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MARKOV CHAIN MONTE CARLO ESTIMATION OF SPECIES 
DISTRIBUTIONS: A CASE STUDY OF THE SWIFT FOX IN 
WESTERN KANSAS 
GLEN A. SARGEANT,1 U.S. Geological Survey, Northern Prairie Wildlife Research Center, 8711 37th Street SE, Jamestown, ND 

58401, USA 
MARSHA A. SOVADA, U.S. Geological Survey, Northern Prairie Wildlife Research Center, 8711 37th Street SE, Jamestown, ND 

58401, USA 
CHRISTIANE C. SLIVINSKI,2 Kansas Department of Wildlife and Parks, 1830 Merchant, Emporia, KS 66801, USA 
DOUGLAS H. JOHNSON, U.S. Geological Survey, Northern Prairie Wildlife Research Center, 8711 37th Street SE, Jamestown, 

ND 58401, USA 

Abstract: Accurate maps of species distributions are essential tools for wildlife research and conservation. Unfortu- 

nately, biologists often are forced to rely on maps derived from observed occurrences recorded opportunistically 
during observation periods of variable length. Spurious inferences are likely to result because such maps are pro- 
foundly affected by the duration and intensity of observation and by methods used to delineate distributions, espe- 
cially when detection is uncertain. We conducted a systematic survey of swift fox (Vulpes velox) distribution in west- 
ern Kansas, USA, and used Markov chain Monte Carlo (MCMC) image restoration to rectify these problems. 
During 1997-1999, we searched 355 townships (ca. 93 km2) 1-3 times each for an average cost of $7,315 per year 
and achieved a detection rate (probability of detecting swift foxes, if present, during a single search) of 0 = 0.69 
(95% Bayesian confidence interval [BCI] = [0.60, 0.77]). Our analysis produced an estimate of the underlying dis- 
tribution, rather than a map of observed occurrences, that reflected the uncertainty associated with estimates of 
model parameters. To evaluate our results, we analyzed simulated data with similar properties. Results of our sim- 
ulations suggest negligible bias and good precision when probabilities of detection on >1 survey occasions (cumu- 
lative probabilities of detection) exceed 0.65. Although the use of MCMC image restoration has been limited by 
theoretical and computational complexities, alternatives do not possess the same advantages. Image models 
accommodate uncertain detection, do not require spatially independent data or a census of map units, and can be 
used to estimate species distributions directly from observations without relying on habitat covariates or parame- 
ters that must be estimated subjectively. These features facilitate economical surveys of large regions, the detection 
of temporal trends in distribution, and assessments of landscape-level relations between species and habitats. 

Requirements for the use of MCMC image restoration include study areas that can be partitioned into regular grids 
of mapping units, spatially contagious species distributions, reliable methods for identifying target species, and 
cumulative probabilities of detection >0.65. 

JOURNAL OF WILDLIFE MANAGEMENT 69(2):483-497; 2005 

Key words: Bayesian estimation, carnivore survey, image restoration, Kansas, Markov chain Monte Carlo, species dis- 
tributions, species-habitat associations, swift fox, Vulpes velox, wildlife surveys. 

In 1995, the U.S. Fish and Wildlife Service (FWS) 
issued a long-delayed finding on a petition to list 
the swift fox (Vulpes velox) as an endangered 
species (60 FR 31663; 16Jun 1995). According to 
the FWS, the delay resulted from a general lack 
of verifiable, quantitative information document- 

ing the current distribution and status of swift 
foxes. Consequently, an accurate determination 
of distribution was identified as 1 of the highest- 
priority information needs for swift fox conserva- 
tion (U.S. Fish and Wildlife Service 1995). 

Unfortunately, swift foxes exemplify the rea- 
sons distributions are uncertain for many species 
of special concern. The potential range of the 

1 E-mail: glen_sargeant@usgs.gov 
2Present address: 11642 Wall Road, Caledonia, MN 

55921, USA. 

swift fox encompasses the shortgrass and mixed- 

grass prairie regions of 10 states and 3 Canadian 

provinces (Sovada and Scheick 1999). This broad 

region encompasses diverse landscapes, vegeta- 
tion associations, soils, and climates (Allardyce 
and Sovada 2003, Harrison and Whitaker- 

Hoagland 2003), and swift foxes are absent from 

many suitable areas where they formerly 
occurred (Sovada and Scheick 1999). Habitat 

requirements of swift foxes are thus sufficiently 
general, while other factors are sufficiently limit- 

ing, to preclude the prediction of swift fox distri- 
bution from easily measured surrogates. Instead, 
the distribution of swift foxes must be estimated 
directly from observations. 

Opportunistic observations often are used to 

map species distributions; however, such maps 
are notoriously susceptible to bias resulting from 
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uneven coverage and variable reporting rates 
(Bircham and Jordan 1997, Johnson and 

Sargeant 2002). This may be especially true for 
swift foxes, which are secretive (Sovada et al. 
1998), occur at low densities (Allardyce and Sova- 
da 2003), and may share the canid predilection 
for long-range dispersal (Schauster et al. 2002a, 
Sovada et al. 2003). In combination, these features 
are likely to lead to low reporting rates within 
core range, yet produce noteworthy, extralimital 
observations. Distribution maps that are substan- 
tially affected by variation in detection rates, 
reporting rates, or influential observations do not 

support inferences about temporal trends in dis- 
tribution. Such trends are of particular interest 
for swift foxes because relatively rapid changes in 
distribution and abundance are common among 
North American canids (e.g., Fuller et al. 1992, 
Sargeant et al. 1993, Roemer et al. 2001). 

Information requirements for swift fox conser- 
vation thus create a need for rigorous, repeatable 
presence/absence surveys; unfortunately, the 

geographic extent of the problem poses substan- 
tial challenges for implementation. Mapping 
units should be relatively large because tempo- 
rary absences from habitat patches or even indi- 
vidual home ranges are not germane to the 

coarse-grained issue of geographic distribution. 
However, units larger than individual home 
ranges are difficult to search exhaustively for evi- 
dence of a cryptic, secretive species like the swift 
fox. Consequently, swift foxes are likely to be 
overlooked in occupied mapping units, perhaps 
even in the majority of these. The need to accom- 
modate uncertain detection is, therefore, a key 
consideration for analyses. 

When observations of a species are plotted on a 

map grid, cells in the grid are analogous to the pix- 
els of a digital image. If detection is uncertain and 
some cells are not searched, as usually is the case 
for wildlife surveys, this image is imperfect and 
incomplete. In this sense, maps of observations are 
analogous to degraded digital images, which com- 
monly are restored via Markov chain Monte Carlo 
(MCMC) image restoration (Green 1996). The 
core of image restoration is a Bayesian model for 
spatial relations between pixels, which can be used 
to correct erroneous entries and estimate missing 
values from attributes of neighboring cells. 

Parallels between digital images and observa- 
tions of species were first exploited by Heikkinen 
and H6gmander (1994) and H6gmander and 
Moller (1995), who used image restoration to 
estimate distributions of common toads (Bufo 

bufo) and breeding birds in Finland. However, 
those applications were published in statistical 
journals and presupposed a specialized under- 
standing of the notation, terminology, and statis- 
tical theory of Bayesian estimation via MCMC 
simulation. These topics are unfamiliar to most 
wildlife biologists (Link et al. 2002) and repre- 
sent a substantial barrier to implementation. As a 
result, promising results of early applications 
have inspired minimal subsequent attention 
despite conceptual advantages over other meth- 
ods. For example, image models exploit spatial 
patterns to strengthen estimates and do not re- 
quire independent data. They can be used to pro- 
duce estimates for map units that have not been 
sampled and also accommodate uncertain detec- 
tion, thereby relieving investigators of the need 
to census study areas and search map units 
exhaustively. Habitat covariates may be incorpo- 
rated but are not required; therefore, image 
models are useful for mapping distributions of 
habitat generalists and distributions constrained 
by other factors to a subset of suitable habitat. 
Finally, observed occurrences are indices that 
reflect changes in detection and reporting rates 
as well as changes in distribution (Anderson 
2001). Image models can be used to estimate 
actual distributions from observations and thus 
support inferences about changes in distribution, 
even if detection rates change over time. In short, 
the use of MCMC image restoration, when cou- 
pled with an appropriate sampling design, can 
resolve many of the most vexing problems that 
plague surveys of wildlife distributions. 

During 1997-1999, we surveyed swift foxes in 
western Kansas and used Bayesian MCMC image 
restoration to estimate the species' distribution 
from observations. In this paper, we (1) describe 
our survey, (2) derive an image model based on a 
geometric distribution for search time, (3) fit our 
model and present the results, (4) use simulation 
to evaluate the performance of our model, and 
(5) compare and contrast MCMC image restora- 
tion with alternative approaches. Ultimately, we 
present a rigorous estimate of the distribution of 
swift foxes in Kansas and provide practicing 
wildlife biologists with a relatively intuitive intro- 
duction to a powerful and practical tool for esti- 
mating distributions of rare species. The most dif- 
ficult details of our analytical methods are not 
critical to an intuitive understanding, but they 
will be invaluable for those attempting a similar 
analysis or seeking an introduction to more spe- 
cialized statistical literature. 

J. Wildl. Manage. 69(2):2005 
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METHODS 

Data Collection 
Our study area in western Kansas comprised a 

nonoverlapping grid of 748 townships (ca. 93 km2) 
that served as mapping units for our survey and 
analysis. From this grid, we selected a systematic 
sample of townships (Fig. 1) for 1-3 annual time- 
constrained track searches. Numbers of search- 

es/township varied because we (1) searched the 
core of suspected swift fox range during the first 

year, (2) did not repeat searches in townships 
after we confirmed the presence of swift foxes, 
and (3) added townships along the periphery of 
our study area each year. These steps helped us 
minimize costs of data collection and distribute 
them throughout our 3-year study. 

For data collection, we contracted with local trap- 
pers who were experienced in track identification, 
knowledgeable about habits of furbearers, and 
familiar with the search areas. Each observer sur- 
veyed 20-80 sample townships/year for 2 hr each or 
until unambiguous swift fox tracks were found. To 
detect tracks, observers searched naturally occur- 

ring substrates in areas that could be accessed with- 
out first securing permission (e.g., secondary and 
low-maintenance roads, section lines, power line 

rights-of-way). Because townships could not be 
searched exhaustively, observers were given detailed 

maps and told to focus on areas they believed 
were most likely to be occupied by swift foxes. 

Searches were conducted during September- 
October 1997 and August-September of 1998 and 
1999. After precipitation or periods of high winds 
(>24 km/hr), we suspended searches for 224 hrs 
to allow tracks to accumulate. Observers record- 
ed the starting time for each search and, if swift 
fox tracks were found, the time required for 
detection. To minimize the potential for spurious 
detections, tracks were photographed, measured, 
and reviewed by a principal investigator. Only dis- 
tinct, clearly identifiable tracks were accepted as 
confirmed occurrences. 

Notation 
We associated 3 random variables with each 

township, indexed by i. These included xi, the true 
status of swift foxes (0 = absent, 1 = present); vi, the 
number of years we searched (vi E (0, 1,2, 3}); and 

Yi, the result of our searches (0 = foxes not detect- 
ed, 1 = foxes detected). Bold-faced type repre- 
sented vectors (e.g., x= {xl, x2, ..., x748}), and neg- 
ative subscripts represented the omission of 
elements from vectors (e.g., x_i = {xl, x2, ..., xi_l, 

Xi +11 ... X748 }). Townships were termed "neigh- 
bors" if they were laterally or diagonally adjacent, 
and the neighbors of township i (which did not 
include township i) were represented by x'i. 
Other variables included a coefficient of spatial 
contagion (( ) and the probability of detecting 
swift foxes, when they were present, during a sin- 
gle search ( ). We used italic type to represent 
random variables (e.g., x, /3, 0 ) and Roman type 
to represent constants (e.g., x, p, 0; i.e., when 

conditioning on specific values of random vari- 
ables). The ultimate objective of our analysis was 
to estimate x, the true distribution of swift foxes, 
from the successive states of a Markov random 
field that were represented by x(?), x() ..., x(J). 

Probability densities and distributions play dis- 
tinctive roles in MCMC simulation. To help dis- 

tinguish these roles, we used different notation 
for posterior distributions (7 ()), likelihoods 
(l()), prior distributions (f()), and proposal dis- 
tributions (q()). For general references to proba- 
bilities of events we used Pr(). 

Conceptual Model 

Biologists routinely model observations as func- 
tions of measured covariates and parameters that 
are regarded as constants. In contrast, Bayesian 
models treat both data and parameters as random 
variables and are envisioned as probability densities 
for parameters, conditional on data. Image restora- 
tion begins with such a conceptual model: in our 
case, ajoint posterior (7i(x, /, 0 I v, y)) for x, /, and 
0, conditional on search results that included 
numbers of searches (v) as well as observations (y). 

Our joint posterior was intractable; however, 
Bayes' theorem can be used to show (Appendix 
A) that it was proportional to the product of 4 
tractable probability densities: 

t(x, P, 0 v, y) oc (v, y I x,0 ) x f(x I ) x f( ) 
xf(p) (1) 

Fig. 1. Study area in western Kansas, USA. Shaded townships 
were surveyed for evidence of swift foxes during 1997-1999. 

J. Wildl. Manage. 69(2):2005 
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or, in the abbreviated terminology customarily 
employed for Bayesian models, 

Posterior oc Likelihood(v, y) x Prior(x) 
x Prior(0) x Prior(p). 

This relationship admits a possible solution 
because MCMC simulation can be used to esti- 
mate parameters of distributions known only up 
to proportionality. 

Model Components 
A Likelihood for Observations.-Bayesian image 

models typically incorporate data via likelihoods 
for observed features of images. In contrast, we 
used a binomial waiting-time distribution (the 
geometric distribution) to describe observations 
and numbers of searches required to detect swift 
foxes when they were present: 

y(v,y ylx=l>)=[(l-8)"](l"yi).[S.(l-v-l'] (2) 

Intuitively, our likelihood described the 2 results 
that were possible for each occupied township: 
we either failed to detect swift foxes in vi visits 
(i.e, L(vi, Yi = 0 I xi = 1,0 ) = (1 -0 )vi) or detected 
foxes on visit vi (i.e., (vi, yi= 1 I xi= 1,0 ) = 0 x (1 
-0 )i- 1). False detections were unlikely because 
we accepted only clearly identifiable tracks as 
observations. We thus assumed a detection prob- 
ability of zero (0 = 0.0) where foxes did not occur. 

Observations customarily are considered to be 
conditionally independent, given characteristics of 
the underlying image to be estimated (see Besag 
1986:261, Green 1996:383). Accordingly, we mod- 
eled spatial dependence as a feature of the distrib- 
ution of swift foxes and not as a feature of observa- 
tions. The joint likelihood for our survey area was 
thus the product of conditional likelihoods for 
individual townships, i.e., 

f(v,yl x,@)= [lt(vi,yi x,i,). (3) 

A Priorfor the Distribution of Swift Foxes.-In con- 
trast with likelihoods, prior distributions summa- 
rize information derived from other sources and 
do not involve data. In effect, we began our analy- 
sis with preconceptions expressed in the form of 
prior distributions for x, f/, and 0, and we then 
used survey data to modify those preconceptions. 

Prior to data collection, we did not know which 
townships would contain swift foxes; hence it 
might seem that we knew nothing about x. How- 
ever, we did know that species are seldom ran- 

domly distributed. Instead, coarse-grained maps 
of species distributions tend to exhibit spatial 
dependencies (i.e., occurrences tend to be clus- 
tered). In MCMC image restoration, such spatial 
dependencies are modeled with Markov random 
fields (Geman and Geman 1984, Besag 1986, 
Green 1996), which are multidimensional exten- 
sions of Markov chains (Gamerman 1997). 
Markov chains are sequences of dependent ran- 
dom variables such that the distribution of each 
variable depends only on the preceding value in 
the sequence (i.e., if x is a sequence, Pr(xi I xi_ 1, 
xi- 2, ..., x1) = Pr(xi I xi- 1); Grimmett and Stirza- 
ker 1994, Link et al. 2002). Markov random fields 
describe spatial dependencies similarly, in terms 
of "neighborhoods" surrounding individual cells: 
(i.e., Pr(xi I x_i) = Pr(xi x'i); Besag 1974). 

Our prior for x was a variation of the widely 
used Potts model (Green 1996): 

f(xi xi,,) oc exp -. w, I(x, x,) 
- x ~~Xj EX_- 

(4) 

Intuitively, equation 4 formalized the notion that 
township iwas likely to resemble itsJneighboring 
townships with respect to the presence of swift 
foxes. Components included a coefficient of spa- 
tial contagion (p ) that controlled the strength of 
the resemblance. This indicator function, 

E I(x,i #xj), 
xj EX'_i 

tallied the number of neighbors that differed 
from township i with respect to the presence of 
swift foxes. Weights (wi = 8/J) scaled the indica- 
tor function so it ranged from zero to 8 for town- 
ships with <8 neighbors (i.e., where township lines 
were offset along "correction lines" [Clawson 
1968:49], and along the survey area boundary). 

Priors for 1f and 0.-For P and 0, we could speci- 
fy ranges for plausible solutions but had no rea- 
son to prefer specific values within those ranges. 
We thus used uniform [0,1] priors for both of 
these variables. The interval [0,1] encompassed 
admissible values for 0 (a proportion) and 
degrees of spatial contagion ranging from inde- 
pendence to strong spatial dependence. 

Estimation 
MCMC Simulation.-MCMC simulation refers to 

a group of procedures for generating sequences of 
dependent random variables with desired limit- 
ing distributions (Gilks et al. 1996, Gamerman 
1997, Link et al. 2002). These procedures can be 

J. Wildl. Manage. 69(2):2005 
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used to solve intractable statistical problems 
because any characteristic of a limiting distribu- 
tion (e.g., mean, median, variance) can be 
deduced from the distribution of a sufficiently 
long chain of simulated values. MCMC proce- 
dures are especially useful because Bayesian mod- 
els frequently take the form of a posterior distri- 
bution known only up to proportionality. MCMC 
methods are invaluable in such cases because a 
function proportional to the target distribution is 
the only requirement for simulation. 

Link et al. (2002) described the Metropolis- 
Hastings algorithm and a special case, the Gibbs 

sampler, which are the essential tools of MCMC 
simulation. In simple cases, an iteration of the 

Metropolis-Hastings algorithm involves the com- 

parison of the current state of a Markov chain 
with a proposed new value drawn from a propos- 
al distribution. If the new value is accepted 
(according to rules defined by the algorithm), it 
becomes the next state. If it is rejected, the chain 
remains at the current value for another cycle. 
Unfortunately, estimating posterior distributions 
is somewhat more complicated for image models 
because images comprise large numbers of spa- 
tially related elements and are based on prior dis- 
tributions (e.g., equation 4) specified in terms of 
individual elements. For these reasons, image 
models typically are fit with single-component 
Metropolis-Hastings algorithms (see Gilks et al. 
1996:10) that update elements sequentially from 
full conditional distributions. 

Full Conditional Distributions.-Map units and 
model parameters can be updated sequentially 
because joint posterior distributions (e.g., our 
7(x, P, 0 | v, y), equation 1) are uniquely deter- 
mined by corresponding sets of full conditional 
distributions (Besag 1974). Full conditional dis- 
tributions are constructed from posteriors by 
conditioning, for each variable in turn, on the 
current states of all other variables to be estimat- 
ed (Gilks 1996). Conditioning on other variables 

(Appendix A) and substituting equations 2-4 for 

corresponding terms led to the full conditionals 
we used in our analysis: 

7t(xi lx v, u,) c[ (1 -)v,]oi.exp[- *.w E I(xi,xj)] 
Xj EX'_ 

for Yi =0 (1 otherwise) (5) 

7r( I X) oC Iexp[-P wi E I(xi xj)] 
i xjxex'i 

for 0 <,l < 1 (0 otherwise) (6) 

for 0 < < 1 (0 otherwise) (7) 

Only 2 states were possible for each township 
(occupied or unoccupied) and associated proba- 
bilities summed to 1. Equation 5 can thus be nor- 
malized to produce actual probabilities of occu- 

pancy by noting that 

Pr(xi = 1)= xi 
(xi = 0) + (x = 1) 

(8) 

Normalizing equation 5 is advantageous because 

townships can be updated by drawing new states 

directly from binomial distributions when actual 

probabilities of occupancy are known. 
Implementation.-We used R statistical software 

(R Development Core Team 2003), available at 

http://www.r-project.org, to execute our func- 
tions and S-Plus (Insightful Corporation 2002) 
to prepare maps. Our code implemented a 

single-component Metropolis-Hastings algo- 
rithm described by Heikkinen and H6gmander 
(1994): 

(1) Let the superscript j indicate the current 
state of each variable and j + 1 the next state. 

Assign initial values, denoted x(O), (0), and 0 (0). 
(2) Update x(')--x(+ 1) by drawing a new state, 

xi(j+ 1), for each township in turn. Generate up- 
dates by Gibbs sampling using probabilities of 

occupancy given by equations 5 and 8. 
(3) Draw a candidate value for3 ( +l) from a 

proposal distribution, q(P ). Let3 ' 
represent this 

candidate and let n(p ) represent the full condi- 
tional distribution for P (equation 6). Accept the 
candidate with probability given by the Metropolis- 
Hastings algorithm: 

Pr( i) -- ') = minl n(it(,') q(.J))' 

If the candidate is rejected, let p (j+l) =3 (i). 
(4) Use q(0 ) and (0 ) from equation 7, and fol- 

low the steps in 3 to update 0 (). 
(5) Repeat steps 2-4 until the distributions of 

resulting values approximate the marginal poste- 
rior distributions of x, 1, and 0. 

(6) Average the replicates for each township to 

produce an estimated probability of occupancy, x,. 
Note that proposal distributions in steps 3 and 4 
serve merely to generate new candidate values for 

J. Wildl. Manage. 69(2):2005 
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consideration. Consequently, the distributions 
used to generate proposals (q(8 ) and q(O )) were 
not critical as long as they spanned distributions 
they were used to estimate; however, proposal dis- 
tributions that result in high acceptance rates for 

proposals and chains with low correlations 
between successive states were desirable because 

they led to rapid mixing and efficient estimation. 
We achieved satisfactory results by drawing pro- 
posals from normal distributions with means 

matching current states and standard deviations 
of 0.05, which we chose by trial and error. 

An intuitive understanding of steps 3 and 4 can 
be gained by considering the Metropolis-Hast- 
ings algorithm to be the product of 2 ratios. In 

step 3, for example, 

(0') 

*Oj)) 

favors proposals (i.e., is >1) when they are more 
credible solutions than current values. In contrast, 

q(fJ)) 
q(O') 

penalizes proposals (i.e., is <1) when they are 
more likely to be proposed than current values. It 
is the balance of these 2 influences that results in 
the convergence of a Markov chain to its target 
distribution. For additional details of Gibbs sam- 

pling, the Metropolis-Hastings algorithm, and 
the method of sampling from full conditional dis- 
tributions, see Casella and George (1992), Besag 
etal. (1995), Gilks (1996), Gilks etal. (1996), and 
Gamerman (1997). 

Model Assessment 
We used simulation to assess the potential for 

confounding of parameter estimates, the conse- 

quences of violating assumptions, and the behav- 
ior of our estimators over a range of detection 
rates. To simulate data, we first used estimated 

probabilities of occupancy to classify each township 
as occupied (xi > 0.5) or unoccupied (xi < 0.5). 
The result constituted a target distribution to be 
estimated from sample data. We then used 
sequential Bernoulli trials to develop a search 
and detection history for each of our sample 
townships (e.g., a township with a history of 000 
was searched 3 times without a detection, and a 
township with a history of 01 was searched twice 
with a detection on the second occasion). We 
simulated detection rates in 3 different ways: 

fixed detection rates (0.10, 0.20, 0.30, 0.70), 
detection rates that varied randomly around a 
fixed mean of 0.70, and detection rates that 
increased from east to west from 0.56 to 0.84 
(0.70 + 20%). To simulate random variation 
around a fixed mean, we drew detection rates 
from a beta distribution with shape parameters a 
= 4.673 and b = 2 (9 = 0.70, co = 0.17). We also 

investigated consequences of missing data or 

sparser sampling schemes by randomly deleting 
20% and 40% of sample cells from simulations 
with detection rates of 0.30 and 0.70. 

We analyzed 10 simulated data sets for each set- 

ting of 0. Initially, each analysis consisted of 6,000 
iterations; however, satisfactory convergence 
required 10,000 iterations for 0 = 0.10. We dis- 
carded the first 1,000 iterations from each set to 

permit estimates to diverge from initial values 
and estimated 3, 0, and x from the remainder. 
When computing error rates for maps, we con- 
sidered estimated probabilities of occurrence 
>0.5 to suggest occupancy and those <0.5 to sug- 
gest absence. 

RESULTS 

Swift Fox Surveys 
During 1997-1999, we conducted 619 searches 

(264 in 1997, 224 in 1998, and 131 in 1999) of 355 

townships and detected swift foxes in 173 town- 

ships (49%). We detected swift foxes in 110 town- 

ships during 1997. In 1998, we dropped the town- 

ships with detections in 1997 and 10 others for 

logistical reasons, repeated searches of 144 town- 

ships, searched 80 new townships, and found 
swift foxes in 56 townships. In 1999, we (1) 
dropped the 56 townships with detections in 1998 
and an additional 50 townships for logistical rea- 
sons, (2) repeated searches of 2 townships 
searched only in 1997, 38 townships searched 
only in 1998, and 80 searched in both 1997 and 
1998, and (3) added 11 townships; and (4) detect- 
ed foxes in 7 townships. 

Detections accumulated at rates that decreased 
rapidly during the 2-hr search period allotted for 
each township: 52% occurred during the first 30 
min of township searches, 79% occurred during 
the first 60 min, and 93% occurred in the first 90 
min. Most detections occurred the first (75%) or 
second time (22%) a township was searched. 
Total costs (paid to contractors who bid on a cost- 

per-township basis) were $9,700 ($36.74/town- 
ship) in 1997, $7,600 ($33.93/township) in 1998, 
and $4,644 ($35.45/township) in 1999. 
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MCMC Estimates 
We achieved relatively high acceptance rates for 

proposals (63% for / and 69% for 0) and modest 
correlations between successive states of chains 
(0.85 for/3 and 0.80 forO). High acceptance rates 
and modest correlations between states were 
desirable because they contributed to rapid con- 
vergence and mixing, thereby limiting the num- 
ber of iterations required for satisfactory parame- 
ter estimates. Although results in this section are 
based on 20,000 iterations preceded by a burn-in 
of 5,000 iterations, much shorter runs would have 
sufficed. For example, estimated probabilities of 

occupancy based on 1,000 iterations preceded by 
a burn-in period of 100 iterations consistently 
deviated from results of longer runs by <0.02 for 
95-97% of townships, regardless of starting val- 
ues. Discrepancies between estimates of P and 0 
were consistently <0.005. 

The distribution of swift foxes was contagious 
(B = 0.39; 95% BCI = [0.30, 0.48]); consequently, 
neighbors provided considerable evidence about 
the presence of swift foxes in townships that were 
not searched (Fig. 2). However, swift foxes were 

very likely to be detected when present: 0 = 0.69 
for townships searched once (95% BCI = [0.60, 
0.77]), 0 = 0.90 for townships searched twice 
(95% BCI = [0.84, 0.95]), and 0 = 0.97 for town- 

ships searched 3 times (95% BCI = [0.94, 0.99]). 
Search results, therefore, exerted a substantial 
influence over estimated probabilities of occu- 

pancy for townships that were searched (Fig. 2). 
For example, note that a township searched 3 
times without a detection would not have 
achieved a 50% probability of occupancy, even if 

every neighboring township were occupied. 
Estimated probabilities of occupancy were dom- 

inated by high and low values: 68% were <0.10 or 
>0.90, and 82% were <0.20 or >0.80. Our restora- 
tion thus produced a relatively unambiguous esti- 
mate of the geographic distribution of swift foxes 
in western Kansas (Fig. 3). Note that the strong 
resemblance between the map of our observa- 
tions and our estimate (Fig. 3) was a fortuitous 

consequence of a high detection rate and should 
not be expected in every case. 

Model Assessment Via Simulation 

Analyses of simulated data produced satisfactory 
estimates of detection rates ranging from 0.10 to 
0.70 (Table 1). Although our estimates suggested 
some positive bias, the apparent bias (z2 per- 
centage points) was modest relative to sampling 
variation and would not have had practical impli- 
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Fig. 2. Prior and full conditional probabilities of occupancy for 
Kansas, USA, townships without observations of swift foxes, 
1997-1999. 

cations for the interpretation of survey results. 
Estimates of mean detection rates were not affect- 
ed discernibly when we imposed random varia- 
tion or a spatial trend in detection rates. 

In contrast, low detection rates (0 < 0.3) resulted 
in erratic estimates for p and our target distribu- 
tion (Fig. 4A) unless we increased the number of 
searches to compensate. This variability was reflect- 
ed in (1) large standard deviations for P (Table 1), 
(2) relatively high misclassification rates (Table 1), 
(3) maps that generally overestimated the extent of 
our target distribution (e.g., Fig. 4B; Table 1), and 
(4) relatively ambiguous classifications of map 
units as occupied or unoccupied (Fig. 5). These 
features, though undesirable in survey products, 
were appropriate because they properly conveyed 
the uncertainty inherent in maps that are not well 

supported by data. They arose because spatial 

Fig. 3. Observations of swift foxes in Kansas, USA (left), and 
estimated probabilities of township occupancy (right). At right, 
unshaded cells indicate strong evidence of absence (Pr[Occu- 
pancy] <20%). Shaded cells, from lightest to darkest, represent 
weak evidence of absence (20-50%), weak evidence of occu- 
pancy (50-80%), and strong evidence of occupancy (>80%). 
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C) 
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Table 1. Results of surveys and Markov chain Monte Carlo image restorations for simulated swift fox survey data. Simulations fea- 
tured 3 sequential searches for each township unless otherwise noted. Per search detection rates were either (1) constant with- 
in the range from 0.1 to 0.7, (2) variable but spatially stationary and drawn from a beta distribution (0 = 0.70, ae = 0.17), or (3) 
variable, incorporating an east-to-west linear trend ranging from 0.56 to 0.84 (0 = 0.70 + 20). Misclassification rates are medi- 
ans; other results represent means and standard deviations (in parentheses) for 10 trials at each parameter setting. 

Median proportion of townships misclassified 

Occupied townships Unoccupied townships 
Survey MCMC estimates MCMC estimates 

Number of Total Sample Sample Other Sample Other 
0 detections searches 0 P townships townships townships townships townships 

0.1 54 (8) 1,006 (9) 0.10 (0.02) 0.49 (0.10) 0.71 0.06 0.01 0.35 0.52 
0.1a 122 (8) 2,905 (56) 0.11 (0.02) 0.40 (0.04) 0.35 0.10 0.09 0.04 0.04 
0.2 91(12) 960 (14) 0.20 (0.05) 0.44 (0.07) 0.52 0.11 0.07 0.17 0.24 
0.2b 126 (8) 1,470 (30) 0.22 (0.04) 0.40 (0.05) 0.33 0.10 0.10 0.02 0.02 
0.3 126 (6) 910 (12) 0.33 (0.05) 0.40 (0.04) 0.32 0.09 0.06 0.02 0.05 
0.4 144 (5) 867 (10) 0.45 (0.04) 0.38 (0.02) 0.23 0.11 0.11 <0.01 0.01 
0.5 160 (4) 837 (8) 0.52 (0.03) 0.37 (0.02) 0.14 0.09 0.06 <0.01 0.01 
0.6 173 (3) 798 (10) 0.62 (0.03) 0.39 (0.02) 0.07 0.06 0.05 0 <0.01 
0.7 181 (2) 765 (7) 0.71 (0.03) 0.40 (0.01) 0.02 0.02 0.04 0 <0.01 
0.7c 107 (5) 460 (10) 0.71 (0.04) 0.40 (0.01) 0.02 0.02 0.16 0 0.07 
beta 175 (4) 771 (6) 0.72 (0.02) 0.38 (0.02) 0.06 0.06 0.09 0 <0.01 
[0.56-0.84] 181 (3) 756 (8) 0.75 (0.02) 0.40 (0.01) 0.03 0.03 0.05 0 <0.01 

a 10 sequential searches of each township. b 5 sequential searches of each township. c Data deleted for 40% of sample cells. 

arrangements of observations were highly vari- 
able and survey results constituted weak evidence 
of absence when detection rates were low. Esti- 
mates of detection rates were not similarly affected 
because their precision depended on numbers of 

survey occasions and map units sampled but not 
on spatial arrangements of observations. 

When we increased detection rates to >0.30 or 
increased numbers of searches to achieve cumu- 
lative detection rates (probabilities of detection 
on >1 occasion) of z0.65, maps faithfully reflected 

key features of our target distribution (e.g., Fig. 
4C) and misclassification rates were low for both 

occupied and unoccupied map units (Table 1). 

(A) 

I I LI 

(B) (C) 
Fig. 4. (A) Target distribution used to simulate survey results for swift foxes in western Kansas, USA, 1997-1999, followed by rep- 
resentative examples of MCMC estimates based on 3 searches per township and per-search detection probabilities of (B) 0 = 
0.10, and (C) 0 = 0.30. 

. 
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Imposing spatial variation in detection rates 

slightly increased misclassification rates for occu- 

pied map units (Table 1), but it did not have a 

meaningful effect on maps or the utility of results. 
When we specified high per search detection 

rates (0 z 0.7), simulated survey results and 
MCMC estimates rarely classified sample units dif- 

ferently; however, we could not have inferred low 
error rates (Table 1) without estimates of detec- 
tion rates, and survey results alone would not have 

supported objective classifications for map units 
that were not searched. Simulations with less 
intensive sampling designs than ours (e.g., Fig. 6A) 
served to illustrate the importance of this latter 
consideration. We were able to randomly delete 
>40% of sample cells from simulated data, result- 

ing in simulated observations (Fig. 6B) that did not 

closely resemble our target distribution (Fig. 4A), 
without compromising estimates (Table 1, Fig. 6C). 
Despite somewhat higher rates for errors of omis- 
sion, resulting maps correctly classified 95% of 
cells (median, n = 10 trials) and faithfully depict- 
ed most boundary details. 

DISCUSSION 

Distribution of Swift Foxes in Kansas 
Prior to European settlement, swift foxes occu- 

pied most of the mixed-grass and short-grass 
prairie habitat in the western half of Kansas (Zum- 
baugh and Choate 1985, Sovada and Scheick 
1999). Reports of the current distribution agree 
that swift foxes are much less widespread than 

they were historically, but the reports are other- 
wise inconsistent. For example, the FWS (1995) 
considered the current range of swift foxes to 
extend from Nebraska 
to Oklahoma along the 
Colorado border (Fig. 
7A). At about the same 
time, the Kansas Depart- 1 
ment of Fish, Wildlife, 
and Parks (KDFWP; Fox 
1993 in U.S. Fish and 
Wildlife Service 1995) 
reported opportunistic 
observations of foxes in 
Wallace, Logan, Gove, 
Greeley, Wichita, Hamil- 
ton, Kearney, Stanton, I 
Sherman, and Scott (A) 
counties (Fig. 7B). Our 
estimate of swift fox dis- Fig. 6. (A) Simulated samplil stmate of st f ds- observations resulting from 
tribution (Fig. 7C) is tribution in Fig. 4A, and (C) 
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Fig. 5. Effect of detection rate on the strength of evidence for 
and against the occupancy of townships by swift foxes in 
western Kansas, USA, 1997-1999. Results derived from sim- 
ulated survey results based on the target distribution in Fig. 
4A, 3 searches per township, and per-search detection prob- 
abilities of 0 = 0.30 (dashed line) and 0 = 0.70 (solid line). 

similar to, but more extensive than, the distribu- 
tion attributed to the KDFWP. It does not resem- 
ble the distribution reported by the FWS. 

Differences among the maps in Fig. 7 exempli- 
fy ambiguities that arise from opportunistic sam- 

pling and ad hoc methods of boundary determi- 
nation. Distribution maps are not comparable 
unless, like Fig. 7C, they depict well-defined bio- 

logical quantities at a specified scale of spatial 
and temporal resolution. Our estimates thus rep- 
resent a baseline for monitoring future changes, 
but they should not be used to infer past changes 
in the distribution of swift foxes. 

Model Validation and Evaluation 
We could not compare our estimate to the true 

distribution of swift foxes because we could not 

(B) (C) 
ng grid generated by deleting 40% of sample cells, (B) simulated 
3 searches with a detection probability of 0.70 and the target dis- 
the resulting MCMC estimate of the distribution in Fig. 4A. 
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(A) 

(B) 

Fig. 7. Range of swift foxes in Kansas (A) redrawn from Fig. 1 
of FWS (1995), (B) attributed by FWS (1995) to Lloyd Fox, 
Kansas Department of Fish, Wildlife and Parks, and (C) esti- 
mated via MCMC image restoration from surveys conducted 
in Kansas, 1997-1999. In (C), shaded cells represent town- 
ships with probabilities of occupancy >0.50. 

search townships exhaustively and confirm ab- 
sences. However, testing models against artificial 
data with known structure can provide valuable 

insights about the performance of species distri- 
bution models when the "truth" is unknown 

(Heglund 2002, Stauffer 2002). Insights are possi- 
ble because binary data are relatively simple mani- 
festations of the complex, interacting influences 
on species distributions and processes of observa- 
tion. Data structures that are likely to arise in prac- 
tice may, therefore, be easy to simulate, even when 
mechanisms producing them are poorly under- 
stood. For swift foxes in Kansas, the most likely 
complications, regardless of cause, were heteroge- 
neous detection rates and errors of commission. 
Our methods clearly were robust to these influ- 
ences (Table 1; subsequent discussion). 

Survey Design 
Our time-constrained track searches were 

inspired by predator surveys conducted by 

Sargeant et al. (1993), who searched a sample of 

quarter-sections in the Prairie Pothole Region of 
the USA and Canada. Sargeant et al. (1993) were 
able to search quarter-sections intensively and, 
therefore, assumed tracks would soon reveal the 

presence of predators that routinely visited their 

sample sites. In contrast, the geographic extent 
and the grain of our study dictated much larger 
sample units (townships) that we could not search 

exhaustively; consequently, we expected swift foxes 
to be overlooked in an unknown proportion of 

occupied units we surveyed, perhaps even in the 

majority. Our design objectives were, thus, to facil- 
itate the estimation of detection rates and occu- 

pancy probabilities via MCMC image restoration, 
while simultaneously minimizing survey costs. 

Our systematic, checkerboard sample of town- 

ships was more economical than a census and rep- 
resented an efficient allocation of sampling effort 
for image restoration. Each interior township was 
assured of 24 neighbors with sample data; hence, 
our design provided good support for estimates of 

occupancy probabilities. Search periods of 2 hr 

proved to be adequate and economical because 
detections rarely occurred after 90 min. Finally, 
foxes occurred in most sample townships, and we 
achieved a relatively high detection rate. Terminat- 

ing searches of townships when we found evidence 
of foxes thus resulted in considerable savings and 
enabled us to expand our study area each year. 

We crafted our sampling design to produce satis- 

factory results under very general conditions. Con- 

sequences of using different designs are difficult to 

generalize because they will depend on detection 
rates, numbers of surveys conducted, proportions 
and spatial distributions of cells sampled, and 

strengths of spatial dependencies in species distrib- 
utions under study. Investigators can safely assume, 
however, that sampling intensities greater than ours 
are desirable when they are feasible. Conversely, 
sparser designs than ours may merit consideration 
if detection rates are likely to be high, spatial depen- 
dencies are likely to be strong, and sample cells will 
be well-distributed throughout the area of interest. 

Advantages of MCMC Image Restoration 
Our analysis of swift fox distribution encom- 

passed several tasks that have been accomplished by 
alternative methods. For example, probabilities 
of occurrence have been estimated with logistic 
regression (Osborne and Tigar 1992, Buckland and 
Elston 1993, Robertson et al. 2002), autologistic 
regression (Augustin et al. 1996, Klute et al. 2002), 
and models for results of sequential searches (here- 
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after detection-history models; McArdle 1990, Kery 
2002, MacKenzie et al. 2002). Detection-history 
models have also been used to estimate detection 
rates (McArdle 1990, Kery 2002, MacKenzie et al. 
2002). Regression models have been used to pre- 
dict species distributions from covariates (Osborne 
and Tigar 1992, Buckland and Elston 1993), and 

range maps have been prepared by smoothing 
maps of observations (Johnson and Sargeant 2002). 
We preferred MCMC image restoration to these 
alternatives because it combined their strengths 
and accomplished the same objectives. 

Logistic regression, for example, can be used to 
relate probabilities of occupancy to covariates 
and then to predict probabilities of occurrence 
for map units that were not sampled. Unfortu- 

nately, actual probabilities of occurrence are con- 
founded with detection rates and the resulting 
bias cannot be estimated unless detection rates 
can also be estimated. For this reason, logistic 
regression models are of doubtful value when 
detection is uncertain. Predictions based on habi- 
tat covariates also require restrictive ecological 
assumptions (O'Connor 2002a,b) that are not 
met by generalists or by species with distributions 
restricted by other factors to a subset of poten- 
tially suitable habitat. Habitat models are, there- 
fore, of limited utility for constructing maps or 
for tracking changes in species distributions. 

Detection-history models (McArdle 1990, K6ry 
2002, MacKenzie et al. 2002) can provide esti- 
mates of both detection and occupancy probabil- 
ities, but they do not produce estimates for map 
units that have not been sampled. Like logistic 
regression, detection-history models are predicat- 
ed on the independence of sampling units and 
are thus ill suited for use in the preparation of 
distribution maps. Because species distributions 

generally display substantial spatial continuity, 
the presence of a species in (or absence from) 
neighboring map units is likely to be an excep- 
tionally useful predictor of occupancy (Heikkinen 
and Hogmander 1994, H6gmander and M0ller 
1995, Augustin et al. 1996). Spatial dependencies 
thus represent a valuable source of information 
that should not be ignored when a map of distri- 
bution is the ultimate objective of an investiga- 
tion. Ignoring spatial dependencies can also lead 
to incorrect inferences (Klute et al. 2002). 

Autologistic regression models and spatial 
smoothing exploit the continuity of species ranges, 
but the former share other shortcomings of logistic 
regression. Smoothing can markedly improve the 

correspondence between maps of observations 

and actual species distributions (Johnson and 

Sargeant 2002), but resulting maps are substan- 

tially influenced by the degree of smoothing 
imposed, which must be estimated from observa- 
tions or chosen subjectively to produce a visually 
pleasing result Estimating smoothing parameters 
from data is problematic because observations give 
misleading impressions of spatial continuity when 
detection rates are low (Heikkinen and H6gman- 
der 1994) and the benefits of smoothing are 

potentially the greatest. Maps developed by 
smoothing thus give general impressions of spe- 
cies distributions but not in terms of well-defined 
units (e.g., probabilities of occupancy), and they 
do not support variance estimates or rigorous 
assessments of changes in species distributions. 

Bayesian image models rectify some deficiencies 
and combine various advantages of covariate mod- 
els, capture-history models, and spatial smoothing. 
Like autologistic regression and spatial smoothing, 
image models exploit spatial patterns to improve 
map estimates. Like autologistic regression, they 
can be used to develop objective estimates of the 

appropriate degree of smoothing, and like capture- 
history models, they can accommodate uncertain 
detection. Desirable features include valid Bayesian 
confidence intervals (ohnson 1999:770) for model 

parameters and estimates for map units that are 

directly interpretable as probabilities of occupan- 
cy, conditional on observations. 

Previous Applications 
Bayesian image models have a relatively short 

but distinguished history of use in such diverse 
fields as statistical physics, medical image pro- 
cessing, epidemiology, archaeology, biogeogra- 
phy, and agricultural field trials (Besag et al. 
1995, Green 1996). However, applications gener- 
ally have been relegated to statisticaljournals that 

presuppose a specialized understanding of theo- 

ry and terminology. We sought to synthesize 
desirable statistical features of previous applica- 
tions, identify and dispense with unnecessary 
complexities, incorporate considerations specific 
to wildlife surveys, and develop an intuitive, self- 
contained presentation of key concepts. 

Of previous applications, our analysis most close- 

ly resembled that of Heikkinen and Hogmander 
(1994) because we incorporated their fully 
Bayesian approach for the estimation of model 

parameters. However, they and Hogmander and 
M0ller (1995) analyzed atlas data collected for 
different purposes and did not have accurate 
measurements of survey effort. Hogmander and 
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M0ller (1995) thus highlighted the need for 
more economical sampling designs that facilitate 
MCMC image restoration and suggested that 

sampling effort should be fixed a priori. Critical 

aspects of model performance also remained to 
be explored. We extended the work of Heikkinen 
and Hogmander (1994) by (1) developing an 
economical and effective sampling design, (2) 
incorporating a waiting-time model that achieved 
the goal of fixed sampling effort with fewer 

assumptions and for lower cost, and (3) using sim- 
ulation to evaluate the performance of our model 
and assess consequences of assumptions that are 
not shared by alternative methods of analysis. 

Assumptions 
Accurate Track Identification.-Track surveys are 

in widespread use as indicators of swift fox pres- 
ence (Harrison and Schmitt 2003, Olson et al. 
2003, Shaughnessy 2003) and relative abundance 
(Schauster et al. 2002b, Sargeant et al. 2003). 
Although accurate track identifications are fun- 
damental to the validity of such methods, users 
generally have not addressed the potential for, or 
consequences of, misidentifications. 

Our image model was unique among methods 
used to estimate swift fox distributions because 
misidentifications of swift fox tracks were accom- 
modated analytically as 1 of several factors con- 

tributing to uncertain detection. This feature of 
our analysis was desirable in its own right but more 
so because we believe it reduced the potential for 
errors of commission (i.e., detections of foxes 
where they do not occur). We believe observers 
are comparatively unlikely to declare a species to 
be present when they are uncertain if errors of 
omission are viewed as acceptable outcomes. 

Observers reported several isolated detections 
of swift fox tracks to the north, east, and south of 
contiguous swift fox range (Fig. 3). Those obser- 
vations may have represented errors of commis- 
sion; however, the few potentially spurious detec- 
tions in a large region classified predominantly as 
unoccupied suggests a low error rate. Isolated 
errors would not have exerted a strong influence 
on estimated probabilities of occupancy except 
for townships where they occurred (Fig. 2). 

Homogeneity of Detection Rates.-Sovada et al. 

(2003) captured similar numbers of foxes and ob- 
served similar home-range sizes in cropland and 
rangeland, which represented extremes of swift fox 
habitat that was available within our survey area. In 
addition, opportunities for detection were not lim- 
ited by the availability of suitable sites for track 

detection, which were superabundant. Finally, we 
sought to limit the potential for heterogeneity aris- 
ing from differences in lengths of time required 
for detection by searching for 2 hr, even though 
detections rarely occurred after 90 min. Collec- 
tively, these considerations justified our use of a 
single-parameter model for detection probabilities. 
However, we probably could not entirely eliminate 
effects of such factors as accessibility, tracking con- 
ditions, and species abundance. In principle, likeli- 
hoods used to estimate detection rates can reflect 
the influences of such covariates (Heikkinen and 
Hogmander 1994, MacKenzie et al. 2002). In prac- 
tice, however, complex spatial models for differ- 
ences in detection rates will often be difficult to 
justify, either because sample size requirements 
will be prohibitive or because likely influences (e.g., 
abundance) will be difficult or impossible to quan- 
tify. Even when sample sizes are sufficient and 
detection rates are related to covariates that can be 
measured, conventional methods of model selec- 
tion will be frustrated by spatial relationships 
among observations and ajoint posterior likelihood 
known only up to proportionality. Consequently, 
models for heterogeneity are most likely to be use- 
ful when factors affecting detection rates are well 
understood (e.g., when sample units are relatively 
homogeneous and can be unambiguously assigned 
to a few classes that are obviously different). 

Given the difficulties of developing realistic 
models for subtle differences in detection rates, 
the results of our simulations are reassuring. Nei- 
ther random variation nor a substantial spatial 
trend in detection rates had a consequential 
effect on estimates of mean detection rates or the 
restoration of a simulated target distribution 
resembling our results for swift foxes. 

Homogeneity of Spatial Contagion.-Whereas detec- 
tion-rate models (McArdle 1990, Kery 2002, 
MacKenzie et al. 2002) require independent sample 
sites, we assumed only that neighboring townships 
displayed similar degrees of spatial contagion 
throughout our study area. Given a reason to sus- 
pect strong spatial patterns, large study areas can be 
subdivided and each can be assigned a different 
parameter, or parameters can be specified as func- 
tions of covariates. However, image models usually 
are based on stationary priors (Green 1996) because 
such models have been found to perform well in 
many contexts. Relatively simple, contiguous distri- 
butions, like that of swift foxes in western Kansas, do 
not suggest a need for more complex models. 

Closure.-MCMC image restoration and detec- 
tion-history models share a requirement for clo- 
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sure of map units to changes in occupancy (McAr- 
die 1990, Kery 2002, MacKenzie et al. 2002). If this 

assumption is violated, probabilities of detection 
and probabilities of occupancy are confounded. 
Due consideration must, therefore, be given to 
such factors as the longevity, site fidelity, and intra- 

specific spatial relationships of species being stud- 
ied, as well as to the potential for abrupt range 
expansions or contractions. Annual searches of 

townships may suffice for swift foxes in Kansas but 
not for shorter-lived or transient species, for species 
that occur at much lower densities, or where rapid 
changes in distribution are considered likely. In 
Minnesota, for example, we are studying species 
that are more uniformly distributed, and we are 
concerned about rapid changes in carnivore distri- 
bution that may result from recent outbreaks of 

mange and rabies. As a result, we are searching 
smaller map units (41 km2) for that study and 

incorporating a sampling schedule that resembles 
a robust mark-recapture design (Pollock 1982). 

MANAGEMENT IMPLICATIONS 
Bayesian image models like ours are worthy of 

consideration for survey regions that can be read- 

ily partitioned into regular grids of appropriately 
sized map units; when a spatially contagious dis- 
tribution is likely; when the species of interest 
can be reliably distinguished from similar spe- 
cies, so that spurious observations are unlikely; 
and when cumulative detection rates of n65% can 
be achieved. Advantages over alternative methods 
are likely to be greatest when a census of appro- 
priately sized map units is impractical, detection 
is uncertain, and distributions do not correspond 
closely with distributions of covariates that can be 
measured easily. In such cases, image models can 
be used to resolve some of the most vexing prob- 
lems that plague surveys of wildlife distribution. 
Benefits include substantial cost savings; greater 
precision than alternatives that do not exploit 
spatial relations among map units; better support 
for temporal comparisons when detection rates, 
or even methods of detection, may change over 
time; greater objectivity than methods that rely 
on subjective methods of boundary determina- 
tion; and relatively weak assumptions. Although 
image models involve challenging concepts and 
can be difficult to implement, these benefits jus- 
tify the necessary effort. 
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APPENDIX 

Derivation of the joint likelihood for x, p, and 0 

Step 1: Expand the joint density of x, p, 0, and v in 2 ways: 
(a) Pr(x,p, 0, v, y)= Pr(x, 3, 0 t v, y) x Pr(v, y), and 
(b) Pr(x, 0, , v, y) = Pr(v, y I x, P, 0) x Pr(x I , 0) x Pr(0 I /) x Pr(/B) 

Step 2: Equate results (a) and (b) of Step 1: 
Pr(x, p, 0 j v, y) x Pr(v, y) = Pr(v, y I x, p, 0) x Pr(x 1 , 0) x Pr(0O 3 ) x Pr(/3) 

Step 3: Rearrange the results of Step 2: 
Pr(x, p, 01 v, y) = Pr(v. y I x. p. ) x Pr(x IP, ) x Pr( I) x Pr(B) 

Pr(v, y) 

Step 4: Spatial patterns in observations arise from patterns in occurrences and thus depend on p only through x. 
Conversely, 0 affects observations but not actual occurrences. As a result, the likelihood for v does not 
involve P, the prior for x does not involve 0, and the prior for 0 does not involve p. 

Pr(x, /, 0 1 v, y) = Pr(v. l x. 0) x Pr(x O) x Pr(0) x Pr(P) 
Pr(v, y) 

Step 5: Pr(v, y) does not involve x, p, or 0; therefore, following notation in the text: 
t(x, p, 01 v, y) c t(v, yl x, )x f(x 3) x f() x f(p). 

Derivation of the full conditional distribution for xi 

Step 1: Start with 7(x, ,B 01 v, y) oc (v, y I x, 0) x f(x I P) f(O) x f(p), from above. 
Step 2: Condition on current estimates of 0 and /: 

7(xI v, y, p, 0) C (v, y I x, O) x f(x I p). 
Step 3: Condition on the current estimate of x_P Note also that observations are independent, conditional on the xi, 

and that detections are conclusive. 

7(xi I x_i, v, v, 0) oc i(v; I xi, 0) x f(xi X_i, p) for yi= 0 

Step 4: Recall that x is a Markov random field defined in terms of second-order neighborhoods, hence that 
Pr(x I x_i) = Pr(x I x'_i). 
nr(xi x_,,, v, 0) c t(vi, xi, O) x f(xi l x'_i, ) for yi= 0 

Derivation of the full conditional distribution for P 

Step 1: Start with 7c(x, p, 0 v, y) c L(v, y I x, 0) x f(x I /3) x f(0) x f(p), from above. 
Step 2: Condition on the current estimates of x and 0: 

c(p I x, 0, v, y) oc t(v, y i x, 0) x f(x i p) x f(p) 
Step 3: Eliminate terms that do not involve p: 

n(p I x) f(X ) f(x ) x ( 
Step 4: Substitute a pseudolikelihood approximation for f(x I P) (Besag 1975, Heikkinen and Hogmander 1994): 

n(p | x) oc n f(x, I p) x f(P) (approximate). 

Derivation of the full conditional distribution for 0 

Step 1: Start with n(x, /, 0 i v, y) oc t(v, y x, 0) x f(xl P) x f(0) x f(P), from above. 
Step 2: Condition on the current estimates of x and p: 

Cn( I x, 1, v, y) oc (v, y I x, ) x f(x I 1) x f(0) 
Step 3: Eliminate terms that do not involve 0: 

7t(0 x, , y) o t(v, yl x, 0)x f(0) 
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