9

22.9

5 Priority given to model
having waited least total
time in model queue

76.4

41.3

37.9

23.7

23.0

22.9

22.9

6 Priority given to model
having waited most total
time in model queue

76.4

41.3

35.1

23.3

23.0

22.9

22.9

7 Priority given to model
having waited least total
time in thread queue

76.4

40.4

33.2

22.9

22.9

22.9

22.9

8 Priority given to model
having waited most total
time in thread queue

76.4

42.1

38.2

23.5

23.0

22.9

22.9

 16

An analysis of variance was performed to test whether there is a statistical

difference among the mean times to completion. For one thread, there is no difference.

For two and more threads, the best performing rule is Rule 4. A close second is Rule 7,

followed by Rule 5. The results also indicate that as the number of threads increase, the

run time decreases. Though there is a limit on the improvement.

Our study shows that after four threads, adding more threads has minimal impact.

This is a direct result of the run times for the individual models. In the Cassini HSS, four

of the models account for over 98% of the total model execution time. Therefore, little

benefit can be derived from utilizing more than four processors.

The fact that Rule 4 had the best performance indicates that models that required

the longest execution times in the past are likely to require the longest execution times in

the future. This rule is relatively easy to implement. Cumulative execution-time data is

maintained for each model. Models are placed onto the model queue in order from

highest cumulative execution time to lowest.

Summary and Conclusions
This paper described the design and development of a general-purpose

multithreaded scheduler that is free of deadlocks and race conditions. The techniques for

avoiding deadlock and races presented here can be applied to other multithreaded

program design efforts.

The multithreaded HSS complete with the scheduler described in this paper has

been in use at the NASA Jet Propulsion Laboratory for more than one year. It has proven

to be reliable and free of deadlock and race conditions. Currently, the HSS executes

flight code at approximately twice the real-time rate. On-going work to reduce the

processor model execution time through optimization of the code and through the

application of block optimization of the flight software is expected to yield further

execution time improvements. The availability of ever faster computing hardware will

also improve the HSS performance as compared to real-time.

The Cassini HSS, with its embedded scheduler, is a valuable software tool that

will provide valuable support for the Cassini mission to Saturn over the years to come.

 17

Acknowledgments: The authors gratefully acknowledge Jeff Nesheiwat and the entire

HSS team at NASA. A preliminary version of portions of this research was presented at

the 16th Digital Avionics Systems Conference in October 1997.

 18

REFERENCES
[1] S. Kleiman, D. Shah, and B. Smaalders, Programming with Threads, SunSoft Press,

Mountain View, CA, 1996.

[2] B. Lewis and D. J. Berg, Threads Primer: A Guide to Multithreaded Programming,
SunSoft Press, Mountain View, CA, 1996.

[3] J. K. Osterhout, An Introduction to Tcl and Tk, Addison-Wesley, Reading, MA, 1993.

[4] H. M. Deitel, Operating Systems, 2nd edition, Addison-Wesley, Reading, MA, 1990.

[5] E. G. Coffman, Jr., M. J. Elphick, and A. Shoshani, “System deadlocks,” Computing
Surveys, Vol. 3, No. 2, Jun. 1971, pp. 67-78.

[6] P. A. Savory and G. Saghi, “Simulating Queue Scheduling Policies for a Spacecraft
Simulator,” Interfaces, Vol. 27, No. 5, Spet.-Oct. 1997.

 19

Figure 1: Simplified representation of HSS overall architecture.

primary
bus

cpu_a

cpu_b aacs

aacs
bus

aacs

scheduler

TCL
interface

threads

rtstats

scheduler splices

model splices

simulation
framework

 model
instances

 20

Figure 2: Simplified representation of HSS overall architecture.

modelscheduler model
queue

buscpu_a cpu_bbarrier
thread
queue

thread

 21

Figure 3: Use of barriers to synchronize model execution.

time

models

barriers breakpoint

 22

Figure 4: The model queue and its usage.

entered set entry set event set exit set

scheduling policy

model
queue

to next available thread

barrier

 23

threadloop(task){
 done = 0;
 while(!done){
 task.lock();
 if (task.state == dying)
 done = 1;
 else
 do_work(task);
 };
};

Figure 5: Simplified pseudo code for the threadloop() function.

 24

model_onto_thread(){
 while ((task = get_thread_from_queue()) != NONE){
 while ((model = get_model_from_queue()) != NONE){
 task.model = model;
 task.unlock();
 break;
 };
 };
};

Figure 6: Simplified pseudo code for the model_onto_thread() function.

 25

do_work(task){
 breakpoint = NO;
 while((suspended == NO) & (breakpoint == NO)){
 rv = run_model(task.model);
 model.state = waiting;
 switch(rv){
 case MODEL_NOT_FINISHED:
 model.state = running;
 break;
 case MODEL_REACHED_BARRIER:
 model.state = at_barrier;
 breakpoint = model_hit_barrier(model);
 break;
 case SCHEDULER_SUSPENDED:
 suspended = YES;
 model.state = suspended;
 break;
 case default:
 ERROR();
 break;
 };
 if (model.state != running){
 if ((breakpoint == NO) & (suspended == NO)) {
 model = get_model();
 model.state = running;
 if (model == NONE)
 break; // The model queue is empty.
 };
 };
 put_task_onto_thread_queue();
};

Figure 7: Simplified pseudo code for the do_work() function.

 26

model_hit_barrier(model){
 breakpoint = NO;
 barrier = model.barrier;
 barrier.insert_into_entered_set(model);
 if (barrier.entered_set == barrier.entry_set){
 breakpoint = barrier.breakpoint;
 barrier.clear_entered_set();
 barrier.do_events(barrier);
 barrier.set_next_stop_time(barrier);
 for (models in barrier.entry_set){
 model.barrier = find_next_barrier_for_model(model);
 model.stoptime = model.barrier->stoptime;
 };
 if (breakpoint == YES)
 break;
 else {
 put_models_onto_queue(barrier.exit_set);
 model_onto_thread();
 };
 };
 return breakpoint;
};

Figure 8: Simplified pseudo code for the model_hit_barrier() function.

	A Multithreaded Scheduler for a High-Speed Simulator
	

	October 1997
	Submitted to Software Practice and Experience
	Summary
	Introduction
	Multithreaded Programming Considerations
	Scheduler Architecture
	Barriers
	Models and the Model Queue
	Tasks, Threads, and the Thread Queue
	Scheduler Algorithm
	Deadlocks and Race Conditions
	Deadlocks
	Race Conditions
	Scheduling Policy
	Summary and Conclusions

	Number of Threads
	REFERENCES

