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Ultrashort intense-field optical vortices produced with
laser-etched mirrors
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We introduce a simple and practical method to create ultrashort intense optical vortices for applications
involving high-intensity lasers. Our method utilizes femtosecond laser pulses to laser etch grating lines
into laser-quality gold mirrors. These grating lines holographically encode an optical vortex. We derive
mathematical equations for each individual grating line to be etched, for any desired (integer) topological
charge. We investigate the smoothness of the etched grooves. We show that they are smooth enough to
produce optical vortices with an intensity that is only a few percent lower than in the ideal case. We
demonstrate that the etched gratings can be used in a folded version of our 2f–2f setup [Opt. Express 19,
7599 (2005)] to compensate angular dispersion. Finally, we show that the etched gratings withstand
intensities of up to 1012 W�cm2. © 2007 Optical Society of America

OCIS codes: 090.1760, 050.1590, 050.1950, 140.3300, 320.7090.

1. Introduction

Since the development of mode locking and chirped-
pulsed amplification, intense and ultrashort laser
pulses have been ubiquitously used in laboratories to
study laser–matter interactions under extreme con-
ditions [1,2]. What makes intense, ultrashort pulses
so interesting is that peak intensities of 1015 W�cm2

and more can be achieved. The corresponding electric
fields result in a force on an atomic electron that is
comparable to the force the nucleus exerts on it. Thus
the pulse is capable of liberating an electron from its
parent nucleus. Much research has been carried out
in this area, known as intense-field ionization; some
highlights are multiphoton ionization, tunneling ion-
ization, and above threshold ionization [1,2].

Another field, evolved from research in wave-field
dislocations [3] and laser modes within cavities [4], is
known as singular optics [5]. An archetypical exam-
ple of phase singularities in optics is the Laguerre–
Gaussian (LG) [6] transverse paraxial beam mode
LGp�0

m�1, also known as the “donut mode” (here m is the
azimuthal mode number and p is the radial mode

number) [5,6]. LG modes have an azimuthal phase
dependency of exp�im�� (� is the azimuthal angle).
This phase dependency causes the electric field to be
undetermined on the optical axis [7]. Consequently,
the field amplitude vanishes there; it is the location of
an optical vortex (OV) with topological charge m [5].
Ince–Gaussian modes [8,9] provide a connection be-
tween the Hermite–Gaussian [6] and the LG modes.
Helical Ince–Gaussian (HIG) modes possess a number
of vortices on a straight line. These modes were exper-
imentally realized by symmetry breaking of a laser
cavity [10] and later were also produced holographi-
cally [11]. The LG and HIG beams carry optical orbital
angular momentum (OAM). Currently, in high-field
physics there have been no experiments performed to
investigate the effects of this quantity on atomic or
molecular systems. Because we are interested in in-
vestigating possible effects of OAM in ionization pro-
cesses, this paper is devoted to presenting a simple
method to produce OAM-containing beams (in partic-
ular, OVs) by laser etching gratings lines into laser-
quality mirrors.

Different methods have been devised to experimen-
tally realize OVs in the laboratory. Among these
methods are spiral phase plates (SPPs) [12–14] and
methods based on computer-generated holograms
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(CGH) [5,6], either using photographically produced
gratings [15] or, more recently, spatial light modula-
tors (SLMs) [11,16]. Each of these methods has its
advantages and disadvantages depending on the ap-
plication. For example, photographic methods offer
high resolution capabilities compared to an SLM or
an SPP [13]. However, photographic and SPP meth-
ods are inflexible compared to SLMs (which can be
easily reprogrammed). Holograms recorded on pho-
tographic film are not suitable for high intensities as
the film will be damaged. SLMs are more robust than
film but are still less suitable for high intensities than
SPPs [12,13].

When producing intense, ultrashort optical vorti-
ces, some considerations need to be taken into ac-
count to obtain azimuthally pure beams, i.e., beams
without mode impurities that depend on the azi-
muthal mode number m, since this determines the
beam’s OAM, the quantity of our physical interest.
Both on-axis (Gabor) holography and off-axis (Leith
and Upatnieks) holography [17] have been used to
produce OVs. For on-axis holography, SPPs have
been successfully used [5]. For off-axis holography,
gratings are typically used [5,15,16,18]. Upon illumi-
nating either of these elements with monochromatic
light having a Gaussian intensity profile we obtain
OVs that are generally a superposition of pure LG
states [5,6]. The contributing LG modes have the
same azimuthal mode number m but different radial
mode numbers p. The two elements differ in that
SPPs are near 100% power efficient [18], while grat-
ings are typically less efficient [13,16,19].

For broadband radiation (e.g., ultrashort pulses),
SPPs are not suitable [13,19]. These plates are de-
signed for a specific wavelength, so that for all other
spectral components in the pulse there is a mismatch
of the step height. This results in mode impurities
that depend upon the azimuthal mode number
[20,21]. For gratings, the wavelength dependence is
manifest in different spectral components emerging
from the grating at different angles (angular chirp)
[16,22]. The azimuthal mode impurities introduced
by an SPP result in an intensity profile that is not
cylindrically symmetric. In nonlinear laser–matter
interactions such as multiphoton ionization, the use
of azimuthally impure beams could cause difficulties
when comparing integrated ion yields to theories. No
method has been reported to correct the azimuthal
mode impurities an SPP causes. In the case of OVs
produced with gratings, wavelength dependent angu-
lar dispersion can be compensated, but at the expense
of power [13,15,16,19]. Thus, it is desirable to have
efficient OV gratings that can withstand high inten-
sities. In this paper, we describe a method to produce
such gratings using laser etching of gold-coated mir-
rors.

In Section 2 we derive the mathematical formulas
that describe the grating lines to be etched (“skeleton
equations”). In Section 3 we give details of the fabri-
cation process. In Section 4 we discuss the perfor-
mance of the laser-etched gratings. Finally, we draw
conclusions in Section 5.

2. Skeleton Equations for the Grating Lines

To manufacture our gratings, we selectively removed
the gold plating from laser-quality gold mirrors by
focusing femtosecond laser radiation onto their sur-
face. Throughout this paper we will refer to these
laser-etched mirrors as “LG mirrors.” In this section
we provide a prescription of the so-called skeleton
equations [7] that we used to laser etch grating lines
into the blank mirrors with the help of MATLAB and
LabVIEW codes.

It is known that the phase-only interference of an
optical vortex exp�i�kzz � m� � �0�� with that of an
oblique plane reference wave exp�i�kzz � kxx�� results
in an interference pattern that gives the grating
structure needed to produce an optical vortex beam
[5,7]:

I�x, y� �
1
2�1 � cos�m arctan�y

x	� 2�Kx � �0
�.

(1)

Here m � 0, �1, �2, �3, . . . is the topological charge
of the OV to be produced, K � kx�2� is the number of
grating lines per unit length, and �0 is an arbitrary
phase factor. Relationships like Eq. (1) are commonly
used in the production of gratings. For instance, for a
binary grating we take the value 1 when the inter-
ference term is positive, and the value zero elsewhere
[7]. The reflectance function R (defined similarly to
the transmission function T in Ref. [7]) is therefore

R�x, y� ��0 cos��� � 0
1 cos��� 	 0. (2)

Here � � m arctan�y�x� � 2�Kx � �0. The prescrip-
tion in Eq. (2) gives binary gratings like the ones
shown in Fig. 1. For our laser-etching fabrication of
holographic gratings we use Eq. (1) to find where each
groove needs to be etched. For this purpose we set the
interference term in Eq. (1) equal to an arbitrary
constant, c (between �1 and �1), which gives the

Fig. 1. Computer-generated binary grating patterns based on Eq.

(2), for �0 � �
1
2 �. Each pattern consists of 1000 
 1000 pixels,

where pixels for which T � 0 are rendered black and T � 1 white.
The pattern on the left has no encoded vortex �m � 0�. The pattern
on the right has a single fringe bifurcation �m � 1�; when used as
a hologram it gives rise to vortices with topological charge �1 in
the � first diffraction order.
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skeleton equations. Setting �0 � 0 for simplicity and
choosing c � 1 we obtain

m arctan�y
x	� 2�Kx � arccos�c��mod 2��

� 2��n � Kx�. (3)

The periodicity of the cosine function in Eq. (1) gives
rise to the modulo term 2�n in Eq. (3), where n �
0, �1, �2, . . . . This integer has a unique value for
each grating line, so we call it the grating line num-
ber. If, in Eq. (3), we choose m � 0, the skeleton
equations reduce to that of a straight-line grating
x � �n�K, as shown in Fig. 2a. For nonzero (but
integer) m we solve Eq. (3) for y to obtain the skeleton
equations for the OV holograms:

y�x� � x tan�2�

m �n � Kx�
. (4)

The periodicity of the tangent function in Eq. (4) gives
unwanted branches in the solutions. We exclude
these branches by setting conditions on the angular
argument of the tangent function for three different
regions of the grating plane: positive x half-plane,
negative x half-plane, and the line x � 0. This latter
line case will be discussed later. For the skeleton
equations in the regions x 	 0 and x � 0, we impose
the following angular conditions (� � azimuthal an-
gle):

x 	 0 ) �
1
2 � � � �

1
2 �,

x � 0 )
1
2 � � � �

3
2 �. (5)

Substituting the argument of the tangent function
� � 2��n � Kx��m in the inequalities of Eq. (5) we

find the following conditions on the skeleton equa-
tions:

x 	 0: �
1
K�m

4 � n	� x �
1
K�m

4 � n	, n �
m
4 ;

x � 0: �
1
K�m

4 � n	� x �
1
K�3m

4 � n	, n 	
m
4 . (6)

The last set of inequalities (n � m�4 and n 	 m�4)
give the integer grating line numbers for which the
first set of inequalities for x hold. For the equation of
the line x � 0, the argument of the tangent function
is degenerate, namely,

� �

1
2 �, y 	 0

undefined, y � 0

�
1
2 �, y � 0

. (7)

Again using � � 2��n � Kx��m, we rewrite Eq. (7) as

n �

m
4 , y 	 0

undefined, y � 0

�
m
4 , y � 0

. (8)

Since n is an integer n � 0, �1, �2, . . . , Eq. (8) can
apply only when m � 0, �4, �8, . . . , and the
straight line x � 0 needs to be considered only for
these m values. Note that if a value other than zero
was chosen for �0, there could be a line in the positive
y half-plane and no line in the negative y half-plane or
vice versa. Summarizing, a grating that produces an
OV beam can be drawn one line at a time by using Eq.
(4) (skeleton equations), Eq. (6) (which places limits
on the x values), and Eq. (8) (for the center line, when
needed). To verify that the equations are correct we
drew the patterns seen in Fig. 2. We used the same
line-by-line drawing approach to laser etch our mir-
ror holograms—one groove at a time (see Section 3).

3. Grating Fabrication and Grating Quality

To laser etch the grating lines into the gold mirrors,
we first built a motorized X–Y translation stage. Two
unmotorized translation stages (Standa, sensitivity
1 �m, maximum travel 150 mm) were mounted per-
pendicular to each other as shown in Fig. 3. The
resulting X–Y stage was used to move the mirror
relative to the fixed focus of the laser beam. Stepper
motors (Arrick Robotics, angular step size of 1.8°)
were connected to the knobs of each of the translation
stages via stainless steel bellow couplers. These cou-
plers compensated for small misalignments between
the stepper motors and the translation stages. The

Fig. 2. Binary (line) grating holograms constructed using Eqs. (4),
(6), and (8). The holograms are for a topological charge m equal to
a, 0; b, 1; c, 2; d, 3; e, 4; and f, 5 all for �0 � 0. Labeled on each
hologram are the grating line numbers n for each line.
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stepper motors were connected to an Arrick Robotics
MD-2 dual stepper motor driver that we controlled by
a laboratory PC. Experimental tests showed that
translations of 5 �m could be reliably reproduced. A
schematic of the complete setup is shown in Fig. 3.

Laser radiation from a Spectra-Physics Spitfire Ti:
sapphire laser having pulse durations of �50 fs, cen-
ter wavelength of 800 nm, and a maximum output
power of �2.3 W was used in the etching process. The
laser beam was focused with an achromatic micro-
scope objective having a magnifying power of 4.0
,
numerical aperture of 0.2, and a focal length of
30.8 mm. The objective was independently mounted
to a manually controlled vertical translation stage
above the motorized X–Y translation stage. The man-
ual translation stage allowed for micrometer posi-
tioning of the focus onto the mirror surface.

We used MATLAB code along with the line equa-
tions and their limits discussed in Section 2 to create
two matrices, one encoding for x translations and the
other encoding for y translations. Each column of the
matrices was labeled by individual grating lines.
These matrices were digitized into steps of 5 �m.
LabVIEW code was used to interpret these matrices
and subsequently control the movement of the trans-
lation stages.

The laser radiation was attenuated to between 60
and 120 mW before focusing. We found through sim-
ple trial-and-error that these powers yielded groove
widths that were approximately 1�2 a grating period.
This ratio was chosen because for binary amplitude
gratings the first-order diffraction efficiency 
�R� �
sin��R��� [17,19] (where R � Kd is the ratio of line-
width to grating constant) is maximum for R � 1�2.
Intensities in this power range were high enough to

exceed the damage threshold of the gold and remove
the reflective coating on the mirrors. The grating
lines were etched as one continuous path, as shown in
Fig. 4. The resulting laser-etched grating patterns
are shown in Figs. 5a–5c for m � 1, 2, and 7. In Figs.
5d–5f the same etched patterns are shown again,
together with the calculated lines from the skeleton
equations (in red online, gray in print). The etched
lines agree with these calculated lines.

As we expected, we had to move the laser focus
sufficiently slowly over the gold surface to etch a
continuous groove with our pulsed laser, which has a
repetition rate of 1 kHz. If we set the speed too large
we obtained a useless series of pits instead of a
groove, as shown in Fig. 6, with each pit burned by a
single pulse of the laser. To investigate the smooth-
ness of our continuous grooves we recorded and an-
alyzed close-up microscopic images of the gratings.
Figure 7 gives a typical impression of the detailed

Fig. 3. (Color online) Schematic of the setup used for laser etching
the mirrors. The laser beam is shown entering the setup from the
top right. A mirror mounted at 45° with respect to the incoming
beam sends the beam through an achromatic microscope objective
with a focal length of 30.8 mm. The objective was mounted to a
manual vertically positioned translation stage having a microme-
ter resolution. The beam is focused onto a mirror that is mounted
on a motorized X–Y translation stage controlled by stepper motors.
The resulting resolution in the translation is 5 �m in both the X
and the Y directions.

Fig. 4. Diagram displaying the method used to etch the gratings
as a single continuous line. Arrows show the direction of motion of
the focused laser beam relative to the mirror. For clarity, the center
lines in this m � 3 grating are shown separated. Each of these
center lines was etched down to the center of the grating and back
up the exact path.

Fig. 5. (Color online) Gray-scale microscopic images of the LG
mirrors with 20
 magnification for gratings with topological
charges (top row, left to right) 1, 2, and 7. The gray portions
represent the reflective gold coating, while the black curves are the
regions where the gold has been removed by the focused femtosec-
ond radiation. The bottom row shows the same images, overlaid
with the skeleton lines (red online, gray in print) calculated from
Eq. (3).
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groove shape. We investigated how the quality of the
groove shape (its smoothness) depends on how fast
the focus is moved over the surface to be etched, and
also how it is affected by the power used.

To investigate the power dependence, we etched
a mirror with �100 mW, and another with only
�60 mW. For a representative groove segment of
each mirror we then determined the spread in groove
width. Using an edge-detection routine in MATLAB,
we identified the groove edges (red curves, gray in
print, in Figs. 8a and 8c mark the boundary between
the gold and the groove), and we then sampled the
groove width at regular intervals. The histograms in
Figs. 8b and 8d show the distributions of groove
widths we found. We define the groove smoothness as
S � 1 � �d�d where �d is the full width at half-
maximum of Gaussian fits to the histograms of Fig. 8,
and d is the average groove width. The groove for
100 mW (Fig. 8a) shows a larger spread in linewidth,
(d � 34.9 �m, �d � 4.3 �m, S � 88%), than the one
for 60 mW (d � 41.5 �m, �d � 2.4 �m, S � 94%). The
difference in smoothness resulted from decreasing
the laser power. We concluded that for 100 mW too
much laser power was being delivered to the mirror to
properly laser etch. This was also apparent in the
debris field on the surface of the mirror after the
etching process. In contrast, the 60 mW mirror had

very little debris on its surface. In either case, the
groove smoothness appears acceptable. MATLAB sim-
ulations showed that insufficient smoothness causes
a noise background in the far field, but, for our case,
only at an estimated intensity level of �40 to �30 dB.
This is accompanied by a loss of intensity in the vor-
tex beam of no more than 5% of the ideal vortex
intensity.

4. Performance of the Laser-Etched Gratings

We used several optical setups to experimentally
demonstrate mode quality, angular dispersion com-
pensation, and the maximum intensity the LG mir-
rors can withstand. In our first experiment we used a
Michelson interferometer (Fig. 9) to observe the re-
sulting intensity patterns and phases of the OVs pro-
duced from m � 1, 2, and 7 LG mirrors. A removable
diverging lens, L, was placed in the reference arm
that produces a reference beam having either a plane
or spherical wavefront. The reference mirror Mref was
mounted onto a translation stage to adjust for differ-
ences in optical path length between the two arms of
the interferometer. A 50�50 beam splitter was used to
split the incoming femtosecond radiation.

The setup was radiated with full laser power
��2.3 W�. The reference arm was blocked with an
opaque screen allowing only the vortex beam to
emerge from the interferometer. The resulting vortex
beam was sent through a 1 m focusing lens and im-
ages were observed in the focus using a CCD camera.
We placed neutral-density filters in front of the cam-
era to avoid damage. Images of vortices of charges 1,
2, and 7 are shown in Figs. 10a–10c. Removing the

Fig. 6. (Color online) When the laser focus is moved too fast we
obtain a trail of separate pits instead of the desired continuous
groove, as this microscopic image shows. Here, pits burned by
individual laser pulses no longer spatially overlap. The width of the
pits is approximately 20 �m.

Fig. 7. Images at various magnifications of an m � 1 LG mirror
produced by laser etching a laser-quality gold mirror (gray is the
gold plating and black is the groove). The grating constant is
�100 �m. The images give an impression of the quality in which
our setup can currently laser etch grating lines.

Fig. 8. (Color online) Analysis of groove smoothness: Close-up
images of LG mirrors etched with an average laser power of a, 100
and c, 60 mW. The red lines (gray in print) are the groove edges as
determined with a MATLAB edge-detection routine. The groove
widths were measured at regular intervals, and histograms of the
groove width distribution are shown: panel b is the histogram for
the 100 mW groove in a, and panel d for the 60 mW groove in c.
Black curves are Gaussian fits, with a full width at half-maximum
of b, 4.3 and d, 2.4 �m. We ascribe the improved smoothness of c
compared to a to the lowering of the laser power used in the etching
process.
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opaque screen allowed the reference beam to pass
through the interferometer with a planar wavefront.
Interference with this wavefront resulted in an in-
tensity pattern that mimics the LG mirror lines, seen
in Figs. 10d–10f. Finally, by adding the diverging
lens to the reference arm (as shown in Fig. 9), a

spherical reference beam was allowed to interfere
with the vortex beam, resulting in the spiral struc-
tures seen in Figs. 10g–10i.

The observed vortices in Figs. 10a–10c show non-
zero intensity at their centers. This is due to angular
dispersion resulting from the diffraction of broad-
band ��20 nm� radiation [18]. To compensate this
angular dispersion we used a folded version of our
2f–2f setup [15,16]. In this folded setup, Fig. 11, the
radiation passes through the converging lens L1
twice and there is a negligible distance ��150 �m�
between the lens L1 and the folding mirror M. There-
fore, if we mentally unfold the setup the effective
focal length, feff, follows from

1
feff

�
1
f

Ç
first pass

�
1
f

Ç
second pass

�
2
f ) feff �

1
2 f � 50 cm,

(9)

and so we adjusted the distance between the LG mir-
ror and the L1�M to 100 cm � 2feff. When compensat-
ing the angular dispersion, we used our Spectra-Physics
Tsunami oscillator, whose bandwidth ��45 nm� is
about twice that of the amplified beam ��20 nm�.
Pulse durations for the oscillator were determined to
be �110 fs from frequency-resolved optical gating
(FROG) measurements. This pulse duration is not
transform-limited due to pulse stretching by the final

Fig. 9. (Color online) Schematic of Michelson interferometer used
to observe intensity and interference patterns of optical vortices
produced by laser-etched LG mirrors (BS is a beam splitter). A
removable diverging lens, L, was used to create the spherical ref-
erence beam. The vortex beam is drawn as a solid red line (solid
gray lines in print) and the reference beam is drawn as dotted blue
lines (dotted gray lines in print). By removing the diverging lens a
plane reference wave can be interfered with the vortex beam. We
investigated the diffraction orders �1, 0, and �1 (yellow boxes).

Fig. 10. (Color online) Intensity profiles and interference pat-
terns for optical vortices with charges 1, 2, and 7 (left, center, and
right columns). First row (a)–(c): far-field images of optical vortices
taken in the focus of a 1 m lens. Second row (d)–(f): interferograms
of the optical vortices with a plane reference wave; these images
mimic the LG-grating pattern. Third row (g)–(i): images of the
optical vortices interfering with a spherical reference beam, creat-
ing a spiral intensity pattern. The vortex charge is confirmed by
counting the number of intertwined spiral arms in these inter-
ferograms.

Fig. 11. (Color online) Schematic of the folded 2f–2f setup (angles,
object dimensions and relative object positions not to scale for
clarity). Ultrashort laser pulses enter from the top right, and then
propagate along the following path: bottom half of the LG mirror,
containing the line grating of which a part is shown in Fig. 2a; S,
order-selecting aperture, blocking all diffraction orders but �1; L1,
plano-convex lens with focal length f � 100 cm; M, folding mirror;
top half of the LG mirror, containing a grating with the vortex
fingerprint of which an example appears in Fig. 2b; L2 is a colli-
mating lens; CCD is a CCD camera. The dimensions and relative
positions of the optical elements are as follows: the etched part of
the LG mirror is square, 2 cm 
 2 cm; distance between the LG
mirror and L1 is 100 cm; distance between L1 and M is �150 �m;
distance between the LG mirror and L2 is 25 cm; CCD is located
120 cm behind L2. Diffraction orders ��1, 0, �1� are indicated as
black numbers on a yellow background. A few colored rays are
shown to remind the reader that there is spatial chirp, with gray
rays indicating that spatial chirp is absent. Note that we show just
three colors—in reality, the frequency spectrum is, of course,
continuous.
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cavity optics. (An external compressor would com-
press the pulse.) The resulting �1 diffraction orders
emerging from the folded 2f–2f setup show compen-
sated (Figs. 12a–12c) and uncompensated (Figs. 12d–
12f), vortex profiles. The uncompensated �1 order
has twice the angular chirp that it would have had if
it had been diffracted by only one grating [15]. Fi-
nally, a pinhole was placed in the zero-order beam to
create a spherical reference beam. The resulting in-
terferograms, shown in Figs. 12g–12i, confirm the
topological charge we etched.

To determine the maximum intensity that the LG
mirrors can withstand before becoming irreversibly
damaged, an LG mirror was placed on an optical
track so that it could be moved along the optical axis
of a 1 m focusing lens. The lens focused 800 nm ra-
diation from our Ti:sapphire laser amplifier having a
pulse duration of �50 fs. At a laser intensity of about
1012 W�cm2, self-focusing was observed in the quartz
glass behind the reflective surface of the LG grating.
The intensity was increased by moving the LG mirror
further into the focus. It was observed that the re-
flective gold coating became damaged at intensities
	1012 W�cm2. This value is in agreement with [23].
To ensure that the LG mirror could withstand these
intensities for long periods of time, the mirror was
left for 30 min at slightly less than 1012 W�cm2. Mi-
croscope observations revealed no damage to the LG
mirror after this exposure.

Inspection of the images in Fig. 12 shows that the
LG mirrors produce vortices of the correct topological
charge. Also, the angular chirp they produce can be

compensated using existing methods. Thus, we made
fully functional vortex-producing gratings based on
the skeleton equations we presented in Section 2. The
scattered light seen in Fig. 12 must be at least in part
due to the nonperfect groove smoothness of our laser-
etched holograms. This background noise causes the
vortex of charge 2 that was expected in Fig. 12b to
split into two adjacent vortices of charge 1 [7]. It also
leads to a nonzero intensity in the heart of the vortex
of charge 7 in Fig. 12c. Improvement of the smooth-
ness is expected to improve the quality of the vortices
we produce.

5. Conclusions and Outlook

In conclusion, we have demonstrated a simple and
straightforward way to produce optical vortices by
laser etching grating lines into typical laser-quality
gold mirrors. We have shown that these LG mirrors
are sufficiently smooth and withstand high intensi-
ties. Their gold plating also allows for large band-
widths, making them suitable for a broad range of
applications. Future experiments will involve laser
etching silver and dielectric mirrors. In addition, im-
provement can be made to increase the efficiency of
these LG mirrors and�or setups in which they are
used when producing femtosecond optical vortices.
First, it has been shown that small misalignments to
a compressor allow precompensation of angular dis-
persion [16]. The elimination of the first grating pass
in the 2f–2f setup increased the efficiency by an order
of magnitude when binary gratings were used. Sec-
ond, binary blazing techniques [24] might improve
the first-order diffraction efficiency by an additional
factor of 4. With these techniques, laser-etched LG
mirrors would remain suitable for large bandwidth
pulses in a wide range of optical wavelengths while
retaining much of the power in the compensated or-
der. Finally, it has been shown [25] that in the pro-
duction of white-light Bessel beams, axicons are not
suitable. The method outlined in this paper is highly
applicable in the generation of high-power, broad-
band Bessel beams.

This material is based upon work supported by
the National Science Foundation under grant PHY-
0355235. T. Scarborough acknowledges a Research
Experiences for Undergraduates grant from the Na-
tional Science Foundation.
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